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EXECUTIVE SUMMARY 
 

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. 
Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology 
(FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel 
(SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are 
design concept development and disposal system modeling. These priorities are directly addressed 
in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged 
with developing a geologic repository system modeling and analysis capability, and the associated 
software, GDSA Framework, for evaluating disposal system performance for nuclear waste in 
geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the 
Used Fuel Disposition (UFD) campaign.  

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package 
(SF-20SN01030403) level 3 milestone – Advances in Uncertainty and Sensitivity Analysis 
Methods and Applications in GDSA Framework (M3SF-20SN010304032). It presents high level 
objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates 
uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY20, 
and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA 
capability of GDSA Framework. This work was closely coordinated with the other Sandia National 
Laboratory GDSA work packages: the GDSA Framework Development work package (SF-
20SN01030404), the GDSA Repository Systems Analysis work package (SF-20SN01030405), 
and the GDSA PFLOTRAN Development work package (SF-20SN01030406). This report builds 
on developments reported in previous GDSA Framework milestones, particularly M2SF-
19SN01030403. 
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1. INTRODUCTION 
This report presents high level objectives and strategy for development of uncertainty and 

sensitivity analysis tools in Geologic Disposal Safety Assessment (GDSA) Framework, a software 
toolkit for probabilistic post-closure performance assessment (PA) of systems for deep geologic 
disposal of nuclear waste. GDSA Framework is supported by the Spent Fuel and Waste Science 
and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear 
Energy (NE) and its predecessor the Used Fuel Disposition (UFD) campaign.  

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package 
(SF-20SN01030403) level 3 milestone – Advances in Uncertainty and Sensitivity Analysis 
Methods and Applications in GDSA Framework (M3SF-20SN010304032). It presents high level 
objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates 
uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY20, 
and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA 
capability of GDSA Framework.  

This work was closely coordinated with the other Sandia National Laboratory GDSA work 
packages: the GDSA Framework Development work package (SF-20SN01030404), the GDSA 
Repository Systems Analysis work package (SF-20SN01030405), and the GDSA PFLOTRAN 
Development work package (SF-20SN01030406). This report builds on developments reported in 
previous GDSA Framework milestones, particularly M2SF-19SN01030403 [1]. 

The repository community must maintain leadership in UQ/SA methods. Computational codes 
are becoming increasingly complex and require high performance computers to run, resulting in 
costly sample evaluations. Geologic repository performance assessment in the U.S. involves a code 
base that includes coupled, multiphysics modeling at high resolution. Having relatively few 
simulation samples highlights the need to consider surrogate models to sample and explore the 
input parameter space more extensively. However, this must be done in a careful way so that 
surrogate accuracy can be tracked and understood in the context of UQ/SA results. Variance-based 
sensitivity indices are now a standard practice in the sensitivity analysis community but require a 
large number of function evaluations of the predictive model. Much research has focused on 
calculating variance-based sensitivity indices while keeping the computational cost reasonable. 
We note that other sensitivity analysis methods [1] may be better than variance-based methods at 
identifying patterns of behavior or trends. Another recent approach is to employ “multifidelity” 
UQ in which many low-fidelity simulation runs (e.g., coarser mesh, simpler physics) augment a 
small number of high-fidelity runs. Keeping abreast of improvements to existing UQ/SA methods 
as well as employing new methods is critical to performing sensitivity and uncertainty analysis of 
new repository systems which will involve large parameter spaces and computationally expensive 
simulations.  
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1.1 Overview of this Report 
This report provides documentation of the UQ/SA work performed in 2020. The outline of this 
report is as follows:  

• Chapter 2 provides an overview of an exciting new uncertainty quantification method 
involving models at multiple levels of fidelity, hence the name “Multifidelity Uncertainty 
Quantification.” The main idea in multifidelity UQ is to extract information from a limited 
number of high-fidelity model evaluations and complement them with a much larger number 
of a set of lower fidelity evaluations. The final result is an estimator of the mean response with 
a lower variance: a more accurate and reliable estimator can be obtained at lower computational 
cost. Chapter 2 demonstrates the use of multifidelity UQ on a PFLOTRAN test problem 
involving a tank containing chemical and radioactive waste meant to be illustrative of a tank 
at the Hanford site.  

• Chapter 3 discusses the verification exercises performed on the discrete fracture networks 
(DFN). In FY19, we demonstrated that the DFNs were a main source of uncertainty for the 
crystalline reference case. This year, we examined the DFNs closely to ensure consistency of 
the number of fractures and fracture area per unit volume with respect to estimates from the 
SKB Forsmark site. We also upscaled the DFNs to obtain equivalent continuous porous 
medium (ECPM) results in terms of the hydraulic conductivity tensor values K. We compared 
the ECPM results for the different K tensor directions that were obtained from upscaling the 
DFNs with those reported by SKB and found good agreement. These results are documented 
in Chapter 3.  

• In Chapter 4, we extend the sensitivity analysis of the crystalline reference case performed in 
FY19. Last year, we identified the need for better indicators of fracture connectivity as well as 
information about the flow between the repository and the aquifer. These metrics can then be 
used in SA to help identify why higher peak concentrations happen for certain realizations. To 
facilitate this, PFLOTRAN added several new quantities of interest, including peak 
concentrations (of 129I and tracers) in the aquifer at each time step, along with the location of 
the peaks, mean travel time from the repository to various locations, residence time within the 
repository, and total water flux in various directions. The results of the sensitivity analysis of 
the crystalline reference case based on a new set of 800 PFLOTRAN runs (20 realizations of 
spatial uncertainty x 40 epistemic samples) are documented in Chapter 4.  

• Chapter 5 documents the GDSA Workflow for a UQ study. Uncertainty quantification 
workflows are not trivial to define and get running, even when using tools such as Dakota to 
generate nested studies involving sampling loops over both aleatory and epistemic samples. 
The analyst has to spend a significant amount of time writing scripts to interface the sample 
values to PFLOTRAN, extract the results, and put the entire workflow on a high-performance 
computing platform. Further, as the quantities of interest increase and many vectors of results 
are generated for each simulation, plotting and aggregating the results in a variety of ways (e.g. 
averaging over epistemic or aleatory slices as a function of time) becomes very involved. To 
address this, the GDSA Workflow was developed this year. This workflow couples Dakota, 
PFLOTRAN, and SAW (the Sandia Analysis Workflow software) to present the user with a 
unified interface where the actual workflow can be dictated in an easy-to-use graphical format. 
This workflow also allows greater reproducibility and traceability of the actual files and scripts 
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used for a particular study. This year, we demonstrated the UQ workflow for a GDSA study 
involving spatial, aleatory, and epistemic uncertainty. 

• Chapter 6 documents the sensitivity analysis results we performed on two international case 
studies as part of an international working group focused on UQ/SA for repository analysis.  

• Chapter 7 provides a summary. 
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1.2 GDSA Framework 
GDSA Framework (Figure 1-1) capabilities include multi-physics simulation of coupled 

processes affecting deep geologic repository performance, uncertainty and sensitivity analysis, 
pre- and post-processing, and visualization. For a given performance assessment, these tools will 
be linked to a version-controlled parameter database and an automated run-control system. The 
overall objectives of GDSA Framework development are to:  

• create a framework that is flexible enough to take advantage of future advances in 
hardware, software, and simulation and analysis methods;  

• leverage existing high-performance computing capabilities (e.g., meshing, simulation, 
analysis, and visualization);  

• enable increasingly coupled, mechanistic multi-physics modeling;  

• provide analysis methods for prioritization of SFWST Disposal Research R&D activities; 

• provide transparent implementation of simulation and analysis methods; 

• develop and distribute in an open-source environment so that software is freely available 
to stakeholders ([1-5]). 

Objectives specific to the uncertainty and sensitivity analysis capability in GDSA Framework 
are to make available standard sampling-based methods of uncertainty propagation, sensitivity 
analysis, and uncertainty quantification typically used within U.S. nuclear waste disposal programs 
(e.g., DOE 2008 [6], DOE 2014 [7], RESS2000[13], RESS2014[14]); and to enable future 
adoption of new methods consistent with the current standard of practice in the UQ/SA community 
and appropriate for high-dimensional, highly coupled, nonlinear problems resulting from the 
implementation of mechanistic multi-physics simulations. Having a consistent, common 
framework which enables a user to perform a range of sensitivity analysis and UQ approaches for 
a particular problem or set of simulations allows for reproducibility, comparative analyses, use of 
verified algorithms, and documentation of best practices. These are important goals for 
performance assessments now and in the future. 
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Figure 1-1. The GDSA Framework 

The following sections highlight the key components of GDSA Framework. More information 
about each can be found by following the links at https://pa.sandia.gov. 

1.2.1 PFLOTRAN 
PFLOTRAN is an open source, state-of-the-art, massively parallel subsurface flow and 

reactive transport simulator ([8-10]). Written in object-oriented Fortran 2003, PFLOTRAN is a 
porous medium continuum code for modeling multicomponent, multiphase flow and transport, 
heat conduction and convection, biogeochemical reactions, geomechanics, and isotope decay and 
ingrowth. The code is developed under a GNU LGPL license allowing for third parties to interface 
proprietary software with the code. The availability and continuing development of PFLOTRAN 
are due to an ongoing collaborative effort of several DOE laboratories led by Sandia. PFLOTRAN 
development for GDSA Framework is described by Mariner et al. ([2-4]) and Sevougian et al. 2018 
[11]. PFLOTRAN installation instructions are available at: https://www.pflotran.org.  

1.2.2 Dakota 
Dakota is an open-source toolkit of algorithms that contains both state-of-the-art research and 

robust, usable software for optimization and uncertainty quantification (UQ). It is available at: 
https://dakota.sandia.gov [12]. The algorithms allow a user to explore a computational simulation 
to answer questions such as:  

• what is the best design?  
• how safe is this design? 
• what are the most important parameters? 
• what effects do uncertainties have on my system?  

https://pa.sandia.gov/
https://www.pflotran.org/
https://dakota.sandia.gov/
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The Dakota software has a rich set of parametric analysis methods that enable design 
exploration, model calibration, risk analysis, and quantification of margins and uncertainty with 
computational models. Dakota provides a flexible, extensible interface between simulation codes 
and these iterative analysis methods, which include: 

• optimization with gradient and nongradient-based methods; 
• uncertainty quantification with sampling, reliability, stochastic expansion, and epistemic 

methods; 
• parameter estimation using nonlinear least squares (deterministic) or Bayesian inference 

(stochastic); and 
• sensitivity/variance analysis with design of experiments and parameter study methods. 

These capabilities may be used on their own or as components within advanced strategies such 
as hybrid optimization, surrogate-based optimization, mixed-integer nonlinear programming, or 
optimization under uncertainty. Dakota is a C++ code and has been under development at Sandia 
since 1994 and has been primarily sponsored by DOE’s Advanced Simulation and Computing 
(ASC) program. As such, it has a focus on interfacing to and running simulations which are 
computationally expensive, require high performance computing and parallel execution, and 
exhibit nonlinearities, non-monotonic and/or discontinuous responses, and often involve noisy 
responses and high-dimensional inputs. Thus, a focus of the algorithm development in Dakota has 
been on methods that are as efficient as possible and minimize the number of runs required of a 
high-fidelity simulation model. Such algorithms include surrogate or emulator models, adaptive 
sampling approaches, and multifidelity UQ methods which augment a small number of high- 
fidelity runs with many low-fidelity runs to obtain comparable accuracy in statistical estimators.  

Dakota contains the uncertainty quantification and sensitivity analysis methods typically used 
in the U.S. repository program. Dakota implements Latin Hypercube Sampling (LHS) with 
correlation control on input parameters. It calculates moments on responses of interest as well as 
correlation matrices (simple, partial, and rank correlations) between inputs and outputs. Dakota 
also contains an algorithm for performing incremental LHS which allows one to double an initial 
LHS study such that the second LHS study is a Latin design and the combined initial and second 
LHS studies together form a Latin hypercube design. Dakota allows nested studies to perform an 
“outer loop” epistemic sampling and an “inner loop” aleatory sampling to generate ensembles of 
distributions. Dakota returns tables of input and output amenable to further processing and 
visualization with additional tools developed within GDSA Framework or by an individual user. 
Additional methods that have been implemented in Python for use in GDSA Framework include 
calculation of standardized regression coefficients via stepwise linear regression and calculation 
of partial correlation coefficients based on raw data or rank-transformed data. 

A graphical depiction of Dakota interfacing with a computational model such as a repository 
simulation in PFLOTRAN is shown in Figure 1-2. Based on the type of study being performed 
(optimization, uncertainty quantification, etc.), Dakota chooses the next set of parameters at which 
to evaluate the simulator and runs the simulator, which returns the performance metrics of interest 
back to Dakota. Dakota then generates the next set of parameters according to the algorithm being 
used for the study and keeps iterating until the specified number of samples is reached. 
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Figure 1-2. Dakota interfacing to a computational model such as a repository simulator 
 

The UQ/SA methods in Dakota have evolved as the standard of practice evolves. Over the past 
ten years, the Dakota team has invested in methods which calculate the Sobol’ variance-based 
sensitivity indices in an efficient manner. Currently, a Dakota user can calculate these by extensive 
sampling of the simulation code, by using surrogate methods such as regression or Gaussian 
process models, and by the use of polynomial chaos expansions. These advanced methods are 
presented in more detail later as used in GDSA Framework. Dakota is an actively maintained and 
developed code with formal releases issued twice per year. Dakota uses formal software quality 
development processes including advanced version control, unit and regression testing, agile 
programming practices, and software quality assessment. 

1.2.3 Visualization Tools 
GDSA Framework employs ParaView and/or VisIT for visualization of results. ParaView is 

an open-source, multi-platform data analysis and visualization application developed by Sandia 
National Laboratories. As stated on the ParaView website (https://www.paraview.org/): 
“ParaView users can quickly build visualizations to analyze their data using qualitative and 
quantitative techniques. The data exploration can be done interactively in 3D or or 
programmatically using ParaView’s batch processing capabilities. ParaView was developed to 
analyze extremely large datasets using distributed memory computing resources. It can be run on 

https://www.paraview.org/
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supercomputers to analyze datasets of petascale size as well as on laptops for smaller data, has 
become an integral tool in many national laboratories, universities and industry, and has won 
several awards related to high performance computation.” 

VisIT has been developed at Livermore National Laboratory. As stated on the VisIT website 
(https://wci.llnl.gov/simulation/computer-codes/visit): “VisIT is an open source, interactive, 
scalable, visualization, animation, and analysis tool. From Unix, Windows, or Mac workstations, 
users can interactively visualize and analyze data ranging in scale from small (<101 cores) desktop-
sized projects to large (>105 cores) leadership-class computing facility simulation campaigns. 
Users can quickly generate visualizations, animate them through time, manipulate them with a 
variety of operators and mathematical expressions, and save the resulting images and animations 
for presentations. VisIt contains a rich set of visualization features to enable users to view a wide 
variety of data including scalar and vector fields defined on two- and three-dimensional (2D and 
3D) structured, adaptive and unstructured meshes. Owing to its customizeable plugin design, VisIt 
is capabable of visualizing data from over 120 different scientific data formats.”  

1.2.4 GDSA Workflow 

Uncertainty Quantification workflows are not trivial to define and get running, even when using 
tools such as Dakota to generate nested studies involving sampling loops over both aleatory and 
epistemic samples. The analyst has to spend a significant amount of time writing scripts to interface 
the sample values to PFLOTRAN, extract the results, and put the entire workflow on a high-
performance computing platform. Further, as the quantities of interest increase and many vectors 
of results are generated for each simulation, plotting and aggregating the results in a variety of 
ways (e.g. averaging over epistemic or aleatory slices as a function of time) becomes very 
involved. To address this, the GDSA workflow was developed this year. This workflow couples 
Dakota, PFLOTRAN, and SAW (the Sandia Analysis Workflow software) to present the user with 
a unified GUI where the actual workflow can be dictated in an easy-to-use graphical format. This 
workflow also allows greater reproducibility and traceability of the actual files and scripts used for 
a particular study. This year, we demonstrated the UQ workflow for a GDSA study involving both 
aleatory and epistemic sampling. This is further discussed in Chapter 5.  

1.2.5 GDSA Software Strategy 
The software strategy for GDSA is to leverage and use open source software that is actively 

maintained and developed, whenever possible. That is why the GDSA Framework utilizes 
PFLOTRAN, Dakota, Paraview, and VisIT. Another goal is to support HPC computing, which is 
a primary focus for all of the software tools listed above. In addition, the GDSA Framework should 
have the flexibility to develop and adopt new capabilities as state-of-the-art hardware, software, 
and methodology evolves. Again, the codes chosen for GDSA exhibit this flexibility and are 
constantly evolving and adopting to utilize new software and hardware capabilities. Much of the 
interfacing between the codes is currently performed with Python scripts and other scripting tools, 
and there will be tighter integration as GDSA Framework and the GDSA workflow progresses.  

 

https://wci.llnl.gov/simulation/computer-codes/visit
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2. NEW UQ METHODOLOGY: MULTILEVEL/MULTIFIDELITY 
METHODS 

Repository performance assessment requires the repeated evaluation of complex, high-fidelity 
models that simulate million-year time horizons. The high computational cost of these models 
limits the number of simulations that can be performed in an uncertainty analysis, which in turn 
limits the accuracy of summary statistics and statistical analyses using such few samples. The 
emerging UQ methodology of multifidelity/multilevel methods can help to mitigate the effects of 
these limitations from computational cost by deploying lower-fidelity, less-resolved models which 
are still well-correlated with the high-fidelity model used for performance assessment.  

The remainder of this chapter proceeds as follows. In Section 2.1, multilevel methods are 
briefly introduced. In Section 2.2, multifidelity polynomial chaos expansions are briefly 
introduced. Finally, in Section 2.3 these two methods are demonstrated on a benchmark problem 
in PFLOTRAN that mimics some of the properties of models for performance assessment to show 
the potential utility. 

2.1 Multilevel Methods 
Key statistics of interest such as the mean concentration of a radionuclide or its .95 quantile 

involve the numerical evaluation of an integral. The main cost is typically in calculating a 
numerical solution to a system of ordinary or partial differential equations which is used to obtain 
the quantities of interest. In the presence of uncertainty, this integration is typically performed 
using Monte Carlo integration, which is unbiased and has a rate of convergence that is independent 
of number of uncertain random variables. However, this rate of convergence is slow; the variance 
of an MC estimator decays as the square root of the number of samples used in the estimation. The 
aim of multilevel methods is to reduce the variance of the estimator without incurring additional 
high-fidelity model evaluations. This variance reduction is achieved by exploiting coarser 
discretizations of the model.  

The key concept behind multilevel UQ methods is introduced here in the context of two model 
discretizations, which are denoted f for fine and c for coarse. The quantity of interest (the integrand) 
is denoted Q. Here the desired statistic is 𝔼𝔼�𝑄𝑄𝑓𝑓�, which is the expectation of the quantity of interest 
at the finest level. This expectation can be approximated using Monte Carlo integration and 
evaluations of the finest model discretization as 

𝑄𝑄�𝑓𝑓 = 1
𝑁𝑁
∑ 𝑄𝑄𝑓𝑓

(𝑖𝑖)𝑁𝑁
𝑖𝑖=1 .                             (2.1) 

The expected value of 𝑄𝑄�𝑓𝑓 is 𝔼𝔼�𝑄𝑄𝑓𝑓�, and its variance is 𝕍𝕍(𝑄𝑄𝑓𝑓)/𝑁𝑁. Note that in practice 𝕍𝕍�𝑄𝑄𝑓𝑓� is 
unknown and must be additionally approximated using a sample variance. When 𝑁𝑁 is small, this 
variance can be quite large, meaning the estimated mean may be inaccurate. Instead, one can 
consider the multilevel (ML) estimator, 𝑄𝑄�𝑓𝑓𝑀𝑀𝑀𝑀, where the multilevel estimator is written as the mean 
of the coarse estimator plus the mean of the difference between the coarse and fine estimators:  

𝑄𝑄�𝑓𝑓𝑀𝑀𝑀𝑀 = 𝑄𝑄�𝑐𝑐 + 𝑄𝑄𝑓𝑓 − 𝑄𝑄𝑐𝑐� = 1
𝑁𝑁𝑐𝑐
∑ 𝑄𝑄𝑐𝑐

(𝑖𝑖)𝑁𝑁𝑐𝑐
𝑖𝑖=1 + 1

𝑁𝑁𝑀𝑀𝑀𝑀
∑ �𝑄𝑄𝑓𝑓

(𝑗𝑗) − 𝑄𝑄𝑐𝑐
(𝑗𝑗)�𝑁𝑁𝑀𝑀𝑀𝑀

𝑗𝑗=1 .          (2.2) 
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Note that in the evaluation of Equation 2.2., we assume that the number of samples of the coarse 
model used to estimate the first term is much higher than the number of multilevel samples used 
to estimate the second term, which is governed by the cost to run the fine model: 𝑁𝑁𝑐𝑐 ≫ 𝑁𝑁𝑀𝑀𝑀𝑀 . 

