Total System Model Version 6.0 Transportation Validation Report

Prepared for:
U.S. Department of Energy

Office of Civilian Radioactive Waste Management
1000 Independence Avenue, SW
Washington, D.C. 20585
Prepared by:
Bechtel SAIC Company, LLC
1180 Town Center Drive
Las Vegas, Nevada 89144
Under Contract Number
DE-AC28-01RW12101

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Total System Model Version 6.0 Transportation Validation Report

50040-VAL-06-6.0-00
October 2007

Prepared by:

Checked by:

Reviewed by:

INTENTIONALLY LEFT BLANK

CHANGE HISTORY

Revision No.	Date	Description
0	$10 / 2007$	Original issue, for use with TSM Version 6, SimCAD 1235

INTENTIONALLY LEFT BLANK

CONTENTS

Page

1. OBJECTIVE AND INTRODUCTION 1
1.1. CHANGES FOR VERSION 6.0. 2
1.2. CHANGES TO TSM VERSION 6.0 AFTER VALIDATION 3
2. METHOD 5
2.1. TRANSPORTATION ROUTES AND PARAMETERS 5
2.2. TRANSPORTATION DISTANCES 5
2.2.1. Rail Distances 5
2.2.2. LWT Distances 5
2.2.3. Barge Distances 6
2.2.4. HH Distances 6
2.3. CONVEYANCE SPEEDS 6
2.3.1. Rail Speeds. 6
2.3.2. LWT Speeds. 6
2.3.3. Barge Speeds 6
2.3.4. Heavy Haul Speeds 6
2.4. CONNECTOR TIMING 7
2.4.1. Rail and Truck Time Steps 7
2.4.2. Barge Time Steps 7
2.4.3. HH Time Steps 7
2.5. STATE LINE CROSSINGS 7
2.6. TSM TRANSPORTATION ANALYSIS TESTING 8
2.6.1. Timing Tests 8
2.6.2. Cask Cycle Time Analysis 9
3. ASSUMPTIONS AND LIMIATIONS 11
4. USE OF COMPUTER SOFTWARE AND MODELS 13
5. RESULTS 15
5.1. TRANSPORTATION ROUTES AND PARAMETERS 15
5.2. TRANSPORTATION DISTANCES 15
5.2.1. Rail Distances 15
5.2.2. LWT Distances 15
5.2.3. Barge Distances 15
5.2.4. HH Distances 15
5.3. CONVEYANCE SPEEDS 15
5.3.1. Rail Speeds. 15
5.3.2. LWT Speeds 15
5.3.3. Barge Speeds 16
5.3.4. Heavy Haul Speeds 16
5.4. CONNECTOR STEPS 16
5.4.1. Rail Time Steps 16
5.4.2. LWT Time Steps 16
5.4.3. Barge Time Steps 16
5.4.4. HH Time Steps 16
5.5. STATE LINE CROSSINGS 16
5.6. TSM TRANSPORTATION ANALYSIS AND TESTING 17
5.6.1. Timing Tests 17
5.6.2. Cask Cycle Time Analysis 18
6. OBSERVATIONS 33
7. REFERENCES 35
7.1. DOCUMENTS CITED 35
7.2. CODES, STANDARDS, REGULATIONS, AND PROCEDURES 36
8. ATTACHMENTS 37
APPENDIX A TSM TRANSPORTATION MAPS AND PROCESSES A-1
APPENDIX B RAIL DISTANCES B-1
APPENDIX C TRUCK DISTANCES C-1
APPENDIX D BARGE AND HEAVY HAUL DISTANCES D-1
APPENDIX E CONNECTOR TIMING PARAMETERS E-1
APPENDIX F STATE LINE CROSSINGS F-1
APPENDIX G TIMING TESTS. G-1
APPENDIX H TRANSPORTATION SHIPMENT REPORT GENERATOR
VALIDATION H-1

FIGURES

Page
Figure A-1. Typical Transportation Department Map A-3
Figure A-2. Truck Northwest Routes A-4
Figure A-3. Truck Southwest Routes A-5
Figure A-4. Truck Midwest Routes A-6
Figure A-5. Truck Southeast Routes A-7
Figure A-6. Truck Northeast Routes A-8
Figure A-7. Rail Northwest Routes A-9
Figure A-8. Rail Southwest Routes A-10
Figure A-9. Rail Midwest Routes A-11
Figure A-10. Rail Southeast Routes A-12
Figure A-11. Rail Northeast Routes A-13
Figure A-12. HiStar Department A-14
Figure A-13. TAD Department A-15
Figure A-14. Transportation Interfaces at Repository A-16
Figure A-15. Repository Module: Rail Unbatch Department A-17
Figure A-16. Repository Module: Rail Unbatch Department Continued A-18
Figure A-17. Repository Module: GROAUnbatchR Department A-19
Figure A-18. Repository Module: Truck Unbatch Department A-20
Figure A-19. Repository GROA: Cask Return TSM V4.0, V5.0 A-21
Figure A-20. Repository GROA and Cask Return TSM V6.0 A-22
Figure A-21. Cask Maintenance A-23
Figure H-1. Results Worksheet Validation Process Flowchart H-3

TABLES

Page
Table 1. Rail Cask Cycle Time 21
Table 2. Truck Cask Cycle Time 27
Table 3. Electronic Attachments 37
Table G-1. Timing Test for TSM Version 4.0 in SimCAD ${ }^{\text {TM }} 7.0$ G-4
Table G-2. Timing Test for TSM Version 4.0 in SimCAD ${ }^{\text {TM }} 7.1$ G-4
Table G-3. Timing Test for TSM Version 5.0 in SimCAD ${ }^{\text {TM }} 7.1$ G-5
Table G-4. Timing Test 2 for TSM Version 5.0 in SimCAD ${ }^{\text {TM }} 7.1$ G-5
Table G-5. Timing Test for TSM Version 6.0 in SimCAD ${ }^{\text {TM }} 7.1$ G-6
Table H-1. Final TSRG Validation Results H-4
Table H-2. TSRG Reference Sheet Validation Results H-5

INTENTIONALLY LEFT BLANK

ACRONYMS AND ABBREVIATIONS

BSC	Bechtel SAIC Company, LLC
BWR	Boiling Water Reactor
CALVIN	CRWMS Analysis and Logistics Visually Interactive Model
CaS	Create-a-Soft ${ }^{\text {TM }}$
CRCF	Canister Receipt Closure Facility
CRWMS	Civilian Radioactive Waste Management System
CSNF	Commercial Spent Nuclear Fuel
DOE	U.S. Department of Energy
DPC	Dual-Purpose Canister
FEIS	Final Environmental Impact Statement
FHF	Fuel Handling Facility
FMF	Fleet Management Facility
GROA	Geologic Repository Operations Area
GUI	Graphical User Interface
HH	Heavy Haul
IS	Initial State
LWT	Legal Weight Truck
MGR	Monitored Geologic Repository
mph	Miles per hour
MTHM	Metric Tons of Heavy Metal
OCRWM	Office of Civilian Radioactive Waste Management (DOE)
ONT	Office of National Transportation
OV	Overpack
PWR	Pressurized Water Reactor
Q	Queue or queue wait time
RF	Receipt Facility
SP	Single Purpose
TAD	Transportation, Aging, and Disposal
TCRRF	Transportation Cask Receipt and Return Facility
TSLCC	Total System Life Cycle Cost

ACRONYMS AND ABBREVIATIONS (CONTINUED)

TSM TSRG	Total System Model Transportation Shipment Report Generator
VAT	Value Added Time
WAST	Waste Acceptance, Storage, and Transportation
WHF	Wet Handling Facility
WNP	Waiting for Next Process time

1. OBJECTIVE AND INTRODUCTION

The objectives of this report are to document the development of data and assumptions used in developing the transportation modules of the Total System Model (TSM) and to demonstrate that transportation and transportation timing work correctly. This validation supports the Transportation Design and Basis Report (BSC 2007a) and is issued with Version 6.0 of the TSM.

This report is largely based on the analysis approach and content in the transportation calculation provided for TSM Version 4.0 (BSC 2006a). Much of the information in that report is repeated here to provide all transportation details in a single document. Repeating the analyses made for Version 4.0 should detect any inadvertent impacts from TSM revisions and updates. These analyses were not repeated to issue TSM Version 5.0 because other checks were deemed adequate. However, it is prudent to do a complete and comprehensive check every few versions to prevent long-term propagation of any problems not detected by a cursory check.

This validation in conjunction with reference BSC 2007a describes the development, calculations, references, and assumptions for connector distances, conveyance speeds, and connector time steps used in the TSM Version 6.0 transportation module. Both rail routes and routes for legal weight trucks (LWT) are discussed. Refer to Total System Model Version 6.0 Transportation Design and Bases (BSC 2007a) and User Manual for the Total System Model Version 6.0 (BSC 2007b) for higher level information on the transportation module in the TSM. Also see the figures in Appendix A for the transportation elements represented by TSM processes and connections.

The attachments and appendices in this validation also provide lists of other TSM settings and values that are too detailed to include in the higher level manuals.

This validation also addresses the time that a cask is being used by various processes in the TSM also called "cask transit time." Cask transit time is the total time that a cask spends in transit and is a key driver to estimate the size of the casks fleet required for the simulation. For example, for simulations or cases with unlimited casks, longer turn-around times at the waste sites, the Geologic Repository Operations Area (GROA), or other places may cause a shortage of casks and will require a subsequent cask purchase to ensure the wastes are accepted and shipped when demanded by the Initial State (IS) file start time input. Long turn around times can cause very large cask fleets ($>1,000$ in cases without bounding assumptions).

The transit time discussed in this validation impacts the Waste Acceptance, Storage, and Transportation (WAST) costs estimated by the TSM as described in Total System Model Version 6.0 Cost Estimating Routines (BSC 2007c). For example, the time for transportation from the waste site to the GROA is the basis for the time the security resources are used and this is the key factor to estimate security costs. Other data for barge, heavy haul (HH) use, and state line crossings on this validation are direct inputs to the cost algorithms in BSC 2007c.

This validation also compares the TSM Version 4.0 cask transit time results to the TSM Version 6.0 results and interim versions. Cask transit times are a good way to check for inadvertent impacts from TSM or SimCAD ${ }^{\text {TM }}$ updates and revisions.

This report also validates a post-run report generator called the TSM Transportation Shipment Report Generator (TSRG), see Appendix H.

This validation assumes the reader has a basic knowledge of the TSM functionality and conventions. See the User Manual for the Total System Model Version 6.0 (BSC 2007b) for more information and an overview of the TSM. TSM uses the SimCAD ${ }^{\text {TM }}$ process simulation software developed by Create-a-Soft ${ }^{\mathrm{TM}}$ (CaS). More information on SimCAD ${ }^{\text {TM }}$ conventions is in reference CaS 2006.

This validation also assumes the reader has a working knowledge of the transportation elements of the Office of Civilian Radioactive Waste Management (OCRWM) transportation system and the Total System Model Version 6.0 Transportation Design and Bases (BSC 2007a).

This validation was performed in accordance with AP-ENG-006, Total System Model (TSM) Changes to Configuration Items and Base Case.

1.1. CHANGES FOR VERSION 6.0

The Section 6.0, "Observations" in the TSM Version 4.0 transportation calculation (BSC 2006a) recommended some refinements in the transportation elements. Other changes to transportation elements were made during the development of TSM Version 6.0 to improve fidelity.

- Changes to TSM Version 6.0 connectors and timings are:

1. Moved the connector for Beaver Valley to route via Columbiana vs. Youngstown,
2. Moved the connector from Indian Point to route via Schenectady and changed the connector to 1 time unit,
3. Changed time on the connector from Barstow to NVR to 1 from 0 time steps,
4. Changed time on the connector from Fort Calhoun to Blair from 0 time units to 1 time unit to allow for counting 1 state line crossing,
5. Changed time on the connector from Diablo Canyon to Barstow by changing distance to $1,906,080$ feet from $1,087,680$ feet,
6. Changed timing on the connector from Kewanee to Blair by changing distance to 3,711,840 feet from 2,845,920 feet.

- Changes for Humboldt Bay were also needed in the analysis of the timings in Appendix B because a number was transposed (270 versus 207). The TSM Version 4.0 calculations also recommended changes to Palisades and Point Beach routes but on further review no changes were needed.
- The route for the rail cask return from the GROA was modified to skip the "Basket Return" return process and its downstream connector to reduce the travel time of the casks from the GROA to the Fleet Management Facility (FMF) and improve fidelity with the anticipated route since there is actually no separate basket return.
- Several of the GROA processes along the cask return processes are no longer required in the updated GROA design. This reduces the time for the cask to be returned from the GROA.

The above changes were made prior to performing the timing tests in this validation and the potential impacts were considered in the evaluation of the timing tests.

1.2. CHANGES TO TSM VERSION 6.0 AFTER VALIDATION

The following refinements and changes were made after the runs for this validation were completed. These changes have minor effects on the overall cycle time, which are assessed in the validation for the integrated TSM Version 6.0, see Reference BSC 2007d.

- The process connection from the Truck Cask 1 distribution was revised from 1 to 5 time steps. This provides a more reasonable time to transport the empty cask to the waste site for loading and shipment. This does not impact the validation.
- The timings for the Humboldt Bay barge route connectors were changed from 8 time steps to 7 time steps. This has no impact on the validation but is a refinement to reflect the analysis in Appendix B as discussed above.
- The timings in the GROA were adjusted to improve fidelity with the design. This does not have a major impact on the detailed process times but impacts the overall simulation times. For example, improving truck cask processing logistics at the GROA can increase the throughput and reduce delays (and therefore Q wait times) for shipping the truck cask loads.
- There were several changes to the names of processes in the routes used for the cask transit time checks. These do not impact the validation and notes are added to the results tables to indicate the final name used in the released TSM Version 6.0.

INTENTIONALLY LEFT BLANK

2. METHOD

This section describes the methods to develop, quantify, and validate the transportation elements of the TSM. The bases for the transportation and supporting data are also included to provide context for the discussion. The supporting data are inputs to the TSM and are included in this validation since the input information is too detailed for higher level TSM manuals such as BSC 2007a and BSC 2007b.

The acceptance criteria is that any differences in the results must be within the typical range of simulation variations in TSM simulations based on the judgment of the report preparer and checker and that any major differences be explained. Also, the acceptance for the fidelity check is that transportation routes are drawn as intended and the transit times are as expected within the variations in TSM simulations and given the 8-hour time step resolution.

2.1. TRANSPORTATION ROUTES AND PARAMETERS

The transportation routes were drawn in SimCAD ${ }^{\text {TM }}$ using Figures 6-11 and 6-12 of the Yucca Mountain Final Environmental Impact Statement (FEIS, DOE 2002) as guidance. The U.S. was divided into five sections (i.e., Northwest, Southwest, Midwest, Southeast, and Northeast). Note that changes in site transportation mode for two sites (Beaver Valley and Humboldt Bay) required identification of two initial transportation routes that are not described in the FEIS. In these cases, new routes were identified to a rail access point as described in the emails to S . Turner from R. Best listed in the electronic attachments in Section 8.

For TSM Version 4.0, commercial waste site data was reviewed in discussions held between Bechtel SAIC Company, LLC (BSC), RW-20, and the DOE Office of National Transportation (ONT) in January 2005 (Gillespie, S. 2005). This data included the mode of transportation preferred such as LWT or rail and including needs for barge and HH assistance. These data and inputs have been retained for TSM Version 6.0.

2.2. TRANSPORTATION DISTANCES

This section discusses the origin of the transportation distances used in the TSM and in Appendices B-D.

2.2.1. Rail Distances

Distances for the rail connectors (node-to-node) on the TSM maps are from INTERLINE data files used by DOE for the FEIS and listed in the electronic file attachments listed in Section 8. The files include ec_n15.prn, ec_n15b.prn, FW Route Questions.txt, RE Route Questions.txt, and FW Humboldt Bay and Beaver Valley Intermodal.txt. NOTE: Throughout the EXCEL workbooks used for this validation data from the databases are designated as "Source" values.

