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Abstract 
 

H2OI95 is a stand-alone Fortran code for evaluating the IAPWS-95 equation-of-state model (Wagner and 

Pruss, 2002) for the thermodynamic properties of water. It further evaluates the corresponding 

thermochemical properties of water consistent with the CODATA recommendations (Cox et al., 1989). 

The IAPWS-95 model is based on a model equation for the dimensionless Helmholtz energy for which 

the primary variables are the inverse reduced temperature (𝜏 = 𝑇𝑐𝑟/𝑇) and reduced density (𝛿 = 𝜌/𝜌𝑐𝑟). 

Here 𝑇 is the absolute temperature (K), 𝜌 is density (kg/m3), and the subscript “𝑐𝑟” refers to the critical 

point of water (647.096 K and 22.064 MPa pressure in this model, for which ρ𝑐𝑟 is 322 kg/m3). The code 

solves four basic types of problems, distinguished by the specified inputs: 

 1, Temperature (K) and density (ρ kg/m3) or reduced density (δ) 

 2. Temperature (K) and pressure (MPa). 

 3. Temperature (K) on the saturation (liquid-vapor equilibrium) curve 

 4. Pressure (MPa) on the saturation curve 

Each type of problem is run using a corresponding input (text) file. All but the first type of problem 

require iteration. For example, to solve for desired temperature and pressure, the reduced density must be 

adjusted to give the desired pressure. Iteration is accomplished using the Newton-Raphson method, 

though the secant method is also used in solving the fourth type of problem. H2OI95 has been used to 

conduct numerical studies of convergence and the problem of multiple numerical solutions, only some of 

which correspond to valid results. Obtaining valid results depends mainly on appropriate choice of 

starting values. The default values in H2OI95 appear to consistently lead to generally desired results. 

With modification (not addressed here), H2OI95 can be used to support SUPCRT92 (Johnson et al., 

1992) and similar codes that compute chemical thermodynamic properties of species and reactions over a 

wide range of temperature and pressure (273.16-1273K and 0-1000 MPa). 
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1. Introduction 
 

H2OI95 was written primarily to make the IAPWS-95 model (Wagner and Pruss, 2002; IAPWS, 2016) 

available in the program SUPCRT92 (Johnson et al., 1992) and other codes that similarly compute 

chemical thermodynamic properties of species and reactions at various temperatures and pressures. 

SUPCRT92 (unmodified) uses a combination of two older equation-of-state models, IAPS-84 (Haar et al., 

1984) and, near the critical point, the model of Levelt Sengers et al. (1983). IAPWS-95 is recognized by 

the International Association for the Properties of Water and Steam (IAPWS) is the current standard 

model, IAPS-84 being the earlier standard. A still earlier equation-of-state model (Keenan et al., 1969) 

was used in the original SUPCRT program written during 1974 and 1975 (see Johnson et al., 1992). That 

appears to have represented the first use of an equation-of-state model to calculate the thermochemical 

properties of water over a wide range of temperature and pressure. The IAPWS-95 model covers a 

temperature range of 273.16K (the triple point temperature) to 1273K, and a pressure range of 0-1000 

MPa. This includes the critical point (647.096 K and 22.064 MPa) and surrounding regions. 

 

IAPWS-95 is the most recent general and scientific model adopted by IAPWS. It is not to be confused 

with IAPWS-IF97 (Wagner et al., 2000), which is the corresponding industrial formulation. The 

industrial formulation is essentially a model fit to the IAPWS-95 model. It was created so that 

temperature and pressure are the primary variables, instead of temperature and density, which are the 

primary variables in IAPWS-95. The IAPS-84 and the Keenan et al. (1969) models are analogous in this 

respect to IAPWS-95, having their own corresponding industrial formulations. The main purpose of the 

industrial formulations is to avoid the computational burden of iterative calculations required to solve 

temperature-pressure and similar types of problems using a model based on temperature and density. 

 

Why use IAPWS-95 to compute thermochemical properties instead of using IAPWS-IF97? The former is 

more accurate (see Wagner and Pruss, 2002; Wagner et al., 2000). Maximum accuracy is desired as minor 

differences in thermochemical property values may significantly affect the results of thermochemical 

calculations. The use of the general and scientific model avoids a second issue with its corresponding 

industrial formulation. The latter uses different mathematical descriptions in different regions of 

temperature-pressure space, a characteristic that can result in inconsistencies at boundaries or small areas 

where regions may overlap (see Wagner et al., 2000). The present report does not compare of run times of 

software implementations of IAPWS-95 and IAPWS-IF97, but it is noted that the run times for problems 

run in developing and testing H2OI95 were trivial on a modern Windows PC.  
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H2OI95 is written in Fortran to assist with linking to SUPCRT92. It presently exists as a stand-alone 

code. The notion is that the main program can be replaced by an appropriate interface routine for 

incorporation into SUPCRT92 or similar software, using the remaining routines largely as-is, but 

eliminating much of the associated input/output needed for numerical studies. The FORTRAN used is 

relatively simple, so that translation into other computer languages should be relatively easy. All variable 

typing is explicit, and communication of variables among routines is made using only calling sequences. 

 

Prior to developing H2OI95, a search was conducted for existing software for IAPWS-95 that might serve 

the purpose. Requirements were that the software be in Fortran or something close (such as C or C++), 

with available source code and no proprietary constraints or other problematic restrictions on usage. No 

such software was located. Consequently, H2OI95 was written following the model description given by 

IAPWS (2016). This description is more concise than that given by Wagner and Pruss ( 

 

Two existing IAPWS-95 implementations were found that are nonetheless of special interest. One is a 

part of the NIST on-line Chemistry WebBook entitled “Thermophysical Properties of Fluid Systems” 

(http://webbook.nist.gov/chemistry/fluid/). If the selected species is “water,” this web resource is an 

IAPWS-95 calculator. Because the user can specify the precision desired in the results, this tool allows 

high-precision comparison with results from H2OI95 (more so than using printed steam tables). The other 

implementation of interest is the MATLAB application of Junglas (2008), which includes source code. 

This will be referenced regarding iterative approach, numerical analysis, and starting values for iterative 

calculations (but not for comparison of numerical results).  

 

2. The IAPWS-95 Equation-of-State Model  
 

The IAPWS-95 model (Wagner and Pruss, 2002) is based on the following model equation for the 

dimensionless Helmholtz energy: 

 

 𝐴 = 𝜙𝑜(τ, δ) + 𝜙𝑟(τ, δ) 

 

This formulation divides the Helmholtz energy into an ideal part (𝜙𝑜) and a residual part (𝜙𝑟). Here τ is 

the inverse reduced temperature (𝜏 = 𝑇𝑐𝑟/𝑇) and 𝛿 is the reduced density (𝛿 = 𝜌/𝜌𝑐𝑟). Here 𝑇 is the 

absolute temperature (K), 𝜌 is density (kg/m3), and the subscript “𝑐𝑟” refers to the critical point of water 

(647.096 K and 22.064 MPa pressure in this model). Also in this model, 𝜌𝑐𝑟 is 322 kg/m3. The preceding 

general and scientific equation-of-state models noted previously also use some form of temperature and 

http://webbook.nist.gov/chemistry/fluid/
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density as the primary variables, though they do not take this exact form. The Helmholtz energy is chosen 

to define the master equation because equations for all other thermodynamic functions can be obtained by 

applying various thermodynamic relations to the master equation. In general, these relations involve 

partial differentiation. A complete description of the relevant equations for the model is given by Wagner 

and Pruss (2002) and in condensed form by periodic “revised releases” put out by the International 

Association for the Properties of Water and Steam (IAPWS) on their web site. The most recent of these, 

IAPWS (2016), was followed in creating H2OI95. Note that IAPWS (2016, Table 1) gives slightly 

revised values for the constants 𝑛1
𝑜 and 𝑛2

𝑜 (compare with the original values given in Wagner and Pruss, 

2002, Table 6.1). 

 

The basic equations to first deal with in evaluating the model are the set of “𝜙” functions. These include 

𝜙𝑖 and 𝜙𝑟 and their first and second order partial derivatives with respect to τ and δ. For the ideal 

function (𝜙𝑖) these partial derivatives are 𝜙𝛿
𝑖 =

𝜕𝜙𝑖

𝜕𝛿
,  𝜙𝛿𝛿

𝑖 =
𝜕2𝜙𝑖

𝜕𝛿2 , 𝜙𝜏
𝑖 =

𝜕𝜙𝑖

𝜕𝜏
,  𝜙𝜏𝜏

𝑖 =
𝜕2𝜙𝑖

𝜕𝜏2 , and 𝜙𝛿𝜏
𝑖 =

𝜕2𝜙𝑖

𝜕𝛿𝜕𝜏
. 

Corresponding partial derivatives apply to the residual function (𝜙𝑟). See IAPWS (2016, Tables 4 and 5) 

for the equations to use in evaluating the 𝜙 functions. These equations are complex and require many 

constants (see IAPWS, 2016, Tables 1 and 2). The equations and constants are not repeated here. 

 

IAPWS (2016, Table 3) gives equations for the basic thermodynamic functions (pressure, internal energy, 

entropy, etc.) in terms of the “𝜙” functions. For example, the pressure p (MPa) is given by 

 

 𝑝 = 𝜌𝑅𝑇(1 + 𝛿𝜙𝛿
𝑟)  

 

where ρ (kg/m3) and T (K) have been introduced previously, and R is the gas constant (0.46151805 kJ 

kg-1 K-1 for the IAPWS-95 model). The enthalpy h (kJ kg-1) is given by 

 

 ℎ = 𝑅𝑇(1 + 𝜏(𝜙𝜏
𝑜 + 𝜙𝜏

𝑟) + 𝛿𝜙𝛿
𝑟) 

 

and the entropy (kJ kg-1 K-1) by 

 

 𝑠 = 𝑅(𝜏(𝜙𝜏
𝑜 + 𝜙𝜏

𝑟) − (𝜙𝑜 + 𝜙𝑟)) 
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IAPWS (2016, Table 3) gives such formulas for thirteen thermodynamic properties, including the 

three noted above. It does not give the corresponding equation for the Gibbs energy 𝑔 (kJ kg-1). 

