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SUMMARY 

 

This work is conducted under Task 2.5, Development of a Chemical Model/database up to 200 oC with 
High Internal Consistency, in the TP Test Plan for Determining Thermodynamic Properties of Brines, 
Minerals and Corrosion Products for High Level Radioactive Waste Disposal in Salt (FCRD-UFD-2012-
00033).  In this work, a Pitzer model for the Na-Cl-OH-Al(OH)4 system, and solubility of boehmite 
(AlOOH) to high ionic strengths, and to high temperatures up to 250oC, has been developed by evaluating 
equilibrium quotients concerning boehmite in NaCl solutions to 5.0 mol•kg–1, and boehmite solubility 
data in NaOH solutions to ~13 mol•kg-1.  This model is validated by comparing model-predicted 
solubilities with solubility data of boehmite in NaOH solutions that are independent from the model 
development.  In combination with the Pitzer parameters for the Na+—Al(OH)4

– interaction to 100oC 
recommended by the author, already published in the literature, a Pitzer model concerning aluminum 
under the neutral to alkaline pH conditions to high ionic strength valid from 25oC to 250oC, has been 
established.  This model is applicable to high level waste (HLW) and used fuel disposal in salt formations 
in accurate descriptions of geological behavior of aluminum species in brines over a wide range of 
temperatures.  This model, coupled with the high temperature borate and silica models to be developed, 
will be of use in prediction of stability of HLW borosilicate glass, aluminum silicate materials as waste 
forms for long-lived nuclides, bentonite as engineered barrier, in geological repositories. 
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THERMODYNAMICS OF BRINES, MINERALS AND 
CORROSION PRODUCTS AT HIGH TEMPERATURES: 

A PITZER MODEL FOR THE NA-AL(OH)4-CL-OH 
SYSTEM TO HIGH IONIC STRENGTH AND TO 250OC 
 

1. OBJECTIVE 
 
Accurate knowledge of geochemical behavior of aluminum in high ionic strength solutions at elevated 
temperatures is important to safe disposal of high level nuclear waste (HLW) and used nuclear fuel (UNF) 
in geological repositories, especially in salt formations.  The importance of accurate knowledge of 
geochemical behavior of aluminum is related to the following facts.  Borosilicate glasses in which 
aluminum is a major component are a strong candidate waste form for immobilization of high level 
nuclear waste (HLW).  Sodalite, Na8(Al6Si6O24)(OH, Cl, I)2, is a candidate waste form for contaminated 
salt wastes generated from electrorefinery of used nuclear fuel, and for radioactive iodine (i.e., 129I) waste 
(e.g., Sheppard et al., 2006).  Bentonite, Na0.2Ca0.1Al2Si4O10(OH)2(H2O)10, is a preferred engineered 
barrier for HLW and used nuclear fuel in many geological repository designs (e.g., Itälä, 2009).   
 
Al(OH)4

– is expected to be a dominant aluminum species from the mildly acidic to alkaline pH at elevated 
temperatures.  For example, the neutral pH is 5.8 at 150oC, and Al(OH)4

– predominates from pHm ~4 
(hydrogen ion concentration on molal scale) to alkaline pHm in a solution with 1.0 molal ionic strength 
(Palmer et al., 2001).  Wesolowski (1992) recommended two sets of the Pitzer parameters for the 
Na+―Al(OH)4

– interaction.  One set is at 25oC, and was obtained by using the equations of Pitzer and 
Mayorga (1973).  The other set is at 0―100oC, which was evaluated by using equations of Simonson et 
al. (1989).  The former is adopted in the Al-Si thermodynamic model to 100oC, assuming the constancy of 
the Pitzer parameters over 25―100oC (Xiong, 2013).  This assumption is in line with the suggestion that 
Pitzer and SIT parameters can be regarded to be constant over a narrow temperature range (e.g., Grenthe 
et al., 1997).  The latter was adopted by KÖnigsberg et al. (2006) to calculate solubilities of boehmite.   
 
In this work, an attempt is made to evaluate Pitzer parameters for the Na+―Al(OH)4

– interaction in the 
temperature range from 100oC to 250oC, based on the high quality experimental equilibrium quotients 
involving Al(OH)4

–.  Then, experimental solubility data of boehmite in NaOH solutions are used to 
evaluate the mixing parameters involving Al(OH)4

– to 170oC.  Finally, independent experimental data are 
compared with model predicted solubilities of boehmite in the same medium. 
 
