

Corrosion Monitoring of a Natural Convection Cooled Stored

Nuclear Energy Institute Used Fuel Management Conference 2013

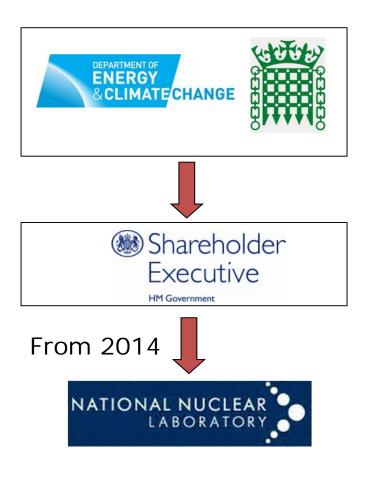
Presented By David Hambley

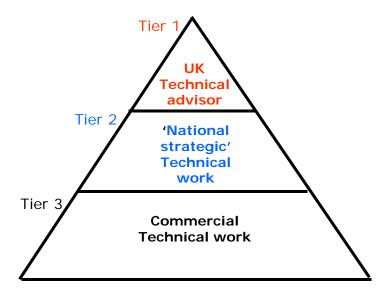
david.i.hambley@nnl.co.uk

National Nuclear Laboratory

- Created July 2008
- SBM Managing Contractor Appointed April 2009
- Contract duration 3+1+1yrs (ending April 2014)
- DECC Objectives:
 - International nuclear R&D centre of excellence
 - Support new build and clean up
 - Safeguard nuclear expertise, facilities and skills
 - Deliver value for customers
 - Trusted advisor
 - Collaborations/Partnerships/Links
 - Socio-economic focus

MANCHESTER


NNL Summary Data


- Revenue ~£80m
- 6 locations in the UK
- 770 staff
 - Over 60% with science & engineering degrees / PhDs
- Key customers:
 - EDF Energy, Westinghouse
 - Nuclear Decommissioning Authority, Sellafield Ltd, Magnox Ltd (Energy Solutions)
 - UK Government, MoD, Regulators

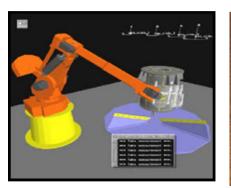
NNL's Role in UK Nuclear R&D

- National Laboratory for both UK Government and Industry
- Support to national R&D programmes
- Host Nuclear Innovation Research Office

NNL Facilities

- Uranium active large scale facilitiesActive Laboratories and Rig HallsHA Cells
- •Alpha Development Labs
- •Engineering Development Facility
- •Non active rig facility & labs
- •High Performance Computing

NNL Products and Services



- Asset Management Technology
- Fuel and Radioisotopes
- Spent Fuel Management Technology
- Nuclear Security
- Safety Management
- Waste and Residue Processing

- Waste Management Technology
- Measurement and Analysis
- Environmental Services
- Reactor Chemistry and Materials
- Post Irradiation Examination
- Training Services

Spent Fuel Storage

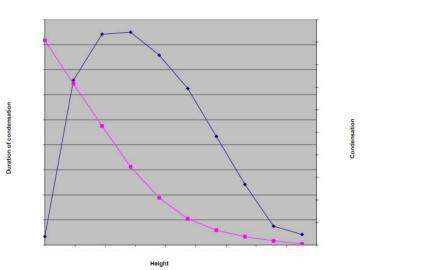
- Three main storage systems:
 - concrete casks,
 - dual purpose casks and
 - vaults
- Concrete casks and vaults have fuel stored inside air-cooled containment structures
- In general, steels used are susceptible to SCC in the presence of chloride
 - Marine environments are most aggressive
 - Chloride also in soil minerals, road salt and agricultural chemicals

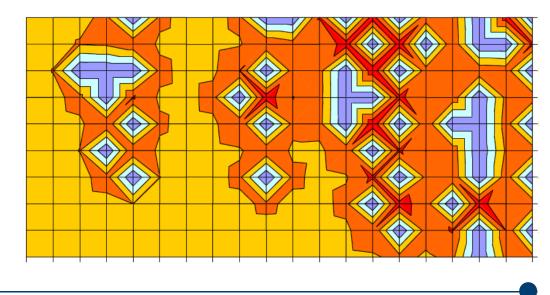
- NNL has undertaken corrosion monitoring and assessment for a vault store
- Operational since 1991 over 20 years experience
- Containers cooled by natural convection of air
- Store located close to the sea
- Prevailing winds are onshore

Comparison of Cooling Conditions NATIONAL NUCL

- Plant louvers on entry at height to avoid building effects
- Cask unfiltered ground level
- Vault louvers on entry at height
- Relationship of deposited salt concentrations inside at outside building is unclear

Condition Monitoring


• In Facility


- 7 monitoring locations
- Coupons suspended in inlet plenum
 - Initially 5 coupons/ location
 - In 2005, 2 coupons replaced by 25 smaller samples at 5 locations
- Periodic inspection
- Environmental Control
 - 2 external sites
 - Uncovered and covered arrays

Condensation on Surfaces

- Modelling
 - Buoyant air flows
 - Heat transfers
 - Condensation
- Condensation risk
 - Loading effects
 - Individual locations
 - Store profile

Condensation Effects

Modelling indicates:

- Transient condensation under certain combinations of heat loading and atmospheric conditions
- Condensation in the channel is less than that at the inlet
- Water present on channel surfaces very slightly longer that at inlet
- During condensation transients channel typically 2-3°C cooler than at coupon location
- => coupon environment is more corrosive

Corrosion Assessment

Non-destructive:

- Visual examination of samples
- X-ray of coupons for detection of sub-surface cracking

Destructive:

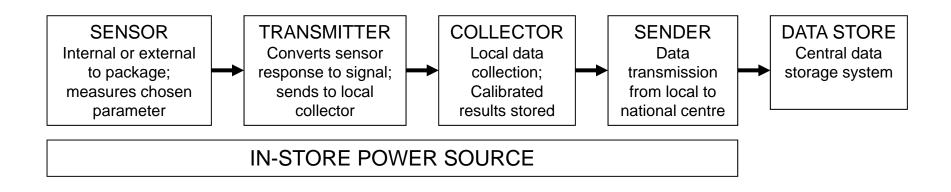
- Weight loss
- Sectioning and macroscopy/microscopy
- Analysis of pit size distributions

- Continued monitoring of in-service conditions to support continued safe operations
- Salt deposition measurements to be conducted on
 - Store coupons
 - Comparison with environmental samples

This work was funded by Sellafield Ltd, a site management contractor for the Nuclear Decommissioning Authority, as part of its Asset Management programme.

SMART Coupons

- Concept developed for generic radioactive packages
- Applicable to Dry Storage Casks


On-Line Corrosion Monitoring

Process

- Parameter monitoring needs assessment
- Industry engagement to validate conclusions
- Prioritised monitoring approaches

System Model

Monitoring Needs

- Characteristics Assessed
 - Corrosion mechanisms
 - Corrosion indicators
 - Relevant measurement parameters
 - Purpose of measuring each parameter
 - Benefits of possible solution
 - Applicability to packages
- Critical success factor operator perspective
 - providing early warning systems focussed on risk mitigation

Needs Assessment Scoring

Attribute	High Score	Low Score
Significance for remedial action	Parameter likely to initiate near term remedial action	Parameter values only recorded
Predictive value	Parameter change likely to be driven by long term effect (>5 years)	Parameter change likely to be driven by a short term effect
Breadth of applicability	Could apply to multiple package types	Only relevant to single site/type
Ease of monitoring	Parameter requires observation of container or environment	Parameter requires observation of stored material

Instrumented Corrosion Coupons

Characteristics

- Representative material
- Monitor for:
 - Environmental conditions: humidity, temperature, salt deposition, surface condensation
 - Onset of corrosion
- Power from:
 - Inductive coupling or
 - Power scavenging
- Recording via:
 - Wireless communication
 - Remote monitoring platform

Humidity and Temperature

Capacitive & resistance humidity sensor	Accurate, Durable Small, Inexpensive Adapted for different environments Combined sensors Commercially available	Hygroscopic polymer ageing Polymer swelling Yearly changes in error Ageing of metallic layer Requires shielding Sensor replacement req'd Non-linearity
Thermal conductivity sensor ✓	Accurate, Durable Small, Inexpensive Long service life Corrosion resistant Stable at high temp Combined sensors Commercially available	Requires shielding Sensor replacement may be req'd
Fibre Optics	Good radiation resistance Combined sensor Small	Early stage of development Requires further development

Corrosion Monitoring - 1

Electro- chemical	Monitors general and local corr. High sensitivity	Manual data interpretation req'd
noise (ECN)	 Sensitive to rapid cracking Good reputation (test & field) No current supply to test piece Commercially available Simple set-up Simple operation 	Technique still under development Requires aqueous environment on sample surface
Acoustic Emission	High sensitivity Automated acquisition Sensitive to rapid crack propagation Good reputation (test & field)	Long residence time Lengthy monitoring regime Unable to detect SCC initiation/early propagation Low signal to noise ratio

Corrosion Monitoring - 2

Electrical	Simple	Best for general corrosion
resistance /	Commercially available	Required electrical
potential	Cost effective	current through test
drop	Well understood	piece
Field Signature Method (FSM)	Monitors general and local corr. Analysis for pit depth/crack length Commercially available Cost effective	Current resolution about 0.05% wall thickness Matrix of sensors
\checkmark		

Salt Deposition

- Limited number of suitable techniques
- Low level of development
- Further development required for non-aqeuous environments:
 - Quartz Crystal Microbalance (QCM)
 - Surface Acoustic Wave (SAW)
 - Fibre optic

Coupon Review Conclusions

Temperature and Humidity	Thermal conductivity – combined sensor
Corrosion monitoring	Field Signature Method
Salt deposition	Not implemented, pending technology development
Power and communications	Battery + wireless RF
Networking, data acquisition and display	Existing commercial system
Coupon design	Representative material, linear/U-section specimen
Radiation	Hardness testing required

Acknowledgement

- The work on instrumented coupons was funded by the Nuclear Decommissioning Authority (NDA) through the Direct Research Portfolio Lot 2 Framework Contract and was performed by National Nuclear Laboratory.
- NNL also acknowledges the contribution of Hyder Consulting and UKAEA Ltd. to the selection and prioritisation of monitoring needs as partners in the integrated project team on radioactive waste packaging

Corrosion Monitoring of a Natural Convection Cooled Stored

Nuclear Energy Institute Used Fuel Management Conference 2013

Presented By David Hambley

david.i.hambley@nnl.co.uk