
UNF-ST&DARDSDocumentation
Release 3.0

Kaushik Banerjee,
PaulMiller, and Rob Lefebvre

March 18, 2016





CONTENTS

1 Overview 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Development team . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Installation and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Bundle Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Installing UNF-ST&DARDS . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 Verifying INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.5 Activating Geographic Information System (GIS) . . . . . . . . . . 13
1.2.6 Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Architecture and Capabilities 18
2.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Unified Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Unified Database Content . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Unified Database Design . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Unified Database Software Development Kit (SDK) . . . . . . . . . 23

2.3 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Template Repository . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Analysis Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Fuel Depletion and Decay . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Criticality Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Thermal Hydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.4 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.5 Containment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 User Guide 29
3.1 Graphical User Interface (GUI) . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Analysis Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Pad Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Analysis Model Geometry Viewer . . . . . . . . . . . . . . . . . . . 54
3.1.4 Plot Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.5 SQL Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



3.1.6 Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Developer Guide 61
4.1 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Coding Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Test Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3 Setting up UNF-ST&DARDS Development Environment . . . . . . . 62

4.2 TemplateEngine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.1 TemplateEngine Requirements . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 JSON Parameter Set . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 TemplateEngine Features . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.4 Attribute and Expression Format . . . . . . . . . . . . . . . . . . . . 75
4.2.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Index 79

ii



CHAPTER
ONE

OVERVIEW

1.1 Introduction
This technical product is a user guide of the Used Nuclear Fuel-Storage, Transportation &
Disposal Analysis Resource and Data System (UNF-ST&DARDS). The objective of this man-
ual is to help users (1) understand the various analysis processes within UNF-ST&DARDS
and (2) execute various nuclear safety analyses using the graphical user interface (GUI).
This manual will be updated periodically as UNF-ST&DARDS is updated. Questions or
comments regarding UNF-ST&DARDS should be submitted to <UNFHelp@ornl.gov>.

UNF-ST&DARDS is being developed as a foundational resource for the DOE-NE to stream-
line computational analysis capabilities for characterizing the input for the overall waste
management system. UNF-ST&DARDS provides a controlled, unified domestic spent nu-
clear fuel (SNF) system database—the Unified Database—which is integrated with nuclear
analysis capabilities to support DOE waste management and fuel cycle–related objectives.
The Unified Database is integrated with the analysis tools. This powerful feature of UNF-
ST&DARDS provides a unique platform for performing assembly-specific and cask-specific
assessments of nuclear safety based on actual characteristics of the as-loaded SNF (e.g.,
fuel assembly burnup, enrichment, and decay time). The cask-specific safety evaluations
allow quantification of realistic safety margins associated with actual fuel loading com-
pared with the regulatory licensing limits, and they enable a better understanding of the
implications of and planning for addressing uncertainties related to aging that might arise
from extended storage and subsequent transportation.

In this manual, the standard installation instructions of UNF-ST&DARDS are provided in
Sect. 1 (Overview). Section 2 (Architecture and Capabilities) presents the software archi-
tecture including analysis sequences of UNF-ST&DARDS. Section 3 (User Guide) presents
the GUI of UNF-ST&DARDS. Finally, Sect. 4 (Developer Guide) provides guidance to the
developers including various features of the TemplateEngine.

1

mailto:UNFHelp@ornl.gov


UNF-ST&DARDSDocumentation, Release 3.0

1.1.1 Development team
The core UNF-ST&DARDS development team consists of the following ORNL scientists
(listed alphabetically):

• Kaushik Banerjee <banerjeek@ornl.gov>

• Justin Clarity <clarityjb@ornl.gov>

• Rob Lefebvre <lefebvrera@ornl.gov>

• Henrik Liljenfeldt <liljenfeldth@ornl.gov>

• Paul Miller <millerpp@ornl.gov>

• Josh Peterson <petersonjl@ornl.gov>

• Georgeta Radulescu <radulescug@ornl.gov>

• Kevin Robb <robbkr@ornl.gov>

• John Scaglione <scaglionejm@ornl.gov>

• Bret van den Akker <bpvda@ornl.gov>

General questions about UNF-ST&DARDS software and methods should be directed to the
email list.

1.2 Installation and Verification
The UNF-ST&DARDS installation bundled is a beta version with Unified Database access,
and generated assembly type depletion libraries, and canister thermal axial heat and 3d
dose maps.

Upon completion of this section you will have a functioning UNF-ST&DARDS installed.

1.2.1 Bundle Contents
This UNF-ST&DARDS installation bundle should include the following files:

UNF-STANDARDS-INSTALL-XXXXXXXX.zip, and Manual.pdf (this document)

Where the XXXXXX file suffix indicates the packing date.

E.g., UNF-STANDARDS-INSTALL-2015-09-29_144036.jar indicates the bundle was created
on September 29, 2015, at 144036 or 2:40:36PM.

2 Chapter 1. Overview

mailto:banerjeek@ornl.gov
mailto:clarityjb@ornl.gov
mailto:lefebvrera@ornl.gov
mailto:liljenfeldth@ornl.gov
mailto:millerpp@ornl.gov
mailto:petersonjl@ornl.gov
mailto:radulescug@ornl.gov
mailto:robbkr@ornl.gov
mailto:scaglionejm@ornl.gov
mailto:bpvda@ornl.gov
mailto:banerjeek@ornl.gov


UNF-ST&DARDSDocumentation, Release 3.0

1.2.2 SystemRequirements
UNF-ST&DARDS has the following minimum requirements:

• 64bit Windows 7

• Java 8 (available free at https://java.com/download)

• 4 GB Hard Disk Space

• 2 GB RAM

1.2.3 Installing UNF-ST&DARDS
If the UNF-ST&DARDS installation bundle USB is not already inserted into your USB drive,
do so now.

Copy the UNF-STANDARDS-INSTALL-XXXXXXXX.zip to the desired location of install. For
example purposes, this section will use installation path of C:\Users\user\Desktop\UNF-
STANDARDS where user is your specific user name.

Right click the UNF-STANDARDS-INSTALL-XXXXXXXX.zip file and select the ‘Extract all. . . ’
menu item.

After several minutes the installation will complete as indicated after which double left
clicking the contained setup.bat script will produce installation specific configuration files
needed for launching UNF-ST&DARDS.

1.2. Installation and Verification 3

https://java.com/download


UNF-ST&DARDSDocumentation, Release 3.0

Once setup.bat has been executed, the launch.bat script will be available for execution.
Double click the launch.bat to start UNF-ST&DARDS.

1.2.4 Verifying INSTALLATION
Upon completing INSTALLING UNF-ST&DARDS you can verify your installation.

Navigate to the location to which you installed UNF-ST&DARDS.

Double left-click launch.bat windows batch script file to launch a cmd console and UNF-
ST&DARDS.

A cmd console will display the activity of UNF-ST&DARDS. Specifically, as UNF-ST&DARDS
starts, it attempts to determine if the Unified Database and associated MySQL database

4 Chapter 1. Overview



UNF-ST&DARDSDocumentation, Release 3.0

server are running and starts them as needed.

UNF-ST&DARDS will start on the Analysis Page.

To verify integration click the Pad Maps tab.

1.2. Installation and Verification 5



UNF-ST&DARDSDocumentation, Release 3.0

Select the Maine Yankee site from the [site] drop.

Upon selection, the data tabs will be populated for viewing.

6 Chapter 1. Overview



UNF-ST&DARDSDocumentation, Release 3.0

Select the cask labeled TSC-24-TSC-1 from the [cask] drop down.

Cask-specific data will be loaded and available for viewing.

1.2. Installation and Verification 7



UNF-ST&DARDSDocumentation, Release 3.0

Click the View shielding model button to generate the cask-specific shielding model and
render it in the Fulcrum graphical user interface. This can take a few seconds as the
Unified Database is queried for all parameters needed for construction of the shielding
model.

8 Chapter 1. Overview



UNF-ST&DARDSDocumentation, Release 3.0

The progress bar will indicate Generating shielding model for TSC-24-TSC-1. . . with the
cmd console windows providing detailed activity listing the shielding model construction.
Additionally, because Fulcrum is an external application that communicates with UNF-
ST&DARDS the potential exists that Fulcrum is not running. A ConnectException, as seen
in the cmd console, will be produced when UNF-ST&DARDS starts Fulcrum.

Upon successfully constructing the shielding model, it is displayed in Fulcrum.

1.2. Installation and Verification 9



UNF-ST&DARDSDocumentation, Release 3.0

We can now render the shielding model using Fulcrum’s built-in geometry viewer by left
clicking the Visualize button.

The default Top (X-Y) 2D cross-section through the middle of the cask will be rendered.

10 Chapter 1. Overview



UNF-ST&DARDSDocumentation, Release 3.0

We want to verify the Dose Rate Map Pack was properly installed, so we will load a Dose
Rate Map for the selected Cask by clicking the Mesh menu button and right clicking and
selecting Load mesh file.

You will be prompted with a file browser where you need to navigate to the
C:\Users\user\Desktop\UNF-STANDARDS\data\dose directory, where user has been re-
placed with your user name.

1.2. Installation and Verification 11



UNF-ST&DARDSDocumentation, Release 3.0

Select the TSC-24-TSC-1_bounding_NCTDoseRate_03-01-2024.total.3dmap file and
left-click the Open button. HAC and NCT stand for Hypothetical Accident Conditions
and Normal Conditions of Transportation respectively.

The Fulcrum mesh manager will now indicate the associated 3dmap Dose Rate file with
the shielding model document loaded. Expand the Responses and select Response 1.

The dose rate will be loaded into Fulcrum and can now be visualized as an overlay on the
geometry by updating the Material selection to be Overlay.

The overlay view presents the 3d dose data overlayed on the geometry.

12 Chapter 1. Overview



UNF-ST&DARDSDocumentation, Release 3.0

These steps can be reproduced for casks for which Dose Rate results are available.

You have now verified UNF-ST&DARDS has successfully been installed by launching UNF-
ST&DARDS, requesting visualization of a specific cask requiring UNF-ST&DARDS to query
the Unified Database, construct a cask-specific shielding input by expanding appropriate
templates. And lastly, viewing installed Dose Rate results.

1.2.5 Activating Geographic Information System (GIS)
UNF-ST&DARDS out of the box has the GIS pad map view inactive due to potential graph-
ics card hardware support issues. Activating the GIS map view is easy and can be done by
updating the UNF-ST&DARDS resource file. If you followed the instructions INSTALLING
UNF-ST&DARDS the resource file will be located at C:\Users\user\Desktop\UNF-
STANDARDS\.unf.rc, where user is your user name.

With UNF-ST&DARDS not running, edit the file with your Windows WordPad application.

1.2. Installation and Verification 13



UNF-ST&DARDSDocumentation, Release 3.0

In order to activate the GIS pad map view, change the unf.map.display property from
false to true.

Your unf.map.display should now be true.