However, using the standard relation 𝑔 = ℎ − 𝑇s, one may obtain that 

 

 𝑔 = 𝑅𝑇(1 + 𝜙𝑜 + 𝜙𝑟 + 𝛿𝜙𝛿
𝑟) 

 

It also does not give the corresponding equation for the Helmholtz energy a (kJ kg-1). However, this 

is given by the following minor modification of the previously noted master equation 

 

 𝑎 = 𝑅𝑇(𝜙𝑜 + 𝜙𝑟)  

 

The equations for p, a, and 𝑔 are of special note here because their partial derivatives with respect to 

δ are useful in iterative calculations. These derivatives can be obtained from: 

 

 
𝜕𝑝

𝜕𝛿
=

𝑝

𝛿
+ 𝜌𝑐𝑟𝑅𝑇𝛿(𝜙𝛿

𝑟 + 𝛿𝜙𝛿𝛿
𝑟 )  

 

 
𝜕𝑔

𝜕𝛿
= 𝑅𝑇(𝜙𝛿

𝑜 + 2𝜙𝛿
𝑟 + 𝛿𝜙𝛿𝛿

𝑟 ) 

 

 
𝜕𝑎

𝜕𝛿
= 𝑅𝑇(𝜙𝛿

𝑜 + 𝜙𝛿
𝑟)  

 

Note that no “phi” functions are required other than those in the normally computed set. 

 

3. Types of Problems: Inputs and Outputs 
 

There are four basic types of problems in evaluating an equation-of-state models such as IAPWS-95. All 

are addressed by H2OI95. These problems are distinguished by the specified inputs: 

 1, Temperature (K) and density (ρ kg/m3) or reduced density (δ) 

 2. Temperature (K) and pressure (MPa). 

 3. Temperature (K) on the saturation (liquid-vapor equilibrium) curve 

 4. Pressure (MPa) on the saturation curve 

These types of problems are also addressed in SUPCRT92 (Johnson et al., 1992) and similar codes . 
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Problems are specified by text-based input files, examples of which will be noted later. H2OI95 

expects an input file named “input”. The code is run simply by entering its name, “h2oi95”. Four 

pieces of output are produced. The first is screen output. This can be captured to a file using “tee” 

when running the code. For example, “h2oi95 | tee out” captures the screen output on a file 

called “out”. The screen output is still written to the screen in the normal fashion. The screen output 

basically shows how the calculations are progressing. It does not include the full calculated results. 

Those are written to the “output” file, which is another text-based file. Included on this file are the 

“thermodynamic” or “thermophysical” results and the corresponding “thermochemical” results. The 

.csv files can be opened by any common spreadsheet or plotting program. The “thermodynamic” 

results are those which are native to the equation-of-state model, employing the units used in the 

model. These are the results that any equation-of-state solver would typically produce. Here for 

example entropy is on the model scale in which entropy is zero at the triple point and the calculated 

result is given in units of kJ kg-1 K. The “thermochemical” results are the results translated to 

standard thermochemical scales and corresponding units (see the Appendix for details). Here entropy 

is on the absolute or thermochemical scale and the result is given in units of kJ mol-1 K. The 

“thermodynamic” results are written to a comma-separated-variable (.csv) file called “mtab.csv”, 

while the corresponding “thermochemical” results are written to another such file called “ctab.csv”. 

 

3.1. Properties as a Function of Temperature and Density  
 

The first type of problem is straightforward, as the inputs match the primary variables of the model. 

It is simply a matter of evaluating the model equations. In H2OI95, this is done by subroutine 

EVAI95. More commonly, the model user is interested in results for one of the other three problem 

types. In these it is necessary to make iterative calculations, adjusting density values so that the 

problem inputs are satisfied. Calculating properties as a function of temperature and density is 

generally a step in making such calculations. Calculation of properties from temperature and density 

can be very useful in numerical studies, as for determining ranges of convergence and analyzing the 

potential problem of multiple numerical solutions, as will be shown later in this report. 

 

3.2 Calculating Properties as a Function of Temperature and Pressure  
  

The IAPWS-95 model uses temperature and density as its primary variables. This choice facilitates 

correlation of data (development of an accurate model, as exemplified by IAPWS-95 and many other 
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equation of state models for fluid substances). However, most model users are interested in 

thermodynamic properties as a function of temperature and pressure, not temperature and density. To 

calculate the properties for a given temperature and pressure, it is necessary to assume a starting value for 

density, calculate the corresponding pressure, and revise values of density and calculated pressure until 

the desired pressure is found. The most obvious method to apply to this problem is Newton-Raphson 

iteration (or some related method, such as the secant method). In the case of the Newton-Raphson 

method, one may write a residual function as 

 

 𝛼 = 𝑝 − 𝑝∗  

 

where p is the pressure calculated from a value of δ and p* is the desired pressure. The Newton-Raphson 

method generates a corrected value (𝛿𝑖+1, where i is iteration number) from the formula 

 

 𝛿𝑖+1 = 𝛿𝑖 + 𝑐𝑖  

 

where 𝑐𝑖 is a correction term obtained from the equation 

 

 (
𝜕𝛼

𝜕𝛿
) 𝑐𝑖 = −𝛼𝑖  

Here the partial derivative is evaluated using 𝛿𝑖. This derivative constitutes the Jacobian matrix. Since this 

problem represents one equation in one unknown, the Jacobian is reduced to a scalar. It is apparent that 

 

 
𝜕𝛼

𝜕𝛿
=

𝜕𝑝

𝜕𝛿
  

 

where 
𝜕𝑝

𝜕𝛿
 can be obtained as shown previously. 

 

The convergence tolerance is generally placed on the relative error  

 

 𝜀𝑖 =
𝑝𝑖−𝑝∗

𝑝∗   

 

For thermochemical calculations, the tolerance itself should be rather tight, say |𝜀𝑖| ≤ x 10-9. As will be 

noted, this is not always achievable, but when it is not, |𝜀𝑖| ≤ 1 x 10-8 can generally be achieved.  
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In H2OI95 this type of calculation is solved by subroutine CALPRE. CALPRE makes successive calls to 

EVAI95 to evaluate the model equations. There are many ways that one might establish a starting value 

for δ. This value should be something that will facilitate rapid convergence to the desired solution, which 

is usually stable fluid satisfying certain constraints (discussed later). The default set of values provided in 

CALPRE generally appear to assure this. For any calculation for which the temperature is below the 

critical temperature, it is extremely helpful to know the densities of vapor and liquid on the saturation 

curve (as discussed later in conjunction with subroutine CALSCT). Thus one may appropriately 

determine what sort of values are appropriate to vapor-like and liquid-like densities at the desired 

temperature. It is possible to run CALPRE with user-specified starting density values. This is typically 

done only in advanced work part of numerical studies. Results may then correspond to other than desired 

stable fluid (there is a multiple solutions problem), or the calculation may not converge. 

 

The iterative process described above is essentially equivalent to that used in SUPCRT92 (Johnson et al., 

1992), which uses for this purpose code borrowed from Haar et al. (1984) for use with the IAPS-84 

model. Doubtless most other examples of software for evaluating IAPS-84 or IAPWS-95 also use this. A 

somewhat different approach is used in the MATLAB application of Junglas (2008), who uses 

MATLAB’s FZERO function to find an iterative solution. FZERO does not use Newton-Raphson, but 

rather the secant method and related methods that do not require evaluating a formula for a derivative. 

 

The default starting density values provided in CALPRE are somewhat different from the starting values 

used in SUPCRT92 and Junglas’ (2008) MATLAB application (2008). The general problem of starting 

values and the problems of multiple solutions and non-convergence will be addressed later in this report. 

 

3.3 Calculating Properties on the Saturation Curve  
 

The third and fourth types of problem deal with calculation of properties on the saturation (vapor-liquid 

equilibrium) curve, which extends from the triple point (273.16K, 0.611657 MPa) up to the critical point 

(647.096K, 22.064 MPa) (Figure 1). Usually the problem specifies a temperature value. It is then part of 

the problem to find the corresponding pressure and vapor and liquid densities. Less often, a pressure value 

is specified in place of one for temperature, in which case the problem includes finding the corresponding 

temperature. 

 

The saturation curve represents a discontinuity of sort. If a third axis were to be added to represent 

density, the saturation curve would appear as sort of cliff, with higher values (liquid) above the curve and 
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lower values (vapor) below it. The difference between the densities of liquid and vapor decreases going 

from the triple point to the critical point, decreasing rapidly near the critical point (Figure 2). What is 

shown in Figure 2 is not like a cliff or wall, but a gap. From the surface representing vapor, one could 

proceed through the gap onto extended vapor surface underlying the liquid surface. Similarly, from the 

liquid surface, one could step out onto its extension overlying the vapor surface. Very close to the 

saturation curve, such extended surfaces represent metastable vapor and metastable liquid. The IAPWS-

95 and similar models permit this, though most applications developed for the model do not support this. 

There are two points about this to keep in mind. First, how far these extensions go from the saturation 

curve is not well known. Second, no data for metastable fluids were used in developing the IAPWS-95 

model, so accuracy would be expected to drop off rapidly moving away from the saturation curve.  

 

  

Figure 1. The saturation curve. The triple point is at the lower left end of the curve. The critical point is at the upper 

right end. 

 

As shown in Figure 2, near the critical temperature (647.096K), the slope of the density versus 

temperature curve becomes nearly infinite for the vapor curve and nearly negatively infinite for the liquid 

curve. The saturation curve on the density surface as represented by a three-dimensional plot of density 

versus temperature and pressure therefore does not resemble a simple tear in the surface at the critical 

point; if it did, the slopes would approach a common finite value at the critical point. The actual behavior 

near the critical point is more like a tear combined with a sharp fold; this is associated with extreme 

behavior of some of the thermodynamic functions (for example, the heat capacity functions 𝑐𝑣 and 𝑐𝑝) 

near the critical point.   
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Figure 2. The density of vapor (blue) and liquid (red) on the saturation curve, as a function of temperature. 