The expected value of 𝑄𝑄�𝑓𝑓𝑀𝑀𝐿𝐿 is  

𝔼𝔼�𝑄𝑄�𝑓𝑓𝑀𝑀𝑀𝑀� = 𝔼𝔼�𝑄𝑄�𝑐𝑐� + 𝔼𝔼�𝑄𝑄𝑓𝑓 − 𝑄𝑄𝑐𝑐� � = 𝔼𝔼[𝑄𝑄𝑐𝑐] + 𝔼𝔼�𝑄𝑄𝑓𝑓� − 𝔼𝔼[𝑄𝑄𝑐𝑐] = 𝔼𝔼�𝑄𝑄𝑓𝑓�,               (2.3) 

which is the target quantity to be estimated. However, the variance of this multilevel estimator is  

𝕍𝕍�𝑄𝑄�𝑓𝑓𝑀𝑀𝑀𝑀� = 𝕍𝕍[𝑄𝑄𝑐𝑐]
𝑁𝑁𝑐𝑐

+ 𝕍𝕍�𝑄𝑄𝑓𝑓−𝑄𝑄𝑐𝑐�
𝑁𝑁𝑀𝑀𝑀𝑀

.               (2.4) 

The benefit of the multilevel estimator is that the variance of 𝕍𝕍[𝑄𝑄𝑓𝑓 − 𝑄𝑄𝑐𝑐] can be much smaller 
than 𝕍𝕍�𝑄𝑄𝑓𝑓� alone, if 𝑄𝑄𝑓𝑓 and 𝑄𝑄𝑐𝑐 vary similarly with respect to changes in the random inputs. This 
means that the contribution of the term 𝕍𝕍�𝑄𝑄𝑓𝑓 − 𝑄𝑄𝑐𝑐� to the variance of the estimator can be much 
smaller for the same number of simulations at the fine level. There is an additional contribution to 
the multilevel estimator’s variance from the coarse level evaluations. The contribution of the first 
term in Equation 2.3 can be made small by driving the variance down with a large number of 
samples 𝑁𝑁𝑐𝑐 at the coarse level, which is presumably possible because the coarse model is cheaper 
to run.  

 Only two discretization levels were considered to describe multilevel methods above, but 
it is common to employ several discretization levels in a multilevel estimator. These discretization 
levels are typically indexed by ℓ, with ℓ = 0 being the coarsest level and ℓ = 𝐿𝐿 being the finest 
level. The same concept above applies, except now there is a telescoping difference between a 
discretization level ℓ and the next finer level ℓ + 1. The general multilevel estimator of the quantity 
of interest 𝑄𝑄 at the finest level 𝐿𝐿 can be thus written as 

𝑄𝑄�𝐿𝐿𝑀𝑀𝑀𝑀 = 1
𝑁𝑁0
∑ 𝑄𝑄0

(𝑖𝑖)𝑁𝑁0
𝑖𝑖=1 + 1

𝑁𝑁1
∑ �𝑄𝑄1

(𝑖𝑖) − 𝑄𝑄0
(𝑖𝑖)� + 1

𝑁𝑁2
𝑁𝑁1
𝑖𝑖=1 ∑ �𝑄𝑄2

(𝑖𝑖) − 𝑄𝑄1
(𝑖𝑖)� + ⋯ 𝑁𝑁2

𝑖𝑖=1   (2.5)   

=
1
𝑁𝑁0

�𝑄𝑄0
(𝑖𝑖) 

𝑁𝑁0

𝑖𝑖=1

+  �
1
𝑁𝑁ℓ
��𝑄𝑄ℓ

(𝑖𝑖) − 𝑄𝑄ℓ−1
(𝑖𝑖) �.

𝑁𝑁ℓ

𝑖𝑖=1

𝐿𝐿

ℓ=1

 

This approach can be especially powerful in the regime where mesh convergence is observed, as 
the variance of the difference between respective discretizations decays rapidly. A demonstration 
of multilevel Monte Carlo (MLMC) for the mean of a tracer concentration at an outflow boundary 
is presented in Subsection 2.3.2. Further reading on the theory and application of multilevel Monte 
Carlo methods includes [1,2,3].  

2.2 Multifidelity Polynomial Chaos Expansion 
Polynomial chaos expansions (PCEs) have gained popularity in uncertainty analyses in recent 

years and have been documented in detail in [4]. PCE is a stochastic expansion method whereby 
the output response is expanded in a series of polynomials that are orthogonal with respect to the 
densities of the random inputs. One advantage of stochastic expansion methods such as PCE is 
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that the moments of the expansion (means, variances, etc.), as well as Sobol’ indices for global 
sensitivity analysis, can be written analytically.  

Coefficients for the PCE are determined either by projecting model responses onto the basis, 
or by solving a regression problem. In either case, many model evaluations are required. The 
number of evaluations needed increases with the complexity of the model response, as more terms 
are needed in the PCE to resolve it. In scenarios where multiple fidelities of model exist, for 
instance models with multiple discretizations, or models with simplified or highly-resolved 
physics, the number of evaluations of the highest-fidelity model required to construct a PCE 
representation of its response can be reduced. This is achieved using a so-called “multifidelity 
PCE,” first introduced in a paper by Ng and Eldred in 2012 [5].  

As in Section 2.1, consider two levels of model discretization, indexed by f for fine and c for 
coarse. To simplify discussion, the coarse and fine models are assumed to depend on a single 
uncertain parameter 𝜉𝜉. The goal is to derive a PCE, denoted 𝜒𝜒𝑓𝑓, for the response of the high-fidelity 
fine model, denoted 𝑅𝑅𝑓𝑓 . In a single-fidelity framework, the high-fidelity model is sampled multiple 
times and a PCE is constructed using those evaluations: 

𝑅𝑅𝑓𝑓(𝜉𝜉) ≈ 𝜒𝜒𝑓𝑓(𝜉𝜉) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 Ψ𝑖𝑖(𝜉𝜉).    (2.6) 

On the other hand, in a multifidelity PCE using two model discretizations, a PCE is constructed 
for the coarse model response 𝑅𝑅𝑐𝑐 and another PCE is constructed for the discrepancy between the 
coarse and fine model, Δ𝑓𝑓,𝑐𝑐. This discrepancy may be defined as the difference or the ratio between 
the two discretizations, or a combination of the two.  

In this work, only the difference between the two levels is considered. In this setting, a 
multifidelity PCE is derived by constructing a PCE for the coarse model, then for the discrepancy 
between coarse and fine, Δ𝑓𝑓,𝑐𝑐 ≡ 𝑅𝑅𝑓𝑓 − 𝑅𝑅𝑐𝑐: 

𝑅𝑅𝑓𝑓(𝜉𝜉) ≈ 𝜒𝜒𝑐𝑐(𝜉𝜉) + 𝜒𝜒Δ(𝜉𝜉) = � 𝛽𝛽0,𝑐𝑐 +  ∑ 𝛽𝛽𝑖𝑖,𝑐𝑐Ψ𝑖𝑖(𝜉𝜉)𝑝𝑝𝑐𝑐
𝑖𝑖=1 �+ �𝛽𝛽0,Δ + ∑ 𝛽𝛽𝑖𝑖,ΔΨ𝑖𝑖(𝜉𝜉)𝑝𝑝Δ

𝑖𝑖=1 �.   (2.7) 

The hope in employing this method is that 𝑅𝑅𝑐𝑐 is similar enough to 𝑅𝑅𝑓𝑓 that the difference between 
the two responses is simpler than 𝑅𝑅𝑓𝑓 alone. In cases where this is true, fewer terms are required to 
resolve the PCE of the discrepancy Δ𝑓𝑓,𝑐𝑐 than to resolve the PCE of the high-fidelity model directly. 
The reduction in the number of required terms may manifest in the form of a rapid decay of 
coefficients for 𝜒𝜒Δ or in the form of sparsity in the number of terms that are excited.  

When this occurs, the coarse PCE 𝜒𝜒𝑐𝑐 will likely have many more terms than the discrepancy 
PCE 𝜒𝜒Δ, requiring more evaluations at the coarse level. It is presumed that this is feasible because 
the coarse model is cheap to run. The coefficients of the PCEs can be easily recombined into a 
single PCE by combining like terms. The combined PCE is written 

𝑅𝑅𝑓𝑓(𝜉𝜉) ≈ (𝛽𝛽0,𝑐𝑐 + 𝛽𝛽0,Δ) + ∑ �𝛽𝛽𝑖𝑖,𝑐𝑐 + 𝛽𝛽𝑖𝑖,Δ�Ψ𝑖𝑖(𝜉𝜉)𝑝𝑝Δ
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖,𝑐𝑐

𝑝𝑝𝑐𝑐
𝑖𝑖=𝑝𝑝Δ+1 Ψ𝑖𝑖(𝜉𝜉),  (2.8) 

where it is assumed that 𝑝𝑝𝑐𝑐 > 𝑝𝑝Δ. This combined PCE can be used in any of the ways a PCE 
constructed in a single-fidelity fashion would be used, as a surrogate or to compute response 
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statistics or Sobol’ indices. Only two models were considered in the discussion above, but a 
multifidelity PCE can be constructed using an arbitrary number of models. The multifidelity PCE 
can be constructed using a series of discrepancies between discretization levels, indexed from ℓ =
0 at the coarsest level to ℓ = 𝐿𝐿 at the finest level, as 

𝑅𝑅𝐿𝐿 ≈ 𝜒𝜒0 +  ∑ 𝜒𝜒Δℓ,ℓ−1
𝐿𝐿
𝑖𝑖=1 .     (2.9) 

A demonstration of the construction and use of a multifidelity PCE for global sensitivity analysis 
(GSA) is presented in Subsection 2.3.3.  

 

2.3 SX-115 Hanford Tank Farm Example 
In this section the multilevel and multifidelity techniques for uncertainty quantification 

described in Sections 2.1 and 2.2 are applied to one of the benchmark problems in PFLOTRAN, 
the SX-115 Hanford Tank Farm. The physical problem is described in Subsection 2.3.1, multilevel 
Monte Carlo is used for forward uncertainty propagation in Subsection 2.3.2, and a multifidelity 
PCE is constructed and used for global sensitivity analysis in Subsection 2.3.3. 

2.3.1 Physical problem description 
The Hanford Tank Farm contains nuclear waste storage tanks and is located in south-central 

Washington. A number of leaks have occurred at the site, prompting the study by Lichtner et al. 
in 2004 [6] on which a benchmark problem for PFLOTRAN is based. The benchmark problem 
simulates a leak from one of the tanks (the SX-115 tank) in a 1D vertical column of layered porous 
medium with properties chosen to be representative of the earth at the Hanford site. The column 
extends from ground level at 68 m to the water table at 0 m. A steady-state infiltration rate is 
imposed at the top of the column. Fluid is injected for two weeks during the simulation at a depth 
of 16m to represent a leak occurring at the bottom of the tank. The leak then travels downward 
through the column to the water table at the bottom of the domain.  

A detailed description of the benchmark problem and its parametrization is available in the 
PFLOTRAN user manual [7] and in the online documentation at the time of writing: 
https://documentation.pflotran.org/. The problem setup described in the user manual was used with 
almost no modification for the uncertainty analyses in this chapter. Any changes made to the 
problem setup are detailed here. For this work the leak is represented by a passive tracer. A typical 
quantity of interest (QoI) for performance assessment is the concentration as a function of time of 
a radionuclide at a point on the outflow boundary. To mimic this type of QoI, an observation point 
was placed at the bottom of the domain, the water table, to track the time-varying concentration of 
the tracer. The infiltration rate was modified to 5.0e-10 m/sec from 2.53678e-10 m/sec 
(corresponding to 8mm/yr) to shorten the timescales of the problem, allowing each simulation to 
run for less time.  

https://documentation.pflotran.org/
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The original problem setup specified the leak as a point source from the REGION ‘well.’ This 
was specified in the following input blocks from the original problem specification:  

This specification is dependent on the discretization of the problem. This is because fluid is 
injected into each cell in the region at the specified mass rate. As the grid is refined in the z 
direction, more cells occupy the region compared to the initial discretization and cause more fluid 
to be injected with each refinement. To account for the different discretizations that will be used 
in the multilevel/multifidelity studies to come, the ‘well’ region was modified to be a small volume 
and the source was modified to inject the fluid at a scaled rate so that the same volume of fluid 
was injected into the volume regardless of how many cells were in the region. These modified 
input blocks are below. 

All other parameters in the problem are fixed at the values specified for the benchmark 
problem, except for the permeabilities of each layer of the porous medium, which are assumed 
uncertain for the purposes of this study. Their distributions will be defined later in the discussion. 
Variations in permeability affect the steady-state pressure and saturation profiles before the leak 
is introduced. To account for this, the steady-state and leak runs have been combined into one 
simulation. The times in the problem have been modified so that the simulation runs for 300 years 
without any leak to allow the pressure and saturation to come to steady state. At 300 years, the 
leak occurs for two weeks, then the simulation runs to 600 years, until the tracer reaches a 
significant concentration at the outflow boundary 

REGION well 
 COORDINATES 
  1.d0 1.d0 52.d0 
  1.d0 1.d0 52.d0 
 / 

 

FLOW_CONDITION source 
 TYPE 
  RATE mass_rate 
 / 
 … 

REGION well 
 COORDINATES 
  1.d0 1.d0 52.d0 
  1.d0 1.d0 52.5d0 
 / 

 

FLOW_CONDITION source 
 TYPE 
  RATE scaled_mass_rate volume 
 / 
 … 



Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework  
September 2020    

2-6 
 

A convergence study was performed for the maximum timestep used in the solver for the 
original discretization of 136 elements in the z-direction (𝑁𝑁𝑧𝑧 = 136) and the nominal values for 
the permeability in each layer. The following timestep specification was required to see 
convergence in the dynamics of the problem. 

A mesh convergence study was performed in terms of the discretization in the z direction, 
parameterized in terms of the number of discretization points in z, denoted 𝑁𝑁𝑧𝑧.  As the mesh 
resolution increases, mesh convergence was observed for 𝑁𝑁𝑧𝑧 = 1088 and  𝑁𝑁𝑧𝑧 = 2176, as shown in 
Figure 2-1. The Newton solver used in these calculations for each implicit timestep terminates 
when one of three convergence tolerances are met. These are in terms of the 2-norm of the residual; 
the 2-norm of the residual at the current iteration divided by the initial residual; and the 2-norm of 
the difference between the current solution minus the solution at the previous iteration, divided by 
the solution at the previous iteration. A nonphysical discontinuous step occurred in the tracer 
concentration for the finer meshes using the tolerances for the Newton solver specified in the 
benchmark problem.  

To mitigate this issue, the tolerances for the flow Newton solver were lowered to 1e-50 and 
were set to the default tolerances for the transport Newton solver. Only the concentrations after 
550 years were used for the following studies; concentrations before 550 years include (nearly) 
zero concentrations, which do not vary as a function of the model parameters and therefore are not 
of interest for UQ. Furthermore, the following uncertainty analyses were performed in terms of 
the natural logarithm of the concentration and of the uncertain permeabilities. This was motivated 
by previous observed challenges in [4] with using untransformed concentrations for GSA with 
PCEs.  

TIME 
# 300.0 y to run to steady state, 
# another 300 y for the leak. 
FINAL_TIME 600.d0 y 
INITIAL_TIMESTEP_SIZE 1.d-6 y 
MAXIMUM_TIMESTEP_SIZE 1.d-2 y 
MAXIMUM_TIMESTEP_SIZE 1.d-1 y at 10 y 
# Starting over for transience after the leak 
MAXIMUM_TIMESTEP_SIZE 1.d-6 y at 300 y 
MAXIMUM_TIMESTEP_SIZE 1.d-2 y at 300.000001 y 
MAXIMUM_TIMESTEP_SIZE 1.d-1 y at 310 y 
END 
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Figure 2-1. Time history of tracer concentration at the bottom of the domain for different 
discretizations. 

The permeability of each layer of the porous medium is considered uncertain for this work. 
The permeabilities are assumed to be log-normally distributed. Their distributions were specified 
in terms of the underlying normal distribution of their log values. The means of the normal 
distribution are set to the natural logarithm of the nominal values for permeabilities specified in 
the benchmark problem. The standard deviations are set to 1% of the absolute value of the means.  

2.3.1.1 Computational cost by discretization 
Multifidelity (MF) and multilevel (ML) methods balance the computational cost of running 

the model at each discretization level with the relative contribution to estimator variance to 
determine how many samples are needed (see, e.g., [8,9] for different methods of distributing cost 
across discretizations/model fidelities). Because of this, it is necessary to estimate the relative cost 
of the models at each level. The absolute cost (in terms of floating point operations or linear solves 
in PFLOTRAN) is not necessary. The only thing needed is an estimate of how many times more 
expensive it is to evaluate finer discretizations of the model, relative to the coarsest level. For 
instance, in the case of a linear 1D problem that is solved directly, the relative cost of solving a 
problem of size ℎ/2 compared to ℎ is 2. 

For this problem, PFLOTRAN employs a fully-implicit adaptive timestepper. Inverse solves 
at each timestep are performed using the iterative biconjugate gradient stabilized (BCGS) method, 
which runs until a desired tolerance is reached. The timestep changes throughout the simulation, 
but it is generally the largest timestep allowed by the user and for which the Newton solver can 
converge. Compared to direct solvers with fixed timestep, it is more challenging to assess the cost 
of running the model at different discretization levels. The cost metric used in this work is the 
number of linear solves required for simulation at each discretization level. The number of linear 
solves for the transport part of the solver was greatest, so it was the basis of comparison here. The 
relative cost of the simulations in the mesh convergence study were used to approximate the cost 
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of the model at each level, which are reported in Table 2-1. These relative costs are rounded up 
when they are used to evaluate equivalent costs for various ML/MF methods.  

𝑵𝑵𝒛𝒛 Linear transport solves Cost relative to 𝑵𝑵𝒛𝒛 = 𝟏𝟏𝟏𝟏𝟏𝟏 

136 990466 1 

272 5097567 5.15 

544 16729384 16.9 

1088 28276950 28.55 

2176 48003520 48.47 

Table 2-1. Linear solves and relative cost as a function of mesh size. 
 
Note that for this simple, 1D problem the cost rises approximately linearly with respect to 
discretization level, as shown in Figure 2-2. However, for practical applications it is more common 
to see superlinear increase in cost across discretization levels, potentially leading to more dramatic 
increase in computational efficiency through use of these methods.  
 

 
Figure 2-2. Relative model costs as a function of 𝑵𝑵𝒛𝒛. 

2.3.1.2 Equivalent number of high-fidelity evaluations 
A common metric to compare the cost of a multilevel/multifidelity scheme to a single-fidelity 

scheme using the high-fidelity model only is the equivalent number of high-fidelity evaluations a 
method incurs. This equivalent number of evaluations is determined by considering the number of 
samples taken at each discretization level and multiplying them by the fraction of their cost relative 
to the high-fidelity model. For instance, revisiting the two-discretization multilevel scheme, recall 
that the mean estimator is obtained as  

𝑄𝑄�𝑓𝑓𝑀𝑀𝑀𝑀 = 𝑄𝑄�𝑐𝑐 + 𝑄𝑄𝑓𝑓 − 𝑄𝑄𝑐𝑐� = 1
𝑁𝑁𝑐𝑐
∑ 𝑄𝑄𝑐𝑐

(𝑖𝑖)𝑁𝑁𝑐𝑐
𝑖𝑖=1 + 1

𝑁𝑁𝑀𝑀𝑀𝑀
∑ �𝑄𝑄𝑓𝑓

(𝑗𝑗) − 𝑄𝑄𝑐𝑐
(𝑗𝑗)�𝑁𝑁𝑀𝑀𝑀𝑀

𝑗𝑗=1 .   (2.10) 
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In this case, the coarse model would be evaluated 𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑀𝑀𝑀𝑀 times for the two different terms, and 
the fine model would be evaluated 𝑁𝑁𝑀𝑀𝑀𝑀 times. Another way to think about the cost is that 𝑁𝑁𝑐𝑐 
samples are obtained at a cost of 𝐶𝐶𝑐𝑐, the cost of the coarse model evaluation, and 𝑁𝑁𝑀𝑀𝑀𝑀 samples 
were obtained at the cost of 𝐶𝐶𝑐𝑐 + 𝐶𝐶𝑓𝑓, the cost of a coarse and fine model solve. Then the equivalent 
high-fidelity cost of the total samples required to calculate Equation 2.9 is equal to  

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑐𝑐
𝐶𝐶𝑓𝑓

(𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑀𝑀𝑀𝑀) + 𝑁𝑁𝑀𝑀𝑀𝑀 = 𝐶𝐶𝑐𝑐
𝐶𝐶𝑓𝑓
𝑁𝑁𝑐𝑐 + �𝐶𝐶𝑐𝑐+𝐶𝐶𝑓𝑓�

𝐶𝐶𝑓𝑓
𝑁𝑁𝑀𝑀𝑀𝑀.  (2.11) 

This can be expanded to an arbitrary number of levels ℓ = 0, … , 𝐿𝐿, with 𝐿𝐿 being the finest level, 
as  

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  ∑ 𝐶𝐶ℓ
𝐶𝐶𝐿𝐿

𝐿𝐿−1
ℓ=0 (𝑁𝑁ℓ + 𝑁𝑁ℓ+1) + 𝑁𝑁𝐿𝐿 = 1

𝐶𝐶𝐿𝐿
[𝑁𝑁0𝐶𝐶0 +  ∑ 𝑁𝑁ℓ(𝐶𝐶ℓ + 𝐶𝐶ℓ−1)𝐿𝐿

ℓ=1 ].  (2.12) 

 

2.3.2 Multilevel Monte Carlo for Forward Propagation 
As described in Section 2.1, multilevel Monte Carlo was used to obtain an estimate of the mean 

(log) concentration as predicted by the high-fidelity (𝑁𝑁𝑧𝑧 = 2176) model. A convergence study 
was performed using the UQ software Dakota [10] with increasing reduction in the sampling 
variance relative to an initial sampling variance, generated from 20 pilot samples. These pilot 
samples are used to estimate the variance at each level and optimally allocate samples by level to 
minimize estimator variance with minimal cost. The algorithm for this allocation scheme is 
described in [11]. The algorithm reports how many samples were evaluated at each level, as well 
as the equivalent number of high-fidelity evaluations the method performed in terms of cost.  