14 Chapter 1. Overview



UNF-ST&DARDSDocumentation, Release 3.0

Save the file, and restart UNF-ST&DARDS. If your graphics card hardware supports the
necessary components in UNF-ST&DARDS, the GIS map view will appear.

1.2. Installation and Verification 15



UNF-ST&DARDSDocumentation, Release 3.0

Consult the UNF-ST&DARDS Help documentation (press F1 key or click Help>View Help)
for assistance with interacting with the GIS map view.

If your graphics card hardware does not support the necessary components used by UNF-
ST&DARDS, UNF-ST&DARDS will quit upon selection of the Pad Maps tab and you will see
the following message in your cmd console.

Reverting your C:\Users\user\Desktop\UNF-STANDARDS\.unf.rc file to have
unf.map.dispaly=false will restore default pad map behavior.

16 Chapter 1. Overview



UNF-ST&DARDSDocumentation, Release 3.0

1.2.6 Question
UNF-ST&DARDS is deployed with help documentation to assist users. The help documen-
tation is available via the Help>View Help menu item. Additionally, context specific help
is available by pressing the F1 key.

Further assistance can be acquired by emailing UNFHelp@ornl.gov

1.2. Installation and Verification 17

mailto:UNFHelp@ornl.gov


CHAPTER
TWO

ARCHITECTUREANDCAPABILITIES

2.1 SystemArchitecture
UNF-ST&DARDS is illustrated in Fig. 2.1 and consists of six primary elements: (1) a
user interface (graphical as well command line), (2) the Unified Database, (3) a Unified
Database software development kit, (4) a template repository that contains constructs for
specific nuclear safety analysis tools that have been integrated, (5) an application-agnostic
template engine, and (6) a process manager that handles interactions between the dif-
ferent elements. The nuclear safety analysis tools and their user interfaces are externally
developed to function independently, but they have been integrated into UNF-ST&DARDS
for automating different analysis streams. The current nuclear safety analysis tools con-
sist of SCALE 1, a comprehensive modeling and simulation suite for nuclear safety anal-
ysis and design, and Coolant Boiling in Rod Arrays–Spent Fuel Storage (COBRA-SFS) 2,
a thermal-hydraulic analysis code. SCALE’s Fulcrum user interface provides input editing
and validation, data visualization, and output viewing, and it has been integrated into
UNF-ST&DARDS to provide SCALE input preview, as well as model and results visualiza-
tion. The software infrastructure has been designed with the capability to integrate other
tools, tool interfaces, and analysis packages in a similar fashion, but this would require
development of appropriate templates for inclusion in the template repository, as well as
identification of specific input attributes to ensure they are present in the Unified Database
or added as necessary. The UNF-ST&DARDS process manager was developed to man-
age (1) the workflow across the Unified Database, (2) integrated nuclear safety analysis
tool templates and applications, and (3) results retrieval and interrogation. This software
uses the Java Persistence application programming interface (API) (JPA) entity, controller,
and annotation classes to abstract the communication with the Unified Database. The
SNF templates are implemented, in conjunction with structured parameter sets and Tem-
plateEngine, to abstract the management of nuclear safety and systems processes. UNF-
ST&DARDS uses the Java programming language to provide cross-platform capabilities

1 SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design,
ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June 2011.

2 T.E. Michener, D. R. Rector, J. M. Cuta et al., COBRA-SFS: A Thermal-Hydraulic Code for Spent Fuel
Storage and Transportation Casks, PNL-10782, Pacific Northwest National Laboratory, Richland, Washington,
1995.

18



UNF-ST&DARDSDocumentation, Release 3.0

and increase developer throughput.

Fig. 2.1: UNF-ST&DARDS architecture.

UNF-ST&DARDS is a three-tier application consisting of a presentation, process, and data
tier. In a three-tier application, the presentation tier is the top tier, providing display of
available services and results, typically in a GUI. The process or business tier is the middle
tier, providing access to process functionality and controls. The data tier is the bottom
tier, providing data access and persistence, and it often includes an API or a software
development kit (SDK). The UNF-ST&DARDS data tier is composed of the Unified Database
and its SDK. The process tier coordinates the nuclear safety applications and the Unified
Database. The presentation tier is a GUI that allows point-and-click access to analysis
capabilities via the process tier, as well as data extraction and visualization.

The process tier includes a command line interface for access to execute nuclear safety
applications with a concise set of input parameters. The input parameters are described
in JavaScript Object Notation (JSON) 3. JSON is a standard, human readable, lightweight
(i.e., very few format constructs) data interchange format. The command line interface
provides access to launch all UNF-ST&DARDS analysis capabilities. In the GUI, an analysis
page allows the user to select an analysis type (e.g., criticality) and either (1) reactor type
batch (e.g., all pressurized water reactors [PWRs]), or (2) specific analysis. The GUI is
described Sect. 5.

3 ECMA-International, The JSON Data Interchange Format, ECMA-404, CH-1204 Geneva, October 2013.

2.1. SystemArchitecture 19



UNF-ST&DARDSDocumentation, Release 3.0

2.2 UnifiedDatabase
The Unified Database provides a comprehensive, controlled source of technical data for
various waste management system analysis/evaluation tools, as well as fuel cycle system
analyses and safeguards and security studies. The Unified Database has been designed to
be flexible and expandable to provide controlled inputs to a variety of tools and applica-
tions. Interface controls, relevant data, and data formats will continue to be identified and
added as additional requirements for other tools and capabilities are identified.

Development of the Unified Database involves a staged database approach that includes
the following database stages:

• Development – contains databases used for development purposes, such as structural
change and new data set import verification and validation

• Production – the database from which input parameters for all processes are acquired
and their results imported

• Test – the database used for continuous integration (CI), containing the minimum
set of data required to test UNF-ST&DARDS

• Deployed – databases that have been released (i.e., versioned snapshots of the pro-
duction database)

With these stages, the Unified Database development team can work in clearly delimited
areas, eliminating the potential of affecting production capabilities while conducting de-
velopment tasks.

2.2.1 UnifiedDatabase Content
The following datasets are stored in the Unified Database:

Facility attributes include utility, site, reactor, pool, and independent spent fuel stor-
age installation (ISFSI) data. Federal government radioactive waste attributes include
government-owned high-level radioactive waste (HLW) and government-owned SNF data.
Future facility attributes include interim storage facility (ISF), repackaging facility, and
repository data. Transportation infrastructure attributes include rail, heavy-haul truck,
legal-weight truck, and barge assets data, in addition to transfer times between these
transportation modes. Assembly-specific attributes include actual and projected assem-
bly discharge information and characteristics (e.g., isotopic concentrations, source terms).
Cask/canister attributes include overpack, capacity, physical properties, unit processing
times, unit costs, and characteristics (e.g., dose, component temperatures, keff). Eco-
nomic attributes include the unit cost of reactor sites, transportation infrastructures, ISF,
repackaging facility, and repository surface costs.

These data have been collected from the DOE Office of Civilian Radioactive Waste Man-

20 Chapter 2. Architecture and Capabilities



UNF-ST&DARDSDocumentation, Release 3.0

agement, the General Council (GC) nuclear data forms (RW-859/GC-859) 1 database, and
other sources. The data not obtained from the RW-859 database were obtained by hav-
ing subject matter experts data mine various sources to extract the required information.
These sources include DOE studies, open literature, vendor data, and utility data. One es-
sential requirement of the Unified Database is that all of the data within the database must
be traceable. All data references are uploaded to the Centralized Used Fuel Resource for
Information Exchange (CURIE) website at curie.ornl.gov, allowing permanent storage and
simple retrieval for all imported references. Correlating the data from the subject matter
experts to the appropriate reference source is initially handled with the use of Microsoft
Excel spreadsheets that include the data and web links to the references stored on CURIE
prior to import into the database. The subject matter experts are responsible for verifying
that the data and the reference sources concur.

A data importer was developed to upload the Excel spreadsheets to the Unified Database.
The data importer uses the JPA entity, annotation, and controller classes to generate the ap-
propriate modifications to the Unified Database and to successfully conduct data imports.
The importer uses an extension convention to identify the type of data being imported. For
each data record created, a reference record is also created that contains the source of the
import, such as the Excel spreadsheets populated by the subject matter experts.

Data that have been imported to the Unified Database continue to be editable. Any changes
to the data require review and approval before they are implemented into the production
version of the database. Once changes are made to the production version, the data that
have been changed and the rationale for the changes are logged and distributed with the
next deployment of the database.

The Unified Database change control process records the subject matter expert’s name
and archives the previous data within the database. Storing the data, notes, references,
and archived data is accomplished by grouping the tables into three main areas: “data,”
including data tables with data necessary for analysis tools; “reference,” including tables of
reference information corresponding to specific data tables, and “history,” including tables
that serve as change logs which record users and modification times of specific data and
reference tables, along with the data and references that were changed.

The reference tables reflect the data tables, with the exception that each data column is
a text field containing the reference as a uniform resource identifier (URI). In addition
to reflecting each table’s data column with a reference URI, each reference column has a
corresponding modification date column indicating the time at which the data and their
associated references were imported into the database. A history table exists for each
reference and data table with the log of table changes. Specifically, history tables reflect
the associated tables column for column, along with the time of the change, the type of
change (e.g., “update,” “delete”), and the identification of the user making the change.

1 “RW-859 Nuclear Fuel Data,” US Department of Energy, Energy Information Administration, Washing-
ton, D.C., October 2004.

2.2. UnifiedDatabase 21

https://curie.ornl.gov


UNF-ST&DARDSDocumentation, Release 3.0

2.2.2 UnifiedDatabase Design
The Unified Database design was created using the MySQL Community edition database.
MySQL Community edition is a freely available, well-documented, open source, relational
database server that uses SQL. Many utilities exist to assist in development and mainte-
nance of MySQL databases, making it a productive environment to streamline the data
needs of nuclear safety and systems analysis tools.

SQL databases are composed of tables, each of which contains a fixed number of named
columns. Each table row constitutes a “record,” many of which can exist in a given table.
“Attributes” exist that describe each column in a table. These attributes are often the type
of data in the column (integer, real, text, date, etc.), as well as the constraints (unique,
auto-incrementing, optional, table relations, etc.). The SQL database, with its structured
and relational constructs, lends itself to data normalization. The process of data normal-
ization involves separating tables into their constituents until the table represents one and
only one component. Normalization removes redundant data and minimizes data depen-
dencies.

The Unified Database employs normalization as a general best practice in data manage-
ment. Due to normalization, each record in a table is uniquely identifiable, creating what
is called a primary key. Relationships between tables are described with a foreign key field
that stores the primary key of the related table.