2.2.2. LWT Distances

Distances for truck connectors (node-to-node) on the TSM maps are from HIGHWAY data file used by BSC for the FEIS and listed as file belt_1.prn in the electronic attachments in Section 8.

2.2.3. Barge Distances

Distances for barge connectors (barge site to rail site) on the TSM maps are from INTERLINE data files used by BSC for the FEIS and listed in the electronic attachments in Section 8. The files include ec_n15.prn, ec_n15b.prn, FW Route Questions.txt, and RE Route Questions.txt. These values were used with barge speeds to establish the transit times used in the TSM and as the basis for the barge activities that provide the basis for the cost estimates as discussed in Reference BSC 2007c.

2.2.4. HH Distances

Distances for HH connectors (HH site to rail site) on the TSM maps are from INTERLINE data file used by BSC for the FEIS and listed as file belt_1.prn in the electronic attachments in Section 8. These values were used with HH speeds to establish the transit times used in the TSM and as the basis for the HH activities that provide the basis for the cost estimates as discussed in Reference BSC 2007c.

2.3. CONVEYANCE SPEEDS

This section discusses the origin of the conveyance speeds used in the TSM and used for validations in Appendices B-E, and G.

2.3.1. Rail Speeds

The Civilian Radioactive Waste Management System (CRWMS) mission can be modeled using twp different types of rail shipments (dedicated and general freight). For the TSM rail travel for the empty casks from the GROA to the waste sites is roughly modeled by the time in the connectors from the cask distribution processes to the cask join processes. It is assumed that the loaded casks travel from the waste site to the GROA by dedicated rail. See References BSC 2007a and BSC 2007b for more explanation.

Table 2 of MIS-WAT-SE-000001 (BSC 2003a) lists the dedicated rail speed as 23.787 mph rounded in the development of the TSM to 24 mph (for the TSM model this is converted to 35.2 feet per second). This small rounding should have a negligible impact on the simulation.

2.3.2. LWT Speeds

The LWT speed used in TSM is 40 mph from page 34 of MIS-WAT-SE-000001 (BSC 2003a).

2.3.3. Barge Speeds

The barge speed used in the TSM is 7 mph from page 34 of MIS-WAT-SE-000001 (BSC 2003a).

2.3.4. Heavy Haul Speeds

The heavy haul travel speed is 7 mph from page 34 of MIS-WAT-SE-000001 (BSC 2003a).

2.4. CONNECTOR TIMING

2.4.1. Rail and Truck Time Steps

Some connectors in the TSM use speeds and distances as discussed above to estimate the connector transit time. Other connectors use time steps that are directly input into the connector properties settings. Time steps of 0 or 1 are used when the distance from node to node is less than the distance traveled in one TSM time step (8 hours) at the conveyance speed. Appendix E lists the timing method and the parameters for the connectors in the transportation maps.

2.4.2. Barge Time Steps

The connectors to/from a rail site and the associated barge site for the barge carrier include time steps for the travel time and the load/unload time. For the load/unload time, the method on page A-26 of MIS-WAT-SE-000001 (BSC 2003a) uses 48 hours meaning 24 hours for the load (3 time steps) and 24 hours for the unload. Therefore the total time steps for the rail site to the barge site is 3 time steps plus travel time. The return from the barge site to the rail site is 3 time steps plus travel time.

2.4.3. HH Time Steps

The connectors to/from a rail site and the associated HH site for the HH carrier include time steps for the travel time and the load/unload time. Using the distances shown in Appendix D, all the HH travel times were determined to be less than 1 time step and were therefore rounded up to 1 time step. Loading/unloading times are 24 hours for the loading (3 time steps) and 24 hours for the unloading. The total time steps for the rail site to the HH site and back are 3 time steps plus 1 step travel time in each direction. Therefore, all heavy haul sites use the same 4 time step transit time from the rail site to the waste site and back.

2.5. STATE LINE CROSSINGS

The state lines that are crossed are totaled by incrementing, using a cumulative sum of the number of state line crossings that are hard coded into the connector extensions. This sum is then used to estimate fees for crossing state lines, see Reference BSC 2007c. As the conveyances move across the transportation maps, resources that represent the number of state lines crossed by each connector are assigned. The state line resources are then activated to provide a visual indication of the state lines to be crossed on the GUI during simulations. However, these resources are not used for cost estimating purposes.

State line crossings were set for each connector by manual inspection of the truck and rail route listings in the FEIS route data. Each route in the FEIS data is detailed and a state line was "counted" for each state listed in the FEIS route including the origin state. For the TSM Version 4.0 calculation (BSC 2006a) these settings were compared to the total state line crossings from the data from a database that had been used for many years for logistics modeling ("Calvin_2k.mdb" listed in Section 8). This validation expands that analysis to include the connector refinements made in TSM Version 6.0 as discussed in Section 1.1.

2.6. TSM TRANSPORTATION ANALYSIS TESTING

The analysis and tests include timing tests for various TSM versions and an assessment of the overall cask transit times as discussed in this section. The tests include data from the TSM Version 4.0 transportation calculation (BSC 2006a) using SimCAD ${ }^{\text {TM }}$ Version 7.0 and tests with TSM Version 4.0 and SimCAD ${ }^{\text {TM }} 7.1$, TSM Version 5.0 and SimCAD ${ }^{\text {TM }} 7.1$, and TSM Version 6.0 and $\operatorname{SimCAD}{ }^{\text {TM }} 7.1$.

2.6.1. Timing Tests

This section describes timing tests that were done to understand the behavior of the TSM transportation elements and compare results between various versions of TSM and SimCAD ${ }^{\text {TM }}$.

All the timing tests used the same IS file, "IS timetesting-060707.xls" that used cask load line items for the reactor sites of interest. TSM Version 4.0 was run in SimCAD ${ }^{\text {TM }} 7.0$ and 7.1 to assess the impact of updating SimCAD ${ }^{\text {TM }}$. TSM Version 5.0 was run in SimCAD ${ }^{\text {TM }}$ Version 7.1 and compared to TSM Version 4.0 run in SimCAD ${ }^{\text {TM }} 7.1$. Also, TSM Version 5.0 was tested twice to illustrate the run-to-run variations of the TSM simulations. TSM Version 6.0 was then run in SimCAD ${ }^{\mathrm{TM}} 7.1$ and compared to TSM V5.0 run in SimCAD ${ }^{\mathrm{TM}} 7.1$.

Step 1: TSM Version 5.0 and Version 6.0 Visual Basic (VB) are modified to disable the command for the TSM Control Center functions to allow manual operation.

Step 2a: A "Pause Simulation" extension was added at the "R" sites unless the site used heavy haul (HH) or barges then the "Pause Simulation" was placed on the "HH" or "B" site. This first "Pause Simulation" was added as a process extension and placed under the "Object Next Process Defined" event handler. This extension pauses the TSM at the time step where the rail shipment departs from the site to the GROA.

Step 2b: A second "Pause Simulation" extension was added at the NVR and YMT processes under the "Object Activated" event handler. This pauses the simulation at the time step where the shipment object enters NVR or YMT.

Step 3: An IS file (IS timetesting-060707.xls) was prepared that included three cask loads for the rail site (five cask loads for DOE rail sites) to be tested or a single cask load for the truck site to be tested. The IS file was loaded and the TSM was run three times.

Step 4: Time steps were manually recorded in EXCEL at each pause. The EXCEL workbook "App. G TimeTesting_comparison_7_26_07_slt.xls" shows the results of the tests and this workbook was used for the timing test results shown in Appendix G.

Notice that the pause at the R, B or HH indicates the simulation time for transport of empty casks to the site, loading of the casks, and formation of the consist. The TSM time step at the second pause indicates the time the shipment arrives at the GROA. The difference between the two values is the travel time from the site to the GROA.

2.6.2. Cask Cycle Time Analysis

Cask cycle time refers to the total time steps in TSM that a cask requires from the time it is requested by a waste site until the cask is ready for dispatch to another site. The cask cycle time is one key driver for the system response as modeled by the TSM because it encompasses elements of the entire CRWMS. It can also be used to compare the results of various versions of TSM and SimCAD ${ }^{\text {TM }}$ to look for inadvertent effects. Runs using the same TSM version and IS file should give similar timing results or, if there are differences, the differences can be justified by intentional model changes or differences.

The method to assess the cycle time ("cycle time testing") is:

- Step 1: Complete a run and document the transit times for each element in the transportation portion of the TSM by manually recording the time steps in an MS Word table or EXCEL workbook. The data can be obtained from the .simdata file or by reading the timings directly off the GUI with the model paused. Ensure that all shipments have been completed (completing the return of items from aging is not necessary).
- Step 2: Prepare tables or an EXCEL workbook to compare the transit times from step 1 to results from various simulations or versions of TSM and/or SimCAD ${ }^{\text {TM }}$.
- Step 3: Compare the TSM element timings and consider "model time" and the overall effect of any model time on the cask cycle times. Assess why there are differences in the timings if none were expected.

For Step 1, scenario 25B used in the so-called "Phase 1 TAD Study" (BSC 2005a) was run to 26,000 steps using TSM Version 4.0 and SimCAD ${ }^{\text {TM }} 7.0$ and the various process and connector timings from the simulation were recorded for analysis. Subsequent runs were made for other TSM and SimCAD ${ }^{\text {TM }}$ versions.

The cycle time analysis method presented herein are slightly modified from the methods used for TSM Version 4.0 and SimCAD ${ }^{\text {TM }} 7.0$ in previous cycle time analyses in BSC 2006a. More detail is provided for detailed process times (queue times, value added time, waiting for next time, etc). Also, the estimate for the total cycle time has been modified to eliminate some double counting of times in some areas. These changes are minor and would cause small changes in the numerical results and no impact on the conclusions of the previous analysis in BSC 2006a. So, the results from BSC 2006a are not used herein. The Version 4.0 SimCAD ${ }^{\text {TM }} 7.0$ results are used as the "starting point" for comparisons in this validation.

The timing tests support evaluation of the TSM "Model time." Model time is composed of simulation steps required by the TSM to model the logistics of a process or action where there is no actual real process or action for the step. Effectively, these additional times and processes may cause the TSM simulation to overestimate the cask cycle times.

The TSM is designed to reduce model time and the associated overestimates of the transit times. For example, some process elements that are abstractions of actual processes have reduced processing time to allowing this time to be "used" by the elements that include model time. For
example, the Nevada rail transit time is set to zero to compensate for the model time in the unbatching processes that precede it.

The impact of model time and overall comparison of TSM timings was initially evaluated by comparing the TSM simulation time to the 2003 TSLCC time for the transportation actions in the TSM Version 4.0 transportation calculation (BSC 2006a). The Version 4.0 analysis showed that model time had no major impacts on the overall system timing. This validation assesses any impacts of model time on the cask cycle time results to ensure there have been no inadvertent changes to model time.

3. ASSUMPTIONS AND LIMIATIONS

This section covers the general assumptions used in the construction and testing of the TSM transportation module elements. Detailed assumptions are noted throughout the text.

The average conveyance speeds take into account various impediments in the routes such as rail interchange switches, incidental delays, and other time impacts typical for transportation. Specifics for these time impacts are not modeled in each connector; all connectors use the same average speed for a particular transportation mode. For example, routes through open country likely have fewer of these time impacts than routes near major metropolitan areas. Impacts from using average speeds are negligible considering the uncertainty in the available routes over the 20-40 year future as simulated in the TSM.

Characteristics of the Nevada rail route and transportation are not specifically modeled. The connector representing Nevada Rail is modeled with a 0 time step to compensate for the model time in the unbatching processes that precede it.

The TSM transit times include model time (simulation steps required by the TSM to model the logistics of a process or action where there is no actual real process or action for the step) but these have an acceptable impact on the simulation fidelity since they are balanced using process times in the same path or route that are intentionally low.

For barge and heavy haul sites, only 1 cask load or 1 empty cask is transferred on each trip.
The methods for loading Transportation, Aging, and Disposal (TAD) canisters at the waste sites and the associated loading times are not established. For TAD canisters the TSM effectively assumes that the loading will be done before the overpack (OV) arrives to ship it and that the loading time is short. Note that assuming that the loading will be done before the OV arrives also covers any cases where the TAD canister has been loaded for dry storage like a Dual Purpose Canister (DPC) (although this loading may be years before the shipment occurs). This assumption implies that the empty TAD canisters will be shipped to the waste site from the manufacturer and can be filled before pickup. It is most efficient to ship the empty TAD canister directly to the site to avoid additional shipping costs, double handling of the TAD canisters, and possible external contamination of the new TAD canister in the OV on the way to the site. The TAD canister can be filled before the OV arrives which also implies that the site has space to store the loaded TAD canisters for a few days.

Another option for loading a TAD canister is that it can be shipped to DOE at the repository (or the rail head for Nevada rail) and then carried in the OV to the waste site for loading. If this is the case, the loading time in the TSM will need to be increased. After the OCRWM program develops more concrete plans for TAD logistics, the timing in the TSM can be changed as required to improve the fidelity. Previous TSM analyses indicate that the main impact of longer TAD canister loading times is typically the need for 3 to 6 more TAD overpacks to maintain the planned acceptance rates. Current analyses indicate about 40-50 overpacks are needed so this is a small impact.

INTENTIONALLY LEFT BLANK

4. USE OF COMPUTER SOFTWARE AND MODELS

The following computer software and models are used in this validation:

- SimCADPro ${ }^{\text {TM }} 7.0$ with SimData analyzer
- SimCADPro ${ }^{\text {TM }} 7.1$ with SimData analyzer
- MS EXCEL 2003
- MS Access 2003
- TSM Versions 4.0, 5.0, and 6.0D7

INTENTIONALLY LEFT BLANK

5. RESULTS

This section presents the results for the methods applied in Section 2. Results are presented in tables at the end of this section and in the appendices.

5.1. TRANSPORTATION ROUTES AND PARAMETERS

Truck and rail routes were drawn on separate maps as shown in Appendix A. Impacts from the changes in Section 1.1 (if any) are noted in the sections below.

5.2. TRANSPORTATION DISTANCES

5.2.1. Rail Distances

The spreadsheets in Appendix B show the distances used in the TSM versus the data from the INTERLINE files. Appendix B results are from the attached EXCEL workbook "Appendix B_Rail distances by node_7_20_07.xls". The key results are summarized in Appendix B which presents the model time compared to timing based on data used in the FEIS. The workbook shows that based on the timing in the transit path from the waste site to the repository, the TSM model simulates distances about $5-6 \%$ lower on average than those in the FEIS. This is caused by the need to use 8-hour time steps in the TSM. of the validation for TSM Versions 4.0 and 5.0 (BSC 2006a) showed an 8\% lower value, indicating that the refinements described in Section 1.1 improved the fidelity of the TSM for these transportation elements.

5.2.2. LWT Distances

The node-to-node distances used in the TSM truck maps are in Appendix C. Appendix C results are from the attached EXCEL workbook "Truck Details_Appendix Cd_9-4-06.xls". The key results summarized in Appendix C present the model time compared to timing based on data used in the FEIS. The workbook shows that based on the timing in the transit path from the waste site to the repository, the TSM model simulates distances about 10% lower on average than those in the FEIS. This is caused by the need to use 8-hour time steps in the TSM.

5.2.3. Barge Distances

The barge distances are shown in Appendix D.

5.2.4. HH Distances

The HH distances are shown in Appendix D.

5.3. CONVEYANCE SPEEDS

5.3.1. Rail Speeds

The TSM uses a dedicated rail speed of 24 mph which converts to 35.2 feet per second.

5.3.2. LWT Speeds

TSM uses an LWT speed of 40 mph .

5.3.3. Barge Speeds

TSM uses a barge speed of 7 mph .

5.3.4. Heavy Haul Speeds

TSM uses a HH speed of 7 mph .

5.4. CONNECTOR STEPS

5.4.1. Rail Time Steps

See Appendix E for specific information on connectors that use time steps in the TSM.

5.4.2. LWT Time Steps

See Appendix E for specific information on connectors that use time steps in the TSM.