To compare performance of this estimator with respect to a standard, single-level Monte Carlo 
mean estimator, the sample mean and variance using the equivalent number of evaluations of the 
high-fidelity model were computed to correspond to each MLMC study. A plot of the sampling 
variance in the multilevel mean estimator compared to the single-level mean estimator as a 
function of equivalent high-fidelity evaluations is presented in Figure 2-3. Sample variance of the 
mean estimator for multilevel Monte Carlo compared to single level Monte Carlo, for increasing 
number of equivalent high-fidelity model evaluations. The values of the sampling variance are 
reported in Table 2-2. Because the model output is time-varying between 550 and 600 years, the 
sample mean and variance are time-varying as well. To report a scalar value for the convergence 
study the statistics discussed here are averaged over time. Note that, as expected, the sample 
variance using MLMC is less than the single-level MC for the same computational effort.  
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Figure 2-3. Sample variance of the mean log-concentration estimator for multilevel Monte 
Carlo compared to single level Monte Carlo, for increasing number of equivalent high-

fidelity model evaluations. 
 

Equivalent HF evaluations MLMC sampling variance MC sampling variance 
68 3.19 × 10−3 7.88 × 10−3 
431 4.83 × 10−4 2.44 × 10−3 
4341 4.98 × 10−5 1.82 × 10−4 

Table 2-2. The variance on the mean log-concentration estimator computed using MLMC and 
single-level MC for the same equivalent number of high-fidelity evaluations. 

 

To compare the efficiency of the MLMC vs. standard MC estimator, the ratio of the time-
averaged sampling variance of the respective mean estimators was computed and is reported in 
Table 2-3. Additionally, a percent variance reduction, computed as 100% × (1 −
ratio of variances), is reported.  

Equivalent HF 
evaluations 

⟨𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝒗𝒗𝒗𝒗𝒗𝒗,𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴⟩𝒕𝒕
⟨𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝒗𝒗𝒗𝒗𝒗𝒗,𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺⟩𝒕𝒕

 % Variance 
reduction 

68 0.40 60%  
431 0.20 80% 
4341 0.27 73% 

Table 2-3. The ratio of sample variance for the MLMC estimator compared to the single level 
MC (SLMC) estimator. The percent variance reduction is computed as 100% (1 – ratio of 

variances). 
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For this problem the reduction in variance is significant, with at least a 60% reduction and 
as much as 80% reduction over the range of equivalent high-fidelity evaluations that were used in 
sampling. This means that the estimation of the mean is significantly more accurate than using 
samples of the high-fidelity model alone, for the same amount of computational effort. The amount 
of variance reduction that is possible for a given problem is dependent on a combination of factors, 
namely the relative costs of the models at each level and the correlation between model levels.  

Recall that  

𝕍𝕍[𝑄𝑄ℓ − 𝑄𝑄ℓ−1] = 𝕍𝕍[𝑄𝑄ℓ] + 𝑉𝑉[𝑄𝑄ℓ−1]− 2ℂ𝑜𝑜𝑜𝑜[𝑄𝑄ℓ,𝑄𝑄ℓ−1].   (2.13) 

The more correlated two levels are, the smaller the variance of their difference will be. On the 
other hand, if the cost of obtaining a sample of their difference is not a significant reduction from 
the high-fidelity model, the equivalent number of high-fidelity model evaluations per sample 
increases, reducing the ability to drive the sampling variance down with more samples.  

An alternative way of looking at these results is to consider the relative cost, in terms of 
equivalent high-fidelity evaluations, to achieve the same accuracy in the estimator. This was done 
by computing a linear fit to the number of high-fidelity evaluations as a function of the estimator 
variance (averaged over 550 to 600 years) and computing the ratio of costs for the same estimator 
variance. Using the results from the convergence study shown in Figure 2-3, it was found that the 
MLMC estimator could achieve the same accuracy with half the cost of the standard, single-level 
MC estimator.  

Note that in this case the forward propagation studies were specified in terms of a convergence 
tolerance based on a reduction in the initial sampling variance of the mean. The MLMC algorithm 
kept adding samples across levels until the desired accuracy was achieved. However, in many 
practical problems, the number of samples that can be afforded, especially at the highest level, is 
limited. Recent works such as [1,8] discuss allocation strategies that assume a fixed number of 
high-fidelity evaluations and derive the sampling scheme that achieves the best accuracy within a 
given computational budget. This type of approach will be necessary for a practical application of 
these methods to GDSA and will be employed in future work. 

2.3.3 Multifidelity Polynomial Chaos Expansion for Global Sensitivity Analysis 
As described in Section 2.2, a multifidelity polynomial chaos expansion (MF PCE) was 

constructed to demonstrate its utility for global sensitivity analysis (GSA). While it is common to 
employ quadrature-based approaches for constructing PCEs, regression approaches have typically 
been employed in the context of GDSA because it allows for reuse of samples from forward 
propagation studies, and because of the high computational cost of quadrature as number of 
variables increases. With this in mind, all the results presented herein employ regression methods 
to construct the MF PCE.  

MF PCEs and single-fidelity PCEs using high-fidelity evaluations were constructed. For both 
MF PCE and single-fidelity PCE, Dakota [10] was used for regression with an adaptive algorithm 
that increased the order of the expansion uniformly across all uncertain parameters until the L2 
norm of the change in the response covariance matrix fell below a specified convergence tolerance. 
For MF PCE the initial order of the PCE was 0; for the standard PCE expansion the initial order 
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was 2. The higher initial order for the standard PCE expansion was necessary because the 
algorithm diverged without cross validation activated; cross validation requires at least a starting 
order of 2. Both algorithms employed orthogonal matching pursuit with a collocation ratio of 0.9. 
These methods and options are detailed in the Dakota User’s Manual [10] and the Dakota Theory 
Manual [11]. 

Prior to running the regression problems, the amenability of the problem to an MF PCE 
approach was studied using 64 pilot samples taken across all model levels. An MF PCE is built 
with a baseline PCE fit of the coarsest model level, then with additional PCE fits to the discrepancy 
between model levels, up to the finest level. The problem is fit for an MF PCE approach if 
relatively few coefficients can be used to represent the discrepancies between each of the model 
levels. This was tested by computing the difference between each of the model levels over the pilot 
samples and passing them as build points in a regression PCE study. It was found that few 
coefficients were needed to resolve each of the discrepancies, so the problem was deemed a good 
candidate for an MF PCE approach. 

A table of the model evaluations required at each discretization level and the equivalent high-
fidelity evaluations are reported in Table 2-4. Additionally, in Table 2-5, the convergence 
tolerances and model evaluations required for the single-fidelity PCE built on high-fidelity 
evaluations are reported. Again, note that the convergence tolerance is based on the L2 norm of the 
change in the response covariance matrix, so there is no assumed equivalent accuracy between the 
MF PCE and the single-fidelity PCE constructed using the same convergence tolerance. Note that 
the actual number of model evaluations needed for the adaptive MF PCE algorithm ended up being 
much less than the 64 pilot samples taken at each level for the initial study. Instead, it could have 
been possible to use the pilot samples from the forward UQ propagation study in 2.3.2, rather than 
incurring additional model evaluations for a PCE-specific pilot study. This will be the approach 
taken in future. 

Convergence 
tolerance 

Number of evaluations 
Equivalent 

HF 𝑵𝑵𝒛𝒛 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝑵𝑵𝒛𝒛 = 𝟐𝟐𝟐𝟐𝟐𝟐 𝑵𝑵𝒛𝒛 = 𝟓𝟓𝟓𝟓𝟓𝟓 𝑵𝑵𝒛𝒛 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝑵𝑵𝒛𝒛 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

10−1 18.73 69 24 10 10 5 
10−2 38.45 69 38 38 24 5 
10−3 79.71 100 100 69 38 19 

Table 2-4. The number of model evaluations at each level and equivalent number of high-
fidelity evaluations to construct the MF PCE. 

 
Convergence tolerance Number high-fidelity evaluations 

10−1 50 
10−2 50 
10−3 713 

Table 2-5. The number of high-fidelity model evaluations required for each convergence 
tolerance for the single-fidelity PCE. 
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Across all convergence tolerances and between MF PCE and single-fidelity PCE (SF PCE) the 
predicted mean and variances were strikingly similar, as shown in Figure 2-4. Note that the 
responses are so similar that they overlap completely. The Sobol’ indices are also essentially 
identical, as shown in Figure 2-5—the indices are so similar that they are indistinguishable. 
Sensitivity of the response was dominated by HF ksat, which is the water saturated permeability 
for Hanford Fine Sand, the layer of earth just below the location of the leak in the column. This 
holds across MF/SF PCE and different convergence tolerances, as shown in Figure 2-5. Even the 
coarsest MF PCE, which incurred only ~19 equivalent high-fidelity evaluations, was consistent 
with the most-resolved SF PCE’s Sobol’ indices. The Sobol’ indices for the permeabilities of the 
other layers in the simulation domain were also identical across type and convergence tolerance of 
PCE. 

  

 
Figure 2-4. Mean log concentration ± 𝟐𝟐𝟐𝟐 for different convergence tolerances and MF/SF 

PCEs. Note that the responses are so similar that they overlap completely. 
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Figure 2-5. The main and total effect Sobol index for HF ksat as a function of time for 

different convergence tolerances of MF PCE, SF PCE, and comparing MF and SF PCE 
from the tightest tolerance runs. The indices are so similar that they overlap completely. 

 
The relative invariance of these results to the convergence tolerance of the PCE algorithms is 

likely due to the simplicity in behavior of the model responses. As illustrated in Figure 2-6, only 
coefficients up to first order are significantly nonzero in all the cases considered, indicating that 
the variability of the model responses can be captured with only a first-order PCE. Any additional 
refinement of the PCE by adding more orders does not add any further accuracy.  

 
Figure 2-6 only shows the coefficients for the PCE fit to model outputs at 550 years, but the 

coefficients over all times exhibited this behavior. Given the simplicity, very few model 
evaluations are required to adequately capture the model’s variation, so even the lowest-order 
PCEs were sufficient in this case.  

Even so, the potential benefits of employing an MF PCE approach are shown in the low number 
of equivalent high-fidelity evaluations required across all tolerances, and the low number of 
evaluations of the most refined model, maxing out at 19 evaluations total. Additionally, the 
computational gains compared to a Saltelli-based sampling method [12] for estimating the indices 
can’t be overstated. Even a rough estimate of the Sobol’ indices for the five permeability 
parameters using 100 samples would require (100 samples) × (5 parameters + 2) = 700 
model evaluations. In a practical performance assessment study, even a rough estimate using such 
methods could be computationally infeasible using the high-fidelity model only.  
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A focus of future work will be to employ MF PCE for a problem with a more complex 
dependence of model outputs on uncertain inputs. This will result in a more challenging fitting 
problem and enable a more detailed study of the relative benefits and downsides of a MF PCE vs 
SF PCE approach for problems of interest in NW performance assessment. Additionally, methods 
by which existing HF samples can be augmented to create a regression problem for an MF PCE 
will be explored. This is motivated by the typical situation where only a limited number of high-
fidelity model simulations can be run due to computational cost, thus precluding adaptive 
algorithms that terminate based on a convergence tolerance. 

 
Figure 2-6. Modulus of PCE coefficients 𝜷𝜷𝒌𝒌 (indexed by k) up to third order, compared 

across convergence tolerance for MF/SF PCEs, and comparing the tightest-tolerance MF 
and SF PCE coefficients. The vertical lines delineate changes in the order of the term with 

which each coefficient is associated, with the first vertical line separating the 0th and 1st 
order coefficients. Note that the coefficients overlap almost completely for the different 

cases. 
 

2.4 Conclusions and Future Work 
In this chapter multilevel Monte Carlo (MLMC) and multifidelity PCEs were introduced and 

demonstrated on a benchmark tracer transport problem in PFLOTRAN. The MLMC methods 
exhibited a significant decrease in estimator variance for the mean of model outputs, exhibiting 
60-80% decrease in estimator variance compared to a standard MC using an equivalent number of 
high-fidelity model evaluations. The MF PCE produced Sobol’ indices and predicted mean and 
variance of model outputs that were consistent with those of similarly-constructed single-fidelity 
PCEs built off of high-fidelity model evaluations alone. The MF PCEs overall required very few 
equivalent high-fidelity model evaluations, but the simplicity of the behavior of model outputs 
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with respect to uncertain inputs was very simple for this problem, so the method wasn’t challenged 
very much. Care will be taken to ensure the next application problem has a more complex 
dependence on uncertain inputs, thereby providing more of a challenge to the MF PCE algorithms. 

Future work will focus on identifying and applying these methods to a more challenging 
problem that exhibits more of the properties and challenges that arise in practical NW performance 
assessment studies. Properties that will be targeted are: a mixture of aleatory and epistemic 
uncertainties, no explicit discretization hierarchy to rely on, and additional computational cost. 
Additionally, best practices for employing multifidelity methods within a fixed computational 
budget will be determined, as this will typically be the scenario for GDSA studies. Focusing on 
these aspects will ensure that the methods and infrastructure that are developed can be successfully 
extended to a large-scale production study without too much modification.  
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3. DISCRETE FRACTURE NETWORKS 
Discrete fracture network (DFN) modeling is an alternative to continuum approaches for 

simulating flow and transport through sparsely fractured rocks in the subsurface [1]. Continuum 
approaches use effective parameters to include the influence of fractures on the flow. In contrast, 
a DFN approach involves a network of fractures where the geometry and properties of individual 
fractures are explicitly represented as lines in two dimensions or planar polygons in three 
dimensions. These generated networks are then meshed for computation. dfnWorks [1] is a 
parallelized computational suite developed at Los Alamos National Laboratory to generate three-
dimensional discrete fracture networks and simulate flow and transport. The work presented in 
this report uses the “dfnGen” capability of dfnWorks to generate the networks, with the flow and 
transport calculations run in PFLOTRAN. This capability was used to generate 20 discrete fracture 
networks for a crystalline reference case, which is based off properties at the Forsmark site in 
Sweden [9], but it not a direct replica of Forsmark. They were then converted to equivalent porous 
media (ECPMs) for flow and transport simulation with PFLOTRAN. These 20 DFNs are used in 
the uncertainty analysis presented in Chapter 4.   

In dfnWorks, one defines various layers in a 3-D domain and one can define various fracture 
families to be placed in each layer. The fractures in each family may be specified as rectangles or 
ellipses. This work uses circular plates, defined by radii which vary according to a truncated 
power-law distribution. The user can define characteristics such as aspect ratio of the ellipses per 
fracture family, and various angles describing the ellipse fracture orientation such as the angle the 
normal vector makes with the z-axis. The orientation of the ellipses is characterized by a 3-
dimensional Fisher distribution describing the orientation of the fracture poles. The fractures may 
be placed at specified coordinates but typically are placed randomly throughout the layer. There 
are many user controls governing the generation of fractures in dfnWorks: the keywords are 
described in the user documentation: https://dfnworks.lanl.gov/dfngen.html. Finally, we note that 
dfnWorks uses an underlying graph to represent the fractures. For example, a fracture graph 
assigns fractures to nodes and intersections to edges. This is a computationally efficient way to 
represent and store the network.  

There are several fracture domains at Forsmark, each containing fracture sets with different 
statistical properties. For our implementation of fractures for the crystalline reference case, we 
define three fracture families and three depth intervals, which are a subset of the fractures sets and 
domains defined at the Forsmark site. The selection of the applicable fracture domains and sets to 
include and other simplifying assumptions are detailed in [6]. Fracture domains FF01/06 were used 
because they constituted the majority of the Forsmark site and contained the repository. The 
fracture sets NS, NE, HZ were selected because they had the largest number of open and flowing 
fractures for depths [-200 m, -400 m], according to analysis reported in [5]. A random fracture 
network is generated within these defined zones such that the fracture density decreases with 
increasing depth (see Table 3-1). Each fracture set has been characterized using a 3-dimensional 
Fisher distribution describing the orientation of fracture poles and a truncated power-law 
distribution for the fracture radii. Each set is further characterized by the fracture density, P32, 
which is defined as the area of fractures per volume of rock (𝑚𝑚2/𝑚𝑚3).   
 

The columns of Table 3-1 are as follows: the layers are defined by depth (meters below sea 
level) and fracture set type (NS=North/South, NE=North/East, HZ=horizontal). The fracture 

https://dfnworks.lanl.gov/dfngen.html
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orientation is defined by a Fisher distribution which describes the orientation in space (in a sphere) 
of the poles normal to the fracture planes. Trend and plunge are geospatial terms used to describe 
the orientation of a pole or lineament. The trend is the degrees from North, meaning the compass 
direction. The plunge is the degrees from horizontal. Note that trend and plunge define the 
orientation of normal vector to the plane of the fracture. This means, for example, that the 0.0° 
plunge for the NS and NE fracture sets means that they are located in a vertical orientation on 
average and the 90.0° plunge for the HZ fracture set means that it is located horizontally on average. 
Kappa (𝜅𝜅) is “concentration” (a shape parameter) which describes how tightly the distribution is 
clustered about the mean: larger values means the normal vectors of the ellipses are more similar.  
 

The parameters governing the truncated power law distribution which generates the radii of 
the elliptical fractures are as follows: k is a rate parameter, 𝑟𝑟0 is the minimum fracture radius, and 
𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is the maximum fracture radius used in the truncated power law in Equation 3.4. The 
fracture density can be described by the number of target fractures per cubic kilometer or by the 
target P32 value (area of fractures per volume of rock in units of m2/m3) which is defined by 
Equation 3.2 and discussed in Section 3.1 below.  
 

After the 20 DFNs for the crystalline reference case were generated with dfnWorks, they were 
mapped to the equivalent continuous porous medium domain using mapDFN.py [11], a code that 
approximates hydraulic fracture properties by calculating and assigning permeability and porosity 
on a cell-by-cell basis. Conversion to equivalent continuous porous media (ECPMs) is described 
in [6] and further depends on a fracture radius-transmissivity relationship. An example of a 
particular DFN used for uncertainty analysis is shown in Figure 4-2 in Chapter 4. 

 
Depth 
(meters 
below sea 
level) / 
Fracture 
Set Name 

Orientation: 
Fisher Distribution for 
Poles 

Size: 
Truncated Power Law for 
Radii 

Fracture 
Density 
(Requested) 

P32 value 
defined in 
Ref. [2] 

Mean 
Trend 

Mean 
Plunge  κ 

Power 
Law  
 k 

Min 
Radius 
r0 (m) 

Max 
Radius  
rupper (m) 

Number of 
fractures in 
1 km3 

𝑃𝑃32, 𝑟𝑟 ∈
[0.038,564] 
[𝑚𝑚2/𝑚𝑚3] 

0-200 / NS 90° 0.0° 22 2.5 30 500 184 0.073 

0-200 / NE 180° 0.0° 22 2.7 30 500 274 0.319 

0-200 / HZ 360° 90.0° 10 2.4 30 500 2217 0.543 

200-400/ NS 90° 0.0° 22 2.5 30 500 357 0.142 

200-400/NE 180° 0.0° 22 2.7 30 500 296 0.345 

200-400 / HZ 360° 90.0° 10 2.4 30 500 1290 0.316 

>400 / NS 90° 0.0° 22 2.5 30 500 236 0.094 

>400 / NE 180° 0.0° 22 2.7 30 500 140 0.163 

>400 / HZ 360° 90.0° 10 2.4 30 500 576 0.141 

Table 3-1. Fracture distribution parameters for Forsmark, FFM01/FFM06 domains. The 
Fisher distribution parameters are pulled from Table 2-14 in [10], and the power-law k 

parameters and P32 values are pulled from Table 2 in [2].  
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This chapter focuses on verifying the implementation of DFNs and conversion of the discrete 
fracture networks to ECPMs for comparison, specifically in terms of the properties that are 
expected to mimic those of the Forsmark site. The DFNs are analyzed in terms of the fracture 
density and fracture distributions for the different fracture sets, as well as in terms of the bulk 
properties of the equivalent continuous porous media (ECPMs) generated from the DFNs. In 
Section 3.1, a verification of the DFNs generated by dfnWorks is performed to ensure the expected 
number of fractures and P32 values are obtained using the specification in Table 3-1. In Section 
3.1.2, bulk  properties of the ECPMs that are expected to coincide between the Forsmark site and 
the crystalline reference case are compared for consistency. Note that these DFNs are used in the 
spatial uncertainty loop as part of the uncertainty analysis of the crystalline reference case 
described in Chapter 4. 

