

EPEI ELECTRIC POWER RESEARCH INSTITUTE

EPRI High Burnup Used Fuel Confirmatory Demonstration Project [The "High Burnup Demo"]

John Kessler

Manager, Used Fuel and HLW Management Program

Keith Waldrop

Senior Project Manager, UF/HLW Management Program

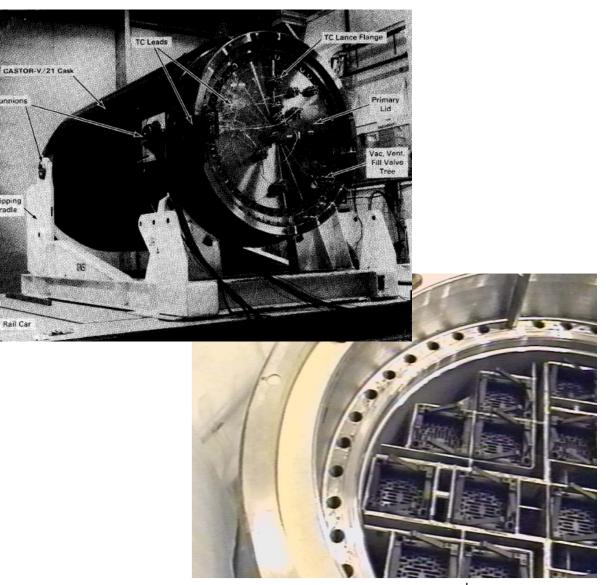
NEI Used Fuel Management Conference 8 May 2013

Outline

- Purpose of the high burnup demo
- Low burnup confirmatory data collection work
- Initial engagement
- DOE Request for Proposal
- EPRI Team proposal
- Future plans

Full-Scale Used Fuel Dry Storage Demonstrations – A Brief History

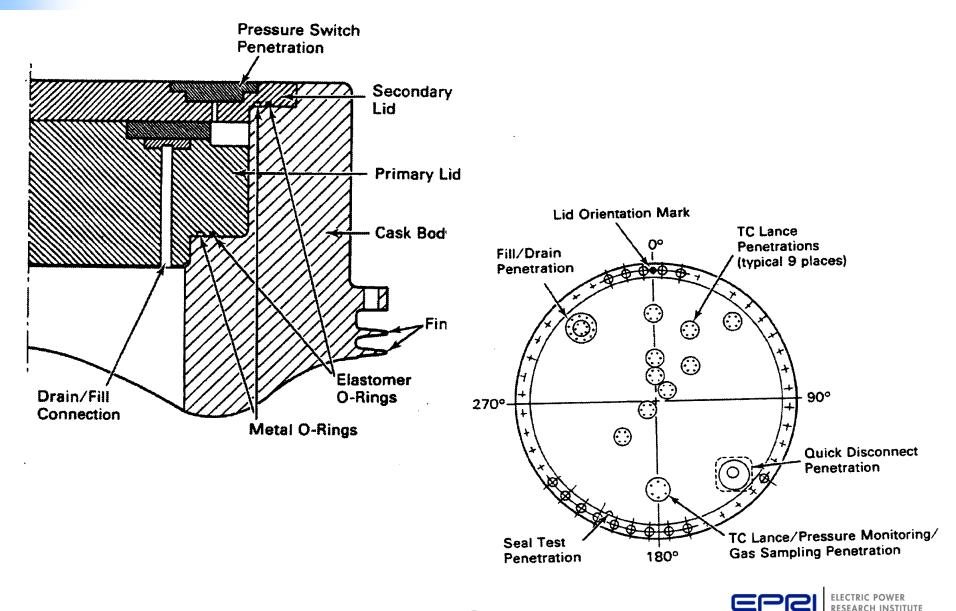
- Several data collection "demos" using low burnup fuel from mid 1980s through early 1990s
 - -CASTOR V/21 (1985)
 - -MC 10
 - -TN-24P
 - -VSC-17
- Demo data collection
 - Internal gas composition and pressure
 - Internal and external temperatures
 - External dose rates



Original CASTOR V/21 Demo: Low Burnup (BU) **Cladding (1984-2002)**

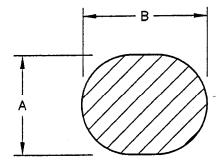
running

Shipping Cradle


- Surry fuel up to 35GWd/MTU
- Demo initiated in 1984
 - [EPRI NP-4887, 1985]
- Re-opened after 14 years
 - [EPRI 1002882, 2002]
- Demo conducted at DOE TAN facility