 

Wagner and Pruss (2002) cite equations describing the pressure and liquid and vapor densities on the 

saturation curve (their equations 2.5, 2.6 and 2.7). These equations are formally not part of IAPWS-95. 

However, they provide an excellent starting point for calculating values consistent with IAPWS-95. They 

are used for this purpose by Junglas (2008), and very likely by others as well. They will be referred to as 

the saturation curve approximation. An earlier saturation curve approximation also existed for IAPS-84 

(Haar et al., 1984). It provided an estimate of the saturation pressure, but not estimates of the vapor and 

liquid saturation densities. 

 

Consider the problem of finding the thermodynamic properties on the saturation curve where temperature 

is specified. It is desired to find the saturation pressure (𝑝𝑆) and the vapor and liquid densities (𝛿𝑉 and 𝛿𝐿, 

respectively). The pressure equation previously introduced can be applied to each of vapor and liquid:  

  

 𝑝𝑉 = 𝜌𝑉𝑅𝑇(1 + 𝛿𝑉𝜙𝛿
𝑟(𝜏, 𝛿𝑉))  

 

 𝑝𝐿 = 𝜌𝐿𝑅𝑇(1 + 𝛿𝐿𝜙𝛿
𝑟(𝜏, 𝛿𝐿))  

 

A third equation is required. The vapor and liquid are equilibrium on the saturation curve, therefore 

 

 𝑔𝑉 = 𝑔𝐿  

 

Since these Gibbs energies can be calculated as functions of the respective densities using the Gibbs 

energy relation previously given, this provides a route to completing the saturation curve calculation. 

Noting that at saturation 𝑝𝑉 = 𝑝𝐿 = 𝑝𝑆, the right-hand sides of the above pressure equations can be 
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combined to yield an equation in the densities, matching the dependency in a similar combination for the 

Gibbs energies. One then has two equations in two unknowns (the densities). Once this system of 

equations is solved, one can obtain the saturation pressure from either of the pressure equations. 

 

This approach was used by Shi and Mao (2012), who initialize their calculations using the saturation 

curve approximation noted by Wagner and Pruss (2002). This approach appears to work fine in this 

context. For computational details, see Shi and Mao’s (2012) paper. The method is otherwise problematic, 

as other starting estimates can lead to undesired numerical solutions, such as convergence to the same 

fluid state for both “liquid” and “vapor.” This final fluid state could technically be anywhere in the 

pressure-temperature field. The equation-of-state model itself only knows “fluid.” It does not contain a 

built-in distinction between vapor and liquid. During the development of H2OI95, this numerical 

approach was tried and found sometimes to lead to such “single fluid state” results when the saturation 

curve approximation was not used to generate starting values. 

 

To avoid this “single fluid state” issue, one generally uses some form of the so-called Maxwell criterion. 

This comes in different forms. James Clerk Maxwell’s original analysis addresses a model cubic equation 

of state and deals directly with the notion of work (as in steam engines). A more direct approach for our 

purposes is to start with the Gibbs energy equality and replace Gibbs energy with Helmholz energy. 

Recall that 𝑔 = 𝑎 + 𝑝𝑣. Substituting this for vapor and liquid into the Gibbs energy equality and 

recognizing that there is only one pressure at saturation leads to: 

 

 𝑝𝑀 =
(𝑎𝐿−𝑎𝑉)

(𝑣𝑉−𝑣𝐿)
  

 

where the calculated pressure here is marked as the “Maxwell” pressure. Because the difference of the 

specific volumes (𝑣 = 1/𝜌) appears in the denominator, an iterative process accounting for this equation 

cannot converge to a numerical solution in which the “vapor” and “liquid” correspond to the same fluid 

state. Although including a form of the Maxwell equation is better than omitting it, this still does not 

eliminate certain other kinds of undesired numerical solutions, for example one where metastable liquid 

(which is nearly incompressible) is in equilibrium with vapor for some pressure less than the saturation 

pressure.  Thus, it remains important to initialize saturation curve calculations using the saturation curve 

approximation. 
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The final approach taken in H2OI95 is to define three residual functions in three unknowns (𝑝𝑠, 𝛿𝑉, and 

𝛿𝑆). The three functions are 

 

 𝛼𝑉 = 𝑝𝑉 − 𝑝𝑆  

 𝛼𝐿 = 𝑝𝐿 − 𝑝𝑆  

 𝛼𝑀 = 𝑝𝑀 − 𝑝𝑆  

 

The equations are solved using Newton-Raphson iteration. A 3 x 3 matrix equation is solved for each 

iteration using Gaussian elimination (formulas for the Jacobian matrix are not given here but can readily 

be derived or inferred from the H2OI95 source code). Convergence testing is based on the largest 

magnitude relative error for the three residual functions. The normal convergence tolerance is 1 x 10-9, the 

same value used in pressure-temperature calculations. The saturation curve problem for specified 

temperature is solved by subroutine CALSCT. 

 

As found during testing, there are convergence issues between the triple point temperature (273.16K) and 

298.15K and between 647.082K and the critical point temperature (647.096K). In the first instance, the 

convergence criterion is increased to 1 x 10-8. In the second instance, the convergence criterion is 

increased to 1 x 10-7. In addition, between 647.090K and the critical point temperature, iteration is 

otherwise stopped after five iterations. These accommodations were found necessary, as at some point 

further iteration would fail to result in any improvement. This is a characteristic of the equation of state 

itself in these regions, not something showing a need for an improved numerical method. In the treatment 

of this kind of problem in SUPCRT92 (which uses the IAPS-84 model), there are similar 

accommodations. Special accommodations are also made by Junglas (2008) for his treatment of the 

IAPWS-95 model. In addressing the causes requiring these accommodations, Junglas points to the highly 

non-cubic form of the model. Further remarks on this subject will be given in the Numerical Studies 

section of the present report. 

 

Others (Haar et al., 1984; Johnson et al., 1992: Junglas, 2008) use a different numerical approach in 

which the saturation pressure is first assumed known. The corresponding densities of vapor and liquid are 

then iteratively determined by applying the pressure equation separately to each phase. This is equivalent 

to two CALPRE calculations. The saturation pressure value is then adjusted using some form of the 

Maxwell criterion. Then the densities of the two phases are again determined. This continues until this 

nested iteration procedure converges. To adjust the saturation pressure value, Junglas (2008) uses the 

same Helmholtz energy-volume approach previously described. Haar et al. (1984) and Johnson et al. 
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(1992) [who both address the IAPS-84 model, not IAPWS-95] use a different form based on Gibbs 

energy and the standard thermodynamic relation 
𝜕∆𝐺

𝜕𝑝
= −∆𝑣, where the “Δ” refers to the vapor-liquid 

transition. 

 

The saturation curve problem for specified pressure is solved by subroutine CALSCP. The approach is to 

first estimate the corresponding temperature by inverting the saturation curve approximation equation for 

saturation pressure as a function of temperature. This is another iterative calculation (using the Newton-

Raphson method). Once a temperature value is established, the next step is a CALSCT calculation to 

evaluate the calculated saturation pressure, which is then compared to the specified pressure. The 

temperature is then corrected using the secant method. This nested approach is less elegant than a direct 

approach, but it is easy to implement and likely nearly as fast as a direct approach. It avoids the need for 

certain 𝜙 functions (higher order derivatives) than are normally obtained. Also, this type of saturation 

curve problem is usually of less interest than the type in which the temperature is specified. 

 

4. Test Cases  
 

A library of test cases including examples of input files is included with the software. There are three 

groups of test cases. Those beginning with “VC” are software validation test cases for which results are 

intended to be compared with mostly high-precision results given by other sources including IAPWS 

(2016). Those beginning with “TC” include some cases intended for comparison with results of others 

and additionally some cases addressing performance evaluation. Those beginning with “MC” are more 

advanced test cases addressing the problem of multiple numerical solutions. One test case beginning with 

“RC” (RCsar) is included for reference purposes. It calculates results for coexisting vapor and liquid at 

298.15K, the thermochemical reference temperature. Results for this temperature are not included in the 

steam tables of Wagner and Pruss (2002). 

 

Only limited discussion of the full test case library is presented here. Attention here will focus on 

common examples of the problem type most users would typically address and on more advanced 

examples of numerical studies, particularly of the issue of multiple numerical solutions for some 

problems. Some numerical results noted here required several runs over specific density ranges at varying 

density resolutions. As will be noted, the input files for these runs will not be given in this report, nor are 

they included in the test case library accompanying the H2OI95 software. 
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4.1. Common Examples 
 

  This section addresses common examples of the type most code users would address. These also include 

cases addressing software validation. These examples include cases in which any starting values needed 

for iterative calculations are provided in the code itself. The results obtained correspond to what a user 

would ordinarily be seeking, data for “stable” fluid such as one would find in steam tables.  

 

4.1.1. The Properties of Liquid Water at 298.15K and 0.1 MPa 
  

The following input file calculates the properties of (liquid) water at 298.15K and 1 bar (0.1 MPa) and at 

the same temperature and 1 atm (1.01325 bar or 0.101325 MPa). The number of temperature-pressure 

pairs that can be specified is not limited by the input file format.  

 

Input_298 

# VC298 

 

# Calculate results for 298.15K and 1 bar pressure. 

# The purpose is to validate the thermochemical results 

# against the CODATA (Cox et al., 1989) recommendations 

# for the thermochemical properties of water. For 

# illustrative purposes, results are also obtained for 

# 1 atm pressure (1.01325 bar). Pressure must be 

# specified in MPa, not bars. 

 

# The following strings are write option switches. 

 

#showphi 

#showdetails1 

#showdetails2 

#showdetails3 

 

    tempk    press(MPa) 

  298.150   1.000000000d-01 

  298.150   1.013250000d-01 

 

Lines beginning with “#” are treated as comment lines. The input file must begin with a line containing a 

name, usually the input file name. If the option strings shown in the example are not commented out, they 

will cause additional information to be written to the code output, which generally consists of screen 

output and the file named “output”. The next essential line is the header line, here containing the string 

“tempk    press”. The “(MPa)” following “press” is optional and is there only as a reminder to 

input pressure in MPa units. Other potential units cannot be specified here. MPa units are intrinsic to the 

software. Following the header are lines containing temperature-pressure pairs. Note that temperature 

must always be given in K. 
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Partial output (for 298.15K and 0.1 MPa only) is: 

 

   CALPRE: Temp(K) =  298.1500             tau    =  0.217037062E+01 

           press   =  0.100000000E+00 MPa 

 

      This appears to be liquid. 

