

Canister Confinement Integrity

Integrated Plan for Addressing Potential Chloride-Induced Stress Corrosion Cracking of Austenitic Stainless Steel Dry Cask Storage System Canisters

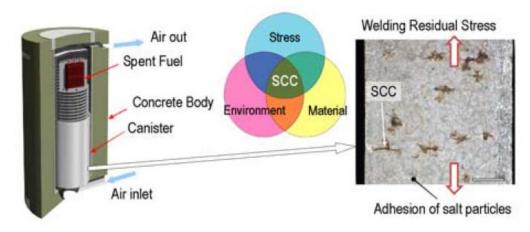
Keith Waldrop, Christine King, Shannon Chu EPRI Nuclear Power Sector – High Level Waste Group

> NEI Used Fuel Management Conference St. Petersburg, FL May 8, 2013

Background

- Need for extended storage
- How do we get there
 - Evaluate R&D data gaps
 - Gap analyses: NWTRB, DOE, NRC, EPRI, International
 - Perform R&D
 - EPRI led Extended Storage Collaboration Program (ESCP)
 - Integrate results
- EPRI's gap analysis (EPRI Report 1022914, Aug 2011)
 - Only high priority gap is SCC of welded SS canisters

For canister confinement integrity:


Focus on potential for CISCC of welded stainless canisters

Stress-Corrosion Cracking (SCC) of SS Welded Canisters

SCC requires 3 concurrent conditions:

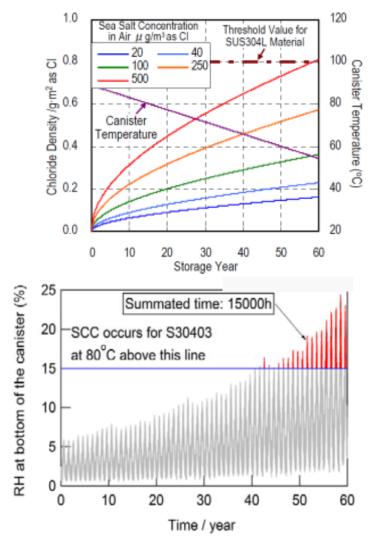
- 1) Austenitic stainless steels (e.g. 304, 316)
- Tensile stress (residual weld stress)
- 3) Corrosive environment
 - Salts in the air
 - Deliquescence
 - Surface temperature
 - Humidity

SCC can occur under conservative lab conditions

What we don't know ... What are the conditions on actual canisters?

Approach

High level view:


- Understand conditions*
- Understand effects*
- Identify susceptibility *
- Identify options to address
- Develop plan to address

* - Included in Chloride Induced Stress Corrosion Cracking RIRP (ML13042A090) and EPRI R&D Roadmap (ML13042A140)

Understand Conditions

- Voluntary Inspections
 - Initial Inspection plans
 - Scope:
 - Visuals
 - Surface deposit sampling
 - Atmospheric sampling
 - 3 Locations
 - Calvert Cliffs (complete)
 - Hope Creek (3rd Qtr 2013)
 - Diablo Canyon (3rd Qtr 2013)
- Lab experiments
 - Identify conditions for SCC

Figures: SCC Evaluation Method of Multi-Purpose Canister in Long Term Storage, Central Research Institute of Electric Power Industry

Understand Effects

Failure Modes and Effects Analysis (FMEA)

- Systematically identify credible failure modes for SS canisters
- Identify range of potential effects for failure mode(s)
 - Fault Tree Analysis of failure modes to evaluate combinations of initiating events
 - Frequency / probability of failure mode occurrence as a function of time
 - Consequences associated with the failure mode
 - Detection before the impact of the effect is realized
- Literature survey
 - Identify knowledge gaps between actual conditions vs. degradation data available
- Degradation models
 - Conditions for initiation
 - Propagation and growth rate

Understand Effects

Failure Modes and Effects Analysis (con't)