With hundreds of tables and thousands of table columns, nomenclature consistency is of
paramount importance. The Unified Database uses a consistent convention for naming
tables and columns to ensure consistent use and interpretation of the data and their re-
lationships. Columns use a verbose name with a suffix indicating the unit of measure.
For example, the assembly table contains assembly-specific attributes, one of which is the
initial uranium mass. These attributes use a verbose name and the column data type
(e.g., kilograms), as in initial_uranium_kg. Relationship columns include the related ta-
ble’s name and the primary key column name separated by an underscore. The assembly
decay results table has a relationship with the assembly listed in the assembly table (as-
sembly) from which the results were derived; the column that stores the foreign key is
named assembly_id, from which the table (assembly) and primary key (id) of the related
table are easily discernable.

In addition to the consistent nomenclature and the suffix for the unit of measure, the
Unified Database includes a data dictionary to provide a more detailed explanation of what
each table and column contains. The data dictionary stores a description for each column
and a full name for the unit of measure. As an example, the entry for column reactor_id on
the cycle table explains, “Foreign key to the reactor table indicating the reactor to which
this cycle belongs.” For a user viewing an unfamiliar table, this information can help clarify
any questions about what the data mean.

22 Chapter 2. Architecture and Capabilities



UNF-ST&DARDSDocumentation, Release 3.0

2.2.3 UnifiedDatabase Software Development Kit (SDK)
One of the key features of the Unified Database is the capability for integration with multi-
ple computational tools and models. Integration with the Unified Database is streamlined
with a Java programming language, SDK. The majority of the Unified Database’s SDK
consists of automatically generated JPA classes. JPA interfaces the concrete data storage
medium (MySQL) from the abstract data relationships and includes the Java Persistence
Query Language (JPQL). The JPA classes consist of entities, annotations, and controllers.
The entity classes represent the data tables. The annotation classes are used by JPQL to
provide programmatic (i.e., via software), storage agnostic, conditional entity retrieval.
The controller classes provide a means to create, edit, and delete entities. An advantage
of the JPA is that significant portions of user-experienced SQL runtime errors are migrated
to developer-mitigated compile-time errors. Compile-time errors are easier to manage by
developers and help to ensure that the system is more stable for users.

2.3 Templates
UNF-ST&DARDS uses templates that serve as building blocks from which application-
specific input is defined. The UNF-Templates repository provides UNF-ST&DARDS
application-agnostic input generation. Templates allow UNF-ST&DARDS to use the same
set of parameters to succinctly communicate to each application while decoupling UNF-
ST&DARDS from any specific application. The TemplateEngine, which processes and ex-
pands templates, is written in the Java programming language and includes an SDK and
standalone Java executable. The SDK facilitates the TemplateEngine integration into UNF-
ST&DARDS, while the standalone Java executable provides a means by which template
creators can test and verify their templates. All the functionalities of the TemplateEngine
are described in Appendix A. The parameter set is defined as a structured collection of
attributes, objects, and arrays of attributes. Objects and arrays can be embedded within
one another and themselves. JSON is the syntax that represents a parameter set.

2.3.1 Template Repository
The UNF-Templates repository uses the Mercurial Distributed Version Control System
(DVCS) to track changes, manage collaboration between template developers, and mit-
igate conflicts between developer’s changes. Mercurial is integrated with FogCreek’s Fog-
bugz management system, which features issue tracking, discussion forums, customer re-
lationship management, and evidence-based scheduling to further enhance project man-
agement and collaboration. Current tools with integrated templates are the SCALE code
system and COBRA-SFS. The template repository structure is as follows:

• input templates for SCALE’s CSAS6 criticality safety analysis sequence,

2.3. Templates 23

http://mercurial.selenic.com
http://mercurial.selenic.com
http://www.fogcreek.com/fogbugz
http://www.fogcreek.com/fogbugz


UNF-ST&DARDSDocumentation, Release 3.0

• common templates used by different analysis types (e.g., header templates, file copy,
etc.),

• input templates for containment analysis,

• input templates for SCALE’s Transport Rigor Implemented with Time-dependent Op-
eration for Neutronic (TRITON) fuel assembly depletion tool,

• input templates for SCALE’s ORNL Isotope Generation and Depletion Code (ORI-
GEN) Assembly Isotopics (ORIGAMI) analysis sequence for computing fuel assembly
discharged and decayed isotopic inventory and decay heat,

• the regression test directory containing JSON files for testing,

• input templates for SCALE’s MAVRIC shielding and dose analysis sequence,

• input templates for COBRA-SFS thermal analysis, and

• COBRA Creator Of Most Assembly’s Necessary Data, Even Radgen (COMANDER)
utility template for generating fuel assembly geometry subtemplates for COBRA-SFS
thermal analysis.

These templates use Kitware’s CMake, the cross-platform, open-source build and test sys-
tem, in conjunction with the SCALE regression harness, to construct a UNF-Templates test
harness that helps prevent regression in automated template execution capabilities. UNF-
Templates testing needs the TemplateEngine and SCALE regression harness to be available.
The TemplateEngine is needed for the expansion of the templates and subsequent verifi-
cation of template intent. SCALE is needed for its regression harness, which drives the
TemplateEngine, dissects the result, and compares it against the expected result.

A template expansion test case is created and placed into the regression test directory
(UNF-Templates/regression/input). CMake is executed to create a platform-specific config-
uration of the test in the testing directory. Once configured, the test is verified, generating a
.table file containing extracted points of interest which are subsequently compared against
the expected results via a specialized difference tool provided by the SCALE regression har-
ness. Once the result from the test case is as expected, the resulting .table file is moved into
the expected results directory (UNF-Templates/regression/output). Upon future regression
testing, the testing harness has an approved test result to compare against to demonstrate
that the acceptance criteria have been satisfied, resulting in a pass or signaling a regres-
sion. The regression tests examine the functional requirements of the system. All new
templates and their tests are added to the UNF-Templates Mercurial repository and pushed
back to the central development repository for integration into UNF-ST&DARDS and or
other templates.

The Wiki page (inside ORNL network) presents (1) the template repository cloning process
from the central repository to a local machine for template development and (2) processes
for pushing and pulling changes from the central repository. Access to the template repos-
itory requires permission from the system administrators and access to the Oak Ridge
National Laboratory (ORNL) internal network. The permission process can be initiated by
sending an email to UNFHelp@ornl.gov.

24 Chapter 2. Architecture and Capabilities

http://www.kitware.com/opensource/cmake.html
http://neptune.ornl.gov/wiki/index.php/UNF_Db_Templates
mailto:UNFHelp@ornl.gov


UNF-ST&DARDSDocumentation, Release 3.0

The criticality analysis–specific template development process is described in Ref. 1. Sim-
ilarly, the thermal 2, shielding 3, and containment 4 template development processes are
documented.

2.4 Analysis Sequence
UNF-ST&DARDS currently provides the following nuclear safety analyses capabilities:

• Depletion and decay: provides SNF isotopic compositions (subsequently used in crit-
icality analysis), heat load (subsequently used in thermal analysis), radiation source
(subsequently used in dose/shielding calculations), and isotopic activities in curies
(subsequently used in containment calculations),

• Criticality: calculates the keff for as-loaded casks,

• Thermal: provides cladding and surface temperatures of as-loaded casks,

• Shielding: provides radiation dose rate maps outside the as-loaded transportation
casks, and

• Containment: calculates allowable leakage rate for as-loaded transportation casks.

The current integrated nuclear safety analysis tools that perform all of the above func-
tions (excluding containment) are SCALE and COBRA–SFS. SCALE provides the ORIGEN
ORIGAMI sequence, the Criticality Safety Analysis Sequence with KENO-VI (CSAS6), and
the Monaco with Automated Variance Reduction using Importance Calculations (MAVRIC)
shielding sequence, which are used for performing the depletion and decay, criticality, and
shielding analyses, respectively. The COBRA-SFS thermal hydraulics application is used
with the COBRA-COMANDER utility 1 to provide system component temperatures, includ-
ing peak and minimum clad temperatures, as well as cask surface temperatures. The
containment analysis equations are implemented in templates, and the TemplateEngine
expands these templates with cask-specific parameters to determine cask-specific allow-
able leakage rate.

UNF-ST&DARDS process manager contains the business logic (i.e., rules on how data can
be created, displayed, stored, and changed) to manage the preparation, execution, and

1 J.B. Clarity et al., Criticality Process, Modeling and Status for UNF-ST&DARDS, FCRD-NFST-2015-
000440, Oak Ridge, TN, July 2015.

2 K.R. Robb et al., Report Documenting Model Development for Thermal Analyses, ORNL/LTR-2013/434,
Oak Ridge, TN, September 2013.

3 G.Radulescu et al., Models for Dose Rate Analyses, FCRD-NFST-2014-000358, Oak Ridge, TN, August
2014.

4 G.Radulescu et al., Containment Analysis Capability of UNF-ST&DARDS, FCRD-NFST-2015-000657, Oak
Ridge, TN, March 2015.

1 COBRA-COMANDER cycle 1.0, Input Generator for COBRA-SFS, ORNL/TM-2014/9 Oak Ridge National
Laboratory, Oak Ridge, Tennessee, March 2014.

2.4. Analysis Sequence 25



UNF-ST&DARDSDocumentation, Release 3.0

results retrieval of these applications and their subsequent processes. Process manage-
ment and results are formally described in the unified modeling language (UML) sequence
diagram depicted in Fig. 2.2 In general, an application’s process flow is as follows:

1. Retrieve the entities required for process execution from the Unified Database.

2. Retrieve the process input template.

3. Create a process input by expanding the process template with a JSON parameter set
describing the entities.

4. Execute the process with the expanded process input.

5. Upon completion of processing, extract and store the results.

2.4.1 Fuel Depletion andDecay
The fuel assembly depletion and decay process requires assembly characteristics to exe-
cute. The process manager aggregates these characteristics (e.g., assembly-specific initial
enrichment and uranium mass, irradiation history information, and discharge burnup)
from the Unified Database, creating a parameter set. The fuel assembly depletion and
decay template is acquired from the UNF-Templates repository and provided to the Tem-
plateEngine with the parameter set, creating a problem- and application-specific input file.
The application-specific input file to initiate the fuel assembly depletion and decay process
is then executed by the process manager. This process results in generation of assembly-
specific isotopic concentrations, decay heat, and radiation source term results that are
extracted and stored for future use. The application’s entire result set is archived, and
specific parameters or subsets are imported into the Unified Database.

2.4.2 Criticality Safety
The cask criticality safety process requires cask type, cask inventory position, cask content
characteristics, and an evaluation date to execute. The process manager aggregates these
characteristics from the Unified Database and creates a parameter set. The fuel assembly
inventory depletion and decay prerequisite processes are executed for each assembly in a
given cask if the results are not available at the evaluation date. The criticality template
is acquired from the UNF-Templates repository and provided to the TemplateEngine with
the parameter set, creating a problem- and application-specific input file. The application-
specific input file required to initiate the cask criticality analysis process is then executed.
This process generates cask-specific neutron multiplication factor (k-effective) and uncer-
tainty results that are extracted and stored for future use.