 

      CALPRE: iter=   0, px=  3.169929329E-03, sbetmx= -9.68301E-01 

      CALPRE: iter=   1, px=  1.000099349E-01, sbetmx=  9.93490E-05 

      CALPRE: iter=   2, px=  1.000000000E-01, sbetmx=  4.36567E-11 

 

        Temp(K)          press(MPa) 

       298.1500        0.100000000E+00 

 

       H2O(liquid) 

 

                delta           rho(kg/m3) 

           0.309641938E+01   0.997047039E+03 

 

         Thermodynamic Results 

 

               u(kJ/kg)          h(kJ/kg)         s(kJ/kg/K) 

           0.104818597E+03   0.104918893E+03   0.367199984E+00 

 

               a(kJ/kg)          g(kJ/kg)         v(m3/kg) 

          -0.466207858E+01  -0.456178241E+01   0.100296171E-02 

 

             cv(kJ/kg/K)       cp(kJ/kg/K)         w(m/s) 

           0.413756934E+01   0.418131883E+01   0.149669916E+04 

 

              mu(K/MPa)       dt(kJ/kg/MPa)       bs(K/MPa) 

          -0.221467031E-03   0.926024267E-06   0.184002805E-04 

 

               kt(/MPa) 

           0.452463259E-06 

 

         Thermochemical Results 

 

               g(kJ/mol)        h(kJ/mol)        s(J/mol/K) 

               -237.1403        -285.8300          69.9500 

 

               a(kJ/mol)        u(kJ/mol)        v(m3/mol) 

               -233.4724        -282.1621      1.80686E-05 

 

             cv(J/mol/K)       cp(J/mol/K)     dt(kJ/mol/Mpa 

               4137.5693        4181.3188       1.66826E-08 

 

Here CALPRE is the subroutine that carries out this calculation. As shown, the calculation only required 

two iterations. The residual betamx is the relative error in the pressure. The normal convergence 

tolerance is 1 x 10-9, which is very tight in part to support software validation. The high precision of the 

results shown is also intended to support validation. The thermochemical results for enthalpy 

(h(kJ/mol)) and entropy (s(J/mol/K)) exactly match the recommended CODATA (Cox et al., 
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1989) values. Here rho is density and delta (δ) is the reduced density (density divided by the critical 

point density). The other thermodynamic and thermochemical results shown use standard symbolic 

representation (e.g., a is Helmholtz energy, g is Gibbs energy, cp is heat capacity at constant pressure). 

Explanation of all symbols except kt (compressibility) is given by Wagner and Pruss (2002) and IAPWS 

(2016). Some of the thermodynamic and thermochemical values associated with the same symbol are 

different not only in units, but also tied to different arbitrary conventions. For example, this is true for the 

Gibbs energies, enthalpies, Helmholtz energies, internal energies (u), and entropies. 

 

4.1.2. A Validation Test Case: Calculated “phi” Functions 
 

Another type of input file is illustrated by the following validation test case. Most of the necessary 

discussion of what this test case is about is included in the input file itself. The basic purpose is to 

compare with high-precision values for the 𝜙 functions given by IAPWS (2016). Here the “showphi” 

option is active. Note that in this example, density (“rho”) is specified instead of pressure. In this mode, 

density can also be specified as “delta”. This type of calculation is done by subroutine CALDLT, 

which basically just calls EVAI95 to make a direct (non-iterative) evaluation of the equation-of-state 

model equations. 

 

input_wt6 

# VCwt6 

 

# Compare results with Table 6 of IAPWS (2016), "Revised Release 

# on the IAPWS Formulation 1995 for the Thermodynamic Properties 

# of Ordinary Water Substance for General and Scientific Use". 

# This document is available from the iapws.org web site as 

# document IAPWS R6-95 (IAPWS95-2016.pdf). The purpose is to 

# validate the calculation of the phi functions, for 500K and 

# a density of 838.0250 kg/m3. Running the software with 

# with "showphi" causes the phi functions to be written on the 

# output. Density must be specified in kg/m3, not g/cm3. 

 

# The contents of Table 6 from IAPWS (2016) partially duplicate 

# Table 6.6 of Wagner and Pruss (2002). The latter table also 

# includes a test at 647K and density of 358 kg/m3. Our results 

# for phir, phird, and phirdd not precisely match theirs for 

# these conditions. We believe it likely that IAPWS (2016) 

# dropped this part of the original test for a reason, though 

# they do not give one. This close to the critical point, minor 

# differences may result from differences in  numerical methods 

# and tolerances. Results may also be compared with results 

# (for liquid) from Table 13.1 of Wagner and Pruss (2002). 

# However, their results are given to less precision. 

 

# For the case at 500K and density of 838.0250 kg/m3, the result 

# for phi0 given by Wagner and Pruss (2002) is off by one in the 
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# last decimal place from the value given by IAPWS (2016). 

 

# The following strings are write option switches. 

 

 showphi 

#showdetails1 

#showdetails2 

#showdetails3 

 

    tempk    rho(kg/m3) 

  500.000   0.8380250d+03 

  647.000   0.3580000d+03 

 

The relevant output (for the 500K case only, for the reasons noted in the input file text) is 

 

       tempk =  0.500000000E+03   rho   =  0.838025000E+03 

       delta =  0.260256211E+01   tau   =  0.129419200E+01 

 

 

 

            phi functions 

 

     phi0   =  0.204797733E+01     phir   = -0.342693206E+01 

     phi0d  =  0.384236747E+00     phird  = -0.364366650E+00 

     phi0dd = -0.147637878E+00     phirdd =  0.856063701E+00 

     phi0t  =  0.904611106E+01     phirt  = -0.581403435E+01 

     phi0tt = -0.193249185E+01     phirtt = -0.223440737E+01 

     phi0dt =  0.000000000E+00     phirdt = -0.112176915E+01  

 

4.1.3. Saturation Curve Properties as a Function of Temperature 
 

The main “saturation curve” option (specified temperature or temperatures) is illustrated by the following 

input file: 

 

input_sct 

# VCsct 

 

# Calculate results for specified temperatures along the 

# saturation curve, using the "psat" option. The purpose 

# is to compare results with those given in Table 13.1 

# of Wagner and Pruss (2002). 

 

# The following strings are write option switches. 

 

#showphi 

#showdetails1 

#showdetails2 

#showdetails3 

 

    tempk    psat 

  273.160 

  274.000 

  280.000 
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  300.000 

  320.000 

  340.000 

  360.000 

  380.000 

  400.000 

  420.000 

  440.000 

  460.000 

  480.000 

  500.000 

  520.000 

  540.000 

  560.000 

  580.000 

  600.000 

  620.000 

  640.000 

  647.096  

 

This “psat” option utilizes specified temperature values (the last value is 647.096K, the critical point 

temperature). The saturation pressure and the properties of both saturated vapor and saturated liquid are 

calculated. In H2OI95, the iterative calculation here is done by simultaneously solving three equations in 

three unknowns as described previously. 

 

Convergence is illustrated by the following snippet of standard output: 

 

  CALSCT: Temp(K) =  400.0000             tau    =  0.161774000E+01 

 

     CALSCT: iter=   0, psat=  2.457652635E-01, betamx=  1.25696E-02 

     CALSCT: iter=   1, psat=  2.457693473E-01, betamx=  6.81047E-08 

     CALSCT: iter=   2, psat=  2.457693456E-01, betamx=  3.36621E-12 

 

  CALSCT key results: 

 

       Temp(K)          press(MPa) 

      400.0000        0.245769346E+00 

 

      H2O(vapor) 

 

               delta           rho(kg/m3) 

          0.425281845E-02   0.136940754E+01 

 

      H2O(liquid) 

 

               delta           rho(kg/m3) 

          0.291144733E+01   0.937486039E+03  

 

Here CALSCT is the subroutine that carries out this type of calculation. The final value of psat is the 

calculated saturation pressure. 
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As implied in the input file text, one of the purposes of this test case is to calculate results that should 

match those in Table 13.1 of Wagner and Pruss (2002). The full fluid properties output appears on the 

output file (not shown here) and the corresponding mtab.csv file (also not shown here). 

 

4.1.4. Saturation Curve Properties as a Function of Pressure 
 

The other saturation curve option is that in which the pressure is specified instead of the temperature. An 

input file illustrating this is: 

 

input_scp 

# TCscp 

 

# Calculate the saturation temperature and corresponding 

# results for specified pressure values. This is an example 

# of the "tsat" option. The purpose is to examine convergence 

# behavior and to illustrate this option. Pressure must be 

# specified in MPa, not bars. 

 

# The following strings are write option switches. 

 

#showphi 

#showdetails1 

#showdetails2 

#showdetails3 

 

   press(MPa)    tsat     

   0.0100 

   0.0500 

   0.1000 

   0.5000 

   1.0000 

   5.0000 

  10.0000 

  15.0000 

  20.0000  

 

This “tsat” option is implemented by making “psat” calculations for putative temperature values, and 

correcting the putative temperature to produce the specified pressure, using the nested approach described 

earlier. Correction of the temperature is done using the secant method, as previously noted. An advantage 

of this nested approach is that the calculation for any putative temperature utilizes coding in subroutine 

CALSTC that deals with the previously described issues regarding convergence in certain ranges of 

temperature. 