In combination with the Pitzer parameters for the Na+—Al(OH)4

– interaction to 100oC (Xiong, 2013), the 
objective of this work is to establish a Pitzer model concerning aluminum under the neutral to alkaline pH 
conditions to high ionic strength valid from 25oC to 250oC.   
 
This work is conducted under Task 2.5, Development of a Chemical Model/database up to 200 oC with 
High Internal Consistency, in the TP Test Plan for Determining Thermodynamic Properties of Brines, 
Minerals and Corrosion Products for High Level Radioactive Waste Disposal in Salt (FCRD-UFD-2012-
00033; Xiong et al., 2012).   
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2. SCIENTIFIC APPROACH AND TECHNICAL METHODS 

2.1 Scientific Approach 
 

In this work, the standard state for a solid phase is defined as its pure end-member with unit activity at 
temperatures and pressures of interest.  The standard state of the solvent in aqueous solutions is pure 
solvent at temperatures and pressures of interest.  The standard state for an aqueous solute is a 
hypothetical 1 molal (m) solution referred to infinite dilution at temperatures and pressures of interest.  
The uncertainties reported in this study are two standard deviations (2).  Error propagations are 
calculated based on uncertainties associated with regressions and equilibrium constants in the model.   

The computer code EQ3/6 Version 8.0a (Wolery et al., 2010; Xiong, 2011) is employed as the modeling 
platform.  The essence of the modeling is to minimize the difference between experimental and model 
predicted values.  The similar modeling work can be found in Xiong (2013). 

 

2.1.1 Evaluation of Pitzer Binary Interaction Parameters for Na+―Al(OH)4
– 

 

The equilibrium quotients (log Qs4) for boehmite (AlOOH(cr)) can be expressed as, 

 

     AlOOH(cr) + 2H2O = H+ + Al(OH)4
–    (1) 

 

     Qs4 = m
Al(OH)4

– × m
H+        (2) 

 

There are experimental equilibrium quotients (log Qs4) in 0.10-5.0 mol•kg–1 NaCl solutions from the 
literature.  In combination of auxiliary data for the H+―Cl– (Holmes et al., 1987) and Na+―Cl– (Pitzer et 
al., 1984) interactions (Table 1), the equilibrium quotients for Reaction (1) as a function of ionic strength 
to 250oC are modeled to derive the binary parameters for the Na+―Al(OH)4

– interaction.   
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Table 1.  The auxiliary Pitzer binary parameters from the literature used in modeling, and Pitzer 

parameters derived in this work 

Interaction 
Pairs 

Parameter Temperature Dependence Coefficients* Original 
Sources  

  a1 a2 a3 a4  
 (0) 1.77000779E-01 -3.34777082E+01 -2.62214535E-01 1.25778302E-04 Holmes et 

al., 1987 H+—Cl– (1) 2.92922504E-01 3.40247027E+03 1.97936248E+01 -2.79388381E-02 

 C 3.62000000E-04 -2.91038305E-11 0 -3.03600000E-05 

 (0) 7.45618073E-02 -4.70789056E+02 -1.85114134E+00 1.65564633E-03 Pitzer et 
al., 1984 Na+—Cl– (1) 2.75240690E-01 -5.21117635E+02 -2.88035999E+00 4.71462791E-03 

 C 1.53693372E-03 4.80725476E+01 1.74679979E-01 -1.56268596E-04 

 (0) 8.83443913E-02 -1.19784571E+03 -6.10983033E+00 7.43325156E-03 Pabalan 
and Pitzer, 

1987 
Na+—OH– (1) 2.44421177E-01 1.62702502E+03 9.48250496E+00 -1.15788697E-02 

 C 3.99943679E-03 8.82475511E+01 4.06876285E-01 -4.75666912E-04 

 (0) 5.1000E-02 0 0 0  
Na+—

Al(OH)4
– 

(1) 2.5324E-04 -2.2335E+04 -1.2278E+02 -1.6695E-01 This 
work** 

 C -9.0000E-04 3.5669E+01 0 0  
OH–—

Al(OH)4
– 

 1.4000E-02 0 0 0 Wesolowski
, 1992 

Na+— 
OH–—

Al(OH)4
– 

 -4.8000E-03 5.5000E+01 0 0 This 
work** 

* The temperature dependence expression for Pitzer parameters is 

1 2 3 4

1 1
( ) ( ) ln( ) ( 298.15)

298.15 298.15

T
x T a a a a T

T
          

The coefficients for H+—Cl–, Na+—Cl–, and Na+—OH– are from the data0.ypf (Wolery and Jarek, 2003), 
which were generated by the EXCEL spreadsheet authored by Wijesinghe and Rard (2005).   

