

Minimum Critical Volume

Kent Wood U.S. Nuclear Regulatory Commission Office Nuclear Reactor Regulation

Nuclear Energy Institute Used Fuel Management Conference May 9, 2013

Overview

- Background
- ICE at Shika 1
 June 18 1999
- Relation to SFP NCS
- Summary

Background

- High capacity SFP storage designs
- Neutron absorber degradation
- More reactive fuel assemblies
 - Higher enrichment
 - Core design & operating parameters
- SFP NCS analyses & controls more complex
 - Analyses continue to take new approaches
 - More storage configurations
- SFPs have 100s or 1000s of control volumes

- Often cited SFP NCS Conservatisms
 - Neutron absorber B-10 modeled at SFP average, but not all are at average, i.e., some are above average.
 - Neutron absorber B-10 modeled at panel average degradation
 - Fuel assemblies modeled at limit, but not all are at the limit
 - Burnup
 - Peak Reactivity
 - Core Depletion Parameters
 - 10CFR50.68 says keff but we modeled kinf
 - kinf > keff
- How much conservatism is really there?

ICE at Shika 1

- June 18 1999
 - Refueling outage
 - Preparations for a single rod scram test
 - Hydraulic control units were being isolated
 - Last 3 control rods unexpected partial withdrawal
 - Core became critical
 - Scram signal from intermediate range detectors
 - Accumulators were not charged
 - Shift manager directs workers to recover the HCUs
 - 15 minutes until the control rods insert and end the event
 - http://www.gengikyo.jp/english/shokai/070417E_Rinkai_K aiseki.pdf

Shika 1 ICE Core

- Control Rods
 - 89 Total
 - 3 Moved
- Displacement
 - A: 16 steps
 - B: 20 steps
 - C: 08 steps
 - The rest: 0
- Core periphery
 - Leakage

Figure 2 Power Distribution of the Core

Shika 1 ICE Power

- Prompt Critical
 - ≈ 240 MW
- Delayed Critical
 - ≈4 MW
 - 15 minutes
- Consequences
 - No Fuel Damage
 - Negligible worker dose
 - None in the shine

Figure 4-1 Trend of Power (Standard Case)

Figure 4-2 Trend of Power (Standard Case)

Lessons from Shika 1 ICE

- How does Shika 1 relate to SFP?
 - Can we model all CRs at an 'average' position?
 - Neutron absorber SFP panel average degradation
 - Can we model the individual CR position as an average?
 - Neutron absorber individual panel average degradation.
 - 86 CR are fully inserted
 - Doesn't that provide 'excess' insertion above the limit?
 - This occurred on the periphery
 - What happened to the leakage?

Shika 1 CR Position

- 3 Rods
 - Total of 44 steps withdrawn
- 89 Total Rods
 - 4272 total steps
- Ave CR Position
 - 0.5 steps withdrawn
- Core average not a valid modeling assumption

Figure 2 Power Distribution of the Core

Shika 1 CR 'Degradation'

- Rod A
 - 16 steps
 - 33.3% 'degraded"
- Rod B
 - 20 steps
 - 41.6% 'degraded"
- Rod C
 - 08 steps
 - 16.6% 'degraded"
- Individual CR average 'degradation' not a valid modeling assumption

Figure 2 Power Distribution of the Core

Shika 1 CR Insertion

- 86 CR Fully
 Inserted
 - "Excess Insertion"
- CR "Excess Insertion" outside the affected volume did not stop the ICE

Figure 2 Power Distribution of the Core

Shika 1 Core Leakage

- Several FA on periphery
- Rod C not face adjacent with others
- Leakage not enough

Figure 2 Power Distribution of the Core

Minimum Critical Volume

- Shika 1 ICE Summary
 - Affected volume > Minimum Critical
 Volume
 - Global or average parameters are not necessarily applicable to the minimum critical volume
 - Excess conservatism/margin outside the minimum critical volume doesn't matter

- Neutron absorber B-10 modeled at SFP average, but not all are at average, i.e., some are above average.
 - Is this applicable to the minimum critical volume?
- Neutron absorber B-10 modeled at panel average degradation
 - Are local effects being fully considered?
- Fuel assemblies modeled at limit, but not all are at the limit
 - Can the minimum critical volume be created?
- keff vs kinf
 - What is the leakage for the minimum critical volume
- How much conservatism is really there?

- What is your minimum critical volume?
- What is happening inside your minimum critical volume?

 http://www.gengikyo.jp/english/shokai/070 417E_Rinkai_Kaiseki.pdf

Minimum Critical Volume

Kent Wood U.S. Nuclear Regulatory Commission Office Nuclear Reactor Regulation

Nuclear Energy Institute Used Fuel Management Conference May 9, 2013