26 Chapter 2. Architecture and Capabilities



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 2.2: UNF-ST&DARDS nuclear safety analysis sequence.

2.4. Analysis Sequence 27



UNF-ST&DARDSDocumentation, Release 3.0

2.4.3 Thermal Hydraulics
The thermal hydraulics analysis process requires cask type, cask inventory position, cask
content characteristics, and an evaluation date to execute. The process manager aggre-
gates these characteristics from the Unified Database, creating a parameter set. Cask-
specific fuel assembly inventory depletion and decay prerequisite processes are executed if
results are not already available for the given evaluation date. The thermal hydraulics
template is acquired from the UNF-Templates repository and provided to the Templa-
teEngine with the parameter set, creating a problem- and application-specific input file.
The application-specific input file to initiate the cask thermal hydraulics analysis process
is executed by the process manager. This process results in generation of assembly-specific
peak and minimum clad temperatures, cask-specific surface temperatures, and total decay
heat results that are extracted and stored for future use.

2.4.4 Shielding
The cask shielding process requires cask type, cask position, cask inventory characteristics,
and an evaluation date to execute. The process manager aggregates these characteristics
from the Unified Database, creating a parameter set. Cask-specific fuel assembly and com-
ponent inventory depletion, decay, and activation prerequisite processes are executed if
results are not already available for the given evaluation date. The shielding template is
acquired from the UNF-Templates repository and provided to the TemplateEngine with the
parameter set, creating a problem- and application-specific input file. The cask shielding
process is executed with the input by the process manager. This process results in gener-
ation of cask-specific dose rates and uncertainty results that are extracted and stored for
future use.

2.4.5 Containment Analysis
The cask containment analysis process requires cask type, cask inventory characteristics,
and an evaluation date to execute. The process manager aggregates these characteristics
from the Unified Database and creates a parameter set. The fuel assembly inventory de-
pletion and decay prerequisite processes are executed for each assembly in a given cask if
the results are not available at the evaluation date. The containment template is acquired
from the UNF-Templates repository and provided to the TemplateEngine with the param-
eter set. The TemplateEngine replaces all the variables in the containment template by
their respective values and in terms solve the containment analysis equations to calculate
the allowable leakage rate. This process generates cask-specific allowable leakage rate re-
sults that are extracted from the expanded template and stored in the Unified Database for
future use.

28 Chapter 2. Architecture and Capabilities



CHAPTER
THREE

USERGUIDE

3.1 Graphical User Interface (GUI)
The graphical user interface (GUI) contains the following components (Fig. 3.1, left
panel):

• Analysis Tab - UNF-ST&DARDS analysis capabilities accessible from this GUI form.

• Exports Tab - Commonly requested datasets available in tabular format from this GUI
form.

• Pad Maps Tab - Geographic Information System (GIS)-Unified Database integrated
results navigator.

• SQL Viewer Tab - Structured query language input and results form for native read-
only Unified Database access.

• Tables Tab - Some consolidated Unified Database information in tabular format.

Menu and help buttons are on the top left corner of the GUI. Except for the “change user
password” option the other items in the menu drop-down list are under development.
“Change user password” can be used to change the password for the Unified Database.
The help button provides UNF-ST&DARDS help. In addition to the description of the GUI,
the help document provides (1) a description of the configuration file required to run
UNF-ST&DARDS, (2) a description of the Unified Database (provided in Section 3.1) with
the list and description of all the tables in the Unified Database, and (3) a description of
templates (Section 2.2) and the template repository (Appendix A). The analysis tab, pad
maps tab, and SQL viewer tab are described below. The exports and tables tabs will be
added in a future revision of this manual.

3.1.1 Analysis Tab
The analysis tab is shown in Fig. 3.1. The analysis tab allows for selection of an evalua-
tion type and site or reactor (PWR and boiling water reactor [BWR]) type-specific analysis.
Currently the only analysis type activated is the bounding analysis, which refers to analysis

29



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.1: UNF-ST&DARDS GUI.

30 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

with conservative reactor irradiation parameters that harden the neutron energy spectrum.
Nominal (using nominal reactor irradiation parameters) and detailed (using detailed re-
actor irradiation parameters) analysis types will be implemented in future.

All analyses can have their execution modes changed to generate the template parameter
sets, parameter sets and input, or parameter sets, input, and execution of the analysis
application. This can be useful in conducting test runs of a desired analysis and inspecting
the analyses parameters or inputs.

When conducting parameter set and input-only execution, the inputs generated may uti-
lize surrogate information, as the actual input would require execution of a prerequisite
process. For example, “parameter set” and “input only” execution of canister criticality
will generate required isotope discharge and decay parameter sets and inputs. However,
it will not execute these inputs, so the canister criticality input being supplemented with
surrogate input. This is due to the required isotopic concentration input sections not being
generated by the prerequisite decay analyses because no execution of the analysis applica-
tions are performed. The start button is used to run the selected analysis type.

Evaluation Type: Isotope
The isotope evaluation type allows for generation of assembly-specific discharged isotopic
libraries. These libraries can be used for subsequent assembly isotope decay analysis.
These analyses require the precalculated appropriate assembly type interpolation libraries.
The analysis scope can be reduced by deselecting the run checkbox for the listed assem-
blies for which analysis is not desired. Fig. 3.2 shows an isotope analysis option for two
selected assemblies (LM01B8 and LM01B9) from the Beaver Valley 1 reactor site. The two
assemblies are selected by deselecting all the other assemblies in the run checkbox.

Evaluation Type: Decay
The decay evaluation type is used for the generation of assembly-specific decayed isotopic
libraries. These libraries require the corresponding pre-generated discharged isotopic in-
ventory (discussed in Section 4.1.1) libraries. If the discharge libraries do not exist that
UNF-ST&DARDS will conduct the pre-requisite discharged isotopic inventory library analy-
ses. The generated assembly-specific decayed isotopic inventory libraries can subsequently
be used for criticality, shielding, thermal, and containment analyses. The decay evaluation
type requires a specific evaluation date or set of dates (comma delimited) of the format
MM/DD/YYYY. The analysis scope can be reduced by deselecting the run checkbox for
listed assemblies for which analysis is not desired. Results of the decay calculations are
stored in the Decay_Concentration_Summary_bounding table in the unified database.

Fig. 3.3 shows the decay evaluation type for all the discharged assemblies at Maine Yankee
site for two specified decay dates.

3.1. Graphical User Interface (GUI) 31



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.2: Discharge isotope analysis for two selected assemblies from Beaver Valley 1
reactor site.

Fig. 3.3: Decay evaluation type for all the discharged assemblies at the Maine Yankee site
for two specified dates.

32 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Evaluation Type: Canister Criticality
The canister criticality evaluation type is used for as-loaded, canister-specific criticality
safety analysis. These calculations require a significant amount of time to run and poten-
tially large amounts of system resources. This evaluation type requires a specific evaluation
date or set of dates (comma delimited) of the format MM/DD/YYYY. In addition, the key-
word inservice can be used to conduct analysis for a canister’s inservice date. The analysis
scope can be reduced by deselecting the run checkbox for listed canisters for which analysis
is not desired.

For criticality analysis, the decayed isotopic inventories for the requested analysis dates
are required to be pregenerated for all of the assemblies in the selected canisters. If
the decayed isotopic inventories do not exist, UNF-ST&DARDS will conduct the prerequi-
site assembly-specific decayed isotopic inventory analysis before conducting the criticality
analysis. Upon completion of analyses, UNF-ST&DARDS will extract the k-effective and un-
certainty values and import them into the Unified Database (canister_criticality_bounding
table) for future analysis.

Fig. 3.4 presents the criticality analysis type for two specified dates.

Fig. 3.4: Criticality analysis type for all the canisters at Maine Yankee site for two specified
dates.

Evaluation Type: Cask Thermal
The thermal evaluation type is used to generate assembly-specific peak and minimum clad
temperatures and cask-specific surface temperatures and total decay heat results. These

3.1. Graphical User Interface (GUI) 33



UNF-ST&DARDSDocumentation, Release 3.0

calculations require a significant amount of time to run. This evaluation type requires a
specific evaluation date or set of dates (comma delimited) of the format MM/DD/YYYY. In
addition, the keyword inservice can be used to conduct analysis for a canister’s inservice
date. The analysis scope can be reduced by deselecting the run checkbox for listed canisters
for which analysis is not desired.

For thermal analysis, the decayed isotopic inventories for the requested analysis dates
are required to be pregenerated for all the assemblies in the selected canisters. If the
decayed isotopic inventories do not exist, UNF-ST&DARDS will conduct the prerequi-
site assembly-specific decayed isotopic inventory analysis before conducting the thermal
analysis. Upon completion of analyses, UNF-ST&DARDS will extract the peak and min-
imum clad and surface temperature values and import them into the Unified Database
(cask_thermal_bounding table) for future analysis. In the GUI, the thermal evaluation type
appears similar to the criticality evaluation type presented in Fig. 3.4.

Evaluation Type: Canister Design Basis
The canister design basis evaluation type is used for the design basis criticality analysis
using a uniform loading map (same burnup and enrichment in all canister locations). A
step-by-step description of canister design basis calculation is provided below.

1. Select a canister model (see Fig. 7) from the drop-down menu. (Note: Not all
canister models have canister input templates, so some may not work).

2. Select the assembly type from the drop-down menu to populate the canister.

3. Enter a desired 235U enrichment for the assemblies.

4. Enter the burnup (megawatt days per metric ton of uranium [MWd/MTU]) to be
applied to each assembly.

5. Enter a unique canister name.

6. Enter a specific power (megawatt per metric ton of uranium [MW/MTU]) to be ap-
plied to each assembly.

7. Indicate whether it is desired to reuse discharge f71, which will reuse any assembly-
discharged isotopic inventory libraries previously generated.

8. Indicate if it is desired to reuse decayed values which will reuse any assembly de-
cayed isotopic inventory data previous generated.

9. Indicate the canister’s inventory count. When this inventory count is specified, the
canister inventory table is populated for inspection.

10. Specify the decay time(s) (days). If the analysis date(s) is specified, the decay time is
computed as the difference (in days) from the day of analysis to the analysis date(s).
The analysis date(s) cannot be prior to the day of analysis (i.e., negative decay time).

11. Press the START button to conduct the requested analysis.

34 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Note that the inventory can be removed by specifying an inventory count of 0, changing
the select parameters, and entering and re-entering inventory count. Fig. 3.5 presents the
canister design basis evaluation type.

Fig. 3.5: Canister design basis evaluation type.

Evaluation Type: Interpolation Library
The interpolation library evaluation type is used for the generation of cross section libraries
specific to the assembly type. This analysis can be conducted with the following steps:

1. Select the library type from the drop-down list (see Fig. 3.6) of assembly types (Note:
Not all assembly types have depletion input templates, so analysis may fail at input
generation.)