** The parameters above 25oC are evaluated by this study; the parameters at 25oC are from Wesolowski 
(1992).  Notice that the temperature dependence expression for (1) of Na+—Al(OH)4

– is fitted by using 
the values in Table 3, and some accuracy is lost when conforming to the temperature dependence 
expression.   

 

 

 

In modeling the temperature function of binary parameters detailed in Table 1, for Na+―Al(OH)4
–, (0) is 

set to a constant value, which is the value at 25oC from Wesolowski (1992).  For C, the coefficient, a2, 
for the temperature function expression, is set to 35.669.  Then, the equilibrium quotients as functions of 
temperatures and ionic strengths from Palmer et al. (2001) are modeled for equilibrium constants at 
infinite dilution, i.e., log Ks4, and for at (1) at various temperatures.  In Table 2, log Ks4 at individual 
temperatures, and its temperature function expression are tabulated.  In Table 3, (1) at individual 
temperatures are tabulated.  Using these individual values for (1), the coefficients for the temperature 
function expression are fitted (Table 1).  . 

 



 Thermodynamic Properties of Brines, Minerals and Corrosion products 
 

4 9/27/2013 

 
Table 2.  Equilibrium constants for Reaction (1) at infinite dilution obtained in this work by using the 

Pitzer model 

T, oC log Ks4, This work log Ks4 (Palmer et al., 2001)* 
100 –12.89 ± 0.04 –13.02 ± 0.03 
150 –12.03 ± 0.05 –12.06 ± 0.03 
200 –11.34 ± 0.05 –11.40 ± 0.03 
250 –10.98 ± 0.06 –11.05 ± 0.04 

Temperature 
Dependence 
Expression 

4

1
log 2526.286 6.082542sK

T
     

(T in Kevin) 

4

1
log 2598.755 5.991052sK

T
     

(T in Kevin) 

*The extrapolation to infinite dilution is based on their empirical, weighted fitting equation as functions 
of ionic strength and temperature. 

 

 
Table 3.  Pitzer binary interaction parameters, (1) and C for Na+―Al(OH)4

–, evaluated in this work* 

T, oC (1) C
100 0.3100 -0.02495 
150 0.1971 -0.03624 
200 0.5274 -0.04514 
250 0.9817 -0.05235 

* Evaluated from equilibrium quotients, Qs4, in NaCl solutions from Palmer et al. (2001) 

 

 

 

2.1.2 Evaluation of Pitzer Mixing Interaction Parameters Related to Al(OH)4
– 

 

In the model developed in this work, the theta parameter, 
OH–, Al(OH)4

–, is set to a constant value of 0.014, 

which is the value at 25oC from Wesolowski (1992).  For the psi parameter, 
NaOH-, Al(OH)4

–, its 

temperature function is modeled from boehmite solubility data in NaOH solutions at 100oC through 
130oC from Russell et al. (1955) (Table 4), using the auxiliary data for the Na+—OH– interaction from 
Pabalan and Pitzer (1987).  The reason that solubility data of Russell et al. (1955) are selected for usage in 
modeling is that they also measured densities of solutions besides solubility.  Therefore, their data can be 
precisely converted to those on molal scale.  In addition, their density measurements as functions of base 
and aluminum concentrations at each temperature can be fitted as the multiple linear regressions, which 
are useful for conversion of other literature data for the validation test (see the following section).  The 
isothermal multiple linear regressions are tabulated in Table 5. 

 
The temperature dependence function of the psi parameter (Table 1) is constructed based on the values at 
100oC through 130oC, and the value at 25oC from Wesolowski (1992).  Although the data set from 
Russell et al. (1955) is from 100oC through 170oC, only those data at 100oC through 130oC are modeled, 
and the results are used for construction of the mathematical function.  The reason for using the results at 
100oC through 130oC, in combination with the value at 25oC, to construct the temperature dependence 
function is that the data from 100oC through 130oC are to higher molalities of NaOH up to ~11 mol•kg–1.  
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Additionally, their data at 140oC through 170oC are not modeled in order to test if the temperature 
function for the psi parameter can be extended to 170oC, and to build the confidence to extrapolate it to 
250oC (Table 1). 
 
In modeling boehmite solubility data in NaOH solutions from Russell et al. (1955), the binary interaction 
parameters for Na+―Al(OH)4

–, and log Ks4, are based on those obtained in the preceding section.  With 
these constraints, the psi parameters as a function of temperature are obtained (Table 4).  Based on the psi 
parameters at individual temperatures, the temperature function of the psi parameters is fitted (Table 1). 