3.1 Verifying consistency of DFN statistics with Forsmark 
Fracture distribution parameters from Table 2 of [2] were used to define the distribution of 

radii of circular fractures across the range of fracture zones at Forsmark. Only a subset of the 
fracture families was used in the generated DFNs for the reference crystalline case. These 
distribution parameters are presented in Table 3-1. The interdependence of the fracture-size power-
law distribution with the fracture density (P32) is described in [4] and is repeated here. As discussed 
in [5], the probability density function for a fracture of radius r corresponds to a power-law 
distribution: 

𝑝𝑝(𝑟𝑟) =
𝑘𝑘𝑟𝑟0𝑘𝑘

𝑟𝑟𝑘𝑘+1
, 𝑟𝑟0 ≤ 𝑟𝑟 < ∞, (3.1) 

 
where 𝑟𝑟0 is the smallest possible radius. In practice, as is done in [5], this is set to the radius of the 
smallest observable fracture, which is limited by the radius of the boreholes used for observation 
at a particular site. In [5], 𝑟𝑟0 = 0.038 m. Define n0 as the average number of fractures per unit 
volume. Then the P32 value (area of fractures per volume of rock in units of m2/m3) can be 
approximated as the average number of fractures per unit volume, multiplied by the average area 
of a fracture, to obtain an area per unit volume: 
 

𝑃𝑃32 =  𝑛𝑛0 � 𝑝𝑝(𝑟𝑟)𝜋𝜋𝑟𝑟2𝑑𝑑𝑑𝑑 = 𝑛𝑛0  �
𝑛𝑛0𝑘𝑘𝑟𝑟0𝑘𝑘

𝑟𝑟𝑘𝑘+1
𝜋𝜋𝑟𝑟2𝑑𝑑𝑑𝑑 =  −

𝜋𝜋𝑛𝑛0𝑘𝑘𝑟𝑟0𝑘𝑘

𝑘𝑘 − 2
[𝑟𝑟2−𝑘𝑘]𝑟𝑟=𝑟𝑟0

𝑟𝑟=𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑟𝑟0
,

𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑟𝑟0
 (3.2) 

  
where rupper is the upper limit of fracture radii included in the empirical determination of the P32 
value. A value of 𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 564 m was used to determine the 𝑃𝑃32 values reported in Table 3-1.  

If 𝑃𝑃32, 𝑟𝑟0 and 𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 are known, one can approximate the average number of fractures per unit 
volume by dividing the 𝑃𝑃32 by the right-hand side of (3.2) to solve for 𝑛𝑛0. In this case, for a power 
law defined by k = 2.5, r0 = 0.038 m, rupper = 564 m, and a P32 of 0.073 𝑚𝑚2/𝑚𝑚3, we find that 

 

𝑛𝑛0 = 𝑃𝑃32 �−
𝜋𝜋𝜋𝜋𝑟𝑟0𝑘𝑘

𝑘𝑘−2
�𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2−𝑘𝑘 − 𝑟𝑟02−𝑘𝑘��

−1
= 3.245 fractures

𝑚𝑚3 = 3.245 × 109  fractures
𝑘𝑘𝑚𝑚3 .  (3.3) 
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This operation was used to determine the number of fractures per unit volume for the difference 
fracture families in Table 3-1; the average number of fractures per unit volume could then be 
multiplied by the volume of each subdomain to obtain the expected number of fractures in each 
one. 

Given the site extends several kilometers in each direction, it is not feasible to generate a DFN 
that contains every fracture. The power-law distributions defined as in Table 3-1 are heavily 
weighted toward small fractures, as shown in Figure 3-1. Note, for 𝑘𝑘 = 2.5, 99% of the probability 
mass of the distribution falls between radii of 0.038 and 0.24 m. The corresponding P32 value of 
0.073 in the specified subdomain would be equivalent to having the order of 109 fractures with 
radii ranging from 0.038 m to 564 m, most of them lying in the subgrid scale. However, the largest 
fractures tend to dominate the flow, so it was decided to only store fractures with radii ≥ 30 m. 
Since the vast majority of fractures are much smaller than this threshold, a far more reasonable 
number of fractures, having the order of 103, are stored. 

 
Figure 3-1. The fracture radius distribution. 99% of the probability mass lies in the range 

of radii between 0.038 and 0.24 m.  
 

The software package dfnWorks has two ways of specifying a DFN. In both cases fracture 
are generated using a truncated power-law distribution defined over the range of radii that should 
be stored. The truncated power-law distribution defined over the range [𝑟𝑟0, 𝑟𝑟𝑢𝑢] is 

 

𝑝𝑝[𝑟𝑟0,𝑟𝑟𝑢𝑢](𝑟𝑟) =
𝑘𝑘𝑟𝑟0𝑘𝑘

𝑟𝑟𝑘𝑘+1
�1 − �

𝑟𝑟0
𝑟𝑟𝑢𝑢
�
𝑘𝑘
�
−1

. (3.4) 

 
This is the same as (3.1) except with a modified normalization constant to account for the truncated 
upper bound. For this work the range of radii used was [30, 500] m. To determine when a sufficient 
number of fractures has been generated, the user can then either specify the number of fractures to 
be produced and the relative frequency of fractures in each family, or the P32 values for each of the 
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fracture families. The P32 values from [2] are for the entire range of measured radii [0.038, 564]. 
To determine the corresponding 𝑃𝑃32 for a smaller range of radii, denoted 𝑃𝑃32[𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚], one need 
only compute the integral (3.2) over that range, using the untruncated power law: 

𝑃𝑃32[𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚] = � 𝑛𝑛0𝑝𝑝(𝑟𝑟)𝜋𝜋𝑟𝑟2𝑑𝑑𝑑𝑑
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

 

=  −
𝜋𝜋𝑛𝑛0𝑘𝑘𝑟𝑟0𝑘𝑘

𝑘𝑘 − 2
�𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚2−𝑘𝑘 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚2−𝑘𝑘�.  (3.5) 

 
In this case the rescaled P32 values are listed in Table 3-2. 
 

Fracture elevation  
[meters above sea level] 

Fracture set 
name 

𝑃𝑃32, 𝑟𝑟 ∈ [30,500] 
[𝑚𝑚2/𝑚𝑚3] 

>  −200 
NS 1.98 × 10−3 
NE 2.58 × 10−3 
HZ 2.60 × 10−2 

[−200,−400] 
NS 3.85 × 10−3 
NE 2.79 × 10−3 
HZ 1.69 × 10−2 

<  −400 
NS 2.55 × 10−3 
NE 1.32 × 10−3 
HZ 7.53 × 10−3 

Table 3-2. 𝑷𝑷𝟑𝟑𝟑𝟑[𝟑𝟑𝟑𝟑,𝟓𝟓𝟓𝟓𝟓𝟓] computed from 𝑷𝑷𝟑𝟑𝟑𝟑 in Table 3-1 using (3.5). 
 
Alternatively, if one were to specify the number of fractures that dfnWorks should generate 

to produce these P32 values, one would need to specify the total number of fractures to produce, 
as well as the relative probability of fractures in each family being produced. First, to compute the 
number of fractures in the range [30, 500] that would need to be generated, one would need to 
compute  
 

∫ 𝑛𝑛0𝑝𝑝(𝑟𝑟)𝑑𝑑𝑑𝑑𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

= −𝑛𝑛0𝑟𝑟0𝑘𝑘[𝑟𝑟−𝑘𝑘]𝑟𝑟=𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟=𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛0𝑟𝑟0𝑘𝑘�𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝑘𝑘 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝑘𝑘 � (3.6) 

 
for each of the fracture families. The relative probability of a fracture occurring in each fracture 
family is then defined as the number of fractures in the family, divided by the total number of 
fractures across all families. These numbers and probabilities are presented in Table 3-3. 
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Fracture elevation 
[meters above sea 

level] 

Fracture 
set name 

Subdomain # fractures, 𝑟𝑟 ∈
[30,500] 

Relative probability of 
fractures 

>  −200 
NS 227 0.020 
NE 335 0.030 
HZ 2767 0.245 

[−200,−400] 
NS 440 0.039 
NE 363 0.032 
HZ 1771 0.157 

<  −400 
NS 1252 0.111 
NE 737 0.065 
HZ 3398 0.301 

Table 3-3. The number of fractures in each fracture family. 
 

3.1.1 Consistency of DFN specifications 
Initially, the properties of the DFNs generated by specifying target P32 values to dfnWorks 

were inconsistent with the properties of the DFNs generated by specifying the target number of 
fractures. It was determined that dfnWorks computes P32 using both faces of the fracture. 
Compared to the definition as specified in [4] and repeated in (3.2), this means the P32 that 
dfnWorks computes will be approximately twice the value computed using (3.2) and as reported 
in [2]. To account for this, care must be taken when specifying target P32 values to dfnWorks to 
instead pass twice the target value. Additionally, it should be noted that the values dfnWorks 
reports for P32 need to be halved to compare to P32 values computed as in [2][4]. Taking this change 
into account, the number of fractures in each family and the 𝑃𝑃32 values for the DFNs generated 
using either method are reported in Table 3-4. 

The agreement is not perfect between the two methods, but the results are in relatively good 
agreement with each other. It should be noted that the families with the highest 𝑃𝑃32 values 
exhibited the greatest discrepancy between the resulting number of fractures and 𝑃𝑃32 values. This 
discrepancy can be explained by the differences in how the algorithms terminate. In the case of 
specifying the number of fractures, fractures are added according to the underlying of distribution 
of fractures by family and by radius until the total number of fractures is reached, at which point 
it terminates. In the case of specifying 𝑃𝑃32, on the other hand, the algorithm will keep adding 
fractures until the 𝑃𝑃32 is within a small tolerance of the target. In general, fractures of smaller 
radius will allow for more refined values of 𝑃𝑃32, so this method results in more fractures with 
smaller radius.  

A comparison of the distributions of fractures over all families between the two methods of 
specification indicate the 𝑃𝑃32 specification has almost 2000 more fractures with radius near the 
lower bound of 30 m, compared to the number of fractures specification. For the DFNs used in the 
crystalline reference case elsewhere in this work, the method of specifying the number of fractures 
was used to generate the DFNs. In future work, specifying a target 𝑃𝑃32 value may be favorable 
because it enables as close a replication to the parametrization in [2] as possible. However, as will 
be discussed in Section 3.1.2, the difference between the 𝑃𝑃32 values from [2] and those of the 
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DFNs generated by specifying the number of fractures per family did not significantly impact the 
bulk properties of the resulting ECPMs.  

Fracture 
elevation 
[m.a.s.l.] 

Fracture 
set name 

Converge on 𝑃𝑃32 Converge on 𝑛𝑛 fractures 

Target 𝑃𝑃32 Final 𝑃𝑃32 𝑛𝑛 
fractures Final 𝑃𝑃32 Target 𝑛𝑛 

fractures 
Final 𝑛𝑛 

fractures 

>  −200 

NS 1.98 × 10−3 1.98 × 10−3 271 1.47 × 10−3 227 209 

NE 2.57 × 10−3 2.58 × 10−3 326 2.30 × 10−3 335 329 

HZ 2.60 × 10−2 2.60 × 10−2 3298 2.24 × 10−2 2767 2697 

[−200,−400] 

NS 3.85 × 10−3 3.85 × 10−3 414 3.22 × 10−3 440 440 

NE 2.79 × 10−3 2.81 × 10−3 386 2.00 × 10−3 363 342 

HZ 1.69 × 10−2 1.69 × 10−2 1835 1.41 × 10−2 1771 1559 

<  −400 

NS 2.55 × 10−3 2.55 × 10−3 1475 2.27 × 10−3 1252 1211 

NE 1.32 × 10−3 1.32 × 10−3 822 1.21 × 10−3 737 745 

HZ 7.53 × 10−3 7.53 × 10−3 3663 6.43 × 10−3 3398 3100 

Table 3-4. P32 values and number of fractures per family for DFNs generated by either 
specifying P32 or number of fractures per family. The number of fractures reported are in 

range 𝒓𝒓 ∈ [𝟑𝟑𝟑𝟑,𝟓𝟓𝟓𝟓𝟓𝟓] m. 

 

3.1.2 Comparing crystalline reference case bulk ECPM properties to Forsmark 
Having verified the DFN statistics are consistent with the desired values in Table 3-1, attention 

turns to whether the bulk properties of the derived ECPMs for the current GDSA crystalline 
reference case are consistent with similarly-derived ECPMs for the Forsmark site in Sweden. 
Because only a subset of the fracture domains and sets were used to define the crystalline case, 
only a subset of properties will be expected to agree within a reasonable degree. The comparison 
will be made in terms of the bulk hydraulic conductivity computed using mapDFN.py [11]. The 
process by which this is derived from the DFNs is described in [6]. 

The standard assumption for the relationship between permeability and hydraulic conductivity 
is 

𝐾𝐾 = 𝑘𝑘𝑘𝑘𝑘𝑘
𝜇𝜇

,       (3.8) 

where K is hydraulic conductivity, k is permeability, 𝜌𝜌 is the density of the transported fluid, g is 
the gravitational constant, and 𝜇𝜇 is the fluid’s viscosity. For the GDSA work the fluid is water. 
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When dfnWorks computes permeability from fracture transmissibility, it uses 𝜌𝜌 = 997.7 𝑘𝑘𝑘𝑘 𝑚𝑚−3, 
𝜇𝜇 = 8.9 × 10−4 𝑘𝑘𝑘𝑘 𝑚𝑚−1𝑠𝑠−1 (from dfnWorks insertShape.cpp source code). These values will be 
used to convert k to K. Let 𝛾𝛾 = 𝜌𝜌𝜌𝜌

𝜇𝜇
= 1.1 × 107𝑚𝑚−1𝑠𝑠−1 so that 

𝐾𝐾 = 𝛾𝛾𝛾𝛾.      (3.9) 
The computational domain for the GDSA crystalline reference case is one continuous block; 

it is not subdivided by the depth zones. The ranges of the computational domain for dfnWorks and 
PFLOTRAN are summarized in Table 3-5 so that the appropriate subdomains can be mapped 
between dfnWorks, PFLOTRAN, and the Forsmark information. Note that the 15 m grid cells do 
not evenly subdivide [0,1260], so the bounds for each subdomain were taken to fall on the interior 
of each. The derived permeability tensor is only nonzero in the axial directions, so the 
corresponding hydraulic conductivity is also only nonzero in the axial directions. 

Fracture elevation 
[m.a.s.l.] 

dfnWorks 
subdomains 

PFLOTRAN 
subdomains 

15 m grid 
subdomains 

>  −200 [430, 630] [1060,1260] [71,83] 
[−200,−400] [230,430] [860,1060] [58,70] 

<  −400 [−630,230] [0,860] [0,57] 

Table 3-5. The corresponding subdomains for dfnWorks and PFLOTRAN. 
 

Statistics for the hydraulic conductivity for three depth zones were provided by the SKB team 
through private correspondence [7] and refer to runs described in [3]. These properties were 
reported in terms of the axial directions of the hydraulic conductivity tensor, 𝐾𝐾𝑥𝑥𝑥𝑥, 𝐾𝐾𝑦𝑦𝑦𝑦, and 𝐾𝐾𝑧𝑧𝑧𝑧, as 
well the geometric mean of the three directions: 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 = �𝐾𝐾𝑥𝑥𝑥𝑥𝐾𝐾𝑦𝑦𝑦𝑦𝐾𝐾𝑧𝑧𝑧𝑧�

1/3
. The goal here is to compute 

the same statistics for the crystalline reference case and check for agreement between them. As 
described in [3], when converting to an ECPM from a DFN, SKB set the hydraulic conductivity 
of any cell without a fully-connected network of fractures to 10−11 m/s. The appropriate minimum 
was derived by calculating the minimum values seen when the DFN was truncated only at very 
small fractures relative to cell size, so that they were free of effects from truncating the radii used 
in computing the ECPM. A minimum hydraulic conductivity of 10−11 m/s is equivalent to a 
minimum permeability of 10−18 m2. The minimum permeability for the ECPMs derived from 
dfnWorks for the GDSA crystalline reference case is 10−20 m2. To enable a comparison with the 
SKB statistics, the background hydraulic conductivity was replaced with 10−11 to compute the 
means reported here. 

The SKB team reported the log base 10 of the arithmetic mean of the hydraulic conductivity 
denoted log10�𝐾𝐾𝑥𝑥𝑥𝑥�, as well as the log base 10 of the geometric mean, denoted log10(𝐾𝐾𝑥𝑥𝑥𝑥). Any cells 
containing a deformation zone were not included in the computation of the mean. These values are 
reported in Table 3-6. 
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Depth [m] log10�𝐾𝐾𝑥𝑥𝑥𝑥� log10(𝐾𝐾𝑥𝑥𝑥𝑥) log10�𝐾𝐾𝑦𝑦𝑦𝑦� log10�𝐾𝐾𝑦𝑦𝑦𝑦� log10�𝐾𝐾𝑧𝑧𝑧𝑧� log10(𝐾𝐾𝑧𝑧𝑧𝑧) log10�𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒� 
> −200 -7.1 -8.0 -6.3 -8.1 -6.3 -9.4 -8.5 

[−400,−200] -8.1 -9.7 -8.1 -9.6 -9.4 -10.5 -9.9 
<  −400 -9.8 -10.8 -9.7 -10.8 -9.7 -10.8 -10.8 

Table 3-6. The statistics for the hydraulic conductivity of the ECPM representing FFM01/06, 
provided by SKB in [6]. 

The SKB ECPMs were computed using a finite element discretization with 20 m grid size, 
compared to the 15 m grid size used for the GDSA crystalline reference case. Smaller grid sizes 
tend to result in lower mean hydraulic conductivity and higher variance, so this will be considered 
when comparing results. The range of fracture radii used in the upscaling was from 5.6 m to 564 
m, compared to the range of 30 m to 500 m used in in the reference case.  

As described in [2], equation 2, SKB assumed the following relationship between fracture size 
and hydraulic aperture/transmissivity for their hydrogeological base case in [3]: 

log10 𝑇𝑇 = log10(𝑎𝑎𝑟𝑟𝑏𝑏) + 𝜎𝜎𝜎𝜎(0,1) , (3.10) 

where 𝑇𝑇 [m2/s] is transmissivity, r [m] is fracture radius, a and b are coefficients in a power-law 
relationship between r and log10 𝑇𝑇, 𝜎𝜎is the standard deviation of log10 𝑇𝑇, and 𝒩𝒩(0,1) denotes the 
normal distribution of a random deviate of zero mean and unit variance. This relation was specified 
for each depth zone individually and affects the hydraulic conductivity of the ECPM. As of 
dfnWorks version 2.1, it is only possible to specify a single relationship between transmissivity 
and fracture size that will apply to the entire domain, and the relationship is of the form  

𝑇𝑇 = 𝑎𝑎𝑟𝑟𝑏𝑏 .  (3.11) 
 

Because only one relationship could be defined, the parameters for the fully-correlated 
relationship of FFM01/06 and depth zone 200-400 meters below sea level (mbsl) from Table 2 in 
[2] were used in the DFN specification for this work. This means that only the statistics for depth 
zone 200-400 mbsl can be expected to agree to some degree to those reported by SKB. 