 

A partial standard output snippet shows that convergence of the secant method is rapid: 

 

  CALSCP: press  =  0.100000000E+00 MPa 
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     CALSCP: iter=   0, tempk= 372.7559, betamx=  4.27316E-07 

     CALSCP: iter=   1, tempk= 374.7559, betamx=  7.36995E-02 

     CALSCP: iter=   2, tempk= 372.7559, betamx=  1.24792E-08 

     CALSCP: iter=   3, tempk= 372.7559, betamx=  9.99201E-15 

 

  CALSCP key results: 

 

       Temp(K)          press(MPa) 

      372.7559        0.100000000E+00 

 

      H2O(vapor) 

 

               delta           rho(kg/m3) 

          0.183336640E-02   0.590343980E+00 

 

      H2O(liquid) 

 

               delta           rho(kg/m3) 

          0.297711648E+01   0.958631506E+03  

 

Here CALSCP is the subroutine that carries out this type of calculation. Iteration in CALSTC done for 

each CALSCP iteration is not shown here. 

 

There are other test cases in the library which also address software validation, but those will not be 

discussed in the present report. Some involve additional software validation tests specified by IAPWS 

(2016). Others involve comparison with the published steam tables (Wagner and Pruss, 2002) or with 

high-precision results obtained from the NIST on-line calculator “Thermophysical Properties of Fluid 

Systems” (http://webbook.nist.gov/chemistry/fluid/). 

 

4.2. Numerical Studies  
 

The complexity of the equation-of-state model along with the need for iterative calculations to solve 

common problem types suggests that there would be some minimum of pertinent literature regarding the 

numerical aspects of applying IAPWS-95 (or similar models, including the earlier IAPS-84 of Haar et al., 

1984, and the even earlier model of Keenan et al., 1969). Such literature would focus on details of 

numerical methods, convergence properties including requirements on starting estimates of density, and 

an examination of the uniqueness and significance of numerical solutions. In fact, there is very little 

documented information of such studies. Haar et al., (1984) included code to evaluate the IAPS-84 model. 

Some details including starting estimates can be obtained from this. However, there is no discussion of 

how these values were established. Essentially the same coding is used in SUPCRT92 (Johnson et al., 

1992). Junglas (2008) presented original numerical studies on the problem of obtaining saturation curve 

http://webbook.nist.gov/chemistry/fluid/
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properties as a function of temperature but did not address the general case of specified pressure and 

temperature. 

 

Wagner and Pruss (2002) presented no numerical studies, instead concentrating on how well the IAPWS-

95 model reproduced experimental measurements. Clearly, they must have made some numerical studies 

in creating the software used to develop their model. Prof. Wagner has made code available to academic 

investigators, but with restricted distribution and apparently no additional software documentation. 

Obtaining results for stable fluid from iterative calculations is mainly dependent on the choice of starting 

values for density, and to a lesser degree on details of the iteration procedure. Precisely what Wagner and 

Pruss (2002) did in this regard appears to be undocumented. Anyone developing an implementation of 

IAPWS-95 can do their own numerical studies, as did Junglas (2008) for saturation curve calculations. 

Some additional numerical studies will be presented here, with a special focus on multiple numerical 

solutions and how to identify solutions that are non-physical.  

 

4.2.1. Multiple Solutions for Water at 500K and 25 MPa  
 

The following input file was created for finding the properties of water at 500K (226.85oC) and 25 MPa. 

The temperature is a “mid-range” value in relation to the saturation curve. The pressure is slightly higher 

than the critical pressure (22.064 MPa). Stable fluid in this region would commonly be referred to as 

“compressed liquid.” This input file specifies the density values to use as starting estimates. The file was 

created by making multiple runs, trying various values. The process included finding “boundary” values 

for obtaining specific numerical solutions.  

 

input_clx 

# MCclx 

 

# Calculate results for 500K and 25 MPa 

# (in the compressed liquid field), specifying 

# different starting values for the density 

# (rhog, kg/m3). The purpose is to examine convergence 

# behavior and to check for multiple solutions. 

# Here three solutions are found, one of which 

# is the expected solution for stable compressed liquid. 

# The second solution might be thought of as corresponding 

# to "compressed metastable vapor," although this represents 

# an extrapolation and may not be accurate. It does not 

# yield a valid result for the speed of sound. The third 

# solution gives a negative absolute (thermochemical) 

# entropy. Thus, it is a numerical solution with no 

# realistic physical interpretation. 

#  

# The following strings are write option switches. 
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#showphi 

#showdetails1 

#showdetails2 

#showdetails3 

 

    tempk    press(MPa)        rhog(kg/m3) 

 

# High density solution 

  500.      25.00000000d+00    5000. 

  500.      25.00000000d+00    2000. 

  500.      25.00000000d+00    1100. 

  500.      25.00000000d+00    1000. 

  500.      25.00000000d+00    900.  

  500.      25.00000000d+00    800.  

  500.      25.00000000d+00    710.572 

 

# Mid density solution 

  500.      25.00000000d+00    710.571 

  500.      25.00000000d+00    700.  

  500.      25.00000000d+00    600.  

  500.      25.00000000d+00    500.  

  500.      25.00000000d+00    400.  

  500.      25.00000000d+00    388.429 

 

# No solution 

  500.      25.00000000d+00    388.428 

  500.      25.00000000d+00    385.  

  500.      25.00000000d+00    380.  

  500.      25.00000000d+00    375.703 

 

# Low density solution 

  500.      25.00000000d+00    375.702 

  500.      25.00000000d+00    300.  

  500.      25.00000000d+00    290.439 

 

# No solution 

  500.      25.00000000d+00    290.438 

  500.      25.00000000d+00    200. 

  500.      25.00000000d+00    100. 

 

The pertinent results are that over a range of starting density values from 100 to 5000 kg/m3, three 

solutions were found, each characterized by a specific range of starting values. Two ranges were also 

found in which no solution was found. Starting values from 710.572 to 5000 kg/m3 led to a “high density” 

solution characterized by a final density of 850.558202 kg/m3. Starting values from 388.429 to 710.571 

kg/m3 led to a “mid density” solution with a density of 621.049863 kg/m3. Starting values from 290.439 

to 375.702 kg/m3 led to a “low density” solution with a density of 331.832991 kg/m3. 

 

When convergence was obtained, it was generally rapid, requiring 4-16 iterations. As would be expected, 

iteration number increased when starting farther from the obtained solution. Part of the screen output for 

the starting value of 2000 kg/m3 illustrates convergence behavior: 
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  CALPRE: Temp(K) =  500.0000             tau    =  0.129419200E+01 

          press   =  0.250000000E+02 MPa 

 

          rhog   =  0.200000000E+04 kg/m3 (starting value) 

 

     This appears to be compressed liquid. 

 

     CALPRE: iter=   0, px=  2.238910656E+04, sbetmx=  8.94564E+02 

     CALPRE: iter=   1, px=  6.488315591E+03, sbetmx=  2.58533E+02 

     CALPRE: iter=   2, px=  2.008598643E+03, sbetmx=  7.93439E+01 

     CALPRE: iter=   3, px=  6.061533203E+02, sbetmx=  2.32461E+01 

     CALPRE: iter=   4, px=  1.729760662E+02, sbetmx=  5.91904E+00 

     CALPRE: iter=   5, px=  5.224314248E+01, sbetmx=  1.08973E+00 

     CALPRE: iter=   6, px=  2.690545502E+01, sbetmx=  7.62182E-02 

     CALPRE: iter=   7, px=  2.501200918E+01, sbetmx=  4.80367E-04 

     CALPRE: iter=   8, px=  2.500000049E+01, sbetmx=  1.95018E-08 

     CALPRE: iter=   9, px=  2.500000000E+01, sbetmx= -2.10321E-14 

 

       Temp(K)          press(MPa) 

      500.0000        0.250000000E+02 

 

      H2O(compressed liquid) 

 

               delta           rho(kg/m3) 

          0.264148510E+01   0.850558202E+03  

 

The principal question is, what is the significance of three numerical solutions? The “mid density” 

solution was accompanied by the following messages: 

 

      WARNING, PRESSURE DERIVATIVE WITH RESPECT TO  

      DENSITY IS LESS THAN ZERO. HAVE AN UNSTABLE SOLUTION.  

 

      WARNING -- SPEED OF SOUND VALUE IS NOT POSITIVE.  

      MAY HAVE A NON-PHYSICAL SOLUTION.  

 

A negative value for the derivative of the pressure with respect to the density implies an unstable state 

(see for example Junglas, 2008). This condition is more often noted in conjunction with numerical 

solutions for density values that lie between the densities of vapor and liquid on the saturation curve, but 

it is not uniquely tied to that context. A negative value for this derivative corresponds to a negative value 

of the compressibility [𝜅 = 𝛿 (𝜕𝑝 𝜕𝛿⁄ )⁄ ]. In the IAPWS-95 model, the square of the speed of sound is 

calculated from the “phi” functions. In this instance, the square had a negative value. Therefore, a valid 

value for the speed of sound was not obtained. Therefore, the “mid density” solution is non-physical. 

 

The “low density” solution was accompanied by the following message: 

 

      WARNING -- THERMOCHEMICAL ENTROPY VALUE IS NOT POSITIVE.  

      MAY HAVE A NON-PHYSICAL SOLUTION.  

 



  26 

A thermochemical or absolute entropy must have a positive value. Therefore, the “low density” solution 

is also non-physical. A typical calculator for evaluating IAPWS-95 would not produce a value for the 

absolute entropy. In this situation, the non-physical nature of the “low density” solution might not be 

readily apparent if such a solution were to be calculated. 

 

The “high density” solution shows no anomalies. Also, the results for this solution match the 

corresponding results given in the steam tables (Table 13.2) of Wagner and Pruss (2002).  This is the 

desired solution. The results of this study indicate that a liquid-like density value is required to converge 

to the desired result. Per Table 13.1 of Wagner and Pruss (2002), the density of liquid on the saturation 

curve is 831.313 kg/m3, which suggests a minimum value to use in the present case. Thus, when a 

calculation for the properties of water at any temperature below the critical temperature (647.096K) and 

any pressure is made, it is very useful in constructing appropriate starting density values to know the 

density values on the saturation curve. H2OI95 and probably most if not all other calculators for IAPWS-

95 and similar equation-of-state models calculate the saturation curve values for this purpose when 

solving this type of problem. Some may use values obtained from a saturation curve approximation; 

others, including H2OI95, use refined values starting from such. Either kind seems adequate. 