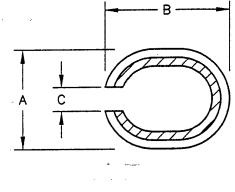
ELECTRIC POWER RESEARCH INSTITUTE

Modification to CASTOR V/21 Primary Lid


RESEARCH INSTITUTE

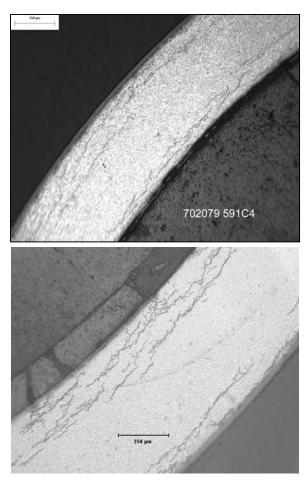
CASTOR V/21 Cask Re-Opening Observations and Data Collection (1999-2001)

O-Ring Condition after 14 Years: Still Elastic

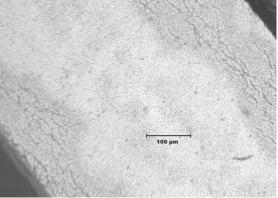

LOC.	DIMENSION A MEAS.	DIMENSION B MEAS.
100.		
2"	0.336"	0.427"
4"	0.338"	0.422
6"	0.337"	0.423*
8"	0.340"	0.421
10"	0.340"	0.421
12"	0.338"	0.421
14"	0.342"	0.420
16	0.340"	0.420"
AVERAGE:	0.339"	0.422*
σ:	0.002	0.002"

ELECTRIC POWER RESEARCH INSTITUTE

	DIMENSION A	DIMENSION B	DIMENSION C
LOC.	MEAS.	MEAS.	MEAS.
2*	0.355	0.445"	0.085"
4*	0.352	0.445"	0.080"
6"	0.354	0.446"	0.065"
8"	0.353	0.450	0.081"
10"	0.355"	0.452"	0.086"
12"	0.353	0.454	0.095"
14"	0.353	0.456"	0.088"
16"	0.354	0.450"	0.074"
18"	0.354	0.454"	0.073*
AVERAGE:	0.354	0.450*	0.081"
ር፡	0.001"	0.004"	0.009"

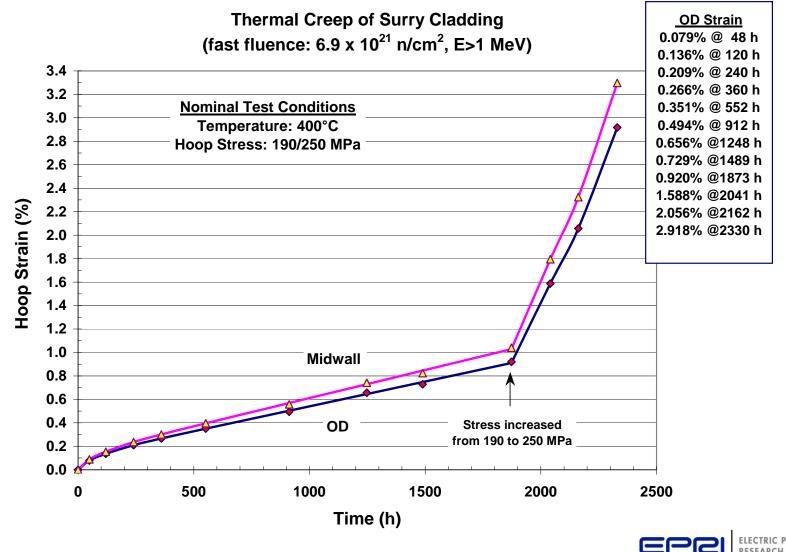

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Cask Bottom Cover Plate Bolt Corrosion



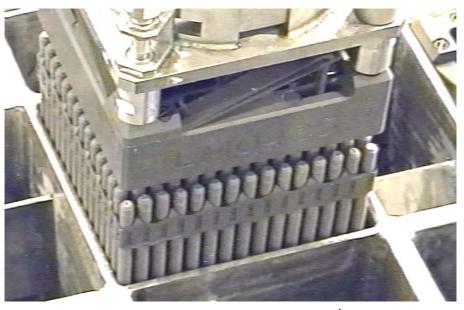
CASTOR V/21 Low BU Cladding: Morphology of Hydrides Mostly Circumferential

Mid plane



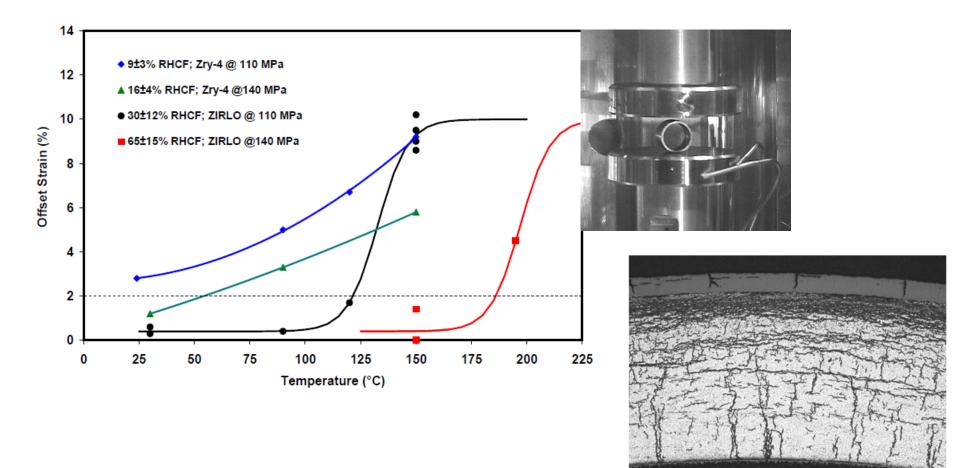
0.5m above mid plane

© 2012 Electric Power Research Institute, Inc. All rights reserved.


CASTOR V/21 Low BU Cladding: Significant "Creep Life" Remains

CASTOR V/21 Low BU Demo Final Results: No Evidence of Degradation After 14 Years

- No radiation or temperature 'hot spots'
- No leakers
- No visual evidence of O-ring degradation
- All assemblies came out easily
- No visual evidence of additional assembly/cladding degradation or bowing
- No visual evidence of additional internal basket degradation
- Little to no detachment of crud


ELECTRIC POWER RESEARCH INSTITUTE

Fast Forward: Industry Shift to Use of High Burnup Fuel

NRC Concern: *High* BU Cladding Performance During Extended Storage (followed by transportation)

Used fuel cladding cross-section showing hydride embrittlement

200 µm

Gap: Full Scale High Burnup Demonstration

- Repeat earlier low BU demo using high BU fuel
- Will high BU cladding become so brittle it cannot be moved?
- DOE prefers assembly retrievability
- Need for data for high BU license extensions in the USA:
 - Now: Prairie Island, Calvert Cliffs
 - Mid to late 2020's: several more

Full-scale, High Burnup Confirmatory Data Collection ("high burnup demo") Plans

Confidence in understanding longer-term behavior of dry storage system requires

- Model development and benchmarking data
- "Separate effects testing"
- Confirmatory testing under "prototypic" conditions
 - Full scale
 - Representative dry storage conditions
 - Drying process and inerting
 - Thermal evolution
 - Geometry
 - Prefer multiple high BU fuel types (if possible)

High Burnup Demo Objectives

- Confirmatory data to support
 - Thermal models
 - Behavior of cask internal components (fuel, cladding, assembly hardware, baskets, neutron absorber)
- Avoid rewetting the fuel after initial loading

High Burnup Demo Activities

- Obtain "t=0" data from sister rods
 - Profilometry
 - Cladding properties (hydrogen content and initial orientation, mechanical, internal gas content)
- Modify existing cask with a special lid that includes
 - Thermocouples
 - Gas sampling
- Load cask and emplace modified lid
- Data collection through lid begins immediately
 - Capture temperature and gas evolution during drying
 - Continue temperature measurements and periodic gas sampling
- After X years (TBD), re-open, remove rods, visually inspect for degradation
 - Rods for destructive exams to compare to "t=0"
- Option to perform exams on internals
 Source Research Institute, Inc. All rights reserved.

2003: EPRI Study on Alternative High BU Demo Options [EPRI 1007872] (costs in \$ millions)

Activity	Option A: Augment Existing Exam Program	Option B: Utility ISFSI Followed by Laboratory Examination	Option C: Laboratory Storage and Examination
Estimated program duration [yr]	5	12	12
Program management	1	4	4
Demonstration storage system	0	~5	~7
Pool-side NDE	>0	>0.2	>0.2
Shipping to laboratory	0.3	0.3	0.3 to >1
Dry storage demonstration period with periodic monitoring and surveillance	0	1.5	1.5
Post-storage fuel rod examination	3	4 to 7	4 to 7
Post-test disposal and cleanup	1	1	>1
TOTAL	~5	~15 to 20	~18 to 21

© 2012 Electric Power Research Institute, Inc. All rights reserved.