5.4.3. Barge Time Steps

The total time steps for the rail site to the barge site is 3 time steps plus travel time and the return from the barge site to the rail site is 3 time steps plus travel time. For example, for the case of Browns Ferry used in this validation the total time is 1 step for travel and 3 for load/unload for a total of 4. See Appendix E for specific information on connectors that represent the route and Appendix D for barge distances.

5.4.4. HH Time Steps

All heavy haul sites use the same 4 time step transit time from the rail site to the waste site and back. This includes the load or unload time. For example, the value of 4 is used in this validation for the travel time plus load time for Peach Bottom. See Appendix E for specific information on connectors that represent the route and Appendix D for HH distances.

5.5. STATE LINE CROSSINGS

Appendix F shows the state lines that are crossed from each waste site to the repository using the resources in the TSM. These are compared to the number of crossings from the database Calvin_2k.mdb attached in Section 8 originally used as input for the TSM and for TSM Version 4.0 (where the state lines were last checked).

As shown in Appendix F, the state line crossings in the TSM are generally consistent with the data base Calvin_2k.mdb. There was a problem with the settings that was not fixed in TSM Version 4.0. The rail connector from Barstow to NVR has two state lines properly programmed in the extensions to increment the state line cost for this connector. However, this connector was also changed to zero steps during development to improve the transit time fidelity, which means the extension in this connector will not run (zero connectors cannot run extensions). Based on a typical TAD canister scenario run, this connector handles about 200-250 shipments for a 63,000 MTHM CSNF scenario. This means the state line cost for this connector may be as much as $\$ 1.5 \mathrm{M}$ low with the assumed unit cost of $\$ 1000$ per cask. The total state line cost for this type of scenario is about $\$ 85 \mathrm{M}$, so this is about a 1.8% error, well within other uncertainties in the

OCRWM mission. However, even though the error is small, the connector from Barstow to NVR was changed to 1 time step in TSM Version 6.0 to improve fidelity.

All of the state line changes for TSM Version 6.0 in Section 1.1 have a minor impact on costs. Based on the results and supporting documents in the TSM Version 4.0 cost check (BSC 2006b) for the TSM Version 4.0 Base Case, a total of state line costs for 2,596 cask loads are impacted:

- Fort Calhoun add 1 state line for 291 cask loads
- Beaver Valley add 1 state line for 1,364 cask loads
- Indian Point subtract 1 state line for 941 cask loads
- Barstow to NVR add 1 state line for 700 cask loads

The total state line crossing costs at $\$ 1000$ per cask load would increase the state line costs by a total of $\$ 1.4 \mathrm{M}[\$ 1000 \times(291+1,364-941+700)]$. The cost check for TSM Version 4.0 indicated that state line costs was lower than previous systems analyses by about $\$ 1.8$ so these changes improve the fidelity of the TSM. The small errors from the issues with these connectors in previous analyses and reports are negligible.

Appendix F also shows that there were corrections in the previous checking spread sheet for the state line crossings. These errors impacted the check accuracy but did not require changes in the simulation model. The route changes identified in Section 1.1 also contributed to the changes in the state line crossings.

5.6. TSM TRANSPORTATION ANALYSIS AND TESTING

This section presents the results of the timing tests and cask cycle time using the methods presented in Section 2.6. The tests include data from the TSM Version 4.0 transportation calculation (BSC 2006a) using SimCAD ${ }^{\text {TM }}$ Version 7.0 and tests with TSM Version 4.0 and SimCAD ${ }^{\text {TM }} 7.1$, TSM Version 5.0 and $\operatorname{SimCAD}{ }^{\text {TM }} 7.1$, and TSM Version 6.0 and SimCAD ${ }^{\text {TM }}$ 7.1.

5.6.1. Timing Tests

Results of the timing tests are provided in attached EXCEL workbook "App. G TimeTesting_comparison_7_26_07_slt.xls" with information and analysis provided in Appendix G. The objective of this validation was to compare the results for various versions of TSM and SimCAD ${ }^{\text {тм }}$.

Based on the variations inherent in these tests, consideration of outliers in the tests, and observations of the model behavior during tests, the results between the variations show no model-to-model inconsistencies. However, this result must be qualified as being only a general indication of consistency given the large variation in identical tests caused by using only 3 data points and the inherent variability in TSM simulations where there are actions on every time step. Cycle time tests discussed in the next section effectively run thousands of objects through the processes providing more statistically meaningful results than these timing tests.

5.6.2. Cask Cycle Time Analysis

A TSM simulation for scenario 25B used in the Phase 1 TAD Study (BSC 2005a) using TSM was run to 26,000 steps for various versions of TSM and SimCAD ${ }^{\text {TM }}$ and the various process and connector timings for the cask transit actions were recorded for analysis. The cask transit actions for rail shipments and truck shipments are shown in Tables 1 and 2. These results are from various EXCEL workbooks attached to this validation (see section 8).

Tables 1 and 2 include the following information for the sequence of tests for various versions of TSM and SimCAD ${ }^{\text {TM }}$:

OCRWM/TSM Action

Process/Connectors

Figure
TSM Programmed Steps
TSM Simulation Steps

Discussion

The general description of the OCRWM program element, action, or process
The process or connector in the TSM. In most cases, processes are abstractions of actual actions but in some cases, these are logistic processes used by TSM to implement a simulation action. Connectors typically represent flow paths for objects or routes for transportation but may also be included for TSM logistics modeling purposes.
Figure in Appendix A of this validation that shows the process, connector, or route.
Number of 8-hour time steps specified in the programming of the process or connector.
Number of 8-hour time steps from the simulation. Usually not equal to programmed time because the system enablers such as resources or other needs may not be available. Times may be broken out by queue wait time (Q), Value Added Time (VAT), Waiting for Next Process (WNP) and Lead time of items where detailed timing comparisons are needed.
Clarifications or important characteristics about the behavior of the action or TSM modeling of the action. Also indicates if the TSM action includes "model time" as discussed below.

The cask cycle time analyses are provided for rail sites that ship only TADs and ship them in 3's (cask loads have the same Start Time in the IS file). This is because these sites will have very efficient batching to form the 3-cask loads since the TAD overpacks are not limited in the test ("open buy") and the shipments in 3 ensure the batch is completed quickly. If the transportation overpack or cask is not available, the cask loads to fill the consist may be delayed and decrease the batching efficiency and increase the batching time. If the shipment includes only 1 or 2 cask loads in the same step, the batching processing at the site waits the fully allotted time set to complete the batch then leaves the process. The resulting time variations caused by inefficient batching make analysis and comparison difficult. So, sites with optimum cask load conditions
are analyzed. Sites with less than optimum timing would show increases in the site batch process times over those in Table 1.

For this analysis the Summer rail site (SUMR), Browns Ferry barge site (BFB), and Peach Bottom HH site (PEAHH) were selected for analysis. These sites best meet the criteria in the preceding paragraph as indicated by the total simulation timing at the batching site. Each of these sites had the lowest simulation times for all the batching sites for R, B and HH indicating that the batching was most efficient for these sites, see BSC 2006a.

Truck sites for the analysis do not have to be as carefully selected as rail sites because there is no "overpack competition" during cask allocation and no batching of multiple cask loads at the site (there is no 3 cask consist so there is no wait for all 3 casks to complete the cask allocation process). For this case, the Ginna truck (GINT) site was selected for analysis.

For both rail and truck, results are shown for sites near the east coast since these have the longest travel times and are of the most interest to show comparisons. Ultimately the results show that the waste site to GROA transit times are about 20% of the overall cask cycle time indicating that assumptions related to routes will not cause significant impacts on the overall system analysis results.

Tables 1 and 2 show that the programmed time in TSM does not always match the simulation time since the simulation time includes the effects of the TSM logistics. Simulation time shows the impact of the interaction of multiple objects in the process that compete for the same processes or resources.

The tables show how the transit of the casks through the TSM may include processes with "model time" that may cause the total simulated transit time to be overestimated if there are not TSM constructs to compensate for the elements that introduce model time. The TSM is designed to reduce model time that may cause over estimates of the transit times by intentionally reducing processing times to allow this time to be included in the additional time added by processes that include model time. For example, notice how the Nevada rail times in Item 5 of Table 1 are low to compensate for the model times in Item 6.

Results indicated that SimCAD ${ }^{\text {TM }}$ Version 7.1 has a bug wherein the cycle time and other key time measures are not recorded for processes and connections that are assigned zero process times. TSM has several such processes and connectors and therefore it is hard to make a comprehensive comparison of all the timings for runs that use SimCAD ${ }^{\text {TM }}$ Version 7.1. This was discussed with CaS and the problem is fixed in SimCAD ${ }^{\text {TM }}$ Version 8.0. However, there is inadequate time to implement and test SimCAD ${ }^{\text {TM }} 8.0$ for the issuance of TSM Version 6.0.

To overcome the impact of the SimCAD ${ }^{\text {TM }}$ Version 7.1 bug, the simulation models for the tests in SimCAD ${ }^{\text {TM }}$ Version 7.1 were revised to change zero-time processes and connectors to have one time step for processing so the timing data would properly record. The one time step is factored into the evaluation of the results. Note that usually zero process time elements require $0.5-1.0$ time steps for completion based on the Table 3 and 4 results. Note that the changes to add one time step are not included in the delivered TSM Version 6.0; otherwise the cycle time
would be wrongly increased by about 15 time steps for the 15 elements where the additional step that was added impact the results.

The results also indicated that SimCAD ${ }^{\text {TM }}$ Version 7.1 was revised to add the "Waiting for Next Process" simulation time to connectors and jumps. This is also considered in the evaluation of the results in Tables 1 and 2.

When the run is completed the processes in the cycle time testing have typically completed at least 500 objects, and as many as several thousand objects. This helps reduce the run-to-run variations typically observed in TSM and the large population to increases the validity of the timing averages. Still, some variation is evident in the second decimal of the times. For example, zero time items with some logic typical show 0.52-0.56 time steps. The three or more significant digits provided in the results do not reflect the accuracy of the TSM the digits are included for easy correlation to results. The timings calculated by TSM should only be considered to have one or two significant digits depending on the process. The key observation in the test is to compare the results and explain any differences being careful not to imply accuracy by considering small differences reflected in the third or higher significant digit.

The key results from Tables 1 and 2 are:

- The version to version differences in individual process times and overall cycle time are typically within a few percent and any difference can be justified as explained in Tables 1 and 2. The timing of transportation elements in TSM Version 6.0 have the same behavior as previous TSM versions.
- SimCAD ${ }^{\text {TM }}$ Version 7.1 changed the handling of the recording of VAT for processes with process capacity greater than one object. These VAT values were not used in any previously published TSM analyses and the change will not impact any published conclusion or results.
- Accounting for the additional one time step added to 16 simulation elements, the timings agree very well indicating no unexpected impacts when updating to SimCAD ${ }^{\text {TM }}$ Version 7.1.
- The change to multiple TAD lines in TSM Version 5.0 has a notable effect on the turnaround time for TAD canisters in the GROA.
- The TSM Version 6.0 GROA is based on a revised design that markedly slows the GROA throughput for truck and rail casks in the facilities. However, the cycle times did not appreciably increase from TSM Version 6.0 because several processes on the GROA cask return route were removed in Version 6.0.

Table 1. Rail Cask Cycle Time
As discussed in Section 5.6 .2 some process steps were changed from 0 to 1 (indicated by \#) to overcome a bug in SimCAD ${ }^{\text {TM }}$ Version 7.1 where 0 process times do not write out the wait time or the lead time. So, the result for 7.1 should have one more time step vs. 7.0 for processes with " $\#$ ". The nomenclature ($\mathrm{xx}+\mathrm{yy}$) indicates a process time plus a connector time. See Section 8.0 for run files.

				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Rail
Rail OCRWM/ TSM Action	Process	Fig	$\begin{aligned} & \text { TSM } \\ & \text { Prog } \end{aligned}$	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion (Note 1)
-1. Cask staging at FMF	$\begin{aligned} & \text { \# 253Dist } \\ & \text { (TAD } \\ & \text { department) } \end{aligned}$	$\begin{gathered} \mathrm{A}- \\ 13 \end{gathered}$	0	Q: 40.0 VAT: 0 WNP: 3.63 Lead: 44.30	$\begin{gathered} \text { Q: } 40.25 \\ \text { VAT: } 1.00 \\ \text { WNP: } 18.32 \\ \text { Lead: } 44.88 \end{gathered}$	$\begin{gathered} \text { Q: } 41.37 \\ \text { VAT: } 1.00 \\ \text { WNP: } 3.62 \\ \text { Lead: } 45.99 \end{gathered}$	$\begin{gathered} \text { Q: } 55.26 \\ \text { VAT: } 1.00 \\ \text { WNP: } 3.62 \\ \text { Lead: } 58.88 \end{gathered}$	Lead times for V4 and V6- 7.1 does not add properly. This was also observed on several other undocumented cases. Problem has been reported to CaS .
-2. Cask Loading at site			0	0				This is for the TAD canister loading process and is typical for loading where a cask is always available. Input point for cask load from IS file.
	TADLargeB Bare and connector	$\begin{gathered} \text { A- } \\ 13 \end{gathered}$	$3+1$	$\begin{gathered} \text { Q: } 3.16 \\ \text { VAT: } 3.00 \\ \text { WNP: } 0.46 \\ \text { Lead: } 6.62 \\ \text { Conn.: } 1.0 \end{gathered}$	$\begin{gathered} \text { Q: } 3.16 \\ \text { VAT: } 3.00 \\ \text { WNP: } 0.47 \\ \text { Lead: } 6.62 \\ \text { Conn.: } 1.0 \end{gathered}$	$\begin{gathered} \text { Q: } 3.15 \\ \text { VAT: } 3.00 \\ \text { WNP: } 0.47 \\ \text { Lead: } 6.62 \\ \text { Conn: } 1.0 \end{gathered}$	$\begin{gathered} \text { Q: } 3.16 \\ \text { VAT: } 3.00 \\ \text { WNP: } 0.45 \\ \text { Lead: } 6.61 \\ \text { Conn: } 1.0 \end{gathered}$	This is for the TAD canister loading process and is typical for loading where a cask is always available. Input point for cask load from IS file.
	251 load	$\begin{gathered} \text { A- } \\ 13 \end{gathered}$	1	1.55	1.53	1.55	1.56	Join for the cask load and the transportation cask
-3. Waste Site	SUMR, SERail	$\begin{gathered} \text { A- } \\ 10 \end{gathered}$	0	14.33	14.67	14.67	14.00	Simulation time from testing in Appendix G.
Typical rail, barge, HH sites that use TADs are shown. See Note 2 for	BFR-BFB, SERail	$\begin{gathered} \text { A- } \\ 10 \end{gathered}$	23 23	$\begin{aligned} & 35.00 \\ & 36.67 \end{aligned}$	$\begin{aligned} & 35.00 \\ & 34.33 \end{aligned}$	$\begin{aligned} & 33.00 \\ & 34.33 \end{aligned}$	$\begin{aligned} & 35.00 \\ & 33.00 \end{aligned}$	Testing included Items 1 and 2 above so Items 1 and 2 are not added to the cycle time.
program time basis.	PEAHH, NERail	$\begin{gathered} \text { A- } \\ 11 \end{gathered}$						Total steps at the sites depend on the time to make the 3-consist-not on programmed steps.