2. Enter the desired enrichment(s).

3. Press the START button to commence analysis.

Upon completion of the application, the generated library is copied back to the appropriate
arpLib resource directory. Note that the final step in the interpolation library generation
is the update of the arplib.txt located at the location that is pointed to by the appropri-
ate arpLib resource. The interpolation library generation requires significant computation
resources. It is advised to run only a single process at a time. Fig. 3.6 presents the
interpolation library evaluation type as can be seen in the GUI.

3.1. Graphical User Interface (GUI) 35



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.6: Interpolation library evaluation type.

Evaluation Type: Cask Shielding/Dose
The shielding evaluation type is used for the generation of canister-specific shielding anal-
ysis for the transportation cask. These calculations require a significant amount of time
to run. This evaluation type requires a specific evaluation date or set of dates (comma
delimited) of the format MM/DD/YYYY. In addition, the keyword inservice can be used to
conduct analysis for a canister’s inservice date. The analysis scope can be reduced by dese-
lecting the run checkbox for listed canisters for which analysis is not desired. For shielding
analysis, the decayed isotopic inventories for the requested analysis dates are required to
be pregenerated for all the assemblies in the selected canisters. If the decayed isotopic
inventories do not exist, UNF-ST&DARDS will conduct the prerequisite assembly-specific
decayed isotopic inventory analysis before conducting the thermal analysis. Upon comple-
tion of analyses, UNF-ST&DARDS will extract the dose rate values on and near the surface
of the transportation cask and import them into the Unified Database (dose_hac_bounding
and dose_nct_bounding tables) for future analysis. In the GUI, the shielding evaluation type
appears similar to the criticality evaluation type presented in Fig. 3.4.

Evaluation Type: Cask Containment
Containment evaluation type is used for canister-specific containment analysis of a trans-
portation package. This evaluation type requires a specific evaluation date or set of dates
(comma delimited) of the format MM/DD/YYYY. In addition, the keyword inservice can
be used to conduct analysis for the canister’s inservice date. The analysis scope can be
reduced by deselecting the run checkbox for listed canisters for which analysis is not de-
sired. For containment analysis, the decayed isotopic inventories for the requested analysis

36 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

dates are required to be pregenerated for all the assemblies in the selected canisters. If the
decayed isotopic inventories do not exist, UNF-ST&DARDS will conduct the prerequisite
assembly-specific decayed isotopic inventory analysis before conducting the containment
analysis. Upon completion of analyses, UNF-ST&DARDS will extract the allowable leakage
rate values of the transportation cask and import them into the Unified Database (contain-
ment_bounding tables) for future analysis. In the GUI, the containment evaluation type
appears similar to the criticality evaluation type presented in Fig. 3.4.

3.1.2 PadMaps
The pad maps tab provides information for each site. It provides a GIS-integrated naviga-
tion panel, allowing quick site-specific viewing of results. Fig. 3.7 presents the pad map
view.

Fig. 3.7: Pad map view.

Typical GIS controls are available in the map view:

• click and drag to pan, or click the pan arrows in the lower left corner,

• double click to center map on clicked point,

3.1. Graphical User Interface (GUI) 37



UNF-ST&DARDSDocumentation, Release 3.0

• scroll in and out to zoom in and out respectively, or click the + and - buttons in the
lower left corner,

• hover over a site to display site information in a popup bubble or site information in
the information box in lower right corner,

• use the controls in the lower left corner for perspective rotation (left and right) and
angle controls, as well as landscape relief increase and decrease, and

• at any point during navigation, reset the view by clicking the reset selection button
in the upper right corner.

Nationwide assembly self-protection status (as shown in Fig. 3.8) can also be viewed from
the global pad map view by clicking the Self-Protecting tab on the upper right corner. The
Self-Protecting tab allows user to change the self-protection threshold (dose above which
the assemblies are considered as self-protected) and recalculate the self-protection status.
The default threshold is set to 100 Rem. Note that in the global pad map view all the
other tabs are disabled and they can be only viewed by selecting a site. The following
figure presents the nationwide self-protecting status as can be seen by selecting the Self-
Protecting tab from the global pad map view.

Fig. 3.8: Self-protecting status of assemblies discharged nationwide.

Clicking the pad maps (site) breadcrumb in the upper right corner provides a list of sites

38 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

to choose from. Clicking a site auto-zooms the map perspective to the site’s dry storage
pad, allowing for inspection of the site’s dry storage cask inventory, as shown in Fig. 3.9.

Fig. 3.9: Pad view of a site.

In the site’s pad view, hovering the mouse over a cask will provide the cask’s identification
in a popup bubble. Available details can be viewed by clicking the cask. Clicking the pad
maps (cask) breadcrumb in the upper right corner will provide a list of site-specific casks
to choose from. The tabs described below are available for each analyzed site.

Cask criticality
The criticality view allows viewing of all site-specific cask criticality results as shown in Fig.
3.10. On the left is the series name listing of all plotted series, with a check box allowing
for toggle of the series display. The cask criticality plot is in the center. The cask criticality
plot interactions are described in the plots section. The pad map overview is on the right
and lists the casks on the pad. Right clicking a row in the pad map overview list provides a
context menu which allows for viewing the details of the selected cask or saving the table
as a comma separated value (csv) formatted file to a location of the user’s choice.

3.1. Graphical User Interface (GUI) 39



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.10: Criticality results for all the canisters of a site.

40 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Cask total decay heat
The total decay heat tab provides a site-wide canister-specific total decay heat view, as
shown in Fig. 3.11. On the left is the series name listing of all plotted series, with a check
box allowing for toggle of the series display. The total decay heat plot is in the center. The
total decay heat plot interactions are described in the plots section. The pad map overview
is on the right and lists the casks on the pad. Right clicking a row in the pad map overview
list provides a context menu, which allows the user to view the details of the selected cask
or to save the table as a comma-separated value (csv) formatted file to a location of the
user’s choosing.

Fig. 3.11: Total decay heat results for all the canisters of a site.

Cask clad temperatures
The canister cladding temperatures provide site-wide canister-specific cladding temper-
atures, as shown in Fig. 3.12. The Y-axis displays the cladding temperature (degrees
Fahrenheit), and the X-axis shows the evaluation date.

3.1. Graphical User Interface (GUI) 41



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.12: Total Clad temperature results for all the casks of a site.

Cask surface temperatures
The canister surface temperature results provide site-wide canister-specific surface tem-
peratures, as shown in Fig. 3.13. The Y-axis displays the surface temperature (degrees
Fahrenheit), and the X-axis shows the evaluation date.

Hypothetical accident condition – 1-meter dose
The canister hypothetical accident condition 1-meter dose provides the site-wide canister-
specific (canister in its designated transportation cask) hypothetical accident condition
one-meter dose rates as shown in Fig. 3.14. The Y-axis displays the dose rate (mrem/hr),
and the X-axis presents the evaluation date.

Normal condition of transportation – surface dose
The canister normal conditions of transportation surface dose rate results provide site-wide
canister-specific (each canister in their designated transportation cask) normal conditions
of transportation surface dose rates, as presented in Fig. 3.15. The Y-axis displays the dose
rate (mrem/hr), and the X-axis shows the evaluation date.

42 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.13: Surface temperature results for all the casks of a site.

Normal condition of transportation – 2-meter dose
The canister normal conditions of transportation 2-meter dose rate results provide site-
wide canister-specific (each canister in their designated transportation cask) normal con-
ditions of transportation 2-meter dose results, as shown in Fig. 3.16. The Y-axis displays
the dose rate (mrem/hr), and the X-axis shows the evaluation date.

Normal condition of transportation – personnel boundary dose
The canister normal conditions of transportation personnel boundary dose rate results pro-
vide site-wide canister-specific (each canister in its designated transportation cask) normal
conditions of transportation personnel boundary dose rates, as shown in Fig. 3.17. The
Y-axis displays the dose rates (mrem/hr), and the X-axis shows the evaluation date.

Assembly total decay heat (by burnup)
The assembly total decay heat (grouped by burnup) provides site wide assembly-specific
total decay heat as a function of time, as shown in Fig. 3.18. The Y-axis on the left displays
the total assembly decay heat (watts/assembly). The color bar on the right displays the
burnups, and the X-axis shows the evaluation date.

3.1. Graphical User Interface (GUI) 43



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.14: Hypothetical accident condition 1-meter dose rates for all the canisters at a site
in their designated transportation cask.

44 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.15: Normal condition of transport surface dose rates for all the canisters at a site in
their designated transportation cask.

3.1. Graphical User Interface (GUI) 45



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.16: Normal condition of transport 2-meter dose rates for all the canisters at a site
in their designated transportation cask.

46 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.17: Normal condition of transport personnel boundary dose rates for all the canis-
ters at a site in their designated transportation cask.

3.1. Graphical User Interface (GUI) 47



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.18: The total decay heat as a function of time of all the assemblies at a site grouped
by burnup.

48 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Assembly total decay heat (by discharge date)
The assembly total decay heat (grouped by discharge date) provides site-wide assembly-
specific total decay heat as a function of time, as shown in Fig. 3.19. The Y-axis on the
left displays the total assembly decay heat (watts/assembly). The color bar on the right
displays the discharge dates, and the X-axis shows the evaluation date.

Fig. 3.19: The total decay heat as a function of time of all the assemblies at a site grouped
by discharge date.

Normal condition of transport – allowable leakage rate
The canister normal conditions of transportation allowable leakage rate results provide
site-wide canister-specific (each canister in their designated transportation cask) normal
conditions of transportation allowable leakage rates as shown in Fig. 3.20. The Y-axis
displays the allowable leakage rates (cc/sec), and the X-axis shows the evaluation date.

Normal condition of transport – allowable release rate
The canister normal conditions of transportation allowable release rate results provide
site-wide canister-specific (each canister in their designated transportation cask) normal

3.1. Graphical User Interface (GUI) 49



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.20: Normal condition of transport containment results (allowable leakage rate) for
all the canisters at a site in their designated transportation casks.

50 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

conditions of transportation allowable release rates, as shown in Fig. 3.21. The Y-axis
displays the allowable leakage rates (curies/sec), and the X-axis shows the evaluation
date.

Fig. 3.21: Normal condition of transport containment (allowable release rate) results for
all the canisters at a site in their designated transportation casks.

Hypothetical accident condition – allowable leakage rate
The hypothetical accident condition allowable leakage rate results provide site-wide
canister-specific (each canister in their designated transportation cask) hypothetical ac-
cident condition allowable leakage rates, as shown in Fig. 3.22. The Y-axis displays the
allowable leakage rates (cc/sec), and the X-axis shows the evaluation date.

Hypothetical accident condition – allowable release rate
The hypothetical accident condition allowable release rate results provide site-wide
canister-specific (each canister in their designated transportation cask) hypothetical ac-
cident condition allowable release rates, as shown in Fig. 3.23. The Y-axis displays the
allowable leakage rates (curies/sec), and the X-axis shows the evaluation date.