 

Table 1 summarizes some of the key results from these calculations. In addition to the points already 

raised, the “low density” solution has a very low value for compressibility and a very high value for the 

speed of sound. The mid density solution has thermochemical entropy and Gibbs energy values similar to 

those of the “high density” solution. A key point to raise here is that the Gibbs energy value cannot be 

used to identify the desired solution. One might expect that the solution with the lowest such value would 

be the desired one, as this would seem to be the most thermodynamically stable. However, the “low 

density” solution here has the lowest Gibbs energy value, which is appears to be absurdly low.  

 

Table 1. Partial results for water at 500K and 25 MPa. Cells highlighted in orange contain unrealistic results. 

Solution 
ρ 

kg m-3 

κ 

MPa-1 

w 

m s-1 

S 

J kg-1 K-1 

G 

kJ mol-1 

High density 850.558202 0.930558751 x 10-6 0.133010698 x 104 109.1009 -255.0398 

Mid density 621.049863 -0.487483957 x 10-6 NC* 111.8598 -254.5668         

Low density 331.832991 0.275002785 x 10-10 0.338667401 x 106 -2.03222 x 106 -4.80574 x 104     

*Not calculated (w2 ≤ 0) 
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An issue is how can one be confident that an IAPWS-95 calculator will consistently produce results for 

stable fluid from an iterative calculation, particularly when using a proprietary calculator whose details 

regarding exact iterative procedure and starting values for density are unknown. This concern is largely 

mitigated if the calculator has been extensively compared with the steam tables of Wagner and Pruss 

(2002). One would hope that Wagner and Pruss took sufficient care to assure that the development of 

IAPWS-95 itself was not affected by convergence to any undesired numerical solutions. Although there 

seems to be no documentation directly addressing this point, the extensive comparison with experimental 

data in their paper suggests that no problems of this type occurred.  

 

4.2.2. Water at 500K over a Wide Range of Pressure 
 

Another way of analyzing this problem is to calculate the curve of pressure versus density and note how 

many times the curve is intersected by the horizontal line representing the pressure of interest. Figure 3 

shows the calculated curve for 500K over the density range 0 to 1200 kg/m3 and for pressure in the range 

-400 to 1000 MPa. The full range of calculated pressure cannot be shown without losing necessary detail. 

The behavior of the curve is highly non-cubic. Calculated pressure can vary over many orders of 

magnitude, and exhibit both positive and negative values. The pressure curve extends well beyond the 

boundaries of the figure. The three numerical solutions for 25 MPa (low, mid, and high density solutions) 

are marked on the diagram. Several runs, each covering a different part of the density range and varying 

in density resolution, were used to generate this figure. Input files for these runs are not given here, nor 

are they included in the test case package.  

 

One can see that for higher pressures (up to at least 1000 MPa) and for somewhat lower pressure, there 

will also be three numerical solutions. For still lower pressures, the associated lines may intersect the 

portion of the pressure-density curve at lower density values (the part of the curve in the lower left-hand 

corner of Figure 3). Where that is the case, there may be up to five numerical solutions for a given 

pressure. It will be shown that, in general, only one solution is physically valid, or two, if the pressure is 

the saturation pressure for the given temperature. 
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Figure 3. Pressure as a function of density (blue) at 500K. Arrows are shown to indicate curve direction moving 

outside the field of view. The line for 25 MPa is shown in red.  For this pressure, C = low density solution, D = mid 

density solution, and E = high density solution. 

 

Figure 4 depicts the part of the pressure curve in the bottom left portion of Figure 3. The violet line 

represents the saturation pressure (2.64 MPa). This is much lower than the 25 MPa shown by the red line 

in Figure 3. The 25 MPa line is not shown here because the pressure scale in Figure 4 only extends to 10 

MPa. At saturation pressure, two numerical solutions are evident in this range. The higher density portion 

of the pressure curve in Figure 3 extends down past the saturation pressure (past zero pressure, for that 

matter). Therefore, for the problem of finding solutions for the saturation pressure, there are another three 

numerical solutions (like C, D, and E in Figure 3, but adjusted to the saturation pressure).  

 

 

Figure 4. Pressure as a function of density (blue) and the saturation pressure (violet) at 500K. Points A and B mark 

numerical solutions in this range. Point A marks the physically valid solution for vapor. Point B marks an unstable 

solution (pressure decreasing with increasing density).  
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For slightly higher pressure for which the corresponding line would touch the top of the curve shown in 

Figure 4, there would be four numerical solutions. Above that pressure, there would be three such 

solutions. 

 

For the case of saturation pressure as exemplified in Figure 4 and implied by Figure 3, one would assume 

that the solutions for saturated vapor and saturated liquid are the only valid ones. To higher accuracy, the 

saturation pressure is 2.63919587 MPa. The five numerical solutions were calculated using this more 

accurate value. Point A represents the stable saturated vapor, while the adjusted (to the saturation 

pressure) point E represents the stable saturated liquid. Point B and the adjusted point D have negative 

slope of pressure versus density and are therefore unstable. In addition, point B has a negative value for 

the heat capacity at constant pressure, while the adjusted point D has a negative value for the square of the 

speed of sound. The adjusted point C has a negative value for the thermochemical (absolute) entropy. 

This disqualified solution has the lowest calculated Gibbs energy, again showing that the Gibbs energy 

cannot be used to identify a valid solution. 

 

Some analysis is required to assure that any calculated numerical solutions have physical meaning. Four 

methods of disqualifying numerical solutions have been noted. These are (a) the calculated derivative of 

pressure with respect to density is negative, (b) a speed of sound value cannot be obtained because the 

calculated square is negative, (c) the calculated thermochemical (absolute) entropy is not positive, and (d) 

the heat capacity at constant pressure (𝑐𝑝) is not positive. A negative pressure is disqualifying, but one is 

not likely to specify a negative value for the desired pressure. Unfortunately, the lowest value of 

calculated Gibbs energy cannot be used to identify which of a set of numerical solutions corresponds to 

the desired one. There may be disqualifying factors other than those noted here, but these are the main 

ones that have been observed in testing H2OI95 and they appear to be sufficient. 

 

4.2.3. Multiple Solutions for Water at 298.15K and 0.1 MPa.  
 

The following input file was created for finding the properties of water at 298.15K (25oC) and 0.1 MPa  

(1 bar), the thermochemical reference temperature and pressure. The temperature is a “low” value in 

relation to the saturation curve. The pressure is higher than the saturation pressure at this temperature. 

Stable fluid in this region would therefore be referred to as simply “liquid.” This input file specifies the 

density values to use as starting estimates. The file was created by making multiple runs, trying various 

values. The process included finding “boundary” values for obtaining specific numerical solutions, using 

a method perhaps described as interval-halving by hand.  
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input_rtp 

# MCrtp 

 

# Calculate results for 298.15K and 1 bar pressure, 

# specifying different starting values for the density 

# (rhog, kg/m3). The purpose is to examine convergence 

# behavior and to check for multiple solutions. 

# Here two solutions are found, one of which is the 

# expected solution for liquid water. The other 

# solution can be interpreted as representing metastable 

# vapor, although this is technically an extrapolation 

# and may not be accurate. 

 

# The following strings are write option switches. 

 

#showphi 

#showdetails1 

#showdetails2 

#showdetails3 

 

    tempk    press(MPa)        rhog(kg/m3) 

  298.150   1.000000000d-01    5000. 

  298.150   1.000000000d-01    2000. 

  298.150   1.000000000d-01    1000. 

  298.150   1.000000000d-01    900. 

  298.150   1.000000000d-01    894.327 

 

  298.150   1.000000000d-01    894.326 

  298.150   1.000000000d-01    800. 

  298.150   1.000000000d-01    600. 

  298.150   1.000000000d-01    400. 

  298.150   1.000000000d-01    380.927 

 

  298.150   1.000000000d-01    380.926 

  298.150   1.000000000d-01    200. 

  298.150   1.000000000d-01    100. 

  298.150   1.000000000d-01    10.  

 

The pertinent results are that over a range of starting density values from 10 to 5000 kg/m3, two solutions 

were found, each characterized by a specific range of starting values. One range was also found in which 

no solution was found. Starting values from 894.327 to 5000 kg/m3 led to a “high density” solution 

characterized by a final density of 997.047039 kg/m3. Starting values from 380.927 to 784,325 kg/m3 led 

to a “mid density” solution characterized by a density of 861.841021 kg/m3. Starting values from 10 to 

380.926 kg/m3 did not lead to a numerical solution. In other words, no “low density” solution was found. 

However, it will be shown below that it does technically exist. 

 

The mid density solution is not valid, as the derivative of pressure with respect to density is less than zero 

(indicating an unstable solution). Furthermore, this solution does not have a valid value for the speed of 

sound. The high density solution has no disqualifying characteristics and is thus the desired solution. 
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4.2.4. Water at 298.15K over a Wide Range of Pressure 
 

Figure 3 shows the calculated pressure-density curve for 298.15 over the density range 0 to 1400 kg/m3 

and for pressure in the range -400 to 1000 MPa. As was the case for 500K, the full range of calculated 

pressure cannot be shown without losing necessary detail. The pressure curve again extends beyond the 

boundaries of the figure. The three numerical solutions for 25 MPa (low, mid, and high density solutions) 

are marked on the diagram. Again, multiple runs were required to generate this figure, and the 

corresponding input files are not given here or included in the test case package. 

 

 

Figure 5. Pressure as a function of density (blue) at 298.15K. Arrows are shown to indicate curve direction moving 

across the field of view. The line for 0.1 MPa is shown in red.  For this pressure, C = low density solution, D = mid 

density solution, and E = high density solution. 

 

In section 4.2.3 ( “MCrtp”), the iterative calculations to find numerical solutions failed to find the low 

density solution marked “C” in Figure 5. Additional iterative calculations were made to explore this issue. 