				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Rail
Rail OCRWM/ TSM Action	Process	Fig	$\begin{aligned} & \text { TSM } \\ & \text { Prog } \end{aligned}$	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion (Note 1)
-4. Transit to Repository Transit from waste site to "ToNevIMF" jump in SWrail map	SUMR BFB PEAHH	$8^{\text {A- }}$	13 11 13	$\begin{aligned} & 15.33 \\ & 13.67 \\ & 15.33 \end{aligned}$	$\begin{aligned} & 16.67 \\ & 14.00 \\ & 15.33 \end{aligned}$	$\begin{aligned} & 15.33 \\ & 14.00 \\ & 15.67 \end{aligned}$	$\begin{aligned} & 15.00 \\ & 13.33 \\ & 15.33 \end{aligned}$	Programmed time is Appendix B, Time Step, rounded. Simulation time is from time testing, see Appendix G, add 1 step for NVR to "ToNevIMF" connector.
-5. IMF Depot transfer to Nevada Rail	$\begin{aligned} & \text { IMFDepot+con } \\ & \text { nector } \end{aligned}$	$\begin{gathered} \text { A- } \\ 14 \end{gathered}$	0	0				Not included in cask cycle time since the NVR jump teleports objects to Arrivals 3 below.
	Rail Unbatch 3 Department	$\begin{gathered} \text { A- } \\ 15 \\ \hline \end{gathered}$						Department Process, time set by each process below
	Arrivals3+conn ector	$\begin{gathered} \text { A- } \\ 15 \end{gathered}$	0+0	$\begin{gathered} 0.50+0= \\ .50 \end{gathered}$	$\begin{gathered} 0.53+0= \\ .53 \end{gathered}$	$\begin{gathered} 0.52+0= \\ .52 \end{gathered}$	$\begin{gathered} 0.52+0= \\ .52 \end{gathered}$	This is "model time"
	\#IMFUnbatch+ connector	$\begin{gathered} \text { A- } \\ 15 \end{gathered}$	0+0	$\begin{gathered} 1.29+0= \\ 1.29 \end{gathered}$	$\begin{gathered} 2.29+0= \\ 2.29 \end{gathered}$	$\begin{gathered} 2.30+0= \\ 2.30 \end{gathered}$	$\begin{gathered} 2.29+0= \\ 2.29 \end{gathered}$	This is "model time".
	\#IMFrailshipm ent+ connector	$\begin{gathered} \text { A- } \\ 15 \end{gathered}$	0+1	$\begin{gathered} 0.62+1.25= \\ 1.87 \end{gathered}$	$\begin{gathered} 1.61+1.24= \\ 2.85 \end{gathered}$	$\begin{gathered} 1.60+1.27= \\ 2.87 \end{gathered}$	$\begin{gathered} 1.61+1.26= \\ 2.87 \end{gathered}$	This is "model time". Cask load proceeds past this point, transport cask remains in the Rail Unbatch department waiting for trigger to return.
$\begin{aligned} & \text {-6. Nevada/DOE } \\ & \text { Rail } \end{aligned}$	\#DOERail including to/from connectors	$\begin{gathered} \text { A- } \\ 14 \end{gathered}$	0+0	$\begin{gathered} .54+0+0= \\ 0.54 \end{gathered}$	$\begin{gathered} 1.52+0+0= \\ 1.52 \end{gathered}$	$\begin{gathered} 1.52+0+0= \\ 1.52 \end{gathered}$	$\begin{gathered} 1.51+0+0= \\ 1.51 \end{gathered}$	Time is reduced in this process to compensate for model time in processes in Item 5.
	\#GROARailSe curity+ connector	$\begin{gathered} \text { A- } \\ 14 \end{gathered}$	0+1	$\begin{gathered} .91+1.14= \\ 2.15 \end{gathered}$	$\begin{gathered} 1.88+1.15= \\ 3.03 \end{gathered}$	$\begin{gathered} 1.89+1.15= \\ 3.04 \end{gathered}$	$\begin{gathered} 1.90+1.14= \\ 3.04 \end{gathered}$	Security inspection at gate.
	GROAUnbatc hR2	$\begin{array}{r} \text { A- } \\ 17 \\ \hline \end{array}$						Department Process, time set by each process below
	DOErailArrival s 21+connector	$\begin{gathered} \text { A- } \\ 17 \end{gathered}$	$3+0$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	$\begin{gathered} 3.51+0= \\ 3.51 \end{gathered}$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	This is "model time".

				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Rail
Rail OCRWM/ TSM Action	Process	Fig	$\begin{aligned} & \text { TSM } \\ & \text { Prog } \\ & \hline \end{aligned}$	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion (Note 1)
	GROARailUnb atch221+ connector	$\begin{gathered} \text { A- } \\ 17 \end{gathered}$	3+1	$\begin{gathered} 3.79+1.3= \\ 5.12 \end{gathered}$	$\begin{gathered} 3.81+1.31= \\ 5.12 \end{gathered}$	$\begin{gathered} 3.80+1.32= \\ 5.12 \end{gathered}$	$\begin{gathered} 3.80+1.31= \\ 5.11 \end{gathered}$	This is "model time".
Note 4	\#InputtoTCRR F including to/from connectors	$\begin{gathered} \mathrm{A}- \\ 14 \end{gathered}$	0+1	$\begin{gathered} 1.15+0+1.18= \\ 3.27 \end{gathered}$	$\begin{gathered} 2.1+0+1.17= \\ 3.27 \end{gathered}$	$\begin{gathered} 2.16+0+1.18= \\ 3.34 \end{gathered}$	$\begin{gathered} 2.01+0+1.17= \\ 3.18 \end{gathered}$	This is "model time".
-7. GROA Operations	GROABlendin g Department Note 4	$\begin{gathered} \text { A- } \\ 14 \end{gathered}$						Deliver cask load to unload in a process line. The process sequence below is the GROA processing for a TAD cask load.
	\#Rail- TruckArrivalBuff er +connector		0+0	$\begin{gathered} 0.52+0= \\ 0.52 \end{gathered}$	$\begin{gathered} 1.52+0= \\ 1.52 \end{gathered}$	$\begin{gathered} 1.52+0= \\ 1.52 \end{gathered}$	$\begin{gathered} 1.52+0= \\ 1.52 \end{gathered}$	
	\#Deploymentti me +connector		0+0	$\begin{gathered} 0.54+0= \\ 0.54 \end{gathered}$	$\begin{gathered} 1.54+0= \\ 1.54 \end{gathered}$	$\begin{gathered} 1.52+0= \\ 1.52 \end{gathered}$	N/A	Not applicable for V6.0.
	\#FHFOpen+co nnector $\begin{array}{\|l} \hline \text { \#Parking } \\ \text { (V6.0) } \\ \hline \end{array}$		$0+0$ $0+0$	$\begin{gathered} 0.53+0= \\ 0.53 \end{gathered}$	$\begin{gathered} 1.53+0= \\ 1.53 \end{gathered}$	$\begin{gathered} 1.54+0= \\ 1.54 \end{gathered}$	$\begin{gathered} 1.54+0= \\ 1.54 \end{gathered}$	Routes cask load to proper buffer.
	\#FHFTADBuff er +conn. \#TADBuffer+ connector (V6.0)		$0+0$ $0+0$	Q: 24.08 VAT: 0.00 WNP: 2.06 Lead: 26.14 Conn: 0	Q: 23.99 VAT: 1.00 WNP: 2.03 Lead: 27.26 Conn: 0	$\begin{gathered} \text { Q: } 2.42 \\ \text { VAT: } 1.00 \\ \text { WNP: } 0.85 \\ \text { Lead: } 4.27 \\ \text { Conn: } 0 \end{gathered}$	Q: 9.08 VAT: 1.00 WNP: 3.34 Lead: 13.42 Conn:0	Logistics require that TADS wait in queue for processing and this drives the simulation time. Varies depending on case- do not add to total time. V5.0 implemented more TAD lines so faster. V6.0 multiple lines also faster.