SKB did not include the properties of any element cut by a deformation zone in the 
computation of their statistics. Correspondingly, the deformation zones, specified as user-defined 
faults to dfnWorks, were filtered out for computing the statistics reported here. To reiterate, the 
background hydraulic conductivity for the ECPMs was increased to 10−11, compared to the 1.1 × 
10−13, to make it consistent with the background value for SKB. SKB only computed the statistics 
for the single reference hydrogeological base case, while 30 identically distributed ECPMs were 
computed for this work. To compare to the SKB statistics, the log-base-10 algebraic and geometric 
mean for each hydraulic conductivity field was computed, then a sample mean was computed over 
the 30 algebraic/geometric means from each ECPM. To compute the means over the three depth 
subdomains >-200 m, [-400 m, -200 m], and <-400 m, the computational domain was partitioned 
according to the z indices specified in Table 3-5. The arithmetic and geometric means were 
computed on each of these subdomains. The resulting (overall) means are reported in Table 3-7. 
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Depth [m] log10�𝐾𝐾𝑥𝑥𝑥𝑥� log10(𝐾𝐾𝑥𝑥𝑥𝑥) log10�𝐾𝐾𝑦𝑦𝑦𝑦� log10�𝐾𝐾𝑦𝑦𝑦𝑦� log10�𝐾𝐾𝑧𝑧𝑧𝑧� log10(𝐾𝐾𝑧𝑧𝑧𝑧) log10�𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒� 
> −200 -8.7 -10.0 -8.7 -10.0 -9.2 -10.3 -10.1 

[−400,−200] -8.8 -10.2 -8.8 -10.2 -9.2 -10.4 -10.3 
<  −400 -9.2 -10.7 -9.2 -10.7 -9.5 -10.7 -10.7 

Table 3-7. The log base 10 of the mean values for the ECPMs computed for the GDSA 
crystalline reference case with the background hydraulic conductivity set to 𝟏𝟏𝟎𝟎−𝟏𝟏𝟏𝟏 m/s for 

consistency with SKB. 
 

As expected, because of the constant transmissivity-radius relationship as a function of depth, 
the statistics in Table 3-7 do not vary as significantly as those for SKB. This makes sense, since 
the only change as a function of depth in Table 3-7 is induced by the decrease in fracture frequency 
and radius as a function of depth. Given the difference in correlation model, minimum fracture 
radius, and cell size, the values for the depth zone 200-400 mbsl agree reasonably well. The SKB 
and GDSA values for this depth zone are compared in Figure 3-2. As mentioned previously, 
because the SKB team used a larger grid size and a larger ranges of fracture sizes, it is expected 
that their hydraulic conductivities would be slightly higher than for the crystalline reference case. 
This holds for all directions except the z (depthwise) direction, and these values still agree well 
with those of SKB. These results verify the specification and implementation of the DFN and 
conversion to ECPM in this work, insofar as the ECPM is consistent with that of SKB to the extent 
it is expected to be. 

 

Figure 3-2. A bar chart comparing the mean hydraulic conductivities for the second depth 
zone between [-400, -200] m. The vertical black lines are one standard deviation on the 

averages, taken over the 30 DFNs.  

  



Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework  
September 2020    

3-11 
 

References: Chapter 3 
[1] Hyman, J. D., S. Karra, N. Makedonska, C. W. Gable, S. L. Painter and H. S. Viswanathan 

(2015). "dfnWorks: A discrete fracture network framework for modeling subsurface flow and 
transport," Computers & Geoscience, 84:10-19. 

[2] Steven Joyce, Lee Hartley, David Applegate, Jaap Hoek, and Peter Jackson. Multi-scale 
groundwater flow modeling during temperate climate conditions for the safety assessment of 
the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeology 
Journal, 22(6):1233–1249, 2014. 

[3] Steven Joyce, Trevor Simpson, Lee Hartley, David Applegate, Jaap Hoek, Peter Jackson, 
David Swan, Niko Marsic, and Sven Follin. Groundwater flow modelling of periods with 
temperate climate conditions–Forsmark. Technical report, Swedish Nuclear Fuel and Waste 
Management Co., 2010. 

[4] Allan Hedin. Semi-analytic stereological analysis of waste package/fracture intersections in a 
granitic rock nuclear waste repository. Mathematical geosciences, 40(6):619–637, 2008. 

[5]  Sven Follin, Lee Hartley, Ingvar Rh´en, Peter Jackson, Steven Joyce, David Roberts, and Ben 
Swift. A methodology to constrain the parameters of a hydrogeological discrete fracture 
network model for sparsely fractured crystalline rock, exemplified by data from the proposed 
high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeology Journal, 
22(2):313–331, 2014. 

[6] Paul E Mariner, Emily R Stein, Jennifer M Frederick, S David Sevougian, Glenn Edward 
Hammond, and DG Fascitelli. Advances in geologic disposal system modeling and application 
to crystalline rock. Technical report, Sandia National Laboratories.(SNL-NM), 2016. 

[7] Lee Hartley and Steven Joyce. Responses to SSM on Hydrogeology, SKBdoc 1396325 ver 
1.0, Svensk Kärnbränslehantering AB., 2013. SKBdoc documents will be submitted upon 
request to document@skb.se. 

[8] J. D. Hyman, C. W. Gable, S. L. Painter, and N. Makedonska. Conforming Delaunay 
triangulation of stochastically generated three dimensional discrete fracture networks: A 
feature rejection algorithm for meshing strategy. SIAM J. Sci. Comput., 36(4):A1871–A1894, 
2014.  

[9] SKB, Long-Term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark. Main 
Report of the SR-Site Project. Technical Report SKB TR-11-01, Swedish Nuclear Fuel and 
Waste Management Co., Stockholm, Sweden, 2011 

[10] Wang, Y., E. Matteo, J. Rutqvist, J. Davis, L. Zheng, J. Houseworth, J. Birkholzer, T. 
Dittrich, C. W. Gable, S. Karra, N. Makedonska, S. Chu, D. Harp, S. L. Painter, P. Reimus, F. 
V. Perry, P. Zhao, J. B. Begg, M. Zavarin, S. J. Tumey, Z. R. Dai, A. B. Kersting, J. Jerden, 
K. E. Frey, J. M. Copple and W. Ebert (2014). Used Fuel Disposal in Crystalline Rocks: Status 

mailto:document@skb.se


Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework  
September 2020    

3-12 
 

and FY14 Progress. FCRD-UFD-2014-000060, SAND2014-17992 R. Sandia National 
Laboratories, Albuquerque, New Mexico. 

[11] Stein, E. R., J. M. Frederick, G. E. Hammond, K. L. Kuhlman, P. E. Mariner and S. D. 
Sevougian (2017). "Modeling Coupled Reactive Flow Processes in Fractured Crystalline 
Rock," Proceedings of the 16th International High-Level Radioactive Waste Management 
(IHLRWM 2017) Conference, Charlotte, North Carolina, April 9-13, American Nuclear 
Society. 



Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework  
September 2020    

4-1 
 

4. CRYSTALLINE REFERENCE CASE: UPDATES 
For a nuclear waste repository located in crystalline rock, a major source of uncertainty in 

performance assessment is the spatial heterogeneity of potential fracture flow paths through the 
host rock. Conceptually, a long-lived radionuclide released from a waste package will initially 
migrate through the buffer material and into the surrounding damaged rock zone (DRZ). From 
there it will migrate along the DRZ until it enters a fracture that takes it farther into the host rock, 
where connected fractures can provide a path to a nearby fracture zone. It might then migrate along 
this fracture zone and through connected fracture zones to the biosphere. Along the flow path, the 
radionuclide will undergo radioactive decay and ingrowth and diffuse into and out of dead-end 
pores and fractures. Additionally, depending on its properties and the environmental conditions 
along the flow path, it will adsorb and desorb from colloids and immobile mineral surfaces, 
chemically react with aqueous species, possibly change oxidation state, and, if solubility-limited, 
precipitate and dissolve. 

This chapter presents a new uncertainty analysis of a reference case repository for commercial 
spent nuclear fuel in fractured crystalline rock. The reference case is identical to that in Stein et al. 
[1], Mariner et al. [4], and Sevougian et al. [9] except for improvements to the fracture network 
implementation (discussed in Chapter 3) and the design of the uncertainty analyses. Note that this 
analysis builds extensively on the crystalline reference case uncertainty analysis performed in 2019 
and documented in Chapter 8 of [14].  

4.1 Uncertainty Analysis (UA) 
The uncertainty analysis includes multiple types of uncertainty: spatial uncertainty, parameter 

epistemic uncertainty, and aleatory uncertainty. Uncertainties described as spatial uncertainty 
relate to the unknown structure of the repository and surrounding rock. The spatial uncertainty is 
not strictly categorized as epistemic or aleatory, in part because it incorporates some of both types 
of uncertainties. Uncertainties described as parameter epistemic uncertainty relate to inputs with 
fixed but unknown scalar values.  

Section 4.1.1 discusses different perspectives on the categorization of spatial uncertainty and 
Section 4.1.2 summarizes the structure and implementation of the UA. 

4.1.1 Uncertainty Categorization 
The categorization of spatial uncertainty in this analysis was an issue of debate. Last year, the 

discrete fracture networks were treated as aleatory [14], and that study motivated further separation 
of the spatial uncertainty from epistemic parameter uncertainty for the current study. In this report, 
spatial heterogeneity in the discrete fracture networks was separated from most of the parameter 
uncertainty because one of the goals of the analysis was to understand the relative contributions of 
the spatial heterogeneity and parameter uncertainties to total uncertainty. Though this separation 
was illustrative, there was not agreement on whether it represents a classical separation between 
aleatory and epistemic uncertainty.  

The categorization of the spatial uncertainty depends on the definitions of aleatory and 
epistemic uncertainty, the intent of the crystalline reference case, the difference between 
theoretically and practically reducible uncertainty, and historical usage. With respect to 



Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework  
September 2020    

4-2 
 

definitions, epistemic uncertainty is lack-of-knowledge uncertainty, also called reducible 
uncertainty, and aleatory uncertainty is stochastic or irreducible uncertainty. Aleatory uncertainty 
can also be described with respect to time; it is uncertainty about future occurrences, not the present 
state [20]. However, outside of PA, this connection to time is not always included in the definition 
[21].  

One perspective on spatial uncertainty is to treat it as an epistemic uncertainty. This assumes 
that the underlying fracture network at the crystalline reference case site is fixed, but we do not 
know what it is. Our knowledge of the fracture network is imperfect: we cannot perfectly 
characterize the fractures due to limitations of geophysical imaging capabilities. As discussed in 
Chapter 3, we have used the dfnWorks software [3] to generate twenty realizations that are 
consistent with field data and with what we understand about crystalline formations and their 
properties. We cannot say that any one of the twenty DFNs we have generated is the exact real 
fracture network, but they are possible realizations each intended to represent a realistic possibility. 
This follows from earlier work at WIPP and Yucca Mountain where geologic field data was treated 
as epistemic. For example, the WIPP analysis involved the generation of realizations of the 
transmissivity field in the Culebra dolomite formation (LaVenue and RamaRao, 1992) and the 
Yucca Mountain analysis involved realizations of flow fields for both the unsaturated and saturated 
zones for flow and transport modeling (Rechard et al. 2014).  

An alternative perspective on spatial uncertainty is to treat it as an aleatory uncertainty. This 
argument is based on two concepts: 1) predicting the distribution of random fractures through 
space is analogous to predicting the occurrence of random events through time, and 2) uncertainties 
that may be reducible philosophically are not necessarily practically reducible. The dfnWorks 
software produces random fracture networks that are consistent with a set of fixed characteristics 
specified for the site (this is done by generating random fractures from user specified distributions 
on fracture size, orientation, etc. and placing them in the fracture network, see Chapter 3 for 
details). Analogous to future random events, there are infinitely many fracture networks that can 
occur in space which are consistent with these fixed characteristics. This can be perceived either 
as inherent randomness or model uncertainty: the characteristics are insufficient to define a fixed 
fracture network.  

The perspective that spatial uncertainty should be treated as aleatory also relates to the practical 
motivation for separating uncertainty. Epistemic uncertainty can be reduced, so separating 
epistemic uncertainty from aleatory uncertainty identifies where uncertainty could be reduced, as 
well as how much uncertainty cannot be eliminated. Even with the most advanced measurement 
technologies, it is not feasible to measure and model the true fracture network at a potential 
repository site. Though the fracture network is fixed, and so the uncertainty is hypothetically 
reducible, it cannot be reduced practically. If the goal behind separating out epistemic uncertainty 
is to identify uncertainty that can actually be reduced, it makes more sense to include uncertainty 
in the fracture network as an aleatory uncertainty.  

Finally, the categorization of spatial uncertainty is further complicated by the introduction of 
another type spatial heterogeneity that clearly mixes epistemic and aleatory components: 
uncertainty in the order in which waste packages breach in the repository (e.g., this is a spatial 
variability in the sense that waste package 37 may breach first, followed by waste package 483, 
etc. These waste packages are at different locations in the repository). Uncertainty in waste 
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package corrosion rate is introduced by sampling from a truncated log normal distribution for the 
base corrosion rate in a temperature-dependent rate expression for general corrosion [4]; this log 
normal distribution for the (spatially distributed) waste package corrosion rate is sampled within 
PFLOTRAN [6, 7] and is considered an aleatory uncertainty (random, stochastic, or irreducible 
uncertainty). Both the mean (meanWPrate) and standard deviation (stdWPrate) of this log normal 
distribution, however, are treated as epistemically uncertain inputs.  

This analysis also contains epistemic uncertainty in parameter values, which were categorized 
without debate. Epistemic uncertainties include porosity and permeability of the bentonite buffer 
(pBuffer and pBuffer, respectively), permeability of the DRZ (kDRZ) and of the overlying 
sedimentary unit (kGlacial), and rate of spent (used) nuclear fuel dissolution (rateUNF). Note that 
the epistemic parameter uncertainty is simpler to treat than the fracture network uncertainty. For 
epistemic parameter uncertainty, we assume that the parameters have a fixed but unknown value 
for this particular case study. That is, there is one value for porosity of the bentonite buffer but we 
do not know what it is, thus we generate possible realizations of a number for this porosity.  

Because the debate on how to categorize the spatial uncertainty is ongoing, we refrain from 
making an explicit statement about the categorization in this report. The implementation of spatial 
heterogeneity includes epistemic and aleatory uncertainties, and there are philosophical arguments 
for either categorization. Regardless of how it is characterized, the spatial uncertainty was 
separated from the parameter uncertainty in a two-loop structure for this UA. To avoid implying a 
categorization, the sampling loop with spatial heterogeneity is referred to simply as the spatial 
loop.  

4.1.2 Uncertainty Implementation 
The UA comprises a spatial loop of sample size 20 fracture network realizations, and a 

parameter loop of sample size 40 for a total of 800 simulations. Note that both of these loops 
involve epistemic uncertainties, but the spatial uncertainty loop involves the spatial heterogeneity 
exhibited by the 3-D variability in the fracture networks and the epistemic parameter loop involves 
the parametric uncertainty associated with the epistemic parameters. Because the aleatory 
uncertainty is also spatial, it is included in the spatial loop. For each DFN realization in the spatial 
loop, a different random seed is used when sampling the waste package corrosion rate distribution, 
so that the order of waste package breach associated with each DFN is different. The sampling 
loops are shown in Figure 4-1.  
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Figure 4-1. Sampling Loops used in the Uncertainty Analysis of the Crystalline Reference 
Case presented in this Chapter. 

Latin hypercube sampling of epistemically uncertain parameters is performed using Dakota 
[8]. The uncertainty analysis includes pBuffer, kBuffer, kDRZ, kGlacial, and rateUNF as 
epistemically uncertain inputs, and both meanWPrate and stdWPrate are also included as 
epistemically uncertain inputs in the parameter loop. The uncertain parameters are listed in Table 
4-1. The outputs include maximum 129I concentration over time and location in the aquifer as well 
as quantities such as mean travel time, mean residence time, and flow rates as defined in Table 
4-2. These new Quantities of Interest (QoIs) that have been implemented and are the subject of 
this study (see Table 4-2 and the discussion in Section 4.2.7 below). 

When structuring the UA, the same set of epistemic samples (e.g., same 40 sample vectors for 
the epistemic variables) were run for each of the 20 spatial realizations. Repeating the epistemic 
samples allows explicit separation of effects from the epistemic uncertainty and effects from the 
spatial uncertainty (the DFN and the spatial distribution of base normalized general corrosion rate) 
but comes at the cost of covering less of the epistemic sample space. The epistemically uncertain 
parameters and their distributions are listed in Table 4-1. 
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Table 4-1. Uncertainty distributions propagated in crystalline reference case UA. 

Input Description Range Units Distribution Sampling Loop 

DFN Particular realization of a 
discrete fracture network 1-20   

Spatial loop 

Aleatory_1 
Aleatory sampling to 
generate a fixed ordering 
of waste package 
degradation for each DFN 

0-1  Uniform 

 
Spatial loop 

rateUNF 
Fractional dissolution rate 
of spent (used) nuclear 
fuel 

10-8 – 10-6 yr-1 log uniform 
 
Parameter loop 

kGlacial Glacial till permeability 10-15 – 10-13 m2 log uniform Parameter loop 

pBuffer Buffer porosity 0.3 – 0.5 - uniform Parameter loop 

permDRZ DRZ permeability 10-19 – 10-16 m2 log uniform Parameter loop 

permBuffer Buffer permeability 10-20 – 10-17 m2 log uniform Parameter loop 

meanWPrate 
Mean of the truncated log 
normal distribution on 
base normalized general 
corrosion rate (R) 

-5.5 – (-4.5) log(yr-1) Uniform 

 
Parameter loop 

stdWPrate 
Standard deviation of the 
truncated log normal 
distribution 

0.15 – 0.4 log(yr-1) Uniform 
Parameter loop 

  

4.2 Model Set-up 

4.2.1 Model Domain 
The model domain [1] is 3015-m in length, 2025-m in width, and 1260-m in height, partially 

depicted in Figure 4-2. Overlying the host rock is a 15-m thick overburden of glacial sediments 
(not shown). The repository is located at a depth of 585 m. Forty-two disposal drifts contain 80 
12-PWR waste packages each (3360 12-PWR waste packages in total). Drifts are backfilled with 
bentonite buffer and are surrounded by a 1.67-m thick DRZ. Within the repository, grid cells are 
as small as 1.67-m on a side; elsewhere grid cells are 15-m on a side. The model domain contains 
4,848,260 cells; of these, approximately 2.5 million are the smaller cells in and around the 
repository that allow representation of individual waste packages with surrounding buffer 
materials. Additional information on the grid and dimensions may be found [1] available for 
download at https://pa.sandia.gov.  

https://pa.sandia.gov/
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Figure 4-2. Cut-away of DFN 1 realization mapped to porous medium grid, showing the 
full repository and the far half of the model domain. 

4.2.2 Discrete Fracture Networks 
As described by Mariner et al. [4], the representation of fractured crystalline rock in the GDSA 

reference case is based on the well-characterized, sparsely fractured metagranite at Forsmark, 
Sweden [2]. At Forsmark, volumes of relatively undeformed rock (termed a “fracture domain”) 
are bounded by large-scale mappable features of concentrated brittle and/or ductile deformation 
(termed “deformation zones”). The fracture domains are sparsely fractured, and the fractures 
within each domain can be described in terms of a number of “fracture sets”, which are 
distinguished from each other on the basis of fracture orientation. Six fracture domains are defined 
at Forsmark, each containing five fracture sets. As appropriate, three depth zones are defined (<200 
m below sea level (mbsl), 200-400 mbsl, and >400 mbsl) to account for the decrease in fracture 
density and fracture transmissivity with depth. The parameters describing the DFNs for this case 
study are described in Chapter 3 of this report.  

The crystalline host-rock reference case analyzed here [4], based on the Forsmark data set, is 
modeled using some fixed features and an uncertain fracture network. The case contains 5 fixed 
fracture zones and three depth intervals. Twenty random networks were generated with dfnWorks, 
one for each realization of the spatial uncertainty loop. The deterministic, user-defined fracture 
zones represent large, mappable features, such as faults, and are common to all realizations. There 
are three subvertical fracture zones (Figure 4-1, in gray) and two fracture zones with a dip of 
approximately 30 degrees (in red). The discrete fracture networks, two-dimensional planes 
distributed in the three-dimensional model domain, are generated using dfnWorks [3], and mapped 
to the equivalent continuous porous medium domain using mapDFN.py, a code that approximates 
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hydraulic fracture properties by calculating and assigning permeability and porosity on a cell-by-
cell basis [1].  

The fracture set properties and deterministic fracture zones employed in this study provided 
sufficient fracture connectedness such that each DFN realization resulted in direct fracture 
pathways from the repository to the top boundary of the fractured crystalline host-rock. The 
existence of connected fracture pathways was determined by dfnWorks. 

4.2.3 Waste Package Corrosion Model 
The waste package corrosion model implemented in PFLOTRAN (Mariner et al. [4], Section 

3.2.1) calculates normalized thickness of the waste package wall at each time step as a function of 
a base waste package corrosion rate, a canister material constant, and temperature. Waste package 
breach occurs when the normalized thickness reaches zero. The normalized thickness is initialized 
to 1, and is reduced at each time step as a function of the effective waste package corrosion rate 
Reff defined by 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅 ∙ 𝑒𝑒𝐶𝐶�
1

333.15−
1

𝑇𝑇(𝑡𝑡,𝑥̅𝑥)� (4-1) 
 
where R is the base corrosion rate at 60ºC in units of yr-1, T is the local temperature (in Kelvin), 
and C is the canister material constant. This equation assumes that reaction rates are a function of 
temperature as described by the Arrhenius equation. It is also assumed that waste package 
corrosion occurs via general corrosion. R represents the normalized general corrosion rate at 60ºC 
in units of 1/T (time) (i.e., units of L/T normalized by the thickness (in units of length L) of the 
waste package wall). In PFLOTRAN, R is in units of yr-1 and is entered as a lognormal distribution 
across waste packages.  