3.1. Graphical User Interface (GUI) 51



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.22: Hypothetical accident condition containment results (allowable leakage rate)
for all the canisters at a site in their designated transportation casks.

52 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.23: Hypothetical accident condition containment (allowable release rate) results
for all the canisters at a site in their designated transportation casks.

3.1. Graphical User Interface (GUI) 53



UNF-ST&DARDSDocumentation, Release 3.0

Self-Protecting
Site-wise assembly self-protection status can be viewed (as shown in Fig. 3.24) using
the Self-Protecting tab. The Self-Protecting tab allows user to change the self-protection
threshold (dose above which the assemblies are considered as self-protected) and recal-
culate the self-protection status. The default threshold is set to 100 Rem. The following
figure presents the Maine Yankee self-protecting status.

Fig. 3.24: Self-protecting status of discharged assemblies at a selected site.

3.1.3 AnalysisModel Geometry Viewer
Criticality, thermal, dose, and containment results for a particular canisters/casks can be
found by selecting that canister from the pad maps (cask) breadcrumb in the upper right
corner.

Fulcrum Editor
If the latest version of SCALE is available in the local machine, then the criticality and the
shielding analysis model for the selected canister/cask can be opened in SCALE Fulcrum
editor by clicking “view criticality model” and or “view shielding model” (Fig. 3.25).

54 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

The Fulcrum editor can be used to plot the analysis model as shown in Fig. 3.26 (Criticality
Model). If the dose map is available in the local machine, then the Fulcrum editor can also
be used to superimpose a dose map using the mesh tab on the analysis model, as shown in
Fig. 3.27. All the available features in the Fulcrum editor can be found in Fulcrum manual
1.

Fig. 3.25: The main display for an individual canister/cask.

The individual cask view (Fig. 3.25) provides results viewing tabs (e.g., cask criticality,
surface temperature) similar to those described above for the site view (Fig. 3.9) that
provides analysis results of all casks/canisters on the same plot.

HeatMapViewer
In addition, the individual cask view provides an axial thermal map tab displaying an axial
thermal map of the selected cask, as shown in Fig. 3.28. The cask thermal map can be
varied axially and as a function of time using the side and bottom scroll bars.

1 SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design,
ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June 2011.

3.1. Graphical User Interface (GUI) 55



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.26: Fulcrum editor displaying a criticality model.

Fig. 3.27: Fulcrum editor displaying a superimposed dose map on a shielding model.

56 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 3.28: Axial thermal map of a selected cask.

3.1.4 Plot Functionality
• Zoom-in: A left-click while dragging down and to the right will create a zoom box;

releasing the left-click will zoom in.

• Zoom-reset: A left-click while dragging up and to the left will initiate the zoom-
reset; releasing the left-click will reset the zoom.

• Plot Properties: A right-click will display a plot-context menu listing the following:

– Properties - displays configurable plot properties (e.g., title, axis labels, text
fonts/size, colors):

* Title Tab - Allows changing toggle display of title on or off, as well as change
of text, font, and color.

* Plot Tab - Allows changing the domain and range axis label text, font, color,
and tick labels, and the plot’s appearance (e.g., outline stroke, outline color,
background color, and plot orientation).

* Legend Tab - Allows changing the legend’s fonts used to display the plot
series names.

* Other Tab - Allows changing the anti-aliasing rendering used, as well as the

3.1. Graphical User Interface (GUI) 57



UNF-ST&DARDSDocumentation, Release 3.0

background color.

– Copy - copies the plot image to the system’s clipboard for subsequent pasting
into emails or documents.

– Save as ... - Saves the plot as a portable network graphics (PNG) formatted
image to the specified location.

– Print... - Allows for printing the plot to a selected printer.

– Export... - Allows for exporting the plot data as a Microsoft Excel (xslx) format-
ted file for further data interrogation.

3.1.5 SQLViewer
The SQL viewer provides direct access to all data stored in the Unified Database. Using SQL
select statements, users can precisely define the data they want. The results are displayed
in a table from which the user can save the results in a comma-separated value (CSV) file.

As shown in Fig. 3.29, the SQL viewer is divided into left and right panels. The left panel
includes a list of table names on top and a tree view of table details at the bottom.

Fig. 3.29: UNF-ST&DARDS SQL viewer.

Table names: In the list of table names, right clicking on a table name opens a pop-up
menu with options to “select rows” or “show table description.” Clicking “select rows” will

58 Chapter 3. User Guide



UNF-ST&DARDSDocumentation, Release 3.0

generate a SQL query in the query editor window and will then execute the query. Clicking
“show table description” will add an entry to the table details tree.

Table details: The table details are displayed as an expandable/collapsible tree. The items
in the tree describe the table structure in detail:

• A top-level item shows the table’s name. Clicking the icon next to the name (or
double clicking the name) will expand the details of the table to reveal a description
of the table’s contents and a tree item for each column.

• Each column also expands to offer a description and details about the units, datatype,
nullability, and uniqueness. This information can be helpful when attempting to write
a custom SQL query.

The right panel includes, from top to bottom, a query editor, results table, and message
panel.

• Query editor: The query editor panel allows users to write ad hoc queries for retriev-
ing custom data sets from the database. The query editor’s menu bar offers several
actions:

– New SQL Tab - Creates a blank window for writing a new query.

– Open - Opens an SQL command from a file on your computer.

– Close - Closes the query editor tab.

– Save - Saves changes to the SQL file in the current tab.

– Save as - Saves changes to the SQL file in the current tab with a new name.

– Execute query - Sends the SQL command from the current tab to the database
and displays the results. If there is more than one command, the selected com-
mand will be executed.

– Cancel query - Attempts to interrupt the currently running query.

• Results table: The query results table displays the results and provides options to
“save to CSV,” a common format for tabular data and allows users to view the data
in most spreadsheet software, like Excel. When saving, specify the filename extension
as “csv,” as in filename.csv.

• Message panel: The message panel displays information from the SQL Viewer as it
communicates with the database.

3.1.6 Reports
The Reports tab provides UNF-ST&DARDS automated Characteristics of Potential Reposi-
tory Waste report generation capability. The automated report generation capability uses
data from the Unified Database to create tables, figures, and other form of data repre-
sentations. Fig. 3.30 presents the Reports tab. The users can select their favorite Latex

3.1. Graphical User Interface (GUI) 59



UNF-ST&DARDSDocumentation, Release 3.0

engine using the Latex Executable Directory window (A default is provided with UNF-
ST&DARDS package). The users can select the location where the report will be saved
from the Document Results Directory window (/Users/kb4/UNF_STANDARDS_reports in
the figure below). The Generate PDF button is used to generate the report (in tex and
pdf formats). The generated report can be found in the location selected in the Document
Results directory window.

Note: The Reports tab is work in progress and mainly shows the automated report gen-
eration capability.

Fig. 3.30: UNF-ST&DARDS report generation tab.

60 Chapter 3. User Guide



CHAPTER
FOUR

DEVELOPERGUIDE

4.1 Development Environment
Note: This section is under development. The purpose of this section is to provide a
quick-start-guide to a new code developer.

UNF-ST&DARDS is comprised of 6 projects:

1. The UNF-Db project contains the JPA classes to interact with the Unified Database
along with some other classes,

2. The EIA859 project contains the JPA classes to interact with the MySQL GC859
database (direct SQL dump of the MS Access database) and logic to normalize the
data into Java objects,

3. The TemplateEngine expands analysis (e.g., depletion, criticality) templates from
UNF-Templates with JSON files containing data from the database to create input
files for SCALE and the other analysis codes,

4. The UNF-Templates contains analysis templates developed by various analysts,

5. The UNF-Db-Model contains the logic for populating JSON files, running the analysis
codes, uploading results to the database, etc.,and

6. The UNF-Db-Viewer provides a GUI allowing the user to define analysis jobs, submit
them for local execution, review results, and interact with the database.

The code repositories are:

UNF-Db: <https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-
Db>

EIA859: <https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/EIA859>

TemplateEngine: <https://fogbugz.ornl.gov/kiln/Code/TemplateEngine/Group/TemplateEngine>

61

https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-Db
https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-Db
https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/EIA859
https://fogbugz.ornl.gov/kiln/Code/TemplateEngine/Group/TemplateEngine


UNF-ST&DARDSDocumentation, Release 3.0

UNF-Templates: <https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-
UNF/Group/UNF-Templates>

UNF-Db-Model: <https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-
UNF/Group/UNF-Db-Model>

UNF-Db-Viewer: <https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-
UNF/Group/UNF-Db-Viewer>

4.1.1 Coding Standards
• Write well-documented, orthogonal code that produces the correct results and en-

ables continuous integration with tests.

• Use clear formatting like the default NetBeans code formatter settings.

4.1.2 Test Infrastructure
Whenever code updates are pushed to the central repo, the continuous testing infrastruc-
ture runs the regression tests.

Test executions status can be seen @ Jenkins: <http://ci.ornl.gov:8080/view/UNF/>

Test results can be retrieved from CDash: <http://ci.ornl.gov/CDash/index.php?project=UNF>

4.1.3 Setting up UNF-ST&DARDSDevelopment Environment
Tools, libraries, and accounts needed:

1. Mercurial: <https://www.mercurial-scm.org/>

2. NetBeans: <https://netbeans.org/>

3. MySQL WorkBench: <https://www.mysql.com/products/workbench/>

4. MySQL Server: (Optional) If you want to update,insert,delete data during develop-
ment: <https://dev.mysql.com/downloads/mysql/>

5. Linux account on hulk cluster: email Ken Barker <barkerkr@ornl.gov>, cc Kaushik
Banerjee <banerjeek@ornl.gov> and John Scaglione <scaglionejm@ornl.gov>

6. FogBugz account on fogbugz.ornl.gov: email Tony Walsh <walshtd@ornl.gov>

7. CDash account on ci.ornl.gov: email Tony Walsh <walshtd@ornl.gov>

8. MySQL account(s) on hulk: Optional: email Paul Miller <millerpp@ornl.gov>

9. MacTex: (Optional) If you are working on Latex reporting features, for Mac:
<https://tug.org/mactex/>

62 Chapter 4. Developer Guide

https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-Templates
https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-Templates
https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-Db-Model
https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-Db-Model
https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-Db-Viewer
https://fogbugz.ornl.gov/kiln/Code/Used-Nuclear-Fuel-UNF/Group/UNF-Db-Viewer
http://ci.ornl.gov:8080/view/UNF/
http://ci.ornl.gov/CDash/index.php?project=UNF
https://www.mercurial-scm.org/
https://netbeans.org/
https://www.mysql.com/products/workbench/
https://dev.mysql.com/downloads/mysql/
mailto:barkerkr@ornl.gov
mailto:banerjeek@ornl.gov
mailto:scaglionejm@ornl.gov
mailto:walshtd@ornl.gov
mailto:walshtd@ornl.gov
mailto:millerpp@ornl.gov
https://tug.org/mactex/


UNF-ST&DARDSDocumentation, Release 3.0

10. MikTex: (Optional) If you are working on Latex reporting features, for Windows:
<http://miktex.org/>

Make a parent directory for the projects in your home directory like
C:/Users/<user_id>/NetBeans_Projects. In subsequent steps we will refer to this
directory as the <projects_directory>.