				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Rail
Rail OCRWM/ TSM Action	Process	Fig	$\begin{aligned} & \text { TSM } \\ & \text { Prog } \\ & \hline \end{aligned}$	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion (Note 1)
	\#TADHeatOK + Conn. (V4.0, V5.0)		0+0	$\begin{gathered} \text { Q: } 0.58 \\ \text { VAT }=0.00 \\ \text { Net } 0.58 \end{gathered}$	$\begin{gathered} \text { Q: } 0.59 \\ \text { VAT: } 1.00 \\ \text { Net } 0.59 \end{gathered}$	$\begin{gathered} \text { Q: } 0.71 \\ \text { VAT: } 1.00 \\ \text { Lead: } 1.71 \\ 1.71+0= \\ 1.71 \end{gathered}$	N/A	Represents inspection of the TAD canister at the process line. V4.0: Cask release is on object activated so Q is the net time item.
	$\begin{aligned} & \text { \#RF } \\ & \text { +connector } \\ & \text { (V6.0) } \end{aligned}$		0+0	N/A	N/A	N/A	$\begin{gathered} \text { Q: } 0.88 \\ \text { VAT: } 1.00 \\ \text { WNP: } 0 \\ \text { Lead: } 1.88 \\ \text { Conn: } 0 \\ 1.88+0= \\ 1.88 \\ \hline \end{gathered}$	Not Applicable for V4.0, V5.0. Receiving Facility (RF)
	```TADxfertoWP 2 (V6.0)```		0+0	N/A	N/A	N/A	Q: 0.54	CRCF2 handles most of the TADs. V6.0 "Object activated" triggers releases for cask from the cask hold process.
-8. GROA   Operations to return empty cask								These processes are the time to prep the cask for return.
Note 4.	TCRRFCaskR eturn +connector	$\begin{gathered} \text { A- } \\ 19 \end{gathered}$	$3+0$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	$\begin{gathered} 3.51+0= \\ 3.51 \end{gathered}$	$\begin{gathered} 3.51+0= \\ 3.51 \end{gathered}$	All casks return through TCRRF.
	\#DistinTCRRF +connector	$\begin{gathered} \text { A- } \\ 19 \end{gathered}$	0+0	$\begin{gathered} 0.50+0= \\ 0.50 \\ \hline \end{gathered}$	$\begin{gathered} 1.52+0= \\ 1.52 \\ \hline \end{gathered}$	$\begin{gathered} 1.52+0= \\ 1.52 \\ \hline \end{gathered}$	Not used in V6.0.	
	ToSRTC+conn ector	$\begin{gathered} \text { A- } \\ 19 \end{gathered}$	2+0	$\begin{gathered} 2.54+0= \\ 2.54 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.57+0= \\ 2.57 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.54+0= \\ 2.52 \\ \hline \end{gathered}$	Not used in V6.0.	Longest SRTC process time is used
	$\square$	$\begin{gathered} \text { A- } \\ 19 \end{gathered}$	1+0	$\begin{gathered} 1.55+0= \\ 1.55 \end{gathered}$	$\begin{gathered} 1.53+0= \\ 1.53 \end{gathered}$	$\begin{gathered} 1.54+0= \\ 1.54 \end{gathered}$	Not used in V6.0.	


				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Rail
Rail OCRWM/ TSM Action	Process	Fig	$\begin{aligned} & \text { TSM } \\ & \text { Prog } \\ & \hline \end{aligned}$	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion (Note 1)
	CaskReturnJu mptoTSM +connector	$\begin{gathered} \text { A- } \\ 19 \end{gathered}$	3+1	$\begin{gathered} 1.16+1.00= \\ 2.16 \end{gathered}$	$\begin{gathered} 3.63+1.00= \\ 4.63 \end{gathered}$	$\begin{gathered} 3.65+1= \\ 4.65 \end{gathered}$	$\begin{gathered} 3.76+1= \\ 4.76 \end{gathered}$	V4 routers have a bug where VAT time is spread among all items in processprocess cap. is 5 in this case.
	RailCaskRetur n	$\begin{gathered} \text { A- } \\ 19 \end{gathered}$	1	1.52	1.52	1.51	1.52	This is not a jump- it is a generic process that teleports. So, include the process time in the cask cycle time.
-9. Cask Transport from GROA to FMF								Time from the GROA to the FMF via DOE rail.
	BasketReturn+ connector	$\begin{gathered} \text { A- } \\ 14 \end{gathered}$	$3+0$	$\begin{gathered} 3.55+0= \\ 3.55 \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.53+0= \\ 3.53 \end{gathered}$	$\begin{gathered} 3.45+0= \\ 3.45 \end{gathered}$	N/A	Process skipped in V6.0 to reduce model time.
	\#GROACaskR eturn+ connector	$\begin{gathered} \text { A- } \\ 14 \end{gathered}$	0+0	$\begin{gathered} 0.52+0= \\ 0.52 \end{gathered}$	$\begin{gathered} 1.65+0= \\ 1.65 \end{gathered}$	$\begin{gathered} 1.52+0= \\ 1.53 \end{gathered}$	$\begin{gathered} 1.53+0= \\ 1.53 \end{gathered}$	The RailCaskReturn process in the GROA teleports to here in V6.0.
	\#IMFCaskrece ive1+ connector	$\begin{gathered} \text { A- } \\ 14 \end{gathered}$	0+1	$\begin{gathered} \text { Q:0.54 } \\ \text { VAT: } 0.00 \\ \text { WFN=.45 } \\ \text { Lead=.99 } \\ \text { Conn: } 1.12 \\ .99+1.12= \\ \mathbf{2 . 1 1} \\ \hline \end{gathered}$	$\begin{gathered} \text { Q: } 0.55 \\ \text { VAT: } 1.00 \\ \text { WFN: . } 46 \\ \text { Lead=2.01 } \\ \text { Conn: } 1.13 \\ 2.01+1.13= \\ 3.14 \\ \hline \end{gathered}$	Q: 0.53 VAT: 1.00 WFN: 0.47 Lead $=2.00$ Conn: 1.13 $2.00+1.13=$ 3.13	$\begin{gathered} \text { Q: } 0.53 \\ \text { VAT: } 1.00 \\ \text { WFN: } 0.38 \\ \text { Lead= } 1.91 \\ \text { Conn: } 1.11 \\ 1.91+1.11= \\ 3.02 \end{gathered}$	
-10. Cask Maintenance at FHF		$\begin{gathered} \text { A- } \\ 21 \end{gathered}$						
	CaskSort+con nector	$\begin{gathered} \text { A- } \\ 21 \end{gathered}$	$3+0$	$\begin{gathered} 3.53+0= \\ 3.53 \end{gathered}$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	$\begin{gathered} 3.53+0= \\ 3.53 \end{gathered}$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	This represents the routine inspection and arrival actions at the FMF.
	\#SCaskCheck +connector	$\begin{gathered} \text { A- } \\ 21 \end{gathered}$	0+1	$\begin{gathered} 0.66+1.0= \\ 1.66 \end{gathered}$	$\begin{gathered} 1.65+1.0= \\ 2.65 \end{gathered}$	$\begin{gathered} 1.64+1.0= \\ 2.64 \end{gathered}$	$\begin{gathered} 1.67+1.0= \\ 2.67 \end{gathered}$	If maintenance is needed add 6.6 steps.


				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Rail
Rail OCRWM/ TSM Action	Process	Fig	$\begin{aligned} & \text { TSM } \\ & \text { Prog } \\ & \hline \end{aligned}$	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion (Note 1)
	\#SReturn+con nector	$\begin{aligned} & \text { A- } \\ & 21 \end{aligned}$	0+1	$\begin{gathered} 0.6+1.0= \\ 1.6 \end{gathered}$	$\begin{gathered} 1.59+1.0= \\ 2.59 \end{gathered}$	$\begin{gathered} 1.58+1.0= \\ 2.58 \end{gathered}$	$\begin{gathered} 1.59+1.0= \\ 2.59 \end{gathered}$	Jump from here to cask distribute (Item 1) to repeat cycle.
TOTAL ITEMS 310	SUMR   BFB   PEAHH		48   69   71   Note 3	$\begin{aligned} & 73.85 \\ & 92.86 \\ & 96.19 \end{aligned}$	$\begin{gathered} 91.02 \\ 108.68 \\ 109.34 \end{gathered}$	$\begin{gathered} 90.62 \\ 107.62 \\ 110.62 \end{gathered}$	$\begin{aligned} & 79.64 \\ & 98.97 \\ & 98.97 \end{aligned}$	The sums here are for bold items above.   Without FMF maintenance. Add 6.6 steps to include time for a cask that requires maintenance.
TOTAL ITEMS 310   Corrected for 7.1 cases.	SUMR   BFB   PEAHH		N/A	$\begin{gathered} (-0) \\ 73.85 \\ 92.96 \\ 96.19 \end{gathered}$	$\begin{aligned} & (-13) \\ & 78.02 \\ & 95.68 \\ & 96.34 \end{aligned}$	$\begin{gathered} (-14) \\ 76.62 \\ 93.62 \\ 96.62 \end{gathered}$	$\begin{gathered} (-12) \\ 67.64 \\ 86.97 \\ 86.97 \end{gathered}$	Line above corrected for the one step added to the 7.1 cases as shown in ().   Difference is justified by Items 8 and 9 and considering run-to-run variations.

Note 2. For Item 3, typical rail, barge, HH sites that use TAD canisters are shown. TSM programmed time is to complete the 3-cask consist and includes barge/HH transport cycles as follows:
Rail: Zero time steps programmed.
Barge: 3 casks routed with Rsite arrival (0) then Rsite to Bsite with unload (4), Bsite (1), then Bsite to Rsite with load (4), RSite (0), then Rsite to BSite with unload (4), Bsite (1), then BSite to Rsite with load (4), RSite (0), then Rsite to Bsite with unload (4), Bsite (1). $0+4+1+4+0+4+1+4+0+4+1=23$ based on 3 steps for load/unload and 1 step for travel for BFB, see Section 5.4.3. BSite has 1 step for adding the cask to the rail car.
HH: 3 casks with each routed as RSite arrival ( 0 ) then Rsite to HHsite with unload (4), HHSite (1), then HHsite to Rsite with load (4), RSite (0), then Rsite to HHSite with unload (4), HHsite (1), then HHSite to Rsite with load (4), Rsite (0), then Rsite to HHsite with unload (4), HHsite (1). $0+4+1+4+0+4+1+4+0+4+1=23$ based on 4 steps for travel and 1 for unload, see Section 5.4.4. HHSite has 1 step for adding the cask to the rail car Note 3. Program time for all items in total. The program times did not change from Version 4.0 to Version 6.0.
Note 4: Names are as tested. The released TSM Version 6.0 name changes are: TCRRFCaskReturn to GROACaskReturn, GROABlending to GROA, InputtoTCRRF to InputtoGROA.

Table 2. Truck Cask Cycle Time

				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Truck
Truck OCRWM ITSM Action	Process	Fig	$\begin{aligned} & \hline \text { TSM } \\ & \text { Prog } \\ & \text { Steps } \end{aligned}$	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion
-1. Cask staging at FMF and transport from FMF to site	Cask6distribut   e +connector		1+5	Q: 17.35   VAT:0.01   WNP: 3.58   Lead: 20.94	Q: 16.60   VAT:1.00   WNP: 8.47   Lead: 35.27	Q: 42.60   VAT: 1.00   WNP: 8.13   Lead: 51.73	$\begin{gathered} \text { Q: } 7.21 \\ \text { VAT:1.00 } \\ \text { WNP: } 9.8 \\ \text { Lead: } 29.87 \\ \hline \end{gathered}$	WNP for 7.1 case does not always add properly. Problem has been reported to CaS .
-2. Cask Loading at site								Do not add to cycle time tests done in Item 3 include the simulation time for these elements.
	GA-4 + connector		$3+1$	$\begin{gathered} \text { Q: } 1012 \\ \text { VAT:3.00 } \\ \text { WNP: } 7.02 \\ \text { Lead: } 1023 \\ \text { Conn: } 1 \end{gathered}$	$\begin{gathered} \text { Q: } 1057 \\ \text { VAT:3.00 } \\ \text { WNP: } 7.98 \\ \text { Lead: } 1068 \\ \text { Conn: } 1 \end{gathered}$	$\begin{gathered} \text { Q: } 620 \\ \text { VAT: } 3.00 \\ \text { WNP: } 5.63 \\ \text { Lead: } 629 \\ \text { Conn: } 1.00 \end{gathered}$	$\begin{gathered} \text { Q: } 6006 \\ \text { VAT: } 3.00 \\ \text { WNP: } 15.51 \\ \text { Lead: } 6024 \\ \text { Conn: } 1.00 \end{gathered}$	This is for the truck loading process. Simulation time includes time waiting for cask to be available. Input point for cask load from IS file.   GROA in V6.0 processes trucks more slowly, large Q of several thousand forms.
	6 Tload		1	1.51	1.51	1.50	1.51	Simulation includes the cask staging/waiting for the event call for arriving cask loads. Join process that teleports to maps.
-3. Waste Site	GINT	A-6	1.5	10.00	10.33	11.00	11.00	Programmed time From Appendix C. Simulation time is from time testing in Appendix G VAT is 1.5 but depends on batching. Testing included Items 1 and 2 above so Items 1 and 2 are not added to the cycle time.


				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Truck
Truck OCRWM ITSM Action	Process	Fig	$\begin{aligned} & \text { TSM } \\ & \text { Prog } \\ & \text { Steps } \\ & \hline \end{aligned}$	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion
-4. Transit to Repository   Transit from waste site to "ToGROATruck9" jump in NW Truck map	GINT to NVT	Fig.   A-6 to Fig. A-2	9	11.67	11.00	11.33	11.67	Programmed time is from Appendix C. Simulation time is from time testing, Appendix G, add 1 step for NVT to "ToGROATruck9" connector.
-5. Not applicable								
-6. Truck Entry to GROA	GROATruckD epot +connector	$\begin{gathered} \text { A- } \\ 14 \end{gathered}$	0+0					Not included in cask cycle time since the ToGROATruck9 jump teleports objects to TruckArrivals1 below.
	GROATruckS ecurity +connector	$\begin{aligned} & \text { A- } \\ & 14 \end{aligned}$	0+1					Not included in cask cycle time since the ToGROATruck9 jump teleports objects to TruckArrivals1 below. Security check time is compensated by model time below.
	GROAUnbatc hTruck	$\begin{aligned} & \text { A- } \\ & 18 \\ & \hline \end{aligned}$						Department Process, time set by each process below
	TruckArrivals1 +connector	$\begin{aligned} & \text { A- } \\ & 18 \end{aligned}$	0+0	$\begin{gathered} 0.52+0= \\ 0.52 \\ \hline \end{gathered}$	$\begin{gathered} 0.52+0= \\ 0.52 \\ \hline \end{gathered}$	$\begin{gathered} 0.51+0= \\ 0.51 \\ \hline \end{gathered}$	$\begin{gathered} 0.52+0= \\ 0.52 \\ \hline \end{gathered}$	This is "model time".
	\#TruckUnbatc h2 1+ connector	$\begin{aligned} & \text { A- } \\ & 18 \end{aligned}$	0+1	$\begin{gathered} .11+1.02= \\ 1.13 \end{gathered}$	$\begin{gathered} 0.11+1.01= \\ 1.12 \end{gathered}$	$\begin{gathered} 0.11+1.01= \\ 1.12 \end{gathered}$	$\begin{gathered} \text { Q: } 0.11 \\ \text { VAT: } 1 \\ \text { WNP: } 0.23 \\ \text { Lead: } 1.34 \\ \text { Conn: } 1.00 \\ 1.34+1.00= \\ \mathbf{2 . 3 4} \end{gathered}$	This is "model time". \#Added time step in V6.0 only.




				Version 47.0	Version 47.1	Version 57.1	Version 67.1	Truck
Truck OCRWM ITSM Action	Process	Fig	TSM Prog Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	TSM Sim Steps	Discussion
	\#IMFCaskrece ive1+ connector	$\begin{aligned} & \text { A- } \\ & 14 \end{aligned}$	0+1	$\begin{gathered} \text { Q:. } 54 \\ \text { VAT: } 0 \\ \text { WFN=. } 45 \\ \text { Lead=. } 99 \\ \text { Conn:1.12 } \\ .99+1.12= \\ 2.11 \end{gathered}$	$\begin{gathered} \text { Q:. } 54 \\ \text { VAT: } 1 \\ \text { WFN=. } 45 \\ \text { Lead=1.99 } \\ \text { Conn: } 1.13 \\ 1.99+1.13= \\ 3.12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Q:. } 55 \\ \text { VAT: } 1 \\ \text { WFN=. } 45 \\ \text { Lead=1.99 } \\ \text { Conn: } 1.13 \\ 2.0+1.13= \\ 3.13 \end{gathered}$	$\begin{gathered} \text { Q:. } 53 \\ \text { VAT: } 1 \\ \text { WFN=. } 38 \\ \text { Lead=1.91 } \\ \text { Conn: } 1.11 \\ \text { 1.91+1.11= } \\ 3.02 \\ \hline \end{gathered}$	Same for truck and rail.
-10. Cask Maint. at FHF		$\begin{array}{r} \text { A- } \\ 21 \\ \hline \end{array}$						
	CaskSort+con nector	$\begin{aligned} & \text { A- } \\ & 21 \end{aligned}$	3+0	$\begin{gathered} 3.53+0= \\ 3.53 \end{gathered}$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	$\begin{gathered} 3.53+0= \\ 3.53 \end{gathered}$	$\begin{gathered} 3.52+0= \\ 3.52 \end{gathered}$	This represents the routine inspection and arrival actions at the FMF.   Same for rail and truck.
	\#TCaskCheck +connector	$\begin{gathered} \text { A- } \\ 21 \end{gathered}$	0+1	$\begin{gathered} 0.53+1= \\ 1.53 \end{gathered}$	$\begin{gathered} 0.51+1.0= \\ 1.51 \end{gathered}$	$\begin{gathered} 0.52+1.0= \\ 1.52 \end{gathered}$	$\begin{gathered} 1.51+1.0= \\ 2.51 \end{gathered}$	If maintenance is needed add 6.6 steps. \#Added time step in V6.0 only
	TReturn+conn ector	$\begin{aligned} & \text { A- } \\ & 21 \end{aligned}$	0+1	$\begin{gathered} 0.54+1= \\ 1.54 \end{gathered}$	$\begin{gathered} 0.53+1.0= \\ 1.53 \end{gathered}$	$\begin{gathered} 0.53+1.0= \\ 1.53 \end{gathered}$	$\begin{gathered} 0.51+1.0= \\ 1.51 \end{gathered}$	Jump from here to cask distribute (Item 1) to repeat cycle.
TOTAL ITEMS 310	GINT		$46$   Note 2	56.30	64.40	63.87	60.16	Without FHF maintenance. Add 6.6 steps to include time for a cask that requires maintenance. Totals are rounded up.
TOTAL ITEMS 310   Correct for +1 step in test in 7.1	GINT		N/A	$\begin{gathered} (-0) \\ 56.30 \end{gathered}$	$\begin{gathered} (-6) \\ 58.40 \end{gathered}$	$\begin{gathered} \hline(-6) \\ 57.87 \end{gathered}$	$\begin{gathered} (-7) \\ 53.16 \end{gathered}$	Corrected for 1 time step as shown by (). Differences justified by Item 8 and longer processing times (Item 1).

or Appendix $G$ for some simulation times, as shown
Note 2. TSM Version 5.0 and Version 6.0 have one more time step in the GROA process.
Note 3: Names are as tested. The released TSM Version 6.0 name changes are: TCRRFCaskReturn to GROACaskReturn, GROABlending to GROA, InputtoTCRRF to InputtoGROA.

# INTENTIONALLY LEFT BLANK 

## 6. OBSERVATIONS

The transportation elements in TSM Version 6.0 behave consistently with previous TSM versions considering changes in the transportation elements and GROA operations. Future studies using TSM Version 6.0 can be directly compared with historical analyses and results.

As noted in Table 1 and 2, the cycle times for TSM Version 6.0 are lower than previous versions because some processes for GROA operations to return empty cask processes were removed when the GROA simulation was revised. These processes were model time contributors and the revised model provides better fidelity. These changes do not have any major impact on the conclusions of previous studies that used the slower cycle times, since the casks fleets and waste acceptance would not be greatly changed by these small changes in cycle times.