PFLOTRAN assigns a base normalized general corrosion rate (R) for each waste package by 
sampling on a truncated log normal distribution whose mean, standard deviation, and upper 
truncation limit may be treated as epistemic uncertain inputs sampled by Dakota [8]. In UA the 
mean of the distribution is sampled over the range 10–5.5 to 10–4.5 (in units of yr-1).   The standard 
deviation is sampled over the range 100.15 to 100.4 (also in units of yr-1). The uncertainty analysis 
uses a constant upper truncation limit of 10–3.5 yr-1. A mean of 10−5 for R results in a mean waste 
package breach time of 100,000 years if waste packages are held at a constant temperature of 60 
°C. 

Sampling on both the mean and standard deviation implements uncertainty in the location and 
spread of the normalized general corrosion rate distribution. This high level of uncertainty is 
appropriate because the state of knowledge is low and, since the distribution is sampled for each 
waste package, it makes sense to have a different corrosion rate distribution for each realization. 
Unlike the other uncertainty distributions included in the UA, the normalized general corrosion 
rate distribution is sampled many times within each realization. First, the mean and standard 
deviation are sampled once per realization to establish the corrosion rate distribution for that 
realization. Then this distribution is sampled independently for each waste package within that 
realization. Sampling of the distribution parameters implements the epistemic uncertainty in the 
corrosion rate and sampling each waste package independently from that distribution implements 
spatial aleatory uncertainty.  
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4.2.4 Initial and Boundary Conditions 
Initial conditions specified are pressure and temperature. Nominal nonzero radionuclide 

concentrations are also specified as initial conditions but this is for numerical necessity, not to 
represent reality. Initial pressures and temperatures throughout the model domain are calculated 
by applying a liquid flux of 0 m/s and an energy flux of 60 mW/m2 to the base of the domain and 
holding temperature (10°C) and pressure (approximately atmospheric) constant at the top of the 
domain and allowing the simulation to run to 106 years. Pressure at the top of the domain decreases 
from west (left) to east (right) with a head gradient of −0.0013 (m/m). This technique results in 
initial conditions that represent a geothermal temperature gradient and hydrostatic pressure 
gradient in the vertical direction, and a horizontal pressure gradient that drives flow from west to 
east.  

The initial concentration of 129I in all cells is 10−22 mol/L. A non-zero value is necessary, 
because PFLOTRAN transport equations are formulated in terms of the log of concentration. A 
concentration of 10−22 mol/L is approximately 60 atoms of 129I per liter of water.  

At all six faces of the model domain, pressures and temperatures are held constant at initial 
values. Concentration of 129I is held at the initial concentration at inflow boundaries. At outflow 
boundaries, the concentration gradient is set to zero. 

4.2.5 Observation Points 
Previous analysis of the crystalline reference case analyzed uncertainty in 129I concentrations 

at specific observation points [14]. Rather than focusing on each spatial location individually as in 
that analysis, this UA uses the maximum 129I concentration calculated over all observation points. 
Because the peak 129I concentration varies spatially over time, the maximum over all of the tracked 
observation points is a better measure of overall repository performance; this measure will indicate 
poor performance if the 129I concentration at any observation point exceeds requirements.  

4.2.6 Timestep Size 
During previous analysis of the crystalline reference case [14], oscillations in 129I 

concentrations which could impact estimates of 129I breakthrough times were found at observation 
points. An analysis was conducted to identify the cause of the oscillations and determine how the 
effect could be minimized in future studies. In [14], we document a study showing the tradeoff 
between maximum timestep size and computational time: Oscillations in the 129I concentrations 
become less frequent with smaller timesteps but this results in an increased computational time. 
From the study, we determined that a maximum timestep of 5,000 years was acceptable for our 
quantities of interest.  

For the PFLOTRAN runs presented in this report, a maximum timestep size of 5,000 years 
was also used. We examined the peak 129I concentration over all time as well as the maximum 129I 
as a function of time. These quantities did not exhibit significant discontinuities or oscillations, 
therefore we continued to use the 5,000 year maximum timestep.  
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4.2.7 New Quantities of Interest (QoIs) 
The new QoIs implemented in the UA are listed in Table 4-2. They include a new performance 

metric capability and several new DFN-related bulk characteristic calculations potentially relevant 
to performance.  

The new performance metric capability allows for monitoring the entire aquifer at each time 
step for 129I concentration, recording the highest 129I concentration in the aquifer at that time, and 
recording its location. The peak 129I concentration in the aquifer in the simulation can then be 
determined, which is important because it is the ultimate measure of repository performance in 
this current model.  

The DFN-related bulk characteristics that are potentially relevant to performance include the 
mean travel time (MTT) of a conservative tracer from the repository to the aquifer, the mean 
residence time (MRT) of an initial conservative tracer within the repository, net mass flux (NMF) 
of a conservative tracer out of the repository, and rock boundary water mass flow rates.  

A more detailed description of these new QoIs may be found in Mariner et al. (2020) [15]. The 
mean residence time of a conservative tracer initially present in the repository (MRT) at each time 
step in the simulation is determined by tracking the total mass of a tracer remaining in the 
repository over time. Because the initial tracer slowly flushes from the repository and never 
completely flushes from the repository, the MRT has an associated time series of residence times. 
The MRT is given by Equations 4.1 and 4.2 below; these are equations 29-30 in [15] and discussed 
in more detail in that report. The cumulative MRT of an initial tracer of a model region is calculated 
by tracking the total mass of the tracer in the region over the time interval (τ) using the following 
equation  

MRT(𝜏𝜏) = ∫ 𝐹𝐹(𝑡𝑡)d𝑡𝑡𝜏𝜏
𝑡𝑡=0      (4.1)  

where (i) 𝐹𝐹(𝑡𝑡) is the fraction of initial pulse remaining, calculated from  

  𝐹𝐹(𝑡𝑡) = 𝑁𝑁(𝑡𝑡)−𝑁𝑁𝑏𝑏
𝑁𝑁𝑜𝑜−𝑁𝑁𝑏𝑏

 ,       (4.2) 

(ii) 𝑁𝑁(𝑡𝑡) is the total mass of the tracer in the region at a given time, (iii) 𝑁𝑁𝑜𝑜 is the initial total mass 
of the tracer in the region, and (iv) 𝑁𝑁𝑏𝑏 is the total background mass of the tracer in the region.  

The MTT measures the mean travel time of a conservative (non-decaying) tracer from the 
repository to an observation point beyond the repository. For the equations defining MTT, see 
equations 32-35 in [15]. These are reproduced here as Equations 4.3-4.6. Mean travel time, like 
mean residence time, can be directly measured using tracers. Identical concentrations of two 
conservative tracers are artificially and continuously injected at a constant rate at the starting point. 
The only difference between the two tracers is that one of them decays or ingrows exponentially 
over time since injection. Because the movement of these tracers within the domain is identical, 
the difference in concentration at a distant location is solely due to the mean time since tracer 
injection. This measure of time is considered the mean travel time (MTT) of a conservative tracer.  
We note a difference between MRT and MTT:  for MRT, there is one initial concentration of the 
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conservative tracer at the beginning of the simulation and no more of it is injected into the region, 
then MRT is obtained by tracking the tracer mass remaining in the repository over time.  In 
contrast, for MTT, two tracers are continuously injected and the differences in their concentrations 
at locations beyond the injection region can be used to calculate the MTT of injected tracer as 
defined below.   

Exponential decay (or ingrowth) is described by the equation: 

 𝐶𝐶(𝑡𝑡) = 𝐶𝐶𝑜𝑜𝑒𝑒−𝑟𝑟𝑟𝑟 
 

(4.3) 

where 𝐶𝐶 is the concentration at time 𝑡𝑡, 𝐶𝐶𝑜𝑜 is the initial concentration, and 𝑟𝑟 is the rate of the 
reaction. The rate can be calculated from the half-life 𝑡𝑡1/2 using the equation:  

 𝑟𝑟 =
ln(2)
𝑡𝑡1/2

  
(4.4) 

Solving for 𝑡𝑡 gives:  

 𝑡𝑡 =
−ln �𝐶𝐶(𝑡𝑡)

𝐶𝐶𝑜𝑜� �

𝑟𝑟
 

 
(4.5) 

In terms of MTT, 𝐶𝐶𝑜𝑜 is analogous to the concentration of stable tracer 𝐶𝐶𝑠𝑠, and 𝐶𝐶(𝑡𝑡) is analogous 
to the concentration of unstable (decaying or ingrowing) tracer 𝐶𝐶𝑢𝑢. Thus, MTT is estimated from 
the equation:  

 MTT =
−ln �𝐶𝐶𝑢𝑢 𝐶𝐶𝑠𝑠� �

𝑟𝑟
 

 
(4.6) 

This formulation assumes that initial background concentrations of these tracers, the ingrowing 
concentrations of an unstable background tracer, and trace concentrations of these tracers flowing 
into the domain from flux boundaries are negligible compared to the concentrations observed at 
the monitor location.  In the analysis below, the MTT is calculated at the location of the maximum 
129I concentrations in the aquifer at each time step of interest. It is considered a characteristic of 
the system and is not the mean travel time of the 129I concentration observed at that location at that 
time. 

The MRT and MTT evaluated at 106 years (1 Ma) were of interest because these represent the 
total flow for the simulation; values at 102, 103, 104, and 105 years were also analyzed. The 
repository MRT and MTT as calculated from the tracers were also recorded at times corresponding 
to peak 129I.   These values are also of interest because they reflect the flow associated with the 
highest 129I concentrations.  
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Table 4-2. New QoIs for crystalline reference case sensitivity analysis  

# Quantities of Interest (QoIs) Scalar or Vector 

1 
Maximum 129I concentration in aquifer in 
mol/L (M) 
 

Max concentration vector that is a function of 
time; vector includes (X,Y,Z) location of 
concentration 

2 Peak 129I concentration in aquifer in mol/L 
(M) Scalar with (X,Y,Z) location of peak 

3 Repository MRT (mean residence time in 
repository) in years 

Vector that is a function of time τ.  Each value in 
the vector is the MRT evaluated over the interval 
[0,τ].  
 

4 Repository MRT (1 Ma) in years Scalar, MRT evaluated over the interval [0, 1 Ma] 

5 
MTT (mean travel time from repository to 
aquifer location of maximum 129I 
concentration) in years 

Vector that is a function of time.  Each value of 
MTT is calculated from the tracer concentration 
ratio, evaluated at time τ. 

6 MTT (1 Ma) in years Scalar, MTT as calculated from the tracer 
concentration ratio, evaluated at 1 Ma 

7 MTT for Peak in years 
Scalar, MTT as calculated from the tracer 
concentration ratio, evaluated at the time of Peak 
129I concentration 

8 Water flow rate rock to aquifer (kg/y)  Vector that is a function of time 

9 Water flow rate east boundary (kg/y)  Vector that is a function of time 

 

As an example of the spatial and temporal resolution of these QoIs, the first QoI listed in Table 
4-2 is plotted in Figure 4-3 for two of the 800 PFLOTRAN simulations. These plots show 
maximum 129I concentration in the aquifer plotted as a function of (x,y) location and also as a 
function of time (z-axis). The left column of Figure 4-3 shows a 3-D view and the right column 
shows a front view in the x-direction. The top row is DFN1, epistemic realization 1 and the bottom 
row is DFN1, epistemic realization 5. The plots in Figure 4-3 are colored by the magnitude of the 
maximum 129I concentration so that one can see (for example) that early in the simulation, the 
maximum values tend to be in one corner of the domain and are low: in later years, the maximum 
129I concentration is more centrally located and is on the order of 1.E-8M. 
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Figure 4-3. Example 3-D plots of maximum 129I concentration in the aquifer shown for two 
of the 800 PFLOTRAN simulations. The upper row shows the results from DFN1, 

epistemic sample 1; the bottom row shows DFN1, epistemic sample 5. There are two views 
on each row: a 3-D view looking down (left column) and a frontal view (right column). The 

spread and location of the maximum 129I concentration varies for each of the 800 runs.  
 

4.3 Results 
The uncertainty analysis described above was extensive, with spatial and epistemic parameter 

sampling loops generating 800 PFLOTRAN runs on a high-performance computing system. The 
average run time was 1.54 hours on 32 nodes or 512 processors. The total number of processor 
hours for the full set of 800 PFLOTRAN runs was approximately 631,000 processor hours. 

The uncertainty and sensitivity analyses involved a number of time-dependent quantities of 
interest, and responses for which the quantity of interest was determined as the maximum (e.g., 

DFN 1, Epistemic Sample 1

DFN 1, Epistemic Sample 5

DFN 1, Epistemic Sample 1

DFN 1, Epistemic Sample 5
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maximum 129I concentration) over a spatial domain (i.e., the aquifer) at a particular time or for 
which the quantity was the peak concentration both spatially and temporally: the maximum over 
all time points. Below, we provide a variety of summary plots and statistical analysis of results, 
including cumulative distribution functions of results, scatterplots and interaction plots, and 
sensitivity analysis.  

4.3.1 Distribution of output quantities 
In this section, we first show the overall distribution of several output quantities of interest 

using cumulative distribution function (CDF) plots. At each time step, we calculate the maximum 
value of 129I concentration over all locations in the aquifer for each of the 800 sampling-based 
calculations. The CDFs of these maximum values for selected time steps are shown in Figure 4-4. 

 

Figure 4-4. CDF of Maximum 129I concentration in Aquifer at various times with step size 
1/800. 

 
Figure 4-4 shows the CDFs for maximum 129I values at particular time points. Figure 4-5 shows 

the CDF of the peak 129I concentration in the aquifer, where the peak for each sample is simply the 
maximum concentration for that sample over all time points, regardless of location. Note that this 
peak 129I concentration varies by over three orders of magnitude. 
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Figure 4-5. CDF of Peak 129I concentration in aquifer with step size 1/800. 
Because this Peak 129I concentration is a significant quantity of interest, we also show two 

ways of slicing the data: CDFs for each spatial realization showing the variation in parameter 
uncertainty per CDF and CDFs per each parameter realization showing the variation in spatial 
uncertainty. These are shown below in Figure 4-6 and Figure 4-7.  

Each curve in Figure 4-6 shows the CDF of the Peak 129I concentration for a spatial realization 
across all parameter realizations; hence, 40 points on each (spatial) curve. The same data are 
plotted in Figure 4-7 but instead each curve plots the CDF of a parameter realization across all 
spatial realizations; hence, 20 points on each (parameter) curve in Figure 4-7.  

The CDFs in black in Figure 4-6 and Figure 4-7 are the CDFs of the means of the peak 129I 
concentrations in each spatial realization across all parameter realizations (Figure 4-6) and of each 
parameter realization across all spatial realizations (Figure 4-7). The CDFs of the means provide 
the best measure of repository performance of all the parameters calculated in these simulations. 
They provide the calculated spatial and parameter uncertainty distributions about the mean Peak 
129I concentration in the aquifer. A comparison of these figures clearly shows that the overall 
parameter uncertainty in the mean Peak 129I concentration in the aquifer exceeds the overall spatial 
uncertainty. This observation is best illustrated by the ranges of the CDFs of the mean peak 129I 
concentrations (black curves). In Figure 4-6 the range across all parameter realizations (40 points) 
is approximately 2 orders of magnitude, while in Figure 4-7 the range across all spatial realizations 
(20 points) is slightly greater than 1 order of magnitude. This relationship is opposite of what is 
observed at a fixed monitor location (Mariner et al. 2019 [16]).  
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Figure 4-6. CDFs of Peak 129I concentration for each spatial loop realization with step size 
1/40 (20 CDFs). 

 

Figure 4-7. CDFs of Peak 129I concentration for each each epistemic parameter realization 
(Rlz) with step size 1/20 (40 CDFs). 
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The next set of figures shows the CDFs for the MTT of a conservative tracer from the 
repository to the aquifer location of the maximum 129I concentration (Figure 4-8) and the MRT of 
an initial conservative tracer in the repository (Figure 4-9). Figure 4-8 shows the CDF of the MTT 
evaluated at one million years, also referred to as Mega-annum (Ma). Figure 4-9 shows the CDF 
for the MRT in the repository region on [0, 1 Ma]. Note that the CDF of MTT is less smooth than 
that for the MRT. Residence time depends only on a tracer concentration in the repository region 
while travel time calculations depend on tracer transport through the rock and aquifer domains.  

  

Figure 4-8. CDF of MTT of a conservative tracer from the repository to the location of the 
maximum 129I concentration at 1Ma with step size 1/800. 
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Figure 4-9. CDF of MRT of an initial conservative tracer within the repository on [0, 1 Ma] 
with step size 1/800. 

 

Figure 4-10 and Figure 4-11 show the CDFs of the maximum value of the rock to aquifer flow 
rate and the flow rate at the east boundary of the domain.  
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Figure 4-10. CDF of the maximum water mass flow rate from the rock to the aquifer 
(kg/year) with step size 1/800. 

 

Figure 4-11. CDF of the maximum water mass flow rate at the east boundary of the domain 
(kg/year) with step size 1/800. 
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4.3.2 Scatterplots: Inputs to Outputs 
The following set of plots show scatterplots of input quantities (on x-axis) to various output 

quantities (on y-axis). The first output quantity plotted is peak 129I concentration. Figure 4-12 
shows the peak 129I values with respect to the samples of the epistemic parameters. Note that the 
many values for a particular input parameter setting (long vertical lines) is due to the spatial sample 
realization: a given epistemic parameter is paired with 20 spatial realizations. There are 40 
parameter realizations and the variability in peak 129I concentration at each sample value is due to 
the 20 spatial realizations run with that parameter sample. Figure 4-12 shows the importance of 
kGlacial and meanWPrate on the peak 129I values. 

 

Figure 4-12. Scatterplots of Peak 129I concentration vs. epistemic input parameters defined 
in Table 4-1. 
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Figure 4-13 through Figure 4-15 show the output quantity vs. the same set of input parameters, 
but the responses are also color coded with respect to the peak 129I concentration so that one can 
see the interaction of 129I with respect to some of these outputs.  

Figure 4-13 shows the scatterplots of MTT (at 1Ma) with respect to the input parameters. We 
note that meanWPrate, stdWPrate, and rateUNF cannot have any effect on travel time due to the 
model construction. When pBuffer increases, the effective diffusion coefficient in the buffer 
increases, which would tend to decrease travel time (diffusive behavior). Also, when pBuffer 
increases, the average linear porewater velocity decreases which would increase travel time 
(advective behavior). There are some interesting observations from these plots: it is clear that there 
are two groupings of results: the one on the top with high mean travel times appears to be from 7 
spatial realizations and the bottom from the remaining 13 spatial realizations. It is likely that there 
are certain characteristics of the 7 DFNs that lead to larger travel times: we are still investigating 
these properties, but analysis of additional DFNs (beyond the 20 generated for this analysis) 
suggests that this relationship is due to random chance and the pattern between the arbitrary spatial 
realization number and QoIs would not persist with a higher DFN sample size. Also, one can see 
input parameter effects. For example, high values of kGlacial tend to be correlated with low values 
of 129I and low values of kGlacial with high values of 129I. 
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Figure 4-13. Scatterplots of MTT of a conservative tracer from the repository to the 
aquifer evaluated at 1Ma vs. epistemic input parameters defined in Table 4-1, colored by 

Peak 129I. 
Figure 4-14 shows the same type of scatterplot for the repository MRT evaluated from zero to 

one million years. Again, there is a clear effect of DFNs. There is a strong correlation between 
mean residence time and pBuffer, for example. This is likely due to the average linear porewater 
velocity behavior, where the porewater velocity decreases as pBuffer increases which results in an 
increase in residence time. That is, it takes longer to flush a region of higher volume given the 
same flow rate. However, we also note that higher values of pBuffer do not correlate with peak 
129I concentrations, as lower peak 129I concentrations are observed across the pBuffer spectrum. 
This implies that while pBuffer increases the repository MRT for a given DFN, the major 
differences in MRT between DFNs are not due to buffer porosity but instead due to the DFNs 
themselves. Clearly, the cooler colors of lower peak 129I concentration are observed in the pBuffer 
plot for DFNs that result in greater repository MRT. Again, we see that the high values of kGlacial 
are associated with low values of 129I. 
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Figure 4-14. Scatterplots of MRT of an initial conservative tracer evaluated on [0, 1Ma] vs. 
epistemic input parameters defined in Table 4-1, colored by Peak 129I. 