 
 

Table 4.  Pitzer ternary interaction parameter, , for Na+―OH–―Al(OH)4
–, estimated in this work* 

T, oC 
100 -0.04188    
110 -0.04572    
120 -0.04938    
130 -0.05285    
140 -0.05615** 
150 -0.05929** 
160 -0.06229** 
170 -0.06516** 
180 -0.06790** 
190 -0.07052** 
200 -0.07303** 
210 -0.07543** 
220 -0.07774** 
230 -0.07996** 
240 -0.08209** 
250 -0.08414** 

*Estimated from solubility data of boehmite in NaOH solutions from Russell et al. (1955). 
**Calculated from the temperature dependence function extrapolated to 250oC.   
 

  



 Thermodynamic Properties of Brines, Minerals and Corrosion products 
 

6 9/27/2013 

 
Table 5.  Multiple linear correlation expressions for density measurements as functions of base and 

aluminum concentrations*, based on measurements from Russell et al. (1955) 

Temperature, oC Coefficients 
 a b c 

100 2.0170E-04 1.5533E-03 0.99909 
110 2.9110E-05 1.7219E-03 1.0012 
120 -3.3770E-05 1.8330E-03 1.0030 
130 4.4992E-04 1.2903E-03 1.0104 
140 6.6667E-04 3.0000E-03 0.97267 
150 1.6317E-03 -4.1358E-04 1.0309 
170 -7.6015E-04 3.1352E-03 0.99437 

* The general correlation expression is:  (g/cm3) = a × CNa2O (g/L) + b × CAl2O3
 (g/L) + c 
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2.2 Verification and Validation of the Model Developed in this Work 
 

In Figure 1, the model predicted equilibrium quotients, log Qs4, as a function of ionic strength, are 
compared with experimental values determined by Palmer et al. (2001).  Figure 1demonstrates that the 
model is excellent in reproducing experimental values. 
 
 

 
Figure 1.  A plot showing the model predicted equilibrium quotients as a function of ionic strength in 

comparison with experimental values.  The size of error bars is equal to or smaller than the 
symbol size. 

 

 

In Figure 2, solubilities of boehmite as a function of NaOH molality at 100oC and 110oC predicted by the 
model are compared with experimental values.  Notice that experimental data from Ikkatai and Okada 
(1963) and Panias et al. (2001) are converted to molal scale, based on the densities calculated from the 
equations in Table 5.  This is also true for all other literature data thereafter, if the conversion is 
necessary.  Figure 2 indicates that solubilities predicted by the model are in good agreement with the 
experimental data from Ikkatai and Okada (1963) and from Panias et al. (2001), which are independent 
from the model.    
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Figure 2.  A plot showing the model predicted solubilities of boehmite at 100 oC and 110 oC as a function 
of NaOH molality in comparison with experimental values.  The size of error bars is equal to 
or smaller than the symbol size. 

 

 

Solubilities of boehmite as a function of NaOH molality at 120oC and 130oC calculated using the 
model are compared with experimental values (Figure 3).  Notice that experimental data from Fulda and 
Ginsberg (1951) at 125oC, from Ikkatai and Okada (1963) at 130oC, and from Panias et al. (2001) at 
120oC and 130oC are not used in modeling.  Figure 3 shows that solubilities predicted by the model are in 
good agreement with the experimental data independent from the model.   
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Figure 3.  A plot showing the model predicted solubilities of boehmite at 120 oC and 130 oC as a function 
of NaOH molality in comparison with experimental values.  The size of error bars is equal to or 
smaller than the symbol size. 

 

 

Figure 4 displays solubilities of boehmite as a function of NaOH molality at 140oC and 150oC.  It is 
worth noting that experimental data from Russell et al. (1955), Panias et al. (2001) at 140oC and 150oC, 
from Magarshak (1938), Fulda and Ginsberg (1952), and Bourcier et al. (1993), all at 150oC, are 
independent from the model development.  Notice that the experiments of Bourcier et al. (1993) were 
conducted in 0.00186 mol•kg–1 KOH + 0.0050 mol•kg–1 B(OH)3, and 0.00434 mol•kg–1 KOH + 0.0050 
mol•kg–1 B(OH)3 buffer solutions.  In the comparison calculations, these two buffer solutions were 
approximated by 0.00686 and 0.00934 mol•kg–1 NaOH solutions, respectively.  These independent data 
agree reasonably with the model predicted values, which indicate that the extension of the temperature 
function of the psi parameter to 150oC is justified.   
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Figure 4.  A plot showing the model predicted solubilities of boehmite at 140 oC and 150 oC as a function 
of NaOH molality in comparison with experimental values.  The size of error bars is equal to 
or smaller than the symbol size. 