Upgrading to SimCAD ${ }^{\text {TM }}$ Version 8.0 should be done as soon as practical to correct the bug that causes no recording of process timing data when a process is programmed with zero process time. At that point, a post-run report generator that duplicates the method in Table 1 and 2 can be implemented to quickly perform cycle time testing and allow easy run-to-run and model-tomodel comparisons of transportation timing.

The TSRG is validated and ready for use (see Appendix H).
Refinements can never achieve complete fidelity between the simulated with calculated transit times for the sites because multiple sites use the same connectors. Notice that as the routes represented by connectors converge on the MGR the connectors near the MGR carry loads from many sites. This means that the timings in these connectors can influence many sites and it is not practical to develop chains of connectors that provide the proper connector setting for all connectors to match the calculated transit times for all sites. It is also difficult to make accurate connectors with 8 -hour time steps to simulate the routes for the short distances from reactors near the MGR. This situation is further complicated that SimCAD ${ }^{\text {TM }}$ connectors prior to a jump need at least one time step (thus the 8-hour steps in the final connectors mentioned above).

All of the assumptions and connector construction that influence connector timing and therefore the overall simulation timing can reduce the fidelity of the simulation. The uncertainty in the routes, speeds, and methods for transportation 20 years in the future also have considerable uncertainty, so any lack of fidelity is not very critical, especially for studies where relative results between scenarios are used as the analysis basis.

## INTENTIONALLY LEFT BLANK

## 7. REFERENCES

### 7.1. DOCUMENTS CITED

BSC 2003a. User Manual for the CRWMS Analysis and Logistics Visually Interactive Model Version 4.0, MIS-WAT-SE-000001 Rev 00, Bechtel SAIC Company, LLC, Washington, D.C. Nov. 2003. ACC: DOC.20040908.0004

BSC 2005a. TSM System Study: Impact of a Canister-Based System on the CRWMS, Phase 1. MIS-CRW-SE-000003 REV 00. Washington, D.C.: BSC. ACC: DOC.20051213.0001.

BSC 2006a. TSM Transportation Basis and Check, 000-00C-G000-00900-000-00A. Bechtel SAIC Company, LLC, Washington, D.C. ACC: ENG.20061102.0002.

BSC 2006b. TSM Cost Basis and Check, 000-00C-G000-01000-000-00A, Bechtel SAIC Company, LLC, Washington, D.C. ACC: ENG.20061009.0006.

BSC 2007a. Total System Model Version 6.0 Transportation Design and Bases, 50040-DD-02-6.0-00, Bechtel SAIC Company, LLC, Washington, D.C. ACC: Submit to RPC.

BSC 2007b. User Manual for the Total System Model Version 6.0, 50040-UM-01-6.0-00, Bechtel SAIC Company, LLC, Washington, D.C. ACC: Submit to RPC.

BSC 2007c. Total System Model Version 6.0 Cost Estimating Routines Design and Bases, 50040-DD-03-6.0-00, Bechtel SAIC Company, LLC, Washington, D.C. ACC: Submit to RPC.

BSC 2007d. Total System Model Version 6.0 TSM Validation, 50040-VAL-01-6.0-00, Bechtel SAIC Company, LLC, Washington, D.C. ACC: Submit to RPC

CaS 2006. SimCAD Process Simulator Users' Manual, V 7.1, Create-a-Soft, Chicago, Illinois, May 2005. ACC: MOV.20071016.0003.

DOE 2002. Final Environment Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada. DOE/EIS-0250. Washington, DC: U.S. DOE Office of Civilian Radioactive Waste Management. ACC: MOL.20020524.0314 through MOL.20040524.0320.

Gillespie, S. 2005. "Status of Transportation Data Needs for TSM System Study." E-mail from S. Gillespie (BSC) to D. Kim (RW-20). February 10, 2005, with Attachments. ACC:

MOV.20050802.0003, MOV.20050802.0004.

### 7.2. CODES, STANDARDS, REGULATIONS, AND PROCEDURES

AP-ENG-006 Revision 1 ICN 0, Total System Model (TSM) - Changes to Configuration Items and Base Case. Washington, DC: U.S. Department of Energy Office of Civilian Radioactive Waste Management. ACC: Submit to RPC.

## 8. ATTACHMENTS

The files in the table below are included electronically. The file dates in the table are the time the file was finalized for the attachment to this validation. Size for files in .zip files is as zipped.

Table 3. Electronic Attachments

Files Name	Description	Size (kB)	Date
Calvin_2k.mdb	Access database used by Calvin for many of the inputs in TSM. File "Copy of Work_03V3.1Tslcc03.mdb" provided by BSC 12-23-03.	6,036	9/30/04
RE Route Questions.txt	"Route Questions" Email from R. Best (BSC) to S. Turner (SAIC), August 18, 2004 Used for the route bases.	8	6/16/2006
FW Route Questions.txt	"Route Questions" Email from R. Best (BSC) to S. Turner (SAIC), August 23, 2004. Used for the route bases.	10	6/16/2006
FW Humboldt Bay and Beaver Valley Intermodal.txt	Email from R. Best (BSC) to S. Turner (SAIC), February 17, 2005 Used for the route bases.	2	8/30/2006
ec_n15.prn	"INTERLINE Input File Name: ec_n15.prn" Provided by R. Best (BSC) to S. Turner (SAIC), May, 2004 via hand delivery. Used for the route bases.	836	8/1/2000
ec_n15b.prn	"INTERLINE Input File Name: ec_n15b.prn" Provided by R. Best (BSC) to S. Turner (SAIC), via email August 23, 2004. Used for the route bases.	873	8/23/2004
belt_1.prn	"HIGHWAY Input File Name belt_1.prn" Provided by R. Best (BSC) to S. Turner (SAIC), May, 2004, via hand delivery. Used for the route bases.	1218	1/16/2001
Appendix B_Rail distances by node 7 20-07.xls	Node to Node distance comparison for rail.	426	7/20/2007
Truck Details_Appendix Cd_9-406.xls	Node to Node distance for trucks There is an updated file for this.	57	9/4/2006
Barge and HH_Appendix   Dd_6_21_06_revd_8_31_07.xls	Time step calculation for Barge and HH.	397	8/31/2006
Appendix E_V6 Connector Timing.xls	Documentation of time steps used in TSM.	306	7/24/2007
Appendix F_statelines_7_20_07.xls	Comparison of number of state lines crossed for truck and rail.	66	7/20/2007
App. G TimeTesting_comparison _7_26_07_slt.xls	This spreadsheet compares the different versions (V4.0 in 7.0, V4.0 in 7.1, V5.0 in 7.1, and V6.0 in 7.1) to show the consistence in the transportation route timings (i.e., timing tests with pauses). Do not activate links.	434	7/26/2007
TSM_V4.0_timetesting_7.0.zip RUN FILE Containing:	Time testing with pauses to verify timing on routes. (TSM V4.0 in 7.0) File contains model.	8,557	7/13/2007


Files Name	Description	Size (kB)	Date
TSM_V4.0_timetesting_7.0.SIM		98,060,288	6/11/2007
IS timetesting-060707 .xls	The Initial State file used for the Time Tests with Pauses	4,077	6/11/2007
TSM_V4.0_8_25_06_timetesting_6_8 07_in 7.1.zip RUN FILE including:	Time testing with pauses to verify timing on routes. (TSM V4.0 in 7.1) File contains model.	8,400	7/13/2007
TSM_V4.0_8_25_06_timetestin g_6_8_07_in $\overline{7.1} \overline{\text { SIM }}$		98,093,568	6/11/2007
TSM_V5.0_71_timetesting.zip RUN FILE including:	Time testing with pauses to verify timing on routes. (TSM V5.0 in 7.1) File contains model.	8,562	7/13/2007
TSM_V5.0_71_timetesting.SIM		101,873,152	6/22/2007
TSM_V6.0D7_71_timetesting.zip RUN FILE including:	Time testing with pauses to verify timing on routes. (TSM V6.0 in 7.1) File contains model.	8,325	7/24/2007
TSM_V6.0D7_71_timetesting.SI $\mathrm{M}$		96,649,728	7/23/2007
TSM_V4.0_timetesting_7.0.zip RUN FILE including:	TSM Version 4.0 run in 7.0. Includes .simdata file, .mdb file,and model	8,557	7/13/2007
TSM_V4.0_timetesting_7.0.SIM		98,060,288	6/11/2007
TSM_V4.0.simdata		1,388,544	6/11/2007
TSM.mdb		479,232	6/11/2007
TSM_V3.0G7_25B_Timing Test 060807.zip (Cycle Time) RUN FILE including:	TSM Version 4.0 run in 7.1. Includes .simdata file, .mdb file,model and IS	22,551	6/8/2007
TSM_V3.0G7_25B.simdata		73,703,424	6/8/2007
TSM_V30G7_Scn25B_8_23_05 -Process Time 1.SIM		97,501,184	6/8/2007
TSM_25B.mdb		89,821,184	6/8/2007
IS_WO_V3.0G_TAD_Scn25B_ DŌE_082205.xls		8,348,160	8/23/2005
TSM_V5.0_71_timing 1.zip (Cycle Time) RUN FILE including:	TSM Version 5.0 run in SimCAD ${ }^{\text {™ }}$ 7.1. Includes .simdata file, .mdb file, and model	19,395	6/18/2007
TSM_V5.0_71_timing 1.simdata		68,927,488	6/14/2007
TSM.mdb		28,741,632	6/14/2007
TSM_V5.0_71_timing 1.SIM		102,010,368	6/14/2007
TSM_V6.0D8B_71_timetest_step1_7   -25-07 pm.zip	TSM Version 6.0 run in SimCAD ${ }^{\text {TM }} 7.1$. Includes .simdata file, .mdb file, model, IS, and .xml	16,120	7/25/2007
TSM_V6.0D8B_71_timetest_ste p1.SIM		47,939,072	7/25/2007
IS_WO_V3.0G_TAD_Scn25B_ DŌE 082205.x]s		8,348,160	8/23/2007
TSM.mdb		38,670,336	7/25/2007
Tsm_v6.xml		2,188	7/25/2007
TSM_V6.0D7_71.simdata		62,042,112	
TSM_V30J2_Scn29B_russ_082605.z ip RUN FILE Containing:	Appendix H TSRG validation. The run file used for TSRG validation..	39,940	8/26/2005
TSM_V3.0J2_Scn29B.simdata	Simdata file to assess shipments.	177,737,728	8/26/2005
$\begin{aligned} & \text { IS_Scn29B_LE104_DOE_WO_ } \\ & \text { 082205.xls } \end{aligned}$	Initial State file	8,376,320	8/23/2005


Files Name	Description	Size (kB)	Date
TAD_Study   Setup_Sheet29B.doc	Setup sheet for run	25,088	$8 / 23 / 2005$
TAD_Throughput.xls		$2,230,272$	$8 / 26 / 2005$
TSM_Scn29B.mdb	.mdb file for run	$87,822,336$	$8 / 26 / 2005$
TSM_V3.0J_Scn29B.simdata	.simdata file for run	$177,737,728$	$8 / 26 / 2005$
IS_Scn29B_LE104_DOE_WO_082205   for checking generator with pivot.xls	Pivoted IS file to assess shipping tons.	5,819	$5 / 15 / 2007$
	Appendix H TSRG validation.   Hardcopy manual checks (scanned in) of   TSM Transportation Shipment Report   Generator_with ref mods_TSRG   012507_TestingJ2_Scn29b.xls worksheets:   5. Shipment State-Rail   6. Shipment State-Truck   Sheet Ref Rail State   Sheet Ref Rail City		
App. H TSRG Val notes.pdf	2,463	$8 / 30 / 2007$	
TSM Transportation Shipment Report   Generator_with ref mods_TSRG   012507_TestingJ2_Scn29b.xls	Preliminary TSRG workbook used for manual file   above		
TSM Transportation Shipment Report   Generator__Scn29b_08_22_05_Gen   110806.xls	Preliminary TSRG workbook used for manual file   above	617	
TSM Transportation Shipment Report   Generator_050807_validation.xls	Primary workbook used to validation TSRG		
TSM TSRG_1-5_050807.zip	TSRG validated	4,903	$5 / 26 / 2007$
TSM Transportation Shipment   Report Generator.xls	Generator	$11 / 13 / 2006$	

## INTENTIONALLY LEFT BLANK

## APPENDIX A

TSM TRANSPORTATION MAPS AND PROCESSES

INTENTIONALLY LEFT BLANK

## APPENDIX A TSM TRANSPORTATION MAPS AND PROCESSES

This appendix shows screenshots from the TSM V4.0, V5.0 and V6.0 for the transportation module "maps" with the LWT and rail routes. Barge and heavy haul sites are also shown. These are presented approximately in sequence for cask motions as the cask pass through the simulation.

The screenshots in this appendix may have small differences from the current version of the TSM as screenshots are not updated in updates of the validation report if the changes for the current version are minor. It is suggested that the current TSM be opened and used to see the current details.

## INTENTIONALLY LEFT BLANK

CSNF Rail Shipment in route to


Figure A-1. Typical Transportation Department Map


Figure A-2. Truck Northwest Routes


Shinap 2210
Figure A-3. Truck Southwest Routes


Figure A-4. Truck Midwest Routes


Figure A-5. Truck Southeast Routes


NMinap 5513
Figure A-6. Truck Northeast Routes


Figure A-7. Rail Northwest Routes
N The repository "YMR" is shown to provide a landmark but is not an active process. For rail shipments, the jump from the rail routes to the main TSM GUI is in the Southwest rail map.


SWinap 875

Figure A-8. Rail Southwest Routes
All rail shipments are eventually routed to the "NVR" process where the "railshipment" objects jump to the main TSM GUI process "IMFDepot" process.


Figure A-9. Rail Midwest Routes


Figure A-10. Rail Southeast Routes


Figure A-11. Rail Northeast Routes



Figure A-12. HiStar Department
This figure shows the HiStar cask allocation department with 2 types of bare fuel baskets, 4 types of DPCs and 2 types of overpacks (shells). All baskets and cans except the HS-HBcan use shell 202. The SimCAD ${ }^{\text {TM }}$ triggers (events and auto events) control the calls or "triggers" for the shells and the allocation. See Reference BSC 2007a for more details on the trigger actions.

The bare fuel load arrives at the upper processes in the left most column (such as HS-100B) and initiates the trigger sequence to call a basket (Cask 26 for the HS-100B) and an overpack (in this case Cask 202). If no basket or can is available, the call is deferred until the basket or can is available else the overpack would be unnecessarily allocated for a shipment that is not ready to ship. Notice that bare fuel processes use a "basket" (such as cask 26 and 27 ) that is purchased by OCRWM.

For DPC cans (the two right columns), the DPC is joined with the shell to make the cask load. In the DPC cases, the utility has purchased the DPC and OCRWM has purchased the Cask 202 or 244 overpacks so no "buy" processes are needed for the DPC. Other cask allocation departments have similar structure and actions.


Figure A-13. TAD Department

This figure shows a TAD department. In the upper processes, bare fuel picked up from a pool is placed in a TAD canister that is purchased by OCRWM. Therefore, unconstrained "buy" processes are included. In the lower processes, the TAD cask loads are from storage and the TAD canister is purchased by the utility.

In all processes, overpacks are allocated to make the cask load that is sent to the map to simulate transportation to the GROA. In this case, the same overpack Cask 253 is used for all large TAD canisters and Cask 208 is used for all small TAD canisters. For TAD canisters only the overpacks (shells) are returned for reuse.


Figure A-14. Transportation Interfaces at Repository

The repository module includes the final transportation to the GROA. On receipt of rail shipments at the Nevada Intermodal Facility ("IMFDepot"), the shipments are placed on the DOE Rail for delivery to the GROA. Rolling stock is returned. For rail there are two departments that unbatch and route objects to the GROA. Truck shipments require only 1 department along this path. The TruckUnbatch and RailUnbatch departments have "Cask Hold" processes discussed in Figures A-15, A-16, and A-18. The detailed logistics cask handling aspects for the GROA are shown in Figure A-19. Cask maintenance logistics in the Maintenance Department (upper right of this figure) is discussed in Figure A-20.


Figure A-15. Repository Module: Rail Unbatch Department
On receipt of rail shipments at the IMF, the shipments are completely unbatched and the constituent objects are routed to their next steps. Two unbatch routers are used to ensure adequate throughput. Rolling stock is returned via jumps; casks are placed in "caskhold" functions to await a trigger after the associated cask load is unloaded in the GROA; and the waste object is sent to a join process to be made into a "xfercaskload" for shipment on the DOE rail. Casks when released from the cask hold "jump" to the GROA cask return process to properly load the positioner.


Figure A-16. Repository Module: Rail Unbatch Department Continued


Figure A-17. Repository Module: GROAUnbatchR Department


Figure A-18. Repository Module: Truck Unbatch Department
October 2007


Figure A-19. Repository GROA: Cask Return TSM V4.0, V5.0


Figure A-20. Repository GROA and Cask Return TSM V6.0
The cask return in the revised GROA design does not pass through the SRTC that have been removed from the design. The cask return only involves the jump processes in the upper right. This reduces the cask cycle times in Version 6.0 as shown in Tables 1 and 2.


Figure A-21. Cask Maintenance
Empty casks are returned from the GROA to the "Maintenance" department on the main GUI. Casks are sorted by truck (T), rail or basket (R) and shell/overpack (S). The need for cask maintenance (based on time or number of trips) is assessed in the "CaskCheck" processes. In the CaskMaint processes, T and R casks more than 25 years old are sent to a "CaskRepl" process for major overhaul. After maintenance, the casks are returned to the "dist" processes in the cask allocation departments for reuse by the multiple jumps at the top of this department. The "dist" processes are shown in Figure A-13.

INTENTIONALLY LEFT BLANK

## APPENDIX B

## RAIL DISTANCES

# INTENTIONALLY LEFT BLANK 

## APPENDIX B RAIL DISTANCES

This appendix contains the output of the EXCEL file "Appendix B_Rail distances by node_7_20_07.xls. (Modified Rail Connectors) as discussed in Section 5.2.1. For sites that have been changed from barge to heavy haul or heavy haul to barge, the assumption was made that the railhead remained the same when other data was not available.

