

Overview of FMDM and process models

April 25th 2024 NWTRB Fact Finding Meeting (Virtual)

Carlos F. Jové-Colón (SNL), Sara Thomas (ANL)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. **SAND2024-07490C**

Conceptual Diagram of Breached SNF Canister in Repository

Schematic figure of a breached SNF waste canister

Waste Package Breaching

- Fluid pathways
- In-package chemistry
 - SNF corrosion
 - Metal corrosion (WP internals)
- Radionuclide (RN) release
 - Interaction with corrosion products
 - Interactions with bentonite barrier

Fuel Matrix Degradation Model (FMDM)

The Fuel Matrix Degradation Model (FMDM)

- Based on the Canadian Mixed Potential Model for UO₂ dissolution (Shoesmith et al., 2003)
- Electrochemical transport model
- Surface potentials based on major interfacial anodic and cathodic reactions
- Reaction rates for the fuel surface reactions used to represent oxidative UO₂ dissolution
- H₂ catalysis by noble metal particles (NMPs)
- 1-D diffusive transport of chemical species
- H₂O₂ generation by radiolysis
- Surface precipitates (e.g., schoepite/studtite)
- Anoxic corrosion of steel components

Fuel Matrix Degradation Model (FMDM)

Source: Thomas (2024), Fuel Matrix Degradation Process Model Documentation, in prep.

(Continued)

FMDM Domain Description

- Two chemical domains
 - Fuel domain
 - Canister domain
- Interstitial domain
 - Interface between fuel and canister domains
 - Environment domain is the interface with performance assessment (PA)
- Species concentrations and mass fluxes
 - Calculated at each node within each domain
 - Diffusive fluxes calculated at the fuel surface

Fuel Matrix Degradation Model (FMDM)

Radiolysis

- H₂O₂ is the only radiolyticallyproduced oxidant
- H₂O₂ generated by α irradiation field (extends to ~35 microns from fuel surface)
- α dose irradiation decreases exponentially from the fuel surface
- No hydroxy radical generation
- G_{H2O2} value per alpha dose rate is assumed to be constant

Catalysis

- H₂ oxidation at the fuel surface catalyzed by NMPs (ε-phases)
- Protects fuel from oxidative dissolution by decreasing E_{CORR}

(Continued)

FMDM Electrochemical (E-chem) Reactions at the SNF Surface

(Continued)

SNF Surface Half Reactions

Number	Reaction	Туре
1	$UO_2 \rightarrow UO_2^{2+} + 2e^-$	Anodic
2	$UO_2 + 2CO_3^{2-} \rightarrow UO_2(CO_3)_2^{2-} + 2e^{-}$	Anodic
3	$UO_2 \rightarrow UO_{2(aq)}$	Chemical
4	$H_2 + 20H^- \rightarrow 2H_2O + 2e^-$	Anodic
5	$H_2O_2 + 2OH^- \rightarrow O_2 + 2H_2O + 2e^-$	Anodic
6	$H_2O_2 + 2e^- \rightarrow 2OH^-$	Cathodic
7	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	Cathodic

NMP Surface Half Reactions

Number	Reaction	Туре
8	$H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$	Anodic
9	$H_2O_2 + 2e^- \rightarrow 2OH^-$	Cathodic
10	$H_2O_2 + 2OH^- \rightarrow O_2 + 2H_2O + 2e^-$	Anodic
11	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	Cathodic

The Fuel Matrix Degradation Model (FMDM)

- Anodic/cathodic e-chem reactions applied to UO₂ and NMP surfaces
- UO₂ oxidative dissolution rate is represented by the net current densities of e-chem reactions
- E-chem reaction rates determine the current densities
- SNF degradation rate is calculated from total U flux into solution

Source: Thomas (2024), Fuel Matrix Degradation Process Model Documentation, in prep.

Ongoing and Future R&D Activities (SNL)

Summary:

- FMDM describes SNF degradation including effects of NMP catalysis, radiolysis, and steel corrosion
- Development considers literature and experimental SNF degradation data

Ongoing/Future Activities:

- FMDM coupling to the Geologic Disposal Safety Assessment (GDSA) framework
- Gap analysis and prioritization of testing activities for SNF degradation

Conceptual Framework for Source Term Processes in GDSA (Adapted from Mariner, et al., 2019)