Starting with a density value of 321.999 kg/m3 produced the following results taken from the output file: 

 

   CALPRE: Temp(K) =  298.1500             tau    =  0.217037062E+01 

           press   =  0.100000000E+00 MPa 

 

           rhog   =  0.321999000E+03 kg/m3 (starting value) 

 

      This appears to be liquid. 

 

      CALPRE: iter=   0, px= -1.295824659E+13, sbetmx= -1.29582E+14 

      CALPRE: iter=   1, px=  1.408383723E+08, sbetmx=  1.40838E+09 

      CALPRE: iter=   2, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   3, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   4, px= -8.780838300E+01, sbetmx= -8.79084E+02 
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      CALPRE: iter=   5, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   6, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   7, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   8, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   9, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=  10, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=  11, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=  12, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=  13, px= -8.780838300E+01, sbetmx= -8.79084E+02 

 

   CALPRE: ITERATION IS NOT LEADING TO IMPROVEMENT. 

      MAX NORM betamx =  8.791E+02, TOLERANCE btxtol =  1.000E-09 

      MAX NORM dltamx =  2.107E-17, TOLERANCE deltol =  1.000E-12 

 

   CALPRE: ITERATION FAILED. 

 

The first pressure (“px”) calculated corresponds to the starting density value. This pressure value is 

negative with quasi-infinite magnitude. Note that the calculated pressure appears to converge to a value of 

about -87.8084 MPa, which is not the desired pressure of 0.1 MPa. 

 

A seemingly similar result is obtained for a starting density value of 322.000 kg/m3. The corresponding 

results taken from the output file are 

 

   CALPRE: Temp(K) =  298.1500             tau    =  0.217037062E+01 

           press   =  0.100000000E+00 MPa 

 

           rhog   =  0.322000000E+03 kg/m3 (starting value) 

 

      This appears to be liquid. 

 

      CALPRE: iter=   0, px=  1.813767579E+09, sbetmx=  1.81377E+10 

      CALPRE: iter=   1, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   2, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   3, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   4, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   5, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   6, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   7, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   8, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=   9, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=  10, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=  11, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=  12, px= -8.780838300E+01, sbetmx= -8.79084E+02 

      CALPRE: iter=  13, px= -8.780838300E+01, sbetmx= -8.79084E+02 

 

   CALPRE: ITERATION IS NOT LEADING TO IMPROVEMENT. 

      MAX NORM betamx =  8.791E+02, TOLERANCE btxtol =  1.000E-09 

      MAX NORM dltamx =  2.107E-17, TOLERANCE deltol =  1.000E-12 

 

   CALPRE: ITERATION FAILED. 
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This resembles the results for the case shown previously. However, the first calculated pressure is now a 

positive number with very large, nearly quasi-infinite magnitude. The curve segment in Figure 5 

associated with the problematic solution is a line with nearly infinite slope. Interestingly, the calculated 

pressure similarly converges to the same incorrect value. Both calculations terminate with the report that 

“MAX NORM dltamx =  2.107E-17”. The value reported here is the magnitude of the final 

Newton-Raphson correction, which about matches the machine epsilon for 64-bit arithmetic.  

 

The problem is that 64-bit arithmetic is insufficient to obtain convergence within normal tolerances for 

such a steep curve. Because all starting values close to the solution converge to the same finite pressure 

value, any attempt to further refine the precision of the starting estimates for density, as by interval 

halving, would be a futile exercise, as the precision of the specified starting value would eventually run 

up against the machine epsilon (maximum allowed precision in the working calculations). The calculated 

thermodynamic (absolute) entropy in this neighborhood of density has a negative quasi-infinite value of  

~ -1.07 x 1018 J mol-1 K-1. Thus, this numerical solution is non-physical. 

 

The part of the pressure-density curve in the lower left-hand corner of Figure 5 (which is barely visible 

there) is shown in expanded detail in Figure 6. This figure is analogous to Figure 4, which was for 500K. 

Two numerical solutions are found here at the saturation pressure of 3.16992934 x 10-3 MPa (the previous 

pressure of interest of 0.1 MPa is off the scale here). The solution on the left (A) is again the valid 

solution for saturated vapor, while the solution on the right (B) is an unstable solution. Point E from 

Figure 5, adjusted to the saturation pressure, is the valid solution for saturated liquid. 

 

 

Figure 6. Pressure as a function of density (blue) and the saturation pressure (violet) at 298.15. Points A and B mark 

numerical solutions in this range. Point A corresponds to the physically valid solution for vapor, while Point B 

marks an unstable numerical solution. 
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4.2.5. Multiple Solutions for Water at 640K and 25 MPa  
 

The following input file was created for finding the properties of water at 640K and 25 MPa. This 

temperature is several degrees below the critical temperature of 647.096K and slightly above the critical 

pressure of 22.064 MPa. 

 

input_clf 

# MCclf 

 

# Calculate results for 640K and 25 MPa 

# (in the compressed liquid field), specifying 

# different starting values for the density 

# (rhog, kg/m3). The purpose is to examine 

# convergence behavior and check for multiple 

# solutions. Here only one solution is found. 

#  

# The following strings are write option switches. 

 

#showphi 

#showdetails1 

#showdetails2 

#showdetails3 

 

    tempk    press(MPa)        rhog(kg/m3) 

 

# Unique density solution 

  640.      25.00000000d+00    10000. 

  640.      25.00000000d+00    5000. 

  640.      25.00000000d+00    2000. 

  640.      25.00000000d+00    1100. 

  640.      25.00000000d+00    1000. 

  640.      25.00000000d+00    900.  

  640.      25.00000000d+00    800.  

  640.      25.00000000d+00    700.  

  640.      25.00000000d+00    600.  

  640.      25.00000000d+00    500.  

  640.      25.00000000d+00    443.094 

    

# No solution 

  640.      25.00000000d+00    443.093 

  640.      25.00000000d+00    400.  

  640.      25.00000000d+00    300.  

  640.      25.00000000d+00    200. 

  640.      25.00000000d+00    100. 

  640.      25.00000000d+00    10.  

 

Only one numerical solution is found. Below it will be shown that there is indeed only one numerical 

solution (the valid one). 
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4.2.6 Water at 640K over a Wide Range of Pressure  
 

Figure 7 shows a plot of pressure versus density at 640K, using the same scale as in Figures 3 and 5. Also 

shown is the line (red) for a pressure of 25 MPa. The pressure-density curve here (blue) appears much 

better behaved, nearly monotonic at this scale. It appears to fall on the 25 MPa curve over much of the 

left-hand side of the figure. Figure 8 presents a close-up. Now it is clear that the nearly flat region of the 

pressure-density curve lies below the 25 MPa curve, closer in fact to the saturation pressure of 

20.2652229 MPa, crossing the 25 MPa line at a single point (C). Again, multiple runs were made to 

generate these figures, and the corresponding input files are not given here nor in the test case package.   

 

 

Figure 7. Pressure as a function of density (blue) at 640K. The line for 25 MPa is shown in red. No solution points 

are marked in this figure owing to the wide range of near overlap.  

 

 

Figure 8. Pressure as a function of density (blue) at 640K, expanding the area where the area where the calculated 

pressure is close to 25 MPa (red line).  There is a single solution point (“C”).  
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Figure 9 presents a much more detailed close-up (greatly reduced pressure scale).  The formerly flat-

appearing curve segment shows significant curvature about the saturation pressure. Three numerical 

solutions are shown (points A, B, and C).  In addition, there is a near-solution at point X. Point A marks 

the solution for stable vapor and point C (the point C from Figure 8 but adjusted to the saturation 

pressure) marks the solution for stable liquid. The solution corresponding to point B is unstable. There is 

a near solution marked X. At a slightly lower pressure, say 20.2 MPa, two additional numerical solutions 

would appear. It can be shown that these are non-physical using the methods previously discussed. 

 

 

Figure 9. Pressure as a function of density (blue) at 640K, expanding the area where the curve appears nearly flat in 

Figure 8. On the present scale, it appears very much not flat. The violet line marks the saturation pressure.  Three 

numerical solutions are apparent. The blue line does not touch or cross the violet line near the point marked “X”.  

 

4.2.7. Water at 655K over a Wide Range of Pressure  
 

Figure 10 shows a plot of pressure versus density at 655K (above the critical point), using the same scale 

as in Figures 3, 5, and 7. No special pressure line is shown. The pressure-density curve here (blue) 

appears monotonic at this scale. That was also the case for 640K, although in that case analysis showed 

non-monotonicity at finer scale. The curve differs significantly from that expected for ideal gas (red line, 

𝑃 = 𝜌𝑅𝑇). Figure 11 presents a close-up of the blue curve analogous to Figure 9. In this case (655K), 

there is clear monotonicity, implying only one numerical solution for any given pressure. 
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Figure 10. Pressure as a function of density (blue) at 655K. The ideal gas pressure is shown by the red line. 

 

 

Figure 11. Pressure as a function of density (blue) at 655K, expanding the area where the curve appears nearly flat  

in Figure 10. The curve is clearly monotonic on this finer scale. The ideal gas pressure is shown by the red line. 

 

It can be shown that at still higher temperature (as in the case for 800K noted below), the pressure curve 

remains monotonic.  

 

4.2.8. Water at 800K over a Wide Range of Pressure  
 

Figure 12 shows a plot of pressure versus density at 800K (well above the critical point), using the same 

scale as in Figures 3, 5, 7, and 10. The pressure-density curve here (blue) appears monotonic. The curve 

still differs significantly from the pressure expected from an ideal gas (red line). Figure 13 presents a 

close-up view analogous to Figures 9 and 11. This confirms monotonicity of the blue curve. The 

calculated behavior more clearly converges with that of ideal gas (red line) at sufficiently low pressure.. 
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Figure 12. Pressure as a function of density (blue) at 800K. The red line shows the behavior of ideal gas. 

 

 

Figure 13. Pressure as a function of density (blue) at 800K, expanding the area in the lower left corner of Figure 12 

(low density and low pressure). The red line again shows the behavior of ideal gas. Monotonicity of the blue curve is 

quite clearly apparent. Also apparent is the approach of the blue curve to ideality at very low density and pressure. 