 

Figure 4-15 shows the scatterplots with respect to the maximum flow rate from the rock to the 
aquifer. The maximum rock to aquifer flow rates observed during the simulations occur at the 
beginning of the simulations around 1 year when the newly emplaced waste packages heat up the 
water in the repository and cause it to expand. Thus, this causes a somewhat artificial pulse of 
water into the aquifer from the underlying rock that can be used to help characterize the bulk 
connection between the repository and aquifer. This response quantity does not correlate as 
strongly with the peak 129I concentration. pBuffer is the most important variable affecting 
maximum water mass flow rate from rock to aquifer because with increased porosity there is more 
water to expand.  
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Figure 4-15. Scatterplots of maximum water mass flow rate from rock to aquifer vs. 
epistemic input parameters defined in Table 4-1, colored by Peak 129I. 
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4.3.3 Scatterplots: Outputs to Outputs 
The analysis of the crystalline reference case presented here has many new output quantities 

that we have added to the PFLOTRAN code base specifically to gain a better understanding of 
host rock characteristics, the influence of discrete fracture networks, and an understanding of the 
fluxes throughout the system. Our ultimate goal is to understand which DFNs are “leakier” and 
how this affects travel time, residence time, and peak concentrations over time. Thus, it is helpful 
to plot the peak 129I concentration against various outputs and also to plot output quantities as a 
function of time against each other.  

First, we plot peak 129I vs. the other integral quantities at the final time, as shown in Figure 
4-16 below. Note that Peak 129I is negatively correlated with MTT and MRT, as well as with the 
peak flow rate at the east boundary. The Mean Travel Time for the Peak 129I concentration has two 
distinct groupings of results.   

  

Figure 4-16. Scatterplots of peak 129I concentration vs. other output quantities defined in 
Table 4-2 for all 800 simulations. 
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We have a rich set of time-dependent data. Figure 4-17 shows the max 129I concentration as a 
function of the other responses at 5 time points, from 100 years to 1M years. Note that max 129I 
concentration values on the y-axes are the maximum 129I value over the spatial domain at that time 
point, whereas peak 129I (x-axis, first column) represents the peak 129I value over all times. This 
plot shows some trends especially at later times but not as much correlation as we expected. 

 

 

Figure 4-17. Scatterplots of maximum 129I concentration at various time points vs. other 
output quantities for all 800 simulations. 
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Figure 4-18 shows a similar plot with MTT at different time points on the y-axes vs. the other 
quantities on the x-axes. Again, we can see some time dependence, especially at 1M years where 
mean travel time is negatively correlated with peak 129I concentration and peak flow rate from the 
rock to aquifer, and positively correlated with mean residence time. However, the distinctive 
striations or clusters of points in the plots are the result of the spatial uncertainty. Within each 
spatial realization, the relationships can be different. For example, there does not seem to be a 
strong relationship between mean travel time and peak 129I within a spatial “striation” at 1 million 
years as shown by nearly horizontal lines on the top row of Figure 4-18. For the relationship 
between MTT and rock to aquifer flow rate, there appears to be a small positive correlation within 
each spatial striation.  

 

Figure 4-18. Scatterplots of MTT at various time points vs. other output quantities. 
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Figure 4-19 shows a plot with MRT at different time points on the y-axes vs. the other 
responses on the x-axes. Here, we see strong correlation patterns of MRT with respect to peak 
MTT and flow rate from rock to aquifer. This correlation is consistent across DFNs, which is why 
the scatter plots for these quantities against MRT have distinct clusters of points. The rock to 
aquifer flow rate is positively correlated with the MRT for a fixed spatial realization, as was the 
case for MTT.  

 

Figure 4-19. Scatterplots of MRT at various time points vs. other output quantities. 
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The scatterplots of the flow rate from the rock to the aquifer is shown vs. other response 
quantities in Figure 4-20 below. Unlike the MTT and MRT, the correlation between on the Rock 
to Aquifer Flow Rate and other output quantities is more pronounced earlier in the simulation. 

 

Figure 4-20. Scatterplots Rock to Aquifer flow rate vs. other output quantities. 
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4.3.4 Graph Analysis 
This year, a number of graph-based analyses on the DFNs were performed to obtain more 

information about the nature of the DFNs, with the goal of correlating various graph attributes 
with the output quantities of interest. Graphs are a powerful tool for representing DFNs because 
they are able to capture the inherent network topology of the DFN without the high computational 
cost of meshing thousands of fractures ranging in size from millimeter to kilometer. The difference 
in computational cost is striking—derived quantities from a graph representation of a DFN can be 
computed in a matter of seconds or minutes, while a fully-resolved, 3D DFN flow and transport 
simulation would require several hours to run. Graphs have been used with some success as 
reduced-order models (with corrections) for predicting flow and transport through the DFN, and 
as surrogates in UQ propagation studies in this context [11,12].  

These promising applications of graphs as surrogates of DFN connectivity motivated this work. 
The goal was to identify correlations between graph QoIs and metrics of repository performance 
derived from the PFLOTRAN simulations defined in Table 4-2. The metrics of repository 
performance we sought to correlate with graph QoIs were the Peak 129I concentration, the mean 
travel time, the mean residence time of a tracer in the repository, and the mass flow rate from the 
rock to the aquifer. These QoIs are defined and detailed in Table 4-2. Graph QoIs for which such 
correlations are identified can prove invaluable by providing a quantitative metric to characterize 
the DFN for use in a sensitivity analysis, thereby providing a more accurate attribution of 
uncertainty. 

The graphs were constructed using dfnWork’s dfnGraph utility [11, 12], and postprocessing to 
obtain QoIs from the graphs were obtained using dfnWorks and NetworkX, a python network 
analysis package [13]. There are two types of graphs that can be constructed from a DFN: a fracture 
graph, wherein fractures are assigned to nodes and intersections to edges, and an intersection 
graph, wherein intersections are assigned to nodes and fractures to edges. Unless otherwise stated, 
the graph QoIs discussed herein are in terms of the fracture graph. 

The graph attributes examined included number of nodes (fractures), number of edges 
(intersections), average degree (average number of intersections a fracture is part of), relative 
shortest travel time (as calculated by the dfnFlow algorithm in dfnWorks), and number of 
intersections with the repository. Note that the graph attributes are defined per DFN. However, 
within the UA, there are 40 parameter realizations run for each DFN. These means that there are 
40 output QoIs associated with each single value of a graph attribute. Thus, the output QoIs (e.g., 
Peak 129I concentration) were averaged over the parameter realizations. These averaged QoIs were 
correlated with the graph attributes and examined using scatterplots. Several correlations were 
identified, but they were relatively weak, with the strongest correlations still only explaining about 
20-40% of the variance in the output QoIs. This may be in part because one DFN involves 
significant stochastic variability of the particular fracture network instantiated. Additionally, the 
variability of the epistemic samples of the performance metrics for each DFN is significant. It can 
be expected that the variability across epistemic variabilities is not fully reflected when using a 
mean value to summarize the performance metric then correlate it with DFN attributes. There are 
some correlations, however, and we can use the graph metrics both to verify the behavior of the 
DFNs and to perform sensitivities.  
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As one would expect, the graph attributes themselves (average degree, number of nodes, and 
number of edges) are highly correlated—see, for example, Figure 4-21a. Each of these QoIs was 
positively correlated with the water mass flow rate between rock and aquifer, denoted “Rock to 
Aquifer Flow Rate” in the scatterplot Figure 4-21b. The fact that these quantities are correlated 
makes intuitive sense because the graph metrics are measures of the number of pathways in the 
DFN—the more pathways between rock and aquifer, the greater the mass flow rate will be. 
However, there is significant variation, especially for larger average degree. This may be because 
an increased average degree corresponds to more pathways, possibly introducing greater 
variability in the flow rate. A more targeted analysis would be necessary to confirm or deny this 
postulation, however. 

 

Figure 4-21a A scatterplot of the average 
degree vs. number of edges, along with the 

Pearson correlation coefficient. 

 

Figure 4-21b A scatterplot of the average 
degree vs. mass flow rate from rock to 

aquifer at 1 My, along with the Pearson 
correlation coefficient. 

As is shown in Figure 4-22, the number of intersections with the repository exhibited a negative 
correlation with the mean residence times in the repository (as defined in 4.2.7) starting at 
observation times of 1,000 y and later. It makes intuitive sense that the mean residence time in the 
repository is negatively correlated with with the number of fractures intersecting it, since these 
intersections increase the pathways out of the repository, making it easier for fluid to flow out.  
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Figure 4-22. A scatterplot of the number of intersections with the repository and the mean 
residence time (MRT) in the repository at 10 kyr, along with the Pearson correlation 

coefficient. 
The graph QoI that yielded the most correlations to repository performance metrics was the 

relative shortest travel time (RSTT). The relative shortest travel time is defined by normalizing the 
graph-based shortest travel time by the minimum graph-based shortest travel time taken over all 
DFNs: 

RSTTi =
(graph shortest travel time)i

min
𝑗𝑗

(graph shortest travel time)j
, 𝑖𝑖, 𝑗𝑗 = 1,2, … ,20. (4.7) 

The procedure for computing the graph-based shortest travel time for each DFN is described 
herein. For each DFN, a shortest travel time was computed using dfnGraph’s flow functionality in 
dfnWorks, which uses an intersection graph representation of the DFN, with intersections as nodes 
and fractures as edges, and assigns weights to the edges of the graph based on the area and 
permeability of each fracture. These are used to estimate a flow time between input and output 
nodes in the graph, instantiated with inflow and outflow pressures and fluid viscosity specified by 
the user. The default values were used for these quantities, set to 2 × 106 Pa, 1 × 106 Pa and 
8.9 × 10−4 Pa-s respectively. The RSTT was then obtained by scaling all the flow times by the 
minimum over all DFNs, as is defined in (4.7). Clearly there is no reason to assign any physical 
relevance to the absolute shortest travel time derived from this procedure, since the pressures and 
viscosity were assigned in an arbitrary fashion. The meaning of this quantity should be seen as a 
relative ranking of the speed with which fluid can move from the repository to the aquifer across 
DFNs. 

In accordance with intuition, it was found that the RSTT was positively correlated with the 
mean travel time of the peak 129I concentration (as defined in 4.2.7) for observation times after 
10,000 y, as well as the mean travel time of the maximum 129I concentration taken over all times 
(see Figure 4-23a and b). Both QoIs are measures of how rapidly fluid flows through the DFN, so 
it is expected that an increase in one would correspond to an increase in the other.  
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Figure 4-23a A scatterplot of the log10 of 
the relative shortest travel time vs. the 

mean travel time of the peak 129I 
concentration at 10 ky, along with the 

Pearson correlation coefficient. 

 
Fig 4-23b A scatterplot of the log10 of the 
relative shortest travel time vs. the mean 
travel time of the maximum (peak) 129I 

concentration taken over all times, along 
with the Pearson correlation coefficient.  

Finally, the RSTT was found to be positively correlated with the rock-to-aquifer mass flow at 
late times (100,000 and 1 million years), but negatively correlated with the maximum (over time) 
rock-to-aquifer mass flow, as shown in Figure 4-24. This difference in the sign of the correlation 
may be explained by the change in sign of the rock-to-aquifer mass flow from early to late time. 
In early time the mass flow is positive, while it is negative for later times, as can be seen Figure 
4-24a. For positive mass flows, as for the peak rock-to-aquifer mass flow, one would expect the 
negative correlation, since shorter travel times would correspond to DFNs where fluid could flow 
more rapidly. On the other hand, for the negative mass flows at later time, it is less clear why there 
would be a positive correlation. 
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Figure 4-24a A scatterplot of the log10 of 
the relative shortest travel time vs. the 
rock-to-aquifer mass flow at 1 million 

years, along with the Pearson correlation 
coefficient. 

 
Figure 4-24b A scatterplot of the log10 of the 

relative shortest travel time vs. the max-
over-time rock-to-aquifer mass flow, along 

with the Pearson correlation coefficient. 

 
Figure 4-25 shows the correlation of RSTT with the mean peak 129I concentration, showing 

that shorter travel times correlate with higher mean peak 129I concentrations.  

 
Figure 4-25. Mean of Peak 129I Concentration (averaged over epistemic parameter 

realizations) vs. RSTT. 
Figure 4-26 does not average over the epistemic parameter realizations but shows the graph 

attribute of relative shortest travel time vs. the peaks of all the QoIs. Note that relative shortest 
travel time is most strongly correlated with mean travel time from the PFLOTRAN simulations. 
This is a good sanity check because these metrics quantify the same thing. Note that graphs with 
larger values of “relative shortest travel time” have the smallest maximum flow rates to the aquifer 
(third graph from left). These larger values of relative shortest travel time also correspond to longer 
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residence times in the respository and lower peak 129I concentrations. Striations in the plot are the 
result of spatial uncertainty; there are 20 vertical clusters, one for each DFN.  

These results show promise that correlations between graph QoIs and repository performance 
metrics of interest can be identified and used for analysis downstream.  

 

Figure 4-26. Scatter plots of RSTT vs. repository performance QoIs. 
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4.3.5 Interaction plots 
As mentioned, one key focus for this analysis was to identify peak 129I concentration and its 

relationship to the DFN and associated characteristics. This next series of plots highlights a 
particular QoI on the y-axis as a function of inputs, but the responses are colored by DFNs. These 
plots highlight clear patterns with respect to DFN, which is an artifact of the small spatial sample 
size. Offline, we performed a graph analysis study with the 20 DFNs as well as with a larger set 
of 100 DFNs. We saw significant correlations of the graph QoIs and DFN number with 20 DFNs 
but very little correlation with 100 DFNs.  

Figure 4-27 is similar to Figure 4-12 but colored by the spatial realization. As discussed, the 
predominance of the higher DFN numbers associated with larger 129I in this figure is an artifact of 
having only 20 DFNs. The number associated with a spatial realization is the order in which that 
DFN was generated by dfnWorks; it has no meaningful relationship to features of the DFN. There 
are 40 vertical clusters (one for each parameter loop sample) and 20 points within each cluster 
(one for each spatial loop sample). 
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Figure 4-27. Peak 129I Concentration vs. epistemic inputs defined in Table 4-1, colored by 
DFN. 
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Figure 4-28 shows a strong dominance of DFN on mean travel time. Note that this figure 
indicates the mean travel time is almost totally dominated by DFN: there is not a strong influence 
of the epistemic parameters. The dominance of the DFN uncertainty is why the clusters in the plot 
(which appear like horizontal striations at different QoI magnitudes) are each a uniform color.  

 

Figure 4-28. MTT at 1Ma vs. epistemic inputs defined in Table 4-1, colored by DFN. 
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Figure 4-29 shows a similar plot for mean residence time. The correlation between pBuffer and 
the mean residence time appears to be a significant trend, with the DFN effect being somewhat 
less obvious for other parameters.  

 

Figure 4-29. MRT at 1Ma vs. epistemic inputs defined in Table 4-1, colored by DFN. 
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Figure 4-30 shows the interaction between the time of the peak 129I concentration and its value, 
colored by mean travel time of a conservative tracer from the repository to the aquifer location of 
the peak 129I concentration. There are some interesting observations from Figure 4-30. The time of 
the peak 129I concentration is divided into two groups. For the group with the earlier time of peak, 
the earliest peaks occurred with shorter (blue) travel times. The second grouping showed 
increasing travel times as the time of the peak concentration increased. 

 

Figure 4-30. Peak 129I concentration vs. Time of Peak, colored by Mean Travel Time of a 
conservative tracer from the repository to the aquifer location of the peak 129I 

concentration. 
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Another example of a time-dependent relationship between parameters is shown in Figure 
4-31. This figure shows again the time of peak 129I concentration vs. the peak value, but it is colored 
by the mean waste package degradation rate. Here, higher values of mean WP rate correspond to 
early peak 129I times and lower values correspond to later peak 129I times. This correlation is driven 
by the waste package degradation: the faster the waste package degrades, the earlier it fails, which 
turns on the radionuclide source term. 

 

Figure 4-31. Peak 129I concentration vs. Time of Peak, colored by Mean Waste Package 
Degradation Rate.  
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4.3.6 Sensitivity Analysis 
The next series of plots show the sensitivity analysis of various outputs with respect to the 7 

epistemic parameters that were sampled as well as a graph characteristic that was used as a proxy 
for the DFNs. Note that the inclusion of graph metrics (see Section 4.3.4) in the sensitivity analysis 
is a new development. It was only attempted with one graph metric (the relative shortest travel 
time) for this analysis, but this demonstrated its utility; we anticipate being able to use more graph 
characteristics as proxies for a parametric representation of the DFNs in the future.  

The plots below show the Sobol’ main and total effect indices. Recall that the Sobol’ indices 
are variance-based indices. The main effect index indicates the fraction of the total response 
variance that can be attributed to a particular parameter alone. For example, if a parameter has a 
main effect index of 0.3 with respect to a response, that means that 30% of the variance in the 
response can be attributed to the effect of that parameter’s variance. The total effect index indicates 
the combined or total effect of a variable and its interaction with other variables on the variance of 
the response. The main effect indices should sum to one if there are no interaction effects; in the 
presence of interaction effects, their sum will be less than one. The total effect indices are bounded 
below by one because they include interactions in addition to the main effects. If the main and 
total effect indices are the same value for a given parameter, this indicates the parameter does not 
have significant interaction effects on the response with respect to other parameters.  

The calculation of these sensitivity indices is a costly computation, requiring tens of thousands 
of model evaluations. Because this is not feasible, the 800 sample realizations were used to 
generate two types of surrogate models that were then used to perform the Sobol’ variance-based 
decomposition. The two surrogates used were polynomial regression (a second-order quadratic 
regression) and polynomial chaos expansion. Both surrogates were applied without including the 
graph metric as an input and a second quadratic regression was applied with the relative shortest 
travel time (RSTT) included. The sensitivity results from the polynomial chaos expansion 
surrogate are denoted by PCE2 (for polynomial chaos expansion, order 2) in the plots and the 
results from the quadratic surrogate are denoted by Quad. Thus, the main effect Sobol index 
estimated using the PCE surrogate is denoted PCE2 Main in the plots. The total effect Sobol index 
estimated using the PCE surrogate is similarly denoted PCE2 Total, and the indices from the 
quadratic surrogate are denoted analogously. The quadratic surrogate results are also labeled in 
this fashion. 

These surrogate model methods and the calculation of the Sobol’ indices were discussed 
extensively in last year’s GDSA UQ/SA report [14]. Note that this year’s dataset posed some 
challenges to surrogate construction because there were 20 spatial replicates for each parameter 
sample. That is, there was a 1 input  20 output values mapping. Many surrogate types perform 
better with a 1 input  1 output mapping and this limited the order of the surrogate models that 
could be used. Higher order polynomials or polynomial chaos expansions as well as Gaussian 
process models require more unique input samples. 

The data from this crystalline reference case poses an additional challenge because the 
variability over the 20 replicates at each input parameter value is often quite large and dominated 
by spatial uncertainty. When the RSTT is not included in the surrogate model, the spatial 
uncertainty cannot be attributed to any of the parameters, so the surrogate model fails to explain 
much of the variance or may spuriously attribute it to parameter interactions. This can be seen in 
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some of the sensitivity analysis plots in this section. In the top plot of Figure 4-32, both the 
quadratic and PCE models suggest interactions between many of the input parameters and no 
single parameter stands out as substantially more important. When the RSTT is included, however, 
the bottom plot shows that most of the variance is accounted for by the spatial uncertainty.  

The plots below corroborate the trends shown in the scatterplots in Section 4.3.2 and provide 
a quantitative ranking of parameter importance. Because this ranking is dependent on the quality 
of the surrogate model, multiple models are provided. Inconsistencies between models highlight 
the difficulty of fitting accurate surrogate models to this type of data. When the models are 
consistent with each other, this suggests a relatively strong trend.  

Figure 4-32 shows the sensitivity indices for the Peak 129I concentrations when the RSTT is 
not included to account for spatial uncertainty (top) and when the RSTT is included (bottom). The 
surrogate models for sensitivity analysis on the peak 129I concentration were fit using the log10 
transformed peak concentrations. This technique can reduce the effects of different input/output 
scales and improved the quality of the surrogate model results for peak 129I concentration. The 
only parameter with a clearly significant main effect according to both surrogates is kGlacial. The 
mean waste package degradation rate and the permeability parameters all appear to have some 
significance. Though the relationship with permeability parameters is less clear, the scatterplots in 
Figure 4-27 support a negative correlation between kGlacial and peak 129I concentration and a 
positive correlation between meanWPrate and peak 129I concentration. The total sensitivity indices 
for the permeability parameters are at least double the value of the main sensitivity indices, 
indicating that much of the permeability effects are interaction effects, which would explain why 
the trends are not obvious in two-dimensional scatterplots.  