This appendix lists each rail site and node-to-node or connector details of the rail route from the sites to the Caliente railhead listed here and in the TSM as NVR. The sources of this data were provided by R. Best in ec_n15.prn, ec_n15b.prn and emails responding to route questions, see the referenced files in Section 8. Notes and comments provide additional information regarding the listed data.

Column A (FROM): Lists the starting point of each connector.
Column B (To): Lists the end point of each connector.
Column C (SPEED): Provides the rail speed in ft/sec. Table 2 of MIS-WAT-SE-000001 (BSC 2003a)
Column D (DISTANCE (FT)): This is the distance used in the TSM.
Column E (Time Step): The speed is converted to the number of feet that could be traveled in one time unit or 8 hours. The distance from Column D is divided by this number to determine the number of time units ( 8 hour increments) required to travel the point to point distance at the given speed. There are cases where time units rather than speed and distance are used in the TSM. For this comparison, the time units are converted to feet based on given speed for 8 hours or 1 time unit. This is shown in Column D.
Column F (Round Up): This column shows the time steps from Column E rounded up.
Column G (miles): The mileage between points based on the source is listed here. The source is identified below each site name.
Column H (feet): The mileage in column G is converted to feet for comparison.
Column J (source(Col H)-model(Col D)): This column shows the difference between the data provided in the Source and the actual mileage used in the TSM.
Column K (miles): Converts the feet in Column J to miles.
Column M (hours): Convert the feet in Column D to hours using the speed in Column C
Column N (hours): Converts the feet in Column H to hours using the speed in Column C

The final rows of the spreadsheet indicate the average difference in the TSM and FEIS distances based on the transit time using a constant transit speed. Both an absolute average and relative average are provided. The differences are ( $\mathrm{M}-\mathrm{N}$ )/N.

## INTENTIONALLY LEFT BLANK






	A	B	C	D	E	F	G	H	I	J	K	L	M	N
	Site Name	Clinton												
$\stackrel{L}{ }$	Source	ec_n15.prn												
$\frac{1}{2}$				model			Source			Difference ( ft )				Calculated
$\begin{aligned} & \dot{6} \\ & \dot{p} \\ & \dot{9} \end{aligned}$	PROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
$\bigcirc$	CLIR	Blair278	35.2	2819520	2.78	3	534	2819520		0	0		22.25	22.25
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada287	MVR	35.2	1013760	1	1							8.00	0.00
	MVR	ToNevlMF	35.2	1013760	1	1							8.00	0.00
	Totals			8902080	8.78	9							70.25	75.92
													Model to Source diff	-7.5\%
	Site Name	Comanchee Peak												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	$\begin{aligned} & \text { SPED } \\ & \text { (ft/sec) } \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	CPR	Denver287	35.2	3041280	3	3	878	4635840		1594560	302		24.00	36.58
סָד	Denver166	Uvada1 66	35.2	2027520	2	2	769	4060320		2032800	385		16.00	32.04
$\checkmark$	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
	MVR	ToNevlMF	35.2	1013760	1	1							8.00	0.00
	Totals			7096320	7	7							56.00	68.63
													Model to Source diff	-18.4\%
	Site Name	Cooper Station			Note: Sourc	riles based on	sing Omal	, NE rail nod	P	for barge at Po	f Omaha			
	Source	ec_n15b.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	$\begin{aligned} & \text { SPEED } \\ & \text { (ft/sec) } \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	CPRB	Omaha	35.2	1013760	1	1	0			-1013760	-192		8.00	0.00
	Omaha	Uvada1 66	35.2	4055040	4	4	1308	6906240		2851200	540		32.00	54.50
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
$\stackrel{\sim}{\square}$	MVR	ToNevlMF	35.2	1013760	1	1							8.00	0.00
$\bigcirc$	Totals			7096320	7	7							56.00	54.50
0 $\sim$ 0 0													Model to Source diff	2.8\%
$\bigcirc$														


	A	B	C	D	E	F	G	H	1	J	K	L	M	N
$\overline{1}$	Site Name	Crystal River												
ふ	Source	ec_n15.prn												
F				model			Source			Difference (ft)				Calculated
$$	PROM	TO	$\begin{aligned} & \text { SPEED } \\ & \text { (ft/sec) } \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
P	CRYR	Atlanta	35.2	2539680	2.51	3	481	2539680		0	0		20.04	20.04
	Atlanta	Laurenceville1 109	35.2	2629440	2.59	3	498	2629440		0	0		20.75	20.75
	Lawrenceville	Kansas City	35.2	2170080	2.14	3	411	2170080		0	0		17.13	17.13
	Kansas City166	Uvada1 66	35.2	4055040	4	4	1414	7465920		3410880	646		32.00	58.92
	Uvada287	MR	35.2	1013760	1	1							8.00	0.00
	MR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			13421760	13.24	15							105.92	116.83
													Model to Source diff	-9.3\%
	Site Name	Davis-Beese												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
OT	PROM	TO	$\begin{aligned} & \text { SPEED } \\ & (\mathrm{ft} / \mathrm{sec}) \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	DBR	Blair278	35.2	3875520	3.82	4	734	3875520		0	0		30.58	30.58
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	NR	35.2	1013760	1	1							8.00	0.00
	MR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			9958080	9.82	10							78.58	84.25
													Model to Source diff	-6.7\%
	Site Name	Diablo Canyon			Note: Source miles based on Heavy haul starting from San Luis Obispo per RE Route Questions.txt. Source based on ec n15.prn									
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	PROM	TO	$\begin{aligned} & \text { SPEED } \\ & (\mathrm{ff} / \mathrm{sec}) \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \underset{y}{2} \end{aligned}$	DCHH	Barstow	35.2	1906080	1.88	2	361	1906080		0	0		15.04	15.04
	Barstow	MR	35.2	1013760	1	1	302	1594560		580800	110		8.00	12.58
	MRR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			3933600	3.88	4							31.04	27.63
													Model to Source diff	12.4\%


	A	B	C	D	E	F	G	H	1	J	K	L	M	N
$\bigcirc$	Site Name	DC Cook												
$\stackrel{>}{>}$	Source	ec_n15.prn												
${ }_{1}$				model			Source			Difference (ft)				Calculated
$\begin{aligned} & \dot{b} \\ & \dot{\phi} \\ & \text { on } \end{aligned}$	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
$\bigcirc$	DCCR	Blair278	35.2	2940960	2.90	3	557	2940960		0	0		23.21	23.21
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada287	NMR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			9023520	8.90	9							71.21	76.88
													Model to Source diff	-7.4\%
	Site Name	Dresden												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	DRER	Blair278	35.2	2539680	2.51	3	481	2539680		0	0		20.04	20.04
ర్ర	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevlMF	35.2	1013760	1	1							8.00	0.00
	Totals			8622240	8.51	9							68.04	73.71
													Model to Source diff	-7.7\%
	Site Name	Duane Arnold												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	DUAR	Blair278	35.2	1420320	1.40	2	269	1420320		0	0		11.21	11.21
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevlMF	35.2	1013760	1	1							8.00	0.00
$\bigcirc$	Totals			7502880	7.40	8							59.21	64.88
$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$													Model to Source diff	-8.7\%
N														
$\stackrel{\rightharpoonup}{\mathrm{O}}$														



	A	B	C	D	E	F	G	H	I	J	K	L	M	N
$\bigcirc$	Site Name	Fitzpatrick												
+	Source	ec_n15.prn												
$\leq$				model			Source			Difference (ft)				Calculated
ob	PROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		Source-model	miles		Model Hours	Source   Hours
¢	FITR	Painesville 10	35.2	1779360	1.76	2	337	1779360		0	0		14.04	14.04
$\bigcirc$	Painesville 8	Blair2 78	35.2	4445760	4.39	5	842	4445760		0	0		35.08	35.08
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1287	6795360		2740320	519		32.00	53.63
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			12307680	12.14	13							97.13	102.75
													Model to Source diff	-5.5\%
	Site Name	Grand Gulf			Note: Source miles based on using Vicksburg MS rail node (Port for barge at Port of Vicksburg MS)									
	Source	ec_n15b.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	GGB	Deramus	35.2	1013760	1	1	176	929280		-84480	-16		8.00	7.33
$\square$	DeramusSW	Kansas City	35.2	2904000	2.86	3	550	2904000		0	0		22.92	22.92
	KansasCity166	Uvada1 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			10000320	9.86	10							78.92	89.21
													Model to Source diff	-11.5\%
	Site Name	Ginna			Note: Source miles based on starting at Webster, NY node (electronic attachment RE Route Questions.txt)									
	Source	ec_n15b.prn												
				model			Source			Difference ( ft )				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	GlNHH	Painesville 10	35.2	1473120	1.45	2	279	1473120		0	0		11.63	11.63
	Painesville 8	Blair278	35.2	4445760	4.39	5	841	4440480		-5280	-1		35.08	35.04
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & \sim \\ & 0 \\ & 0 \end{aligned}$	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			12001440	11.84	13							94.71	100.33
													Model to Source diff	-5.6\%





	A	B	C	D	E	F	G	H	I	J	K	L	M	N
$8$	Site Name	Lacrosse												
$\bigcirc$		ec_n15.prn												
$\stackrel{ }{ }$				model			Source			Difference (ft)				Calculated
$\bigcirc$	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
¢	LACR	Plattsmouth	35.2	2893440	2.85	3	548	2893440		0	0		22.83	22.83
$\bigcirc$	Plattsmouth6	Denver166	35.2	2951520	2.91	3	559	2951520		0	0		23.29	23.29
	Denver166	Uvadal 66	35.2	2027520	2.00	2	769	4060320		2032800	385		16.00	32.04
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			9900000	9.77	10							78.13	78.17
													Model to Source diff	-0.1\%
	Site Name	Limerick												
		ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	LIMR	ColumbianaNE	35.2	2085600	2.06	3	395	2085600		0	0		16.46	16.46
	Columbiana	KansasCity278	35.2	4461600	4.40	5	845	4461600		0	0		35.21	35.21
-	KansasCity166	Uvadal 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			12629760	12.46	14							99.67	110.63
													Model to Source diff	-9.9\%
	Site Name	Lasalle												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	LSR	Plattsmouth	35.2	2244000	2.21	3	425	2244000		0	0		17.71	17.71
	Plattsmouth6	Denver166	35.2	2951520	2.91	3	559	2951520		0	0		23.29	23.29
	Denver166	Uvada1 66	35.2	2027520	2	2	769	4060320		2032800	385		16.00	32.04
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
$\stackrel{7}{8}$	MVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
$\bigcirc$	Totals			9250560	9.13	10							73.00	73.04
$\begin{aligned} & 0 \\ & N \\ & 0 \end{aligned}$													Model to   Source diff	-0.1\%


	A	B	C	D	E	F	G	H	I	J	K	L	M	N
$\bigcirc$	Site Name	McGuire												
+	Source	ec_n15.prn												
$\stackrel{<}{>}$				model			Source			Difference (ft)				Calculated
$\begin{aligned} & e_{1} \\ & 6 \\ & \hline 8 \end{aligned}$	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
¢	MCGR	Atlanta	35.2	1689600	1.67	2	320	1689600		0	0		13.33	13.33
$\bigcirc$	Atlanta	Lawrenceville1 109	35.2	2629440	2.59	3	497	2624160		-5280	-1		20.75	20.71
	Lawrenceville	KansasCity278	35.2	2170080	2.14	3	411	2170080		0	0		17.13	17.13
	Kansas City1 66	Uvadal 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada2 87	MVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			12571680	12.40	14							99.21	110.13
													Model to Source diff	-9.9\%
	Site Name	Milstone												
		ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	MILR	Schenectady	35.2	1188000	1.17	2	225	1188000		0	0		9.38	9.38
¢	Schenectady	Painesville 10	35.2	2629440	2.59	3	432	2280960		-348480	-66		20.75	18.00
	Painesville 8	Blair278	35.2	4445760	4.39	5	840	4435200		-10560	-2		35.08	35.00
	Blair6 6	Uvadal 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada287	MVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			14345760	14.15	16							113.21	116.04
													Model to Source diff	-2.4\%
	Site Name	Morris			Note: Direct rail route identified as G E REPRO Plant. Provided in RE Route Questions.txt.									
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	MOR	Blair278	35.2	2529120	2.49	3	479	2529120		0	0		19.96	19.96
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & \sim \\ & 0 \\ & 0 \end{aligned}$	Blair6 6	Uvadal 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	MVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			8611680	8.49	9							67.96	73.63
													Model to Source diff	-7.7\%


	A	B	C	D	E	F	G	H	I	J	K	L	M	N
-	Site Name	Monticello												
+	Source	ec_n15.prn												
$\leq$				model			Source			Difference (ft)				Calculated
ob	PROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
¢	MONR	Minneapolis	35.2	1013760	1	1	44	232320		-781440	-148		8.00	1.83
$\bigcirc$	Minneapolis	Denver1 66	35.2	4973760	4.91	5	942	4973760		0	0		39.25	39.25
	Denver1 66	Uvada1 66	35.2	2027520	2	2	768	4055040		2027520	384		16.00	32.00
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			10042560	9.91	10							79.25	73.08
													Model to Source diff	8.4\%
	Site Name	Maine Yankee												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	$\begin{aligned} & \text { SPED } \\ & \text { (ft/sec) } \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	MYR	Schenectady	35.2	1779360	1.76	2	337	1779360		0	0		14.04	14.04
	Schenectady	Painesville 10	35.2	2629440	2.59	3	498	2629440		0	0		20.75	20.75
¢	Painesville 8	Blair2 78	35.2	4445760	4.39	5	842	4445760		0	0		35.08	35.08
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			14937120	14.73	16							117.88	123.54
													Model to Source diff	-4.6\%
	Site Name	North Anna												
		ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	NAR	Youngstown-NA	35.2	2560800	2.53	3	485	2560800		0	0		20.21	20.21
	Youngstown 7	Blair2 78	35.2	4683360	4.62	5	887	4683360		0	0		36.96	36.96
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
O	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
앙	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
9	Totals			13326720	13.15	14							105.17	110.83
No													Model to Source diff	-5.1\%


	A	B	c	D	E	F	G	H	1	J	K	L	M	N
	Site Name	Nine Mile Point												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	PROM	TO	$\begin{aligned} & \text { SPEED } \\ & \text { (ft/sec) } \end{aligned}$	DISTANCE (FT)	Time Step	Roundup	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	NMPR	Painesville 10	35.2	1779360	1.76	2	337	1779360		0	0		14.04	14.04
	Painesville 8	Blair278	35.2	4445760	4.39	5	841	4440480		-5280	-1		35.08	35.04
	Blair66	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	MR	35.2	1013760	1	1							8.00	0.00
	MR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			12307680	12.14	13							97.13	102.75
													Model to   urce diff	-5.5\%
	Site Name	Oyster Creek			Note: Source miles based on using Oak Island, NJ rail node (Port for barge at Port of Newark, NJ)									
	Source	ec_n15b.pm												
				model			Source			Difference (ft)				Calculated
	PROM	TO	$\begin{aligned} & \text { SPEED } \\ & (\mathrm{ff} / \mathrm{sec}) \\ & \hline \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	OCB	ColumbianaNE	35.2	2555520	2.52	3	484	2555520		0	0		20.17	20.17
¢	Columbiana	KansasCity278	35.2	4461600	4.40	5	844	4456320		-5280	-1		35.21	35.17
	KansasCity166	Uvada1 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada287	MR	35.2	1013760	1	1							8.00	0.00
	MR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			13099680	12.92	14							103.38	114.29
													Model to Source diff	-9.6\%
	Site Name	Oconee			Note: Source miles based on starting at Clemson, SC node (electronic attachment RE Route Questions.txt)									
	Source	ec_n15b.pm												
				model			Source			Difference (ft)				Calculated
	PROM	TO	$\begin{aligned} & \text { SPEED } \\ & \text { ( } \mathrm{ff} / \mathrm{sec} \text { ) } \\ & \hline \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	OCOHH	Lawrenceburg1 109	35.2	2613600	2.58	3	495	2613600		0	0		20.63	20.63
	Lawrenceburg2 78	KansasCity278	35.2	3289440	3.24	4	623	3289440		0	0		25.96	25.96
00000$\sim$00	KansasCity166	Uvada1 66	35.2	4055040	4	4	1414	7465920		3410880	646		32.00	58.92
	Uvada2 87	MR	35.2	1013760	1	1							8.00	0.00
	MR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			11985600	11.82	13							94.58	105.50
													Model to Source diff	-10.3\%


$00-0 \cdot 9-90-\mathrm{TV} \Lambda \Lambda-0+00 \mathrm{~S}$	A	B	C	D	E	F	G	H	I	J	K	L	M	N