- Scope of this effort is limited to welded SS canister designs exposed to atmosphere
- Focus on aging-related degradation
- Incorporate results from gap analyses done by others
- Existing design basis documents for volunteer plant will be reviewed and factored into the failure modes considered

Identify Susceptibility

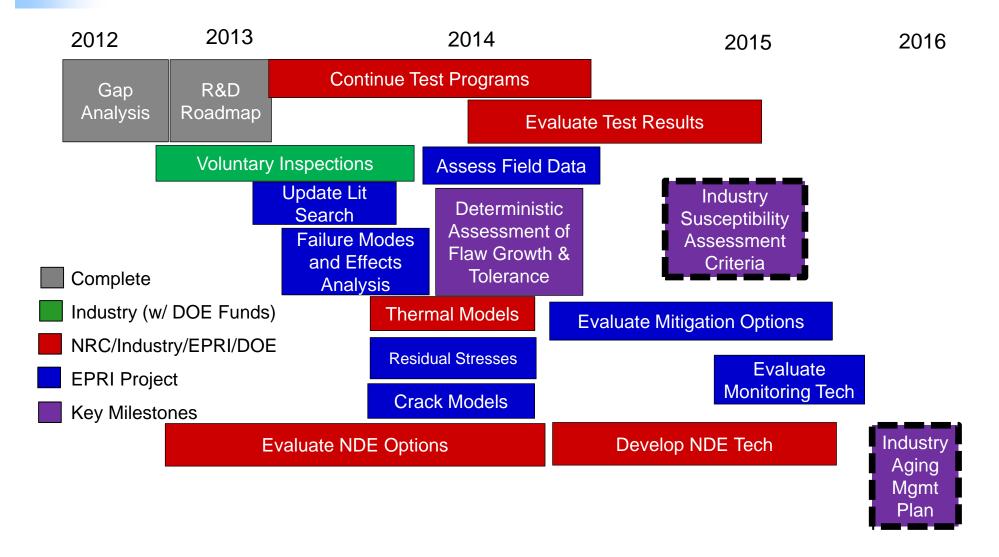
Industry-wide Susceptibility Criteria

- Develop criteria to assess susceptibility of ISFSIs to canister degradation, potentially leading to a loss of confinement integrity
- Identify the associated time scales
- Interaction between relative humidity, salt concentration, and local temperature due to decay heat may combine to create a window of concern for susceptibility
- Advisory panel will oversee development of susceptibility assessment methodology
 - Utilities, vendors, consultants, NEI

Identify Options to Address

Inspection – Monitoring - Mitigation

- Stainless Steel Canister Confinement Integrity Assessment
 - Probabilistic models of environment and crack behavior applied to determine recommended inspection frequencies
- Simultaneous effort to identify, develop, evaluate:
 - NDE Technologies
 - Monitoring Technologies
 - Mitigation Technologies


Develop Plan to Address

- Develop Aging Management Plan
 - Provide to industry
 - The aging management plan will guide industry activities including inspection schedules and potential application of mitigation techniques to canisters
 - Publish guidance document early 2016
- Develop site specific aging management plans

Utilities incorporate appropriate management strategy into site plans

Project Overview

11

Initial Steps

- Key Dates for Susceptibility Assessment (Estimates)
 - FMEA of Stainless Steel Canisters
 - Draft 9/13
 - Final 12/13
 - Deterministic Assessment of Canister Flaw Growth and Tolerance
 - Draft 1/14
 - Final 4/14
 - Industry Susceptibility Assessment Criteria
 - Outline 5/14
 - Draft 12/14
 - Final 6/15

Together...Shaping the Future of Electricity

Canister Confinement Integrity

Integrated Plan for Addressing Potential Chloride-Induced Stress Corrosion Cracking of Austenitic Stainless Steel Dry Cask Storage System Canisters

Keith Waldrop, Christine King, Shannon Chu EPRI Nuclear Power Sector – High Level Waste Group

> NEI Used Fuel Management Conference St. Petersburg, FL May 8, 2013