Navigate into the <projects_directory>.

Clone the code from each of the repositories under <projects_directory> using the “hg
clone” command.

Clone the Unified Database to a local MySQL Server is optional as mentioned above.
The instructions are available at <https://fogbugz.ornl.gov/default.asp?W97>. Do not
attempt to use MySQL Workbench to export the dump of the entire Unified Database from
hulk:3306; you only need 1 GB ...not the full 30GB database. Additionally, it may be nec-
essary to clone the EIA859 MySQL database depending on the work you are doing. In this
case you can use the MySQL Workbench to export the dump. Then restore EIA859 database
as detailed in the scripts from <https://fogbugz.ornl.gov/default.asp?W97> with modifi-
cations to use the dump_EIA859.sql as the source.

Step 1: Create the projects:

For each of the projects (project setup order: UNF-Db, TemplateEngine, EIA859, UNF-
Db-Model, UNF-Db-Viewer):

In NetBeans, left-click the “File” menu. Select “New Project...”

In the dialog, left-click Java Project with Existing Sources, then click the “Next” button.

In the “New Java Project With Existing Sources” dialog...

Project Name should be provided according to the repository name, i.e. “UNF-
Db”.

Project Folder should be <projects_directory>/<project_name>/projects/<user_id>.

Click the “Next” button.

Next to the “Source Package Folders:” box, click the “Add Folder...” button.

In the “Browse Source Packages Folder” dialog, navigate to
<projects_directory>/<project_name>/src and click the “Open” button.

In the “New Java Project With Existing Sources” dialog, click the “Finish” button.

Step 2: Link the projects and add the libraries:

Project dependency diagram:

4.1. Development Environment 63

http://miktex.org/
https://fogbugz.ornl.gov/default.asp?W97


UNF-ST&DARDSDocumentation, Release 3.0

For each of the projects (project order: UNF-Db, TemplateEngine, EIA859, UNF-Db-
Model, UNF-Db-Viewer):

On the projects navigation panel on the left (NetBeans), right-click the project’s “Source
Packages” folder and select “Properties”

In the “Project Properties - <project_name>” dialog, select “Libraries” from the “Categories:”
panel on the left.

Click the “Add Project...” button for each project listed earlier in the above diagram.

Click the “Add JAR/Folder” button and navigate to
<projects_directory>/<project_name>/resource/lib and select all and click the “Choose”
button.

The pictures below show any necessary ordering for the projects’ libraries. Make sure that
the order for your libraries match.

64 Chapter 4. Developer Guide



UNF-ST&DARDSDocumentation, Release 3.0

Step 3: Configure the resource file

UNF-ST&DARDS reads configuration from the file .unf.rc located in the user’s home direc-
tory.

4.2 TemplateEngine
The TemplateEngine is a data-driven attribute substitution program. Data are stored in
a hierarchical, lightweight format called JavaScript Object Notation (JSON). The Templa-
teEngine is written in the JavaTM programming language, which means it is cross-platform
and should run out of the box. Any question/comment/issue regarding TemplateEngine
should be sent to <UNFHelp@ornl.gov> for further assistance. All of the examples pro-

4.2. TemplateEngine 65

http://www.json.org
mailto:UNFHelp@ornl.gov


UNF-ST&DARDSDocumentation, Release 3.0

vided in this appendix can be found and reproduced from the files located in the Templa-
teEngine’s example directory. A MAC computer is used for the examples in this appendix.

4.2.1 TemplateEngine Requirements
The following system configurations are required for running TemplateEngine:

• Java 1.7 Runtime Environment (JRE 1.7) or newer
(<http://www.oracle.com/java>),

• 1 GB RAM or greater, and

• Mercurial 2.5 or newer (<http://mercurial.selenic.com>).

The TemplateEngine is freely available within the Oak Ridge National Laboratory network.
Using Mercurial Distributed Version Control System, the TemplateEngine repository can
be easily cloned in a local machine as shown in Fig. 4.1. The Mercurial (hg) clone of the
repository will download all files required by the TemplateEngine into the TemplateEngine
directory. The distribution directory (TemplateEngine/dist) contains the executable java
jar file that can now be invoked to expand templates, as shown in Fig. 4.2.

Fig. 4.1: Mercurial clone example.

Fig. 4.2: Verification of TemplateEngine execution.

4.2.2 JSONParameter Set
The TemplateEngine is driven by parameters which are defined in the JSON format. JSON
can describe keyed-values, objects, arrays, and compositions of keyed-values, objects and

66 Chapter 4. Developer Guide

http://www.oracle.com/java
http://mercurial.selenic.com


UNF-ST&DARDSDocumentation, Release 3.0

arrays. The JSON standard is defined at <http://www.json.org>. A parameter in its
simplest form is a key-value pair delimited by a colon.

𝑘𝑒𝑦 : 𝑣𝑎𝑙𝑢𝑒

The key must be quoted, and is the name of the parameter. The value must be quoted
if it is a string value. An object is delimited by left and right curly braces – {}; arrays
are delimited by left and right square brackets – [], and commas delimit object and array
members.

”𝑘𝑒𝑦1” : 𝑣𝑎𝑙𝑢𝑒1, ”𝑘𝑒𝑦2” : 𝑣𝑎𝑙𝑢𝑒2, . . .

[𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2, ...]

Here, the object contains unique keys, “key1” and “key2” . . . where each key’s value could
be a primitive value (number, string, etc.) or a nested object or array. Fig. 4.3 depicts
an example JSON describing a donut shop’s donut options. The document object contains
four components, two keyed-values—type and name—and two arrays—batter and topping.
Batter contains 4 objects, and topping contains 7 objects. Each object in batter and topping
contains two keyed-values, id and type. This example illustrates the use of keyed-values
(“type”: “donut”, etc.), and arrays (“type”, “batter”).

Fig. 4.3: Example donut shop JSON.

4.2.3 TemplateEngine Features
The TemplateEngine feature set is intended to facilitate template expansion involving for-
matted attribute substitution, expression evaluations, and subtemplate import. The tem-
plates can be described with the following components:

4.2. TemplateEngine 67

http://www.json.org


UNF-ST&DARDSDocumentation, Release 3.0

• static text,

• attributes,

• indirect attributes,

• scalar expression evaluation,

• iterative expression evaluation,

• subtemplate import,

• conditional action,

• iterative subtemplate import, and

• parameterized subtemplate import.

Template components are described below.

Static text

Static text is the most common template construct. The TemplateEngine conducts a pass-
through of the text with no interpretations or evaluations. Fig. 4.4 presents an example of
static text in a template.

Fig. 4.4: Static text template.

Attributes

Attributes allow for static text to be parameterized to present alternatives. Fig. 4.5 depicts
a template containing two attributes, jumper, and what, which allows the attribute values
to change, producing different results without modifying the template.

Indirect attributes

Indirect attributes allow attributes to be parameterized, further increasing the flexibility of
the template. Arbitrary indirection is allowed. Fig. Fig. 4.6 depicts a template in which
the jumper attribute (Fig. 4.5) has been parameterized to incorporate the what attribute,
allowing for an indirect attribute lookup based on the value of the what attribute. With
this indirect attribute, the change of the what attribute also changes the jumper[<what>]
attribute.

Fig. 4.7 depicts how changing the value of what from lazy yellow dog to lazy fat cat
produces a context change in the result. While the example is simple, the indirect attribute
feature is another means of enhancing templates and increasing their flexibility. Fig. 4.7

68 Chapter 4. Developer Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 4.5: Template with attributes.

Fig. 4.6: Indirect attribute example 1.

4.2. TemplateEngine 69



UNF-ST&DARDSDocumentation, Release 3.0

depicts reuse of the examples/indirect_attributes.tmpl template with a change in the value
of what, which changes the result of the template to involve a mouse and a cat instead of
a fox and a dog.

Fig. 4.7: Indirect attribute example 2.

Templates may require expressions to be evaluated. The TemplateEngine supports a full
suite of mathematical operators and functions. Fig. 4.8 depicts scalar expression evalua-
tions. A scalar expression is formatted as follows:

#𝑒𝑣𝑎𝑙𝑓𝑚𝑡 = 𝑓𝑜𝑟𝑚𝑎𝑡(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)𝑎𝑠𝑛𝑒𝑤_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒#

Where the #eval indicates the start of an expression; fmt=format is an optional format
specification for the result; the parentheses delimit the expression; the expression is any
operation, including a numeric or string-based result; as new_attribute is an optional com-
ponent that will indicate the result of the expression to be saved for later use by the name
new_ attribute; and the final # closes the expression. On occasion it may be desired for
the result of the expression evaluation to remain silent. This can be accomplished with the
silent scalar expression using the following format:

#∖𝑒𝑣𝑎𝑙𝑓𝑚𝑡 = 𝑓𝑜𝑟𝑚𝑎𝑡(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)𝑎𝑠𝑛𝑒𝑤_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒#

Fig. 4.8 depicts a simple conversion of an attribute in inches, howfar_inches, to another
attribute in feet, howfar_feet. The first expression evaluated uses the as new_attribute
feature to store the result of the expression into a re-usable attribute, howfar_feet, which
is used in the second sentence of the template.

Iterative expression evaluation

The ability to evaluate an expression iteratively as a function of some attribute in the
system can be necessary to properly define a template result. The format for an iterative

70 Chapter 4. Developer Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 4.8: Scalar expression example.

expression is as follows:

#𝑓𝑢𝑛𝑐𝑓𝑚𝑡 = 𝑓𝑜𝑟𝑚𝑎𝑡𝑠𝑒𝑝 = 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟(𝑟𝑎𝑛𝑔𝑒)𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛#

where #func indicates the start of an iterative expression; fmt=format is an optional format
specification for the results; sep=separator is an optional result separator defaulted to a
single whitespace; parentheses delimit the range; and expression is the function to evaluate
per iteration. The range is of the format:

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑

where attribute is a new or existing attribute in the template parameters which is iterated
from start through end; and start and end are numeric values. Range can be repeated,
whitespace separated, to produce embedded loops.

Fig. 4.9 depicts the squaring of the i attribute, as i is iterated from 1 to 10 while using the
default separator and the comma separator.

Subtemplate import

When dealing with large templates, it is best to split a single file into multiple subtemplates.
The TemplateEngine provides a subtemplate import feature that allows import of a file
using relative or absolute paths. The format for subtemplate import is as follows:

#𝑖𝑚𝑝𝑜𝑟𝑡𝑓𝑖𝑙𝑒𝑝𝑎𝑡ℎ

4.2. TemplateEngine 71



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 4.9: Iterative expression example.

Where the #import indicates the start of a subtemplate import and filepath is an absolute
or relative file path. #import must start in the first column. Fig. 4.10 depicts the subtem-
plate import of the static.tmpl file. Notice that in the activity message indicating Importing
static.tmpl using ‘null,’ ‘null’ is an empty parameter set. This will be discussed in parame-
terized subtemplate import section below. By default, an import of a subtemplate provides
the subtemplate access to all attributes in the parent template’s attribute set.

Fig. 4.10: Subtemplate import example.

Some templates may require that subsections be expanded only when a certain condi-
tion applies. The TemplateEngine provides conditional actions to facilitate these types of
template expansions. The condition action format is as follows:

#𝑖𝑓𝑑𝑒𝑓𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑎𝑐𝑡𝑖𝑜𝑛

#𝑒𝑛𝑑𝑖𝑓

where the #ifdef or #ifndef indicate the start of a conditional action; condition is either an
attribute name or value, or scalar expression that evaluations to 1 (true), 0 (false), or an
attribute name; the action is any TemplateEngine feature described in this document; and
#endif terminates the conditional action. Both #ifdef and #endif must occur in the first
column.

Fig. 4.11 depicts two invocations of the TemplateEngine, exercising two paths through the
examples/conditional_action.tmpl file. The first invocation determines that the attribute
jumper exists and then imports the examples/attribute.tmpl subtemplate. The second invo-
cation has no JSON parameters specified, so the attribute jumper does not exist, and the
static text “Nothing jumping today” is printed.

72 Chapter 4. Developer Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 4.11: Conditional action example.

4.2. TemplateEngine 73



UNF-ST&DARDSDocumentation, Release 3.0

Iterative subtemplate import

The ability to import a subtemplate is powerful, but often a subtemplate may need to be
imported repeatedly as a function of some attribute. The iterative subtemplate import is
one means of repeating an import over a range. The iterative subtemplate import format
is as follows:

#𝑟𝑒𝑝𝑒𝑎𝑡𝑓𝑖𝑙𝑒𝑝𝑎𝑡ℎ𝑢𝑠𝑖𝑛𝑔𝑟𝑎𝑛𝑔𝑒

where #repeat indicates the start of an iterative subtemplate import; the filepath indicates
the absolute of relative path to the template to import; using delimits the filepath from the
range; and range indicates the repeats to conduct. The range is of the format:

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑

where attribute is a new or existing attribute in the template parameters, which is iterated
from start through end; and start and end are numeric values. Range can be repeated,
whitespace separated, to produce embedded loops.

Fig. 4.12 depicts the iterative import of the examples/scalar_expr_fmt.tmpl, which re-
quires three attributes: jumper, howfar_inches, and what. The JSON parameter file, exam-
ples/attribute.json, provides attributes jumper and what, and the attribute howfar_inches is
defined in the range statement of the iterative import where it is iterated from 73 through
75. While the example is simple, the iterative import feature provides a mechanism for
generating identifiers, sampling mathematical expressions, and more.

Fig. 4.12: Iterative import example.

Parameterized subtemplate import

The TemplateEngine works from a data model consisting of a JSON parameter set. JSON
describes hierarchical data by using objects and arrays. These hierarchies can be used by
corresponding template hierarchies to scope attributes to subtemplates. The parameter-
ized subtemplate import has the following format:

#𝑖𝑚𝑝𝑜𝑟𝑡𝑓𝑖𝑙𝑒𝑝𝑎𝑡ℎ𝑢𝑠𝑖𝑛𝑔𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

74 Chapter 4. Developer Guide



UNF-ST&DARDSDocumentation, Release 3.0

where #import indicates a subtemplate import; filepath indicates the absolute or relative
path to the template to import; using delimits the filepath from the parameter; and param-
eter is an attribute expression involving a JSON object or array. When the attribute is an
object, the members of that object become available to the subtemplate and are accessible
by name. When the attribute is an array, an implicit iterative import is conducted for each
member of the array.

Fig. 4.13 depicts a parameterized subtemplate import, which implicitly iterates over both
batter and topping arrays. Each member object of batter and topping is exposed to the
subtemplate example/parameterized_options.tmpl where the attributes id and type are for-
matted as a bulleted option. Because the TemplateEngine’s numerical storage is in floating
point values, formatting can be used to remove the decimal portion of the number, creat-
ing an integer. This is done by using the format statement fmt=%.0f, which states to use 0
decimal places for the floating value.

4.2.4 Attribute and Expression Format
For both attribute and expression evaluation, an optional format specification can be pro-
vided as discussed above. Formatting can be used for numeric or string attributes or for
expression results. Format is specified in the following format:

𝑓𝑚𝑡 = %𝑇.𝐷𝐹

where fmt indicates a format is to follow; the percent symbol (%) is used to indicate the
beginning of the format; T is the optional total space; the decimal (.) and D are the
optional decimal space; and F indicates the format type of attribute being formatted.

The total space specification (T) can indicate the alignment. Default alignment is right. A
negative sign (-),provides left alignment. A preceding zero (0) indicates that the preceding
empty space is padded with zeros. A preceding plus sign (+) indicates to always show the
number’s sign even when positive.

The decimal space specification (D) can indicate the number of decimal points for num-
bers or the number of decimal points used as a harsh limiter for strings (can truncate
strings). In Fig. 4.14 , the first number formatted illustrates decimal truncation, creating
an integer-formatted result. The second number formatted illustrates no truncation. The
third formatted number indicates six total spaces with two decimal places. The fourth
number formatted illustrates padding with zeros. The fifth number formatted illustrates
left alignment.

4.2.5 Functions
The scalar and iterative expressions have access to the functions presented in the following
tables.

4.2. TemplateEngine 75



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 4.13: Parameterized subtemplate import example.

76 Chapter 4. Developer Guide



UNF-ST&DARDSDocumentation, Release 3.0

Fig. 4.14: Several formatting examples.

Table 4.1: Trigonometric functions

Description Function Name
Sine sin(x)
Cosine cos(x)
Tangent tan(x)
Arc Sine asin(x)
Arc Cosine acos(x)
Arc Tangent atan(x)
Arc Tan with 2 parameters atan2(y, x)
Secant sec(x)
Cosecant cosec(x)
Co-tangent cot(x)
Hyperbolic Sine sinh(x)
Hyperbolic Cosine cosh(x)
Hyperbolic Tangent tanh(x)
Inverse Hyperbolic Sine asinh(x)
Inverse Hyperbolic Cosine1 acosh(x)
Inverse Hyperbolic Tangent1 atanh(x)

Table 4.2: Log and exponential func-
tions

Description Function Name
Natural Logarithm ln(x)
Logarithm base 10 log(x)
Logarithm base 2 lg(x)
Exponential (e^x) exp(x)
Power pow(x)

Table 4.3: Statistical functions

Description Function Name
Average avg(x1,x2,x3,...)
Minimum min(x1,x2,x3,...)
Maximum max(x1,x2,x3,...)

4.2. TemplateEngine 77



UNF-ST&DARDSDocumentation, Release 3.0

Table 4.4: Rounding functions

Description Function Name
Round round(x), round(x, p)
Floor floor(x)
Ceiling ceil(x)

Table 4.5: Miscellaneous functions

Description Function Name
If if(cond, trueval, falseval)
Str (convert number to string) str(x)
Absolute Value / Magnitude abs(x)
Random number (between 0 and 1) rand()
Modulus mod(x,y) = x % y
Square Root1 sqrt(x)
Sum sum(x,y,...)
Binomial coefficients binom(n, i)
Get object or array member by name or index get(name,index)/

get(name,child_name)
Get the length of an array or string length(attribute)
Acquire the left characters in a string left(string, count)
Acquire the right characters in a string right(string, count)
Find the index of substr in string find(string, substr)
Replace all occurrences of X with Y in string replace(string,x,y)
Determine if a filepath, relative or absolute to the
template, exists

exists(filepath)

Get the current date milliseconds since January 1, 1970 current_date()
Get the milliseconds since January 1, 1970 and the
provided date (mm-dd-yyyy)

date(“mm-dd-yyyy”)

78 Chapter 4. Developer Guide



INDEX

A
Assembly decay heat

plot, 43

C
cask surface temperature

plot, 41
clad temperature

plot, 41
criticality

plot, 39

D
decay heat

plot, 39

F
Fulcrum, 54

H
HAC allowable leakage rate

plot, 51
HAC allowable release rate

plot, 51
HAC dose

plot, 42
hg

mercurial, 66

I
ISFSI

view, pad, 37

M
map

Pad Map View, 37
mercurial

hg, 66

N
NCT 2 m dose

plot, 42
NCT allowable leakage rate

plot, 49
NCT allowable release rate

plot, 49
NCT personnel boundary dose

plot, 43
NCT surface dose

plot, 42

P
pad

ISFSI view, 37
plot

Assembly decay heat, 43
cask surface temperature, 41
clad temperature, 41
criticality, 39
decay heat, 39
HAC allowable leakage rate, 51
HAC allowable release rate, 51
HAC dose, 42
NCT 2 m dose, 42
NCT allowable leakage rate, 49
NCT allowable release rate, 49
NCT personnel boundary dose, 43
NCT surface dose, 42
Self-protecting (Nationwide), 38
Self-protecting (selected site), 51

79



UNF-ST&DARDSDocumentation, Release 3.0

S
Self-protecting (Nationwide)

plot, 38
Self-protecting (selected site)

plot, 51

T
TemplateEngine

attributes, 68
Conditional action, 72
indirect attributes, 68
Iterative expression evaluation, 70
Iterative subtemplate import, 72
Parameterized subtemplate import, 74
Scalar expression evaluation, 70
static text, 68
Subtemplate import, 71

V
view

pad ISFSI, 37

80 Index


	Overview
	Introduction
	Development team

	Installation and Verification
	Bundle Contents
	System Requirements
	Installing UNF-ST&DARDS
	Verifying INSTALLATION
	Activating Geographic Information System (GIS)
	Question


	Architecture and Capabilities
	System Architecture
	Unified Database
	Unified Database Content
	Unified Database Design
	Unified Database Software Development Kit (SDK)

	Templates
	Template Repository

	Analysis Sequence
	Fuel Depletion and Decay
	Criticality Safety
	Thermal Hydraulics
	Shielding
	Containment Analysis


	User Guide
	Graphical User Interface (GUI)
	Analysis Tab
	Pad Maps
	Analysis Model Geometry Viewer
	Plot Functionality
	SQL Viewer
	Reports


	Developer Guide
	Development Environment
	Coding Standards
	Test Infrastructure
	Setting up UNF-ST&DARDS Development Environment

	TemplateEngine
	TemplateEngine Requirements
	JSON Parameter Set
	TemplateEngine Features
	Attribute and Expression Format
	Functions


	Index

