# The Way Forward in

# the US: Nuclear Waste

Management

Allison Macfarlane

AAAS San Diego February 19, 2010

ATP\_Z1S1\_Fig. 1-1a.ai



\* I do not represent the views of the Blue Ribbon Commission on America's Nuclear Future

\* I simply present here my own views on nuclear waste disposal

## The Waste Situation

 No country has solved the nuclear waste problem after almost half a century of nuclear energy use

International consensus on geologic repositories as the solution to the waste problem; none opened for high-level waste

# The US Waste Situation

- \* Obama administration doesn't support nuclear Waste disposal at Yucca Mountain
   \* Funding for FY 2011 was zeroed in Obama budget
   \* YM DOE program shutting down
- Established a Blue Ribbon Panel to evaluate potential solutions to the waste problem

# Siting a Geologic Repository

#### Use multi-barrier system

- \* Natural: long travel times, dilution in groundwater, sorption
- \* Engineered: waste form, canisters

#### \* Siting Criteria (from IAEA, 2003)

- \* Long-term tectonic stability
- \* Low-groundwater content and flow
- \* Stable geochemistry at depth, including a reducing environment and equilibrium between rock and water
- \* Excavatable
- \* Also need
- \* Deep enough, large perimeter/far from populations but accessible to transport
- \* No potential for human intrusion



ATP\_Z1S1\_Fig. 1-1a.ai

## Is Yucca Mountain a Reasonable Site?

★ Depends on time frame
★ For 1,000 years, yes
★ For ≥10,000 years, maybe not

\* Violates 2 of 4 IAEA siting criteria

- \* Tectonically active
- \* Oxidizing (not reducing) geochemical environment within the repository

\* Thus requires more "engineered fixes" and there is greater uncertainty as to how the repository will perform over time compared to sites in other countries

# Are There Alternatives to Repositories?

## \* Short answer: No

- \* Other Waste Management Strategies
   \* Long-term above-ground storage
  - \* Reprocessing
    - Both Still require a repository eventually

## \* Countries with repository programs

- Sweden, Finland, France, Germany, UK, Canada, China, Russia, Switzerland, Japan
  - Of above, those that reprocess
    - France, Germany (no longer), UK, China (just beginning to), Russia, Switzerland (no longer), Japan

## Reprocessing as Waste Management

## \* Advantages \* Extends uranium resource \* Reduces volume of long-lived actinides \* Can tailor waste form to repository <u>\* Disadvantages</u> \* Still need a repository Size about same if reprocess or not \* Not cost effective (never has been) \* Increases overall waste volume intermediate and low-level \* Proliferation risks

Reprocessing's effects on repository capacity

Doesn't reprocessing reduce the volume of waste?
From 20 tonnes spent fuel reprocessing makes

- \* 2-4 tonnes HLW
- \* 20-30 tonnes ILW
- \* 70-95 tonnes LLW

 BUT: volume is not the appropriate unit of measure for determining capacity

 heat production and concentration of low-solubility species

# Repositories

\* Spent MOX fuel

- \* Not recycled
- \* 3 times heat output of spent LEU fuel
  - needs more capacity
- \* 25% more I-129 in spent MOX
- \* 2 times minor actinides in spent MOX

## \* Separated Pu

 Countries that reprocess generate large stockpiles of separated Pu

# **Potential Solutions**

### \* If Yucca Mtn is abandoned

- \* We still need a repository
- If there's an expansion of nuclear power, may need multiple repositories
  - \* 20-30 Mt spent fuel/Gwe/yr
  - \* For 400 Gwe, 8,000-12,000 Mt/yr
- Will likely need >1 repository even if Yucca Mtn approved because of capacity constraints
- Multiple repositories may restore a sense of fairness to waste issue – share the burden

# **Potential Solutions**

### \* Rethink repository siting

- \* Need new criteria
  - Based on IAEA criteria
  - Need geologists involved in decision-making
- \* Need to develop a process for siting
  - German plan (AkEnd)
    - \* Seek all sites that fit geologic criteria
    - \* Seek subset based on weighted criteria
    - \* Select 3-5 for surface exploration
    - \* Give communities at identified sites opportunity to reject sites
    - \* Select 2 sites for subsurface exploration
    - \* Give communities opportunity to weigh in
    - \* Site selection

# How to Evaluate Sites?

- \* How to down-select among a few sites?
- \* Use best geologic judgment available
- Compare sites do not evaluate one in a vacuum
- \* Rethink radiation dose standards for sites
  - \* What does 15 mrem/yr limit at 10,000 years really mean? What does 350 mrem/yr at 1,000,000 years mean?
  - \* What is reasonable?

# Solutions

- Reprocessing not a good solution
  - \* Plenty of U, expensive, creates more waste, still need a repository

#### Best solution for high-level nuclear waste: geologic repositories

- \* Yucca Mt may not be suitable for the long-term
  - Tectonically active, oxidizing environment
- \* Most likely, we'll need more than Yucca Mtn
- \* We need a "Plan B" for high-level waste in the US
  - Interim storage for now
  - Seek alternative sites for repositories
  - Need to have multiple repositories
    - \* Ensures that burden perceived to be shared
    - \* Ensures that nuclear power can expand without constraints of waste
  - Need to move waste management out of the DOE
  - Need to rethink site evaluation no more performance assessment as the sole "decider"
- Can we resolve waste problem before large expansion of nuclear?