Inclusion of the RSTT (bottom) did not improve the quality of the polynomial surrogate model 
for Peak 129I concentration. The model attributed very little variance to this graph metric, so the 
Sobol indices do not suggest a different conclusion regarding variable importance. Results from 
the quadratic model including RSTT identify the same dominant parameters as the polynomial 
chaos expansion surrogate without the RSTT. For the remaining figures, the analysis including the 
RSTT is only included when it improved the quality of the surrogate model.  
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Figure 4-32. Sobol indices for Peak 129I concentration without including the graph metric 
(top) and with the RSTT (bottom).  
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Figure 4-33 shows the sensitivity indices for the mean travel time at 1Ma. Again, we see several 
parameters have some effect, with pBuffer ranking the highest followed by the permeability of the 
buffer, the permeability of the DRZ, and kGlacial. As mentioned previously, the meanWPrate, 
stdWPrate, and rateUNF cannot affect travel time or residence time. We suspect that the small 
main effect indices are an artifact of using sampling methods to estimate the Sobol’ indices and 
also due to the fact we are using surrogate models to calculate these indices. The surrogate models 
are constructed over replicates with significant replicate variability: that is, for one parameter 
setting, there are 20 DFN realizations that yield significantly different outputs. The surrogate 
estimation is thus challenging in the face of such noise, and we see that noise reflected in part with 
some spurious main effects indices which should be zero but are small (<0.1). There is also some 
disagreement between the models regarding the top ranked parameter. The quadratic surrogate 
attributes more variance to the permeabilities of the buffer and DRZ than to pBuffer, whereas the 
polynomial chaos expansion model clearly attributes most of the variance to pBuffer. 

We added one of the graph attributes, the RSTT, to the set of inputs and re-ran the calculations 
to see if the graph attribute (representing DFN variability) would account for the variance in the 
output. Figure 4-32 shows that adding the graph attribute does not significantly change the ranking 
of parameter significance with respect to peak 129I concentration. However, it does significantly 
change the parameter ranking for mean travel time and in fact now is the dominant factor. Figure 
4-33 shows that all the variance in peak mean travel time may be attributed to the RSTT, which is 
a proxy for the DFN. The RSTT also appears to have a significant effect on mean residence time 
(accounting for 35% of the variance, Figure 4-34) and on the flow rate from the rock to aquifer 
(accounting for 60% of the variance, Figure 4-35) but not on the east boundary flow rate which is 
still dominated by kGlacial (Figure 4-36). We are currently investigating more graph attributes. 
The fact that the RSTT shows a significant main and total effect on many of the QoIs is consistent 
with the DFN effect observed in scatter plots and demonstrates that the importance of the DFN on 
these results can be captured by a summary statistic. 
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Figure 4-33. Sobol indices for mean travel time of a conservative tracer from the repository 
to the aquifer at 1Ma without including the RSTT (top) and with the RSTT (bottom).  
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The peak mean residence time shows a different result: the variance it is totally dominated by 
pBuffer as shown in Figure 4-34, where pBuffer accounts for nearly 100% of the variance. 
However, when the RSTT is added, the effect of the DFN influence is seen. This is consistent with 
the trends observed in scatterplots; the mean residence time is positively correlated with the RSTT 
in Figure 4-26 and positively correlated with pBuffer in Figure 4-29. Both trends are distinct but 
the pBuffer trend is stronger and more monotonic, which is consistent with its higher index values. 
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Figure 4-34. Sobol indices for mean residence time of an initial conservative tracer within 
the repository on [0, 1 Ma] without including the RSTT (top) and with the RSTT (bottom).  

 

For the rock to aquifer flow rate (Figure 4-35), we see pBuffer having a strong effect on the 
peak flow rate from the rock to the aquifer, contributing nearly 50% of the variance with some 
other parameters having a small main or total effect. Adding the graph metric changes the 
sensitivity analysis results, with RSTT accounting for 60% of the variance. As with the mean 
residence time, the sensitivity results including the RSTT are consistent with trends observed in 
the scatterplots. Figure 4-15 shows a weak positive trend between pBuffer and the maximum rock 
to aquifer flow rate and Figure 4-26 shows a stronger negative trend between the RSTT and the 
maximum rock to aquifer flow rate.  
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Figure 4-35. Sobol indices for rock to aquifer maximum water flow rate without including 
the RSTT (top) and with the RSTT (bottom). 
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Finally, kGlacial is the most significant parameter affecting the flow rate from the rock to the 
east boundary, as shown in Figure 4-36, accounting for all the variance. This result also make 
sense. The maximum east boundary rate is plotted against the epistemic input parameters in Figure 
4-37. Note that there are 40 clusters in the plots, one for each realization of the parameter loop, 
and 20 points within each cluster, one for each spatial realization. The positive trend with kGlacial 
is clearly the dominant trend. Unlike the other QoIs, there is comparatively very little effect from 
the spatial uncertainty, so it makes sense that the RSTT did not change the sensitivity index results.  

 

Figure 4-36. Sobol indices for maximum east boundary water flow rate.  
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Figure 4-37. Scatterplots of epistemic input parameter values vs. the maximum east 
boundary water flow rate, showing the strong dependence on kGlacial. 

 

4.4 Conclusions for Crystalline Reference Case UA 
This analysis was performed for a reference case repository for commercial spent nuclear fuel 

in fractured crystalline host rock. The uncertainty and sensitivity analyses were designed using 
lessons learned to build upon the analyses performed on this reference case in [14]. The same 
epistemic uncertainties were included as in the previous uncertainty analysis, but the sampling 
structure was changed such that each epistemic parameter sample was repeated for each spatial 
loop. This sampling strategy was chosen to distinguish the effects of epistemic parameter 
uncertainties from the effects of spatial heterogeneity) uncertainties on key QoIs. In addition to 
changing the sampling strategy, we defined new DFN-related bulk characteristic QoIs to add 
insights into repository performance beyond those gained from analysis of peak 129I 
concentrations.  
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The peak 129I concentration QoI was also changed to be the maximum taken over all 
observation points in the aquifer, rather than analyzing the 129I concentrations only at a few 
observation points. The work described in Section 4.3 emphasizes the spatial heterogeneity of the 
problem and metrics designed to tease out such effects.   

The effects of spatial uncertainty were emphasized as a result of the new sampling strategy. 
This interfered with the ability of surrogate models to adequately characterize sensitivity of the 
QoIs to the epistemic parameter uncertainties, due to the small overall number of unique paramter 
samples and because of the high variance in the 20 different estimates of the QoI at each of the 40 
epistemic samples introduced by spatial uncertainties. We were able to investigate sensitivity to 
the epistemic parameter uncertainties by including a graph metric (the RSTT) in the surrogate 
model that acted as a proxy for the DFN. This improved performance of the surrogate for QoIs 
that are sensitive to the DFN and led to sensitivity results less dominated by (potentially spurious) 
interaction effects.  

In summary, some of the key findings from the sensitivity analyses are:  

1) Relative shortest travel time, mean travel time, mean residence time, and even peak flow 
rate from rock to aquifer all provide similar measures of connectivity/transport in the rock. 

2) There is a significant scatter in peak 129I. We did not find one parameter that clearly drives 
uncertainty in the peak 129I concentration. kGlacial and the permeability parameters have some 
effect, and there are small interaction effects. We had hypothesized that the measures of 
connectivity would be strongly influential factors, but they were not. In some ways, we are 
divorcing the fracture connectivity relationship from the iodine concentration by taking the peak 
129I over the entire aquifer compared to a maximum 129I at a location, because the location of the 
peak could be due both to different fracture paths and different waste package breaches. That is, 
even if we don’t see an explicit effect of connectivity, there still could be some interaction between 
fracture path, waste package breach order, and location of waste package that accounts for most 
of the remaining variance in the 129I concentration not accounted for by kGlacial and the 
permeability parameters. This would be very hard to tease out. 

3) The mean travel time, mean residence time, and maximum flow rate from the rock to aquifer 
were all heavily influenced by the relative shortest travel time which is a proxy for DFN: these 
quantities were significantly influenced by DFNs. Additionally, the relationships between buffer 
porosity and measures of connectivity can be explained by the physics of the problem and may be 
of secondary importance compared to the dominant influence of the DFN. 

4) Repeating the epistemic parameter samples helped us identify how much variability comes 
from the spatial uncertainties but also limited the utility we got out of the sensitivity analysis. 

5) The inclusion of a graph attribute for sensitivity analysis showed promise and helped 
improve the sensitivity analyses given our small epistemic sample size. In particular, the graph 
attributes allowed us to quantify the effect of spatial uncertainty in the sensitivity analysis of the 
crystalline reference case, something that could not be done previously. We will continue 
investigation of such graph characteristics in future work. 
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5. UQ WORKFLOW 
The GDSA computational framework is largely comprised of two primary computational 

capabilities: PFLOTRAN and Dakota, as described in Section 1.2. An analysis supporting the 
performance assessment of a geologic repository necessarily requires the development and use of 
many additional connective computational components beyond these two primary components, 
including the development of input files, scripts that connect the capabilities of PFLOTRAN and 
Dakota, scripts to submit calculations to computational resources, capabilities to gather and post-
process results, and much more. The collection of these computational components that comprise 
the complete body of work required to produce results of interest from a computational simulation 
capability, such as the GDSA framework, is hereafter referred to as an analysis workflow.  

The development of GDSA analysis workflows often occurs on an analysis-by-analysis basis 
and requires the expertise of highly experienced modelers/analysts who are very familiar with the 
PFLOTRAN code base. Often, these complex analysis workflows involve many manual steps and 
continuous monitoring of simulations. This can make it difficult to replicate previous analyses, 
hand-off analyses between analysts, and/or train new analysts to produce analysis workflows as 
the reproducibility of these analyses depends on how well the modeler/analyst organized and 
documented what was done. 

To improve analysis workflow automation, development, reproducibility, and traceability for 
repository PA simulations, the GDSA team began developing automated analysis workflows using 
the Next-Generation Workflow (NGW) capability in FY20. The Next-Generation Workflow 
(NGW) capability is an open source engine that was developed at Sandia National Laboratories to 
provide analysts with a capability to construct, execute, and communicate end-to-end 
computational simulation analysis workflows [1]. This capability is a graphical, node-based 
interface that includes many pre-programed support functions which are often utilized within 
computational simulation analysis workflows. NGW is available within the Dakota Graphical User 
Interface (GUI) [2] and is thus available to the GDSA analysis community.  

Development of NGW analysis workflows for the GDSA Framework is focused providing an 
automated workflow capability with the following objectives: 

• Reduce the learning curve for new users to set up and run simulations and analysis 
workflows 

• Speed up analysis workflow execution time 

• Eliminate/reduce the need for manual intervention and allow for automated monitoring 

• Reduce the potential for the introduction of human errors 

• Increase traceability and reproducibility 

A series of NGW analysis workflows for GDSA analysis exemplars, including a short course 
exercise and the Crystalline Reference Case, were developed in FY20 to pilot the use of this 
capability for the GDSA program [3]. Section 3.2.1 of the GDSA Framework report [3] details the 
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development of these workflows, provides examples of their use, and proposes a path forward for 
additional development. Appendix C of [3] provides a complete graphical workflow, 
demonstrating an uncertainty quantification study. This workflow sets parameters of interest, 
inserts these parameters into the PFLOTRAN input file, collects additional input files, runs 
PFLOTRAN, and develops and runs a post-processing script. The eventual goal of this work is to 
develop an analysis workflow library that can be made available to the GDSA analysis community.  
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6. INTERNATIONAL COLLABORATIONS 

6.1 Sensitivity Analysis of Reference Cases 
This year, two cases studies were performed as part of an international collaboration on 

sensitivity analysis. This activity is part of a working group focused on sensitivity analysis methods 
that falls under the umbrella of the Integration Group for the Safety Case (IGSC) Symposium on 
the Safety Case of of OECD/NEA [1]. Participating organizations or countries include GRS 
(Germany), Clausthal University of Technology (TUC) (Germany), Sandia National Laboratories 
(SNL) (USA), Posiva (Finland), SCK-CEN (Belgium), and the Nuclear Safety Institute of the 
Russian Academy of Sciences (Russia). The cases are briefly described below. For a more 
complete description, see [2]. Note that a variety of sensitivity analysis approaches were used by 
the participating organizations, including simple and partial correlation coefficients on the raw 
data and on rank-transformed data, regression approaches, CUSUNORO curves, and scatterplots. 
Below we present only the variance-based results because this was of particular interest to this 
working group.   

6.1.1 GRS: LILW repository in salt 
The case study provided by GRS involved a Low and Intermediate Level Waste (LILW) in a 

salt repository [3]. There were four separate data sets provided by GRS involving 6 uncertain 
inputs or 11 uncertain inputs, and 4096 samples or 8192 samples. The analyses performed involved 
creating surrogate models (linear regression, quadratic regression, multivariate adaptive regression 
splines (MARS), and polynomial chaos expansion (PCE)). The surrogates were then used to 
estimate the Sobol’ variance-decomposition sensitivity indices. Correlations and scatterplots were 
also used.  

Figure 6-1 shows the main effects indices as a function of time, based on different surrogate 
models for the 11 variable case and 8192 samples. These show similar patterns of variable 
importance over time. IniPermSeal, AEBConv, and GasEntryP are the most important parameters 
in terms of significant main effects.  
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Figure 6-1. Main Sobol’ index calculated for the peak 129I concentration [M] for the GRS 
Salt case.  

Figure 6-2 shows the main effects with the total effects obtained using the PCE model. The 
total effects indices account for the variable itself as well as interactions with other variables. The 
higher total sensitivity indices in Figure 6-2 suggest significant interaction effects (note scale 
differences compared with Figure 6-1). Including second-order interactions, RefConv gains some 
importance but the rankings of the top three parameters are similar. GasEntryP appears to have 
more significant interaction effects than main effects later in time. This sharp decrease in the main 
index is due to a threshold effect [3].  
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Figure 6-2. Main and total Sobol’ indices calculated for the peak 129I concentration [M] for 

the GRS Salt case.  
 

To summarize the sensitivity analysis results for the GRS salt case: most of the surrogate 
models performed well and gave similar results, though Mars did not perform as well with small 
sample sizes. Some Sobol’ index estimates are not precise (e.g. values greater than 1 or less than 
0), which should be resolved by increasing the sample size applied to the surrogate. Nonetheless, 
trends and rankings are consistent. 

Variance-based methods with surrogates that can detect non-linear and non-monotonic 
relationships show that there are interactions that may not be captured using only linear methods. 
AEBConv importance remains high over time when measured with the total index, even though 
the main index decreases. This is consistent with the GRS analysis which showed that linear 
methods did not adequately detect AEBConv importance for the full (relevant) duration of the 
simulation. 

6.1.2 Ibrae 
The Ibrae case study was provided by the Nuclear Safety Institute of Russia. It is a case 

involving a cross-sectional groundwater flow model in heterogeneous geological media. There are 
12 inputs: seven representing hydraulic conductivities of the different structural elements in the 
media and five boundary conditions. There are 37 outputs, representing 37 values of hydraulic 
heads at different observation points in the domain.  

We used the same approach as for the GRS salt case: surrogate model construction and Sobol’ 
index calculation (main and total effects). The BC2 input was identified as the most influential 
parameter by far, regardless of which surrogate was used. There was also essentially no difference 
between main and total indices, indicating the Ibrae model does not include variable interaction. 
The Sobol’ indices estimates were repeated for multiple sample sizes (number of simulations). 
Results were essentially the same for 140 samples as for 28,000. These results were consistent 
with the sensitivity analyses performed by Ibrae on this case.  
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6.2 Survey of Sampling-Based Sensitivity Analysis Methods in the 
International Community 

Sitakanta Mohanty, in collaboration with Laura Swiler and Emily Stein, has written a report 
titled “Survey of Sampling-Based Sensitivity Analysis Methods Used in Geologic Disposal Safety 
Assessments.” (SAND2020-XXXX) [4]. This report presents a review of UQ/SA methods used 
by selected non-US countries (seven countries) and international consortia engaged in repository 
PAs over the past two decades. The report describes sampling-base sensitivity analysis methods 
formally used in performance assessment calculations to meet regulatory requirements and 
describes methods used for supplemental, experimental, or developmental purposes. It lays out (i) 
the current practices by various countries, (ii) international collaborations, and (iii) some 
recommendations on future developments.  

For each country, a brief description is provided of the PA model, which is the UQ/SA 
performance function model. The review also suggest that future efforts should focus on handling 
parameter interactions in the PA model with a large number of sampled parameters (>>10), 
elegantly handling correlated parameters, dealing with discontinuity in the model output, 
developing a protocol for selecting the appropriate UQ/SA methods based on input-output 
relationships, and continued development of UQ/SA toolboxes with a full suite of traditional and 
advanced methods. 
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7. CONCLUSIONS 
This report covers the main topics addressed in the GDSA UQ/SA work performed in 2020.  

The report provides an overview of an exciting new uncertainty quantification method 
involving models at multiple levels of fidelity. We presented results demonstrating the use of these 
multifidelity uncertainty quantification approaches to calculate a mean estimate of a quantity of 
interest more cheaply and with lower variance than an equivalent number of high-fidelity 
simulations. We also demonstrated the use of multifidelity methods in calculating Sobol’ 
sensitivity indices.  

This year, we performed several verification exercises on the discrete fracture networks 
because the FY19 results demonstrated that DFNs were a main source of uncertainty for the 
crystalline reference case. We examined the DFNs closely to ensure consistency of the number of 
fractures and fracture area per unit volume with respect to estimates from the SKB Forsmark site. 
We also upscaled the DFNs to obtain equivalent continuous porous medium (ECPM) results in 
terms of the hydraulic conductivity tensor values. We compared the ECPM obtained from 
upscaling the DFNs with those reported by SKB and found good agreement.  

This year, we extended the sensitivity analysis of the crystalline reference case performed in 
FY19, focusing on indicators of fracture connectivity as well as information about the flow 
between the repository and the aquifer. To facilitate this, PFLOTRAN added several new 
quantities of interest, including maximum concentrations (of 129I and tracers) in the aquifer at each 
time step, along with the location of the peak concentrations, mean travel time from the repository 
to various locations, residence time within the repository, and total water flow rate in various 
directions. The results of the sensitivity analysis of the crystalline reference case based on a new 
set of 800 PFLOTRAN runs (20 realizations of spatial uncertainty x 40 epistemic samples) showed 
that these new quantities of interest gave us several new insights. The flow rates, mean travel time, 
and mean residence time were somewhat correlated. There was not one parameter that clearly 
drives the uncertainty in peak 129I concentration. The most important parameters for several of the 
QoIs were kGlacial and pBuffer.  

A new capability we developed this year was to calculate graph attributes from the DFNs, such 
as number of nodes and edges, average degree and relative shortest travel time. When we included 
a graph attribute in the sensitivity analysis, it had a significant effect on responses such as mean 
travel time, mean residence time, and flow rates, suggesting that the variability in DFNs drives the 
uncertainty in these responses. The inclusion of these graph attributes in sensitivity analysis shows 
promise and helped improve sensitivity results with our small epistemic sample size. 

Another activity started this year was the GDSA Workflow. This workflow couples Dakota, 
PFLOTRAN, and SAW (the Sandia Analysis Workflow software) to present the user with a unified 
interface where the actual workflow can be dictated in an easy-to-use graphical format. This 
workflow also allows greater reproducibility and traceability of the actual files and scripts used for 
a particular study. This is increasingly important as we scale up analyses and extract more 
quantities of interest that must be tracked both as function of time and location (e.g. peak 129I 
concentration). We demonstrated the UQ workflow for a GDSA study involving two sampling 
loops over spatial and epistemic uncertainties.   
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Finally, we continue to engage with the international community on sensitivity analysis topics. 
This year, we presented results for two international case studies as part of an international working 
group focused on UQ/SA for repository analysis.   

There is a rich legacy of UQ/SA being performed in repository assessment. Development, 
implementation, and demonstration of new tools and methods for uncertainty and sensitivity 
analysis in GDSA Framework will maintain leadership of the repository science community in 
UQ/SA methods, while also maintaining an infrastructure of proven tools. Geologic repository 
performance assessment in the U.S. involves coupled, multi-physics modeling at high resolution, 
large parameter spaces, and greater use of random (stochastic) field modeling. It requires high-
performance computing and costly sample evaluations. UQ/SA methods discussed in this report, 
including surrogate modeling to reduce computational expense, variance-based sensitivity analysis 
to quantify importance of parameter interactions in a multi-physics system, and new multi-fidelity 
methods will enable analysis methods to keep pace with the increasing sophistication of the 
physics models. GDSA Framework development seeks to keep abreast of improvements to existing 
UQ/SA methods, employ new methods, and maintain an infrastructure of proven tools that can be 
extended to support computationally expensive analyses.  

There are several possible avenues of future UQ/SA development, including:  

• Time-dependent sensitivity analysis methods 
• Dimension reduction 
• Importance sampling 
• Surrogate models 
• Bayesian calibration 
• Estimating/generating distributions/ranges for uncertain inputs 
• Multifidelity UQ approaches 
• Model form uncertainty 
• Density-based SA methods 

 

Future work will involve further development of the items above as they align with the GDSA 
Framework and the repository performance assessment needed. 
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