

Spent Fuel and Waste Science and Technology (SFWST)

Buffer Erosion, Coagulation/Flocculation and Clogging

U.S. Nuclear Waste Technical Review Board Summer 2024 Fact Finding Meeting April 23, 2024 Las Vegas, Nevada

SAND2024-071440

Yifeng Wang Sandia National Laboratories

ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Buffer Stability, Erosion, and Clogging: Temperature Effects

SFWST focus areas:

- Thermal stability and limit of buffer materials
 - Understanding smectite-to-illite transformation
- Buffer materials for extreme environments
 - Saponite as an alternative buffer material
- Buffer erosion and fracture clogging
 - Microfluidic cell experiments
 - Bentonite swelling, extrusion and fracture clogging

Note: EURAD-HITEC aims to develop and document improved THM understanding of clay based materials (host rock and buffer) exposed to elevated temperatures (>100°C) for extended durations.

Sedighi et al. (2023)

Understanding Smectite-to-Illite Transformation

Potential controlling factors:

- Temperature
- Water/solid ratio (SiO₂ concentration)
- Duration
- Cations (Na, K)
- Solution chemistry (DI, KCl solution)

Approach: (1) Create optimal conditions to make illite, and then (2) find out which factors can effectively inhibit the transformation.

Material Preparation

- 1. Crush Na-smectite with mortar and pestle
- . Obtain $< 75 \mu m$ particles with #200 sieve
- 3. Obtain $< 2\mu m$ particles by settling in water
- 4. Exchange Na-smectite with 1M KCl

Reaction Conditions

Reactor: 200 mL Acid Digestion Parr Vessel Temperature: 200° C Liquid to Solid Ratio: 100, 500, 1000 Solution: 150 mL 1M KCl or DI water Time: 7, 14, 28, 56, or 112 days Clay Type: Na-smectite or K-smectite

Post-Reaction

- 1. Centrifuge
- 2. Decant fluid and acidify with concentrated HNO₃
- 3. Wash solids with DI water 3 times to remove excess Cl
- 4. Dry solids at 60° C and record yield
- Analyze solid products using XRD (oriented & glycolated mounts)

 Resaturate solid products with 1M NaCl solution
- 6. Analyze liquid products using ICP-OES

 $2Na_{0.4}(AI_{1.47}Mg_{0.29}Fe_{0.18})Si_4O_{10}(OH)_2 \text{ (Na-smectite)} + 0.85K^+ + 1.07H^+ \rightarrow 1.065K_{0.8}(AI_{1.98}Mg_{0.02})(Si_{3.22}AI_{0.78})O_{10}(OH)_2 \text{ (illite)} + 4.6SiO_2 + 0.36Fe(OH)_3 + 0.56Mg^{2+} + 0.8Na^+ + 0.9H_2O_2 \text{ (Illite)} + 0.9H_2O_2 \text{ (Illit$

Findings

- Under optimal conditions, smectite-toillite transformation can happen relatively fast (on a time scale of weeks).
- The transformation requires an external K⁺ source. K-exchanged smectite in DI water is still deficient in K⁺ to convert smectite to illite at 200 °C.
- Water/solid ratio (and thus dissolved SiO₂ concentration) is an important factor controlling the extent of the transformation.
- The required optimal conditions can hardly be realized in an actual barrier system.

Mechanism and Stability Field

Layer-by-layer transformation

Chemical additives to inhibit smectite-to-illite transformation: $Mg(OH)_2$ (brucite) $\rightarrow Mg^{2+} + OH^{-}$ SiO_2 (am) $\rightarrow SiO_2$ (aq)

Stability of Montmorillonite

Saponite: Trioctahedral Mineral of Smectite Group

Samples	Density kg/m ³	Dry density kg/m ³	Hydraulic conductivity (K), m/s	Swelling pressure (p _s), kPa
MX-80	1800	1310	E-10	200
MX-80	2000	1175	2E-13	4700
GMZ	1788	1233	E-11	530
Saponite	1800	1175	4E-12	1300
Mixed-layer FIM	1800	1392	4E-11	280
Mixed-layer FIM Mixed-layer	2000	1175	2E-11	1000
Holmehus Mixed-layer	1800	1310	2E-11	600
Holmehus	2000	1175	8E-12	2000

Yang et al. (2014)

Bentonite Swelling, Extraction, and Fracture Clogging

Permeability of the fractured sample without an adjacent bentonite layer: 156 mD, close rock matrix permeability

5 order reduction in fracture permeability by bentonite extrusion and clogging

Bentonite Swelling, Extraction, and Fracture Clogging (cont.)

Microfluidic Cell

Microfluidic cell for studying bentonite accumulation and clogging in fractures

Preliminary Results

Left: The solution containing bentonite with NaCl. Right: The solution of only bentonite.

Left: A magnified view of the large bentonite clogs in the inlet of a model after flowing the bentonite in 1 M NaCl suspension. Right: Smaller clogs occurring further away from the inlet after 30 minutes of flowing the bentonite-salt solution.