	Site Name	Palisades			Note: Source miles based on starting at Hartford, Ml node (electronic attachment RE Route Questions.txt									
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	PALHH	Blair278	35.2	3490080	3.44	4	587	3099360		-390720	-74		27.54	24.46
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1287	6795360		2740320	519		32.00	53.63
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			9572640	9.44	10							75.54	78.08
													Model to Source diff	-3.3\%
	Site Name	Palo Verde												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	PVR	Barstow	35.2	2175360	2.15	3	412	2175360		0	0		17.17	17.17
¢	Barstow	NVR	35.2	1013760	1	1	302	1594560		580800	110		8.00	12.58
	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			4202880	4.15	5							33.17	29.75
													Model to Source diff	11.5\%
	Site Name	Peachbottom			Note: Source miles based on starting at York, PA node (electronic attachment RE Route Questions.txt)									
	Source	ec_n15b.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	PEAHH	ColumbianaNE	35.2	1805760	1.78	2	342	1805760		0	0		14.25	14.25
	Columbiana	KansasCity278	35.2	4461600	4.40	5	845	4461600		0	0		35.21	35.21
	KansasCity1 66	Uvadal 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada287	NMR	35.2	1013760	1	1							8.00	0.00
0	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
$\stackrel{\rightharpoonup}{0}$	Totals			12349920	12.18	13							97.46	108.42
$\begin{aligned} & 0 \\ & N \\ & \end{aligned}$													Model to Source diff	-10.1\%
$\underset{\sim}{ }$														


	A	B	c	D	E	F	G	H	1	J	K	L	M	N
	Site Name	Perry												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	PROM	TO	$\begin{aligned} & \text { SPEFD } \\ & \text { (ft/sec) } \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	PERR	KansasCity278	35.2	4208160	4.15	5	797	4208160		0	0		33.21	33.21
	KansasCity166	Uvada1 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada2 87	MR	35.2	1013760	1	1							8.00	0.00
	MR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			10290720	10.15	11							81.21	92.17
													Model to Source diff	-11.9\%
	Site Name	Pilgrim			Note: Sour	iles based o	sing Bost	MA rail no	Por	for barge at Po,	f Boston			
	Source	ec_n15b.pm												
				model			Source			Difference (ft)				Calculated
	PROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	PILB	Schenectady	35.2	1140480	1.13	2	216	1140480		0	0		9.00	9.00
$\begin{aligned} & \text { ザ } \\ & \dot{\sim} \end{aligned}$	Schenectady	Painesville 10	35.2	2629440	2.59	3	432	2280960		-348480	-66		20.75	18.00
	Painesville 8	Blair278	35.2	4445760	4.39	5	841	4440480		-5280	-1		35.08	35.04
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	MR	35.2	1013760	1	1							8.00	0.00
	MR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			14298240	14.10	16							112.83	115.71
													Model to Source diff	-2.5\%
	Site Name	Point Beach			Note: Source	iles based on	arting at	nitowoc, W	n	ele (electronic att	ment	out	Questions.txt)	
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	PROM	TO	$\begin{aligned} & \hline \text { SPEED } \\ & \text { (ft/sec) } \end{aligned}$	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	POIHH	Blair278	35.2	2845920	2.81	3	674	3558720		712800	135		22.46	28.08
00000$\sim$00	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	MR	35.2	1013760	1	1							8.00	0.00
	MR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			8928480	8.81	9							70.46	81.75
													Model to Source diff	-13.8\%


	A	B	C	D	E	F	G	H	I	J	K	L	M	N
-	Site Name	Prairie Island												
$\bigcirc$	Source	ec_n15.prn												
$\stackrel{ }{ }$				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
¢	PIR	StPaul278	35.2	1013760	1	1	34	179520		-834240	-158		8.00	1.42
$\bigcirc$	StPaul1 66	Blair6 6	35.2	1816320	1.79	2	344	1816320		0	0		14.33	14.33
	Blair6 6	Uvadal 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			8912640	8.79	9							70.33	69.42
													Model to Source diff	1.3\%
	Site Name	Qaud Cities												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	QCR	Plattsmouth	35.2	2053920	2.03	3	389	2053920		0	0		16.21	16.21
	Plattsmouth6	Denver166	35.2	2951520	2.91	3	559	2951520		0	0		23.29	23.29
	Denver166	Uvadal 66	35.2	2027520	2	2	769	4060320		2032800	385		16.00	32.04
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			9060480	8.94	10							71.50	71.54
													Model to Source diff	-0.1\%
	Site Name	Rancho Seco												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	RSR	Modesto1 66	35.2	1013760	1	1	80	422400		-591360	-112		8.00	3.33
	Modesto2 87	Barstow	35.2	1784640	1.76	2	338	1784640		0	0		14.08	14.08
	Barstow	NVR	35.2	1013760	1	1	302	1594560		580800	110		0.00	12.58
$\bigcirc$	MVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
$\bigcirc$	Totals			4825920	4.76	5							30.08	30.00
$\begin{aligned} & 0 \\ & N \\ & 0 \end{aligned}$													Model to   Source diff	0.3\%


	A	B	C	D	E	F	G	H	I	J	K	L	M	N
$\bigcirc$	Site Name	Robinson												
+	Source	ec_n15.prn												
$\stackrel{<}{>}$				model			Source			Difference (ft)				Calculated
$\begin{aligned} & e_{1} \\ & 6 \\ & \hline 8 \end{aligned}$	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
¢	ROBR	Atlanta	35.2	1599840	1.58	2	303	1599840		0	0		12.63	12.63
$\bigcirc$	Atlanta	Lawrenceville1 109	35.2	2629440	2.59	3	498	2629440		0	0		20.75	20.75
	Lawrenceville	KansasCity278	35.2	2170080	2.14	3	411	2170080		0	0		17.13	17.13
	Kansas City1 66	Uvadal 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada2 87	MVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			12481920	12.31	14							98.50	109.46
													Model to Source diff	-10.0\%
	Site Name	River Bend												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	RBR	Shreveport2 109	35.2	1436160	1.42	2	272	1436160		0	0		11.33	11.33
¢	ShreveportSW	Denver287	35.2	4055040	4	4	1064	5617920		1562880	296		32.00	44.33
	Denver166	Uvadal 66	35.2	2027520	2	2	769	4060320		2032800	385		16.00	32.04
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	MVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			9546240	9.42	10							75.33	87.71
													Model to Source diff	-14.1\%
	Site Name	Salem			Note: Source miles based on using Wilmington, DE rail node (Port for barge at Port of Wilmington, DE)									
	Source	ec_n15b.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEFD   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	SALB	ColumbianaNE	35.2	2196480	2.17	3	416	2196480		0	0		17.33	17.33
	Columbiana	KansasCity278	35.2	4461600	4.40	5	845	4461600		0	0		35.21	35.21
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & \sim \\ & 0 \\ & 0 \end{aligned}$	KansasCity1 66	Uvadal 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			12740640	12.57	14							100.54	111.50
													Model to Source diff	-9.8\%


	A	B	C	D	E	F	G	H	I	J	K	L	M	N
	Site Name	San Onofre												
O	Source	ec_n15.prn												
$\stackrel{ }{<}$				model			Source			Difference (ft)				Calculated
$\bigcirc$	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	SOR	Barstow	35.2	1013760	1	1	164	865920		-147840	-28		8.00	6.83
	Barstow	NVR	35.2	1013760	1	1	302	1594560		580800	110		8.00	12.58
	MVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			3041280	3	3							24.00	19.42
													Model to Source diff	23.6\%
	Site Name	Seabrook												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	PROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	SEAR	Schenectady	35.2	1277760	1.26	2	242	1277760		0	0		10.08	10.08
	Schenectady	Painesville 10	35.2	2629440	2.59	3	498	2629440		0	0		20.75	20.75
	Painesville 8	Blair278	35.2	4445760	4.39	5	842	4445760		0	0		35.08	35.08
0	Blair6 6	Uvadal 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			14435520	14.24	16							113.92	119.58
													Model to Source diff	-4.7\%
	Site Name	Sequoyah												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	SEQR	Lawrenceburg 1109	35.2	1393920	1.38	2	264	1393920		0	0		11.00	11.00
	Lawrenceburg2 78	KansasCity278	35.2	3289440	3.24	4	623	3289440		0	0		25.96	25.96
	KansasCity1 66	Uvadal 66	35.2	4055040	4	4	1414	7465920		3410880	646		32.00	58.92
	Uvada2 87	MVR	35.2	1013760	1	1							8.00	0.00
$\bigcirc$	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
$0$	Totals			10765920	10.62	12							84.96	95.88
$\begin{aligned} & 0 \\ & \end{aligned}$													Model to Source diff	-11.4\%





	A	B	C	D	E	F	G	H	1	J	K	L	M	N
$\bigcirc$	Site Name	Vogtle												
+	Source	ec_n15.prn												
$\leq$				model			Source			Difference (ft)				Calculated
ob	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
¢	VOGR	Atlanta	35.2	1246080	1.23	2	236	1246080		0	0		9.83	9.83
$\bigcirc$	Atlanta	Lawrenceburg 1109	35.2	2180640	2.15	3	413	2180640		0	0		17.21	17.21
	Lawrenceburg2 78	KansasCity278	35.2	3289440	3.24	4	623	3289440		0	0		25.96	25.96
	KansasCity1 66	Uvadal 66	35.2	4055040	4	4	1414	7465920		3410880	646		32.00	58.92
	Uvada287	MVR	35.2	1013760	1	1							8.00	0.00
	NMR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			12798720	12.63	15							101.00	111.92
													Model to Source diff	-9.8\%
	Site Name	Vermont Yankee												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	VIR	Schenectady	35.2	1013760	1	1	115	607200		-406560	-77		8.00	4.79
$\square_{1}$	Schenectady	Painesville 10	35.2	2629440	2.59	3	498	2629440		0	0		20.75	20.75
	Painesville 8	Blair278	35.2	4445760	4.39	5	843	4451040		5280	1		35.08	35.13
	Blair6 6	Uvadal 66	35.2	4055040	4	4	1287	6795360		2740320	519		32.00	53.63
	Uvada2 87	MVR	35.2	1013760	1	1							8.00	0.00
	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			14171520	13.98	15							111.83	114.29
													Model to Source diff	-2.2\%
	Site Name	Waterford												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEFD   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	WATR	Lunita1 9	35.2	1135200	1.12	2	215	1135200		0	0		8.96	8.96
	Lunita187	Denver287	35.2	5068800	5	5	1217	6425760		1356960	257		40.00	50.71
	Denver166	Uvadal 66	35.2	2027520	2	2	768	4055040		2027520	384		16.00	32.00
$\underset{\sim}{2}$	Uvada2 87	MVR	35.2	1013760	1	1							8.00	0.00
앙	NVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
9	Totals			10259040	10.12	11							80.96	91.67
No													Model to Source diff	-11.7\%


	A	B	C	D	E	F	G	H	I	J	K	L	M	N
O	Site Name	Watts Bar												
P	Source	ec_n15.prn												
$\stackrel{ }{ }$				model			Source			Difference (ft)				Calculated
¢	RROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
$\bigcirc$	WBR	Lawrenceburg 1109	35.2	1209120	1.19	2	229	1209120		0	0		9.54	9.54
$\bigcirc$	Lawrenceburg2 78	KansasCity278	35.2	3289440	3.24	4	623	3289440		0	0		25.96	25.96
8	KansasCity166	Uvadal 66	35.2	4055040	4	4	1414	7465920		3410880	646		32.00	58.92
	Uvada287	NVR	35.2	1013760	1	1							8.00	0.00
	MVR	ToNeviMF	35.2	1013760	1	1							8.00	0.00
	Totals			10581120	10.44	12.00							83.50	94.42
													Model to Source diff	-11.6\%
	Site Name	Wolf Creek												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	PROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source Hours
	WCR	KansasCity	35.2	1013760	1	1	105	554400		-459360	-87		8.00	4.38
\%	KansasCity166	Uvada1 66	35.2	4055040	4	4	1415	7471200		3416160	647		32.00	58.96
	Uvada2 87	MVR	35.2	1013760	1	1							8.00	0.00
	MVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
	Totals			7096320	7	7							56.00	63.33
													Model to Source diff	-11.6\%
	Site Name	West Valley												
	Source	ec_n15.prn												
				model			Source			Difference (ft)				Calculated
	FROM	TO	SPEED   (ft/sec)	DISTANCE (FT)	Time Step	Round Up	miles	feet		(Sourcemodel)	miles		Model Hours	Source   Hours
	WWR	Painesville 10	35.2	1198560	1.18	2	227	1198560		0	0		9.46	9.46
	Painesville 8	Blair278	35.2	4445760	4.39	5	840	4435200		-10560	-2		35.08	35.00
	Blair6 6	Uvada1 66	35.2	4055040	4	4	1288	6800640		2745600	520		32.00	53.67
	Uvada2 87	NVR	35.2	1013760	1	1							8.00	0.00
$\bigcirc$	NVR	ToNevIMF	35.2	1013760	1	1							8.00	0.00
$\bigcirc$	Totals			11726880	11.57	13							92.54	98.13
$\begin{aligned} & \mathbb{D} \\ & \underset{O}{2} \end{aligned}$													Model to Source diff	-5.7\%
$\bigcirc$														



## APPENDIX C

## TRUCK DISTANCES

INTENTIONALLY LEFT BLANK

## APPENDIX C TRUCK DISTANCES

This appendix contains the output of EXCEL workbook "Truck Details_Appendix Cd_9-406.xls".

Note that there are many truck sites that are not used and are not programmed in TSM Version 6.0. Only the active truck sites are shown in Table 2 of BSC 2007a are programmed and included in this appendix. Programming for truck shipments is added when the site is first used in a scenario.

Column A (FROM): This column lists the site name and the beginning point for the connector. Column B (TO): This column lists the ending point for the connector.
Column C (SPEED (ft/sec)): This column lists the speed used in the TSM as defined on page 34 of MIS-WAT-SE-000001 (BSC 2003a)
Column D (DISTANCE (FT)): This column lists the distance of the connectors in the TSM.
Column E (DISTANCE (MILES)): This column converts distance in feet from Column D to miles.
Column F (Time Step): This column lists time units. There are cases where time units rather than speed and distance are used in the TSM. For this comparison, the time units are converted to feet based on given speed for 8 hours or 1 time unit. This is reflected in Column D.
Column G (Rounded Up): This column rounds up the time steps calculated in Column F.
Column H (DISTANCE (MILES)): This column lists the distance from electronic attachment belt_1.prn (Highway).
Column J (DISTANCE (MILES)): This column lists the difference in miles from the TSM distance and the Highway distance (Col E-Col H).
Column K (DISTANCE (MILES)): One time unit or 320.02 miles is a modeling effect added on the connector YMT to ToGROATruck. It is subtracted in this column so that a direct comparison can be made to the distances in Highway.
Column N (HOURS): This column calculates the number of hours for a shipment using the total from Column F and subtracting the modeling distance of 320.02 miles. This distance is converted to hours using the defined rate of travel in cell B1 which is from page 34 of MIS-WAT-SE-000001 (BSC 2003a).
Column 0 (HOURS): This column calculates the number of hours for a shipment using the total from Column H. This distance is converted to hours using the defined rate of travel in cell B1 which is from page 34 of MIS-WAT-SE-000001 (BSC 2003a).

The final rows of the spreadsheet indicate the average difference in the TSM and FEIS distances based on the transit time using a constant transit speed. Both an absolute average and relative average are provided. The percent differences are ( $\mathrm{N}-\mathrm{O}$ )/O.

See Section 5.6.1 for a discussion of the timing test results in Appendix G and the calculated times presented in this appendix.

## INTENTIONALLY LEFT BLANK



¢	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
$\stackrel{+}{+}$															
$\xrightarrow{P}$	Site Name	Ginna								Difference	Subtract 320.02			Subtracting 320.02 hours	
1 0 $i$ 0	FROM	TO	$\begin{aligned} & \text { SPEED } \\ & (\mathrm{ft} / \mathrm{sec}) \end{aligned}$	DISTANCE (FT)	$\begin{aligned} & \text { DISTANCE } \\ & \text { (mi) } \\ & \hline \end{aligned}$	Time Step	Rounded Up	Highway		(Dist-Highway)	YMT to ToGROATruck			Model Hours	Source Hours
?	GINT	Painesville 5	58.67	1689696	320.02	1.00	1	258		82.91					
	Painesville2 3	Omaha2 33	58.67	4493280	851.00	2.66	3	851		0.00					
	Omaha 1	St. George1	58.67	6431040	1218.00	3.81	4	1218		0.00					
	St. George1	YMT	58.67	0	0.00	0	0	214		-214.00					
	YMT	ToGROATruck	58.67	1689696	320.02	1	1			320.02					
	Totals			14303712	2709.04	8.47	9	2541		168.04	-151.98			59.72	63.52
														Difference	-6\%
	Site Name	Hanford								Difference	Subtract 320.02			Subtracting 320.02 hours	
$0$	FROM	TO	$\begin{aligned} & \text { SPEFD } \\ & (\mathrm{ft} / \mathrm{sec}) \\ & \hline \end{aligned}$	DISTANCE (FT)	$\begin{aligned} & \text { DISTANCE } \\ & \text { (mi) } \\ & \hline \end{aligned}$	Time Step	Rounded Up	Highway		(Dist-Highway)	YMT to ToGROATruck			Model Hours	Source Hours
	HANT	St. George1	58.67	5042400	955.00	2.98	3	955		0.00					
	St. George1	YMT	58.67	0	0.00	0	0	214		-214.00					
	YMT	ToGROATruck	58.67	1689696	320.02	1	1			320.02					
	Totals			6732096	1275.02	3.98	4	1169		106.02	-214.00			23.87	29.22
														Difference	-18.3\%
	Site Name	Indian Point								Difference