Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

Jy-An John Wang - PI & Presenter wangja@ornl.gov

Hong Wang, Bruce Bevard, and Rob Howard

Oak Ridge National Laboratory

2014WM Symposia March 2-6, 2014 Phoenix, Arizona

A revolutionary device (CIRFT) has been developed for investigating used nuclear fuel (UNF) vibration integrity

- 1. UNF transport must meet safety requirements
- 2. Previously, the ability to evaluate UNF vibration integrity was limited
- 3. A fuel/clad rod is a complicated composite system
- 4. Cyclic integrated reversible-bending fatigue tester (CIRFT) mimics fuel transport dynamic loading
- 5. A potentially important fuel-clad interaction mechanism was noted from CIRFT surrogate testing

Presentation Outline

- Background
- CIRFT system development
- Applying CIRFT to surrogate Zr-4 rod testing
- Fuel-clad interaction & interface bonding efficiency under dynamic loadings
- Conclusions

Fatigue strength data is essential for evaluating UNF structural performance under random vibration loading during normal conditions of transport (NCT)

for the U.S. Department of Energy

UNF vibration fatigue life/limit needs to be understood during NCT operation

UNF fatigue originates from Inertia induced bending stresses during NCT

Insufficient interface bonding can degrade flexural rigidity of a UNF composite system

Flexural Rigidity: $EI = \Delta M / \Delta k$

 $EI_{System} = E_{Fuel}I_{Fuel} + E_{Clad}I_{clad}$ (Perfect bonding condition)

 $EI_{System} = E_{Fuel} I_{Fuel} + E_{Clad} I_{Clad} - BE (loading, frequency, temperature)$

E: Young's modulus, component properties dependent parameter

I: Components geometry dependent parameter

BE: Interfaces Bonding Efficiency at the pellet-pellet & pellet-clad interfaces

No test system has been available for accurately studying UNF integrity under normal condition transportion

- UNF is a composite structure with multi-scale discontinuities
- > CIRFT system attributes include:
 - No reduced section or notch in gage section
 - A free-fixed boundary condition
 - Robust system to ensure test reproducibility
 - Testing in a hot-cell environment with ease of test sample preparation and testing

Using CIRFT, a test rod experiences reversal bending through closing and opening actions of two loading arms

(b) rigid arms are in neutral position.

(c) rigid arms are opening.

Prototyping began in 2011 and progressed through multiple iterations to address testing challenges and optimize design

Apr. 2011: Initial **Concept – Pure Bending Moment**

Sept. 2011: Setup using counter weights & Rigid **Sleeves**

August 2013: Finalized setup on Bose dual LM2 TB and moved into hot cell

10 Managed by UT-Battelle for the U.S. Department of Energy

Sept. 2012: Setup on Bose dual LM2 TB (no counterweight) – better high freq performance

Feb. 2012: Improved performance and reliability

Specimen preparation is a key step for CIRFT testing

Two rigid sleeves are epoxied to test specimen to provide stability and a protective compliant layer.

Rod specimen

3 LVDTs for real-

DAK

National Laborator

time curvature

measurement

Test samples were Zr-4 clad with alumina pellet inserts.

11 Managed by UTfor the U.S. Depa

Out-of-cell test rods all failed within the gage section at pellet-pellet interface

(a)

(c) (d) 2 Mana Surrogate rods made of Zr-4 clad with alumina pellet inserts for the U.S. Department of Energy

Zr-4 rod with epoxy bond has higher flexural rigidity and higher bending resistance

(Left) Zr-4 sample w/ epoxy, (Right) Zr-4 sample w/o epoxy, both tests under 0.2 mm/s and maximum relative displacement of 20 mm at loading points of U-frame

CIRFT real-time monitoring data shows continued decrease in flexural rigidity

- test sample failed at 5.49E+05 cycles, ±150N, 5 Hz
- 7% flexural rigidity drop shown before final fracture

National Laborato

14 Managed by UT-Battelle for the U.S. Department of Energy

S-N fatigue trend of Zr-4 surrogate rods show distinct "KNEE"

National Laborator

for the U.S. Department of Energy

Pellet-clad bonding efficiency has major impact on surrogate rod performance

Significant bending load resistance was shifted from pellet to the clad upon insert pellet fracture

CIRFT has been successfully tested in an out-of-hot-cell environment

- Surrogate data shows the effect of interface bonding efficiency on UNF vibration integrity is important.
- The robust CIRFT testing ensures easy operation and test result reproducibility.
- Surrogate S-N data provides a clear roadmap and well-defined baseline data to support follow-on hot cell testing of high burnup fuel.

Acknowledgment

- The project is sponsored by Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.
- Authors would like to thank NRC program manager Michelle Flanagan for guidance and support; Ting Tan, Hao Jiang, Thomas Cox, Chuck Baldwin, and Yong Yan for their support.
- Authors also want to thank Gordon Bjorkman, Bob Einziger, and Patrick Raynaud for providing valuable comments during program development.

FEM Simulation Shows that EI is Critically Dependent on Interface Bonding Efficiency

Interfaces Bonding Conditions	Flexural rigidity, <i>EI</i> (N*m ²)	Reduction from perfect bond (%)
Perfect bond	<u>153</u>	
De-bond Pellet-Pellet Interfaces with Gaps*	37	<u>76</u>
De-bond Pellet-Pellet and Pellet- Clad Interfaces with Gaps	34	78
De-bond Pellet-Pellet interfaces without Gaps	104	<u>32</u>
De-bond Pellet-Pellet and Pellet- Clad Interfaces without Gaps	84	45

* Gap can be formed progressively due to pellet-pellet or pellet-clad mechanical interaction under cyclic reversible bending loading