EPRI Proposal for a High Burnup Used Fuel Confirmatory Data Collection Project

- Modify an existing TN-32 bolted lid cask lid to collect data on:
 - Spatial and temporal temperature distribution inside the cask during loading, drying, and at the end of long-term storage
 - Internal gas pressure and composition (helium, oxygen, hydrogen, fission product gases)
- Remove sister rods to establish rod properties prior to dry storage
- Conduct the demo at North Anna using three types of high burnup fuel: Zircaloy-4, Zirlo, M5
- Monitor the cask temperatures and if possible take occasional gas samples for at least ten years
- Move to a site with capability of re-opening the cask dry

The EPRI-Team Demo Option Keeps Startup Time Short

- Avoids up-front transportation to a national lab
- Avoids having to wait for a full-scale hot cell to be funded and constructed
- Multiple, high burnup fuel types already at North Anna
- The TN-32 cask body is already fabricated

EPRI Team was Awarded up to 80% Co-Funding by DOE

- EPRI Team
 - -AREVA Federal Services
 - Transnuclear
 - Dominion
 - Subcontractors, such as:
 - Sister rod extraction:
 - AREVA Fuels
 - Westinghouse Fuels
 - Sister rod transportation (competitive bid)
- Contract start date: April 16, 2013 (five-year contract)
- Initial 5-year cost estimate (excluding sister rod examination): \$19.8M
 - Will be revised after completion of Final Test Plan

DOE Contract Near-Term Milestones (2013, "Phase 1")

- May: Evaluate existing data gap analyses and recommend complementary modeling, experiments, and small-scale tests
- Early July: Submit a detailed Draft Test Plan to DOE
- Mid July to mid August: Public comment period on the Draft Test Plan
- Late August: Provide revised Test Plan to DOE
- Mid September:
 - DOE provides comments on revised Test Plan
 - Complete Final Test Plan
- Late September: Initiate Test Plan

DOE Contract "Phase 2" Activities through 2018

- Year 2 (notional schedule prior to Final Test Plan)

- Review TN preliminary lid design
- Pre-application review meeting with preliminary lid design and outline of SAR
- Fuel assembly, sister assembly, rod selection
- Second pre-application meeting with NRC
- Final lid design review
- Prepare storage (Part 72) SAR
- Begin design and analysis for transportation (Part 71) SAR
- Procure special cell in the SFP to hold the sister assembly rods for pre-test characterization
- Fuel poolside exams
- Pull rods and place in special cell
- Establish contract to ship rods to a national lab

DOE Contract "Phase 2" Activities – Year 3

- Complete storage SAR preparation
- Submit storage (Part 72) license amendment (LA)
- Respond to NRC Requests for Additional Information (RAIs) for storage
- Continue preparation of transportation (Part 71) SAR
- Procure TN-32 cask body and ship to fabrication shop for instrumented lid
- Procure instrumented lid and all instrumentation. Perform fit-up at fabrication shop
- Meet with DOE and national labs to discuss progress, the hand-off of the rods to the labs, and the labs' rod characterization plans

DOE Contract "Phase 2" Activities – Year 4

- NRC grants storage license
- Review approved License Amendment, Tech Specs and perform necessary site implementation activities
- Continue preparation of transportation (Part 71) SAR
- Ship rods to the national lab
- Rod characterization interactions with DOE and national labs
 - [Rod characterization schedule upon rod transportation cask arrival at the receiving national lab is up to DOE]
- Ship cask and instrumented lid to North Anna
- Perform cask handling/loading dry run

DOE Contract "Phase 2" Activities – Year 5

- Submit transportation (Part 71) LA
- Load cask, dry, move to ISFSI pad
- Take temperature measurements and at least one gas sample
- Respond to NRC RAIs on transportation LA
- Review additional pre-test rod characterization work
- Receive transportation license at the end of Year 5
- TBD:
 - Completion of sister rod pre-characterization
 - Negotiate long-term contract with DOE for the storage period

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Together...Shaping the Future of Electricity

EPEI ELECTRIC POWER RESEARCH INSTITUTE

EPRI High Burnup Used Fuel Confirmatory Demonstration Project [The "High Burnup Demo"]

John Kessler

Manager, Used Fuel and HLW Management Program

Keith Waldrop

Senior Project Manager, UF/HLW Management Program

NEI Used Fuel Management Conference 8 May 2013