

Electrochemical Corrosion Testing of SIMFUEL for FMDM Development

Sara Thomas and Vineeth Gattu Argonne National Laboratory

NWTRB Fact Finding Meeting April 25, 2024

Work conducted at Argonne National Laboratory is supported by the U.S. Department of Energy under contract DE-AC02-06CH11357. This work is being performed as part of the DOE NE SFWST Campaign, SNF Modeling and Testing work package # SF-24AN01030901.

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY Spent Fuel and Waste Science and Technology (SFWST)

Rationale for electrochemical model and testing

 The Fuel Matrix Degradation Model (FMDM) was developed as an electrochemical model because the dominant pathway for radionuclide release from the UO₂ matrix fraction of Commercial Spent Nuclear Fuel (CSNF) is an electrochemical process: the oxidation of U^{IV}O_{2(s)} to much more soluble U(VI) species

 $UO_{2(s)} \to UO_2^{2+} + 2e^{-}$

Experimental Objective: To quantify the sensitivity of simulated spent fuel (SIMFUEL) degradation kinetics to fuel composition (burnup) and environmental conditions (e.g., H_2 , pH, CO_3^{2-} , Eh, Br⁻, and temperature) using electrochemical test methods for FMDM development

- Controlled electrochemical experiments are designed to elucidate mechanisms (e.g., galvanic and catalytic effects of noble metal fission product particles embedded in the UO₂ matrix)
- Model predictions are validated and parameters calculated from short-term electrochemical measurements

Argonne

Electrochemical testing using simulated spent fuel (SIMFUEL)

- Results from electrochemical tests quantify effect of single variables on measured electrochemical parameters to replace place holder values with empirical data for reaction rate constants
 - Noble metal content
 - Dissolved H₂ concentration
 - Total carbonate concentration
 - Temperature
- Results from electrochemical tests may indicate need to include additional parameters and processes not currently considered in FMDM
 - Noble metal alloy composition
 - Fuel composition and compositional changes over time
 - pH
 - Catalytic poisons (Br⁻)
 - Galvanic coupling between UO₂ matrix and noble metals and UO₂ matrix and waste package alloys

SIMFUEL synthesis and electrode fabrication Argonne

- SIMFUEL materials prepared by pressing mechanically mixed powders then sintering under vacuum
- SIMFUEL compositions include different amounts of lanthanide oxide and noble metal surrogate fission products that represent different fuel burnups¹
 - None (UO₂-N), low (UO₂-L), medium (UO₂-M), and high (UO₂-H)

SIMFUEL electrode

Sintered SIMFUEL pellet

4

Electrochemical parameters in FMDM

- FMDM considers 11 half reactions that occur on the fuel surface and calculates the corrosion potential (E_{CORR}) and current densities (*i*) of each half reaction such that at E_{CORR} , $\sum i_{anodic} + \sum i_{cathodic} = 0$
- UO₂ dissolution rate is directly calculated as the sum of current densities of 3 surface reactions
- Parameters to model rates of oxidation and reduction half reactions occurring at fuel surface can be determined from electrochemical measurements

Current density equation in FMDM for half reaction *x*

Electrochemical methods

- Electrochemical tests employ SIMFUEL as the working electrode in the standard three electrode method
- Method enables solution pH, chemistry, and temperature control
- Solutions purged with Ar/H₂ gas mixture to maintain dissolved H₂ concentration
- Determining the effect of one variable under known exposure conditions involves multiple measurements

Electrochemical measurements	SIMFUEL surface characterization	Solution composition
 Open circuit potential (OCP) measurements 	 Electrochemical impedance spectroscopy (EIS) 	 Inductively coupled plasma mass spectrometry (ICP-MS) for dissolved metal concentration
Potentiodynamic (PD) scansPotentiostatic (PS) tests	 Scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS) analysis 	

Electrochemical methods and results

Open circuit potential (OCP) measurements:

- Provide insight into thermodynamic stability of SIMFUEL surface under known exposure conditions
- Are directly compared to FMDM parameter E_{CORR}
- Are used to select fixed surface potentials to apply during potentiostatic (PS) tests

- Electrochemical experiments are designed to quantify the effect of individual variables on surface reaction kinetics by controlling:
 - SIMFUEL composition (noble metal content)
 - Solution chemistry and temperature
 - SIMFUEL surface potential
- Results are used to calculate rate constants for individual reactions already included in FMDM and identify other key mechanisms to include in FMDM