 

Although monotonicity is a characteristic of pressure as a function of density at temperatures above the 

critical temperature, ideal gas behavior is approached only at rather low pressure.  

 

Due to the mathematical complexity of the IAPWS-95 model and the fact that the model is only 

calibrated in a specific range of temperature and pressure, any extrapolation outside that range (especially 

to higher pressure) should be done with care. Additional numerical studies would be recommended. 
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5. Concluding Remarks 
 

The IAPWS-95 model (Wagner and Pruss, 2002) modified as described by IAPWS (2016) has been 

implemented in the program H2OI95. The program is written in simple Fortran and can be used as a basis 

for incorporating the IAPWS-95 model into codes such as SUPCRT92 (Johnson et al., 1992), which 

calculates the thermodynamic and thermochemical properties of chemical species including water over a 

wide range of temperature and pressure. H2OI95 calibrates the thermochemical properties to match the 

recommended CODATA key values (Cox et al., 1989). The implementation has been carefully validated 

against results given by both IAPWS (2016) and Wagner and Pruss (2002). The software is provided as 

both a Windows PC executable and source code. The present user interface is handled through text-based 

input files, and output includes a text-based output file and two .csv (comma-separated-variable) files that 

can be opened by a spreadsheet or plotting program. A test case library is included as part of the package. 

The simple Fortran source code could be easily translated into another programming language such as 

C/C++ or Visual Basic. 

 

The IAPWS-95 model, like previous equation-of-state models for water, is mathematically complex and 

exhibits very complex (“non-cubic”) behavior below the critical temperature. The model uses reduced 

density and inverse reduced temperature as its primary variables. Thus for common problems of specified 

pressure and temperature, iteration is required to find the density matching the desired pressure. This is 

done using Newton-Raphson iteration. The difficulty is that below the critical temperature, there may be 

multiple numerical solutions, of which only one can be valid (or two, at the saturation pressure). The 

numerical solution found is a function of the starting estimate for the density. Some numerical solutions 

can be shown to be physically invalid, such as those have a negative derivative of pressure with respect to 

density (“unstable” solutions) or non-physical results for a physical property such as the square of the 

speed of sound, the heat capacity at constant pressure, or the absolute entropy. H2OI95 and other 

implementations of this and similar equation-of-state models for water use default starting values that are 

thought to generally lead to valid results. H2OI95 has been used to conduct numerical studies of the 

IAPWS-95 model to complement the studies made by Junglas (2008). Results of these numerical studies 

have been used to identify default density values that lead to valid results for problems with specified 

temperature and pressure. 

 

During testing it was found that that for problems with specified temperature and pressure, there are 

convergence issues between the triple point temperature (273.16K) and 298.15K and between 647.082K 

and the critical point temperature (647.096K). It was necessary to apply looser convergence criteria in 
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these temperature ranges. Others including Junglas (2008) and Haar et al. (1984, for the earlier IAPS-84 

equation of state model) used similar accommodations, and it is likely that this is also the case for other 

water equation-of-state solvers. Junglas (2008) ascribed the need for such accommodations to the highly 

non-cubic behavior of the IAPWS-95 model in these regions, but there is more to it. The model itself is 

not truly convergent in these regions, but only nearly so. The signed residual function never reaches the 

zero line, but only gets very close. A “solution” thus exists only for some minimum tolerance, not an 

arbitrarily small tolerance consistent with the 64-bit machine epsilon (smallest non-zero floating point 

number). The model is challenged in these circumstances, but the results are still satisfactory from a 

practical perspective. It is possible that some other set of model equations might avoid this problem, and 

this would represent at least a small improvement over the IAPWS-95 model. 

 

Additional numerical studies are recommended if one is attempting to extrapolate the IAPWS-95 model 

outside its specified range of temperature and pressure. The user should remain cognizant that the model 

equations are complex with limited basis in theory, and that the model itself was fit to data only within 

the specified range of temperature and pressure.  
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Appendix. Equations for Obtaining Thermochemical Results  
 

Results obtained directly from the equation-of-state model (IAPWS-95 and similar models) are typically 

not consistent with standard thermochemical conventions, including those of CODATA (Cox et al., 

1989). Helgeson and Kirkham (1974a) developed a translation approach to obtain thermochemical data 

for water in the original SUPCRT program noted earlier in this report. This program used the now 

outdated Keenan et al. (1969) equation-of-state model. A more straightforward translation approach is 

presented here. In the following discussion, lower case symbols denote quantities defined on a mass basis 

(e.g., units of J g-1 or J g-1 K-1). Upper case symbols denote quantities defined on a molar basis (e.g., units 

of J mol-1 or J mol-1 K-1). Symbols including the “°” sign (S°,  𝛥𝑓𝑈°, 𝛥𝑓𝐻°, 𝛥𝑓𝐴°, 𝛥𝑓𝐺°) denote quantities 

defined on the standard thermochemical scale. Symbols not including this denote quantities on the triple 

point scale. 

 

The entropy, internal energy, and enthalpy can be treated by applying simple offset corrections along with 

adjustment of units using Mw (g mol-1) the molecular weight of water. The requisite relations can be 

written as 

 

𝑆° = 𝑀𝑤[(𝑠 − 𝑠𝑡𝑟𝑖𝑝𝑙𝑒) + 𝑘𝑠]                                                                                                                             (𝐴 − 1) 

𝛥𝑓𝑈° = 𝑀𝑤[(𝑢 − 𝑢𝑡𝑟𝑖𝑝𝑙𝑒) + 𝑘𝑢]                                                                                                                      (𝐴 − 2) 

𝛥𝑓𝐻° = 𝑀𝑤[(ℎ − ℎ𝑡𝑟𝑖𝑝𝑙𝑒) + 𝑘ℎ]                                                                                                                      (𝐴 − 3) 

 

Here 𝑘𝑠, 𝑘𝑢, and 𝑘ℎ are the respective offsets for the specific entropy, specific internal energy, and 

specific enthalpy (𝑘𝑠 was introduced in the main text). Recall that 𝑢𝑡𝑟𝑖𝑝𝑙𝑒 and 𝑠𝑡𝑟𝑖𝑝𝑙𝑒 are zero by 

convention. Recall also that ℎ𝑡𝑟𝑖𝑝𝑙𝑒 = 𝑃𝑡𝑟𝑖𝑝𝑙𝑒𝑣𝑡𝑟𝑖𝑝𝑙𝑒. Although this is small, it is not zero. 
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For the Helmholtz and Gibbs energies, there are two offsets for each. One is associated with the entropy. 

This can be thought of as the “slope” correction, as it affects the temperature dependence of both energy 

functions. The other can be thought of as the “intercept” correction (addition of a constant). The requisite 

standard thermodynamic relations are 𝑎 = 𝑢 − 𝑇𝑠 and 𝑔 = ℎ − 𝑇𝑠. Applying the slope correction first, 

one would redefine the specific Helmholtz energy as 𝑎 = 𝑢 − 𝑇(𝑠 + 𝑘𝑠) and the specific Gibbs energy as 

𝑔 = ℎ − 𝑇(𝑠 + 𝑘𝑠). Then one would add an appropriate constant to each to complete the scale 

transformation. The resulting forms are 

 

𝛥𝑓𝐴° = 𝑀𝑤[𝑢 − 𝑇(𝑠 + 𝑘𝑠) + 𝑘𝑎]                                                                                                                    (𝐴 − 4) 

𝛥𝑓𝐺° = 𝑀𝑤[ℎ − 𝑇(𝑠 + 𝑘𝑠) + 𝑘𝑔]                                                                                                                    (𝐴 − 5) 

 

Here 𝑘𝑎 and 𝑘𝑔 are the respective intercept corrections. 

 

Applying equations (A-1) through (A-5) to 298.15K and 1 bar and rearranging, one may obtain: 

 

𝑘𝑠 =
S298.15𝐾,1 𝑏𝑎𝑟

𝑜

𝑀𝑤
− (𝑠298.15𝐾,1 𝑏𝑎𝑟 − 𝑠𝑡𝑟𝑖𝑝𝑙𝑒)                                                                                             (𝐴 − 6) 

𝑘𝑢 =
𝛥𝑓𝑈298.15𝐾,1 𝑏𝑎𝑟

𝑜

𝑀𝑤
− (𝑢298.15𝐾,1 𝑏𝑎𝑟 − 𝑢𝑡𝑟𝑖𝑝𝑙𝑒)                                                                                      (𝐴 − 7) 

𝑘ℎ =
𝛥𝑓𝐻298.15𝐾,1 𝑏𝑎𝑟

𝑜

𝑀𝑤
− (ℎ298.15𝐾,1 𝑏𝑎𝑟 − ℎ𝑡𝑟𝑖𝑝𝑙𝑒)                                                                                      (𝐴 − 8) 

𝑘𝑎 =
𝛥𝑓𝐴298.15𝐾,1 𝑏𝑎𝑟

𝑜

𝑀𝑤
− 𝑢298.15𝐾,1 𝑏𝑎𝑟 + 298.15(𝑠298.15𝐾,1 𝑏𝑎𝑟 + 𝑘𝑠)                                                   (𝐴 − 9) 

𝑘𝑔 =
𝛥𝑓𝐺298.15𝐾,1 𝑏𝑎𝑟

𝑜

𝑀𝑤
− ℎ298.15𝐾,1 𝑏𝑎𝑟 + 298.15(𝑠298.15𝐾,1 𝑏𝑎𝑟 + 𝑘𝑠)                                                 (𝐴 − 10) 

 

Table A-1 gives the constants calculated from the IAPWS-95 model and the CODATA (Cox et al., 1989) 

recommendations. Slightly different results would be obtained for other equation-of-state models.  

 

Table A- 1. Simple offset constants for the IAPWS-95 model and the CODATA (Cox et al., 1989) thermochemical 

recommendations. 

Constant Value Units 

ks 3.51562 kJ kg-1 K-1 

ku -15767.194 kJ kg-1 

kh -15970.895 kJ kg-1 

ka -11906.844 kJ kg-1 

kg -12110.528 kJ kg-1 

 


