Management & Operating Contractor

Multi-Purpose Canister System Westinghouse Proposed Design

Presentation to the Nuclear Waste Technical Review Board Arlington, VA

James R. Clark, Manager MPC Project June 14, 1995

MPC Contractor Workscope Phase 1

- Design large (125-ton) and small (75-ton) transportation casks with MPCs
- Design equipment to seal weld MPCs
- Design large and small storage modules for MPCs
- Design transfer system to transfer loaded MPCs
 - From reactor pool to storage modules
 - From storage modules to transportation casks

MPC Contractor Workscope Phase 1

- Prepare Preliminary Design Reports for above
- Conduct safety analysis and prepare reports for
 - Large and small transportation casks with MPC— 10 CFR 71
 - Large and small storage modules and transfer systems with MPC—10 CFR 72

MPC Contractor Workscope Phase 1

- Conduct alternative design studies and prepare reports
 - Enhanced fuel characteristics
 - Stainless steel clad SNF
 - Long fuel
- Perform scale model long lead activities
 - Prepare scale model fabrication and test plans
 - Buy scale model long lead materials

Proposal Evaluation

- Qualification criteria
 - Experience in design and fabrication of NRC certified systems or equipment
 - Five qualified offers received
- Evaluation factors per RFP
 - Business and management—corporate experience, personnel, management plans, facilities
 - Technical—design, certifiability under 10 CFR 71/72, system operability and fabricability
 - Price

Evaluation Process

- Note—restrictions on disclosure until GAO issues decisions on three protests
- Oral discussions with each offeror
- Best and final offers
- Best value evaluation and recommendation by Source Evaluation Board
- Review and determination by Source Selection Authority

Subcontractor and Team

- Westinghouse Government and Environmental Services Company
- Packaging Technology, Inc.
- Chem-Nuclear Systems, Inc.

Phase 1 MPC Subcontract

- Fixed price—\$14.0 million
- One-year duration
 - Nine months to preliminary designs
 - Plus 3 months to prepare SARs

Westinghouse MPC Team Phase I Organization

Civilian Radioactive Waste Management System

Westinghouse MPC

MPC Assembly

- Large MPC
 - OD—66.0 inches
 - Thickness—0.75 inches
 - Length—192 and 180 inches
- Small MPC
 - OD—50.0 inches
 - Thickness—0.63 inches
 - Length—192 and 180 inches

MPC Assembly

- Six cavity lengths
- Shield plugs
 - Top and bottom
 - Depleted uranium or carbon steel sheathed in SS

MPC System Overview

- MPC capacity
 - Large PWR-21, large BWR-44
 - Small PWR—12, small BWR—24
- MPC basket configuration—support plate with guide tubes

MPC Basket Designs

	Large (125-ton)		Small (75-ton)	
Basket Designation*	21P	44B	12P	24B
Enrichment (w/o U ²³⁵)	4.30	4.00	3.75	3.75
Burnup (GWd/MTU)	45	42	40	40
Neutron absorber material	Boral	SS-Boron	Boral	SS-Boron

^{*} Flux trap designs

MPC System Overview

- Storage mode—vertical pre-cast concrete
- Transfer—horizontal with optional vertical

Westinghouse Transfer Cask

Westinghouse Transfer System

Civilian Radioactive Waste Management System

Drawing

Westinghouse Transportation Cask

Civilian Radioactive Waste Management System

MPC System Overview

- Transportation cask
 - Stainless steel containment
 - DU gamma shielding
 - NS3 neutron shielding
 - Polyurethane foam impact limiters
- Railcar—six-axle, 388,000-lb. GW, AAR approved

Certifiability—Analysis Versus Test

Analysis

- Reliance on previously accepted features
- Fire and immersion events
- Storage events
- Engineering development tests (phase 1)
 - Impact limiter attachment
 - Seal material performance

Certifiability—Analysis Versus Test

- Quarter-scale certification tests (phase 2)
 - Structural response to free drop and puncture events
- Confirmation tests
 - Thermal tests for storage (phase 2)

21

Package Design Drivers

- Heat loads—large MPC system
 - Aluminum heat removal panels installed between support plates
 - Large PWR and BWR only
- Weight constraints
 - Depleted uranium used in small transportation cask
 - Liquid neutron shield used in large transfer cask

Criticality Control Approach

- Westinghouse proposed flux trap design with capability of 4.3 w/o at zero burnup
- Design still must meet 1.8 w/o with collapsed flux trap for MGDS requirement
- BUC topical for PWR—Actinides only submitted to NRC May 31, 1995

Phase I Schedule