 

 

In Figure 5, independent experimental solubility data from Fulda and Ginsberg (1951) at 160oC and 
175oC, and from Apps (1970) at 184oC, are compared with the model predicted solubility curves at 160oC 
and 170oC.  Obviously, the model agrees well with the independent experimental data, which provides the 
confidence in the extension of the temperature function of the psi parameter to 170oC and beyond.   
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Figure 5.  A plot showing the model predicted solubilities of boehmite at 160 oC and 170 oC as a function 
of NaOH molality in comparison with experimental values.  The size of error bars is equal to 
or smaller than the symbol size. 
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In Figure 6, solubility curves at 200oC and 250oC are constructed by using the model.  In the 

construction, the temperature dependence function for the psi parameter, 
NaOH-, Al(OH)4

–, estimated based 

on solubility data of Russell et al. (1955), is extrapolated to 250oC.  The independent experimental data 
from Kuyunko et al. (1983), and Bourcier et al. (1993) at 200oC and 250oC, from Magarshak (1938), 
Fulda and Ginsberg (1951), Druzhinina (1955), all at 200oC, and from Bernshtein and Matseno (1955) at 
250oC, and Apps (1970) at 255oC, are in excellent agreement with the model.  Therefore, in addition to 
other parameters, the temperature dependence function for the psi 

NaOH-, Al(OH)4
–, is also validated to 

250oC.  
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Figure 6.  A plot showing the model predicted solubilities of boehmite at 200 oC and 250 oC as a function 
of NaOH molality in comparison with experimental values.  The size of error bars is equal to 
or smaller than the symbol size. 
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The parameters related to Al(OH)4
– obtained in this work are of the similar magnitude in respect to 

the comparable interactions in the literature.  For example, regarding 1:1 interaction, the (1) for Na+—
OH– at 25oC and 250oC are 0.2444 and 0.6239, respectively (Pabalan and Pitzer, 1987).  In comparison, 
the (1) for Na+—Al(OH)4

– at 25oC and 250oC are 0.2500 and 0.9817, respectively (Table 1 and Table 3).  
The (0) for Na+—OH– at 25oC and 250oC are 0.07456 and 0.08536, respectively (Pabalan and Pitzer, 
1987).  The Na+—Al(OH)4

– interaction has a constant value of 0.05100 for (0) over the temperature range 
from 25oC to 250oC (Table 1).  The C values for Na+—OH– at 25oC and 250oC are 0.001537 and -
0.004752, respectively (Pabalan and Pitzer, 1987).  Similarly, the C values for Na+—Al(OH)4

– at 25oC 
and 250oC are -0.0009000 and -0.05235, respectively (Table 1 and Table 3). 

 

The log Ks4’s obtained in this study using the Pitzer model are in excellent agreement with those 
obtained by Palmer et al. (2001) based on the extrapolation to infinite dilution according to their 
empirical, weighted fitting equation as functions of ionic strength and temperature (Table 2).  The log Ks4 
at 100oC obtained by this work is -12.89 ± 0.04 in comparison with their value of -13.02 ± 0.03 at the 
same temperature (Table 2).  Similarly, the excellent agreement is also observed for the log Ks4’s at other 
temperatures (Table 2). 

 

 

3. IMPLEMENTING DOCUMENTS 

3.1 Implementing Procedures 
This milestone report follows the TP Test Plan for Determining Thermodynamic Properties of Brines, 
Minerals and Corrosion Products for High Level Radioactive Waste Disposal in Salt (FCRD-UFD-2012-
00033) (Xiong et al., 2012) under Task 2.5, Development of a Chemical Model/database up to 200 oC 
with High Internal Consistency. 

4. TEST EQUIPMENT AND CALIBRATION 
This analysis work uses the data from the literature.  There is no test equipment or calibration associated 
with this milestone report.   

 

5. RECORDS 
This milestone report is developed, maintained, collected, compiled, and submitted in accordance with 
Sandia National Laboratories records management procedures. 

 

6. TRAINING AND QUALIFICATIONS 
This analysis work uses the data from the literature.  There is no training or qualification associated with 
this milestone report. 
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7. SOFTWARE 
The aqueous speciation and solubility program EQ3/6 (V. 8.0a) is used for this milestone report.   

 

8. PROCUREMENT 
This analysis work uses the data from the literature.  There is no procurement associated with this 
milestone report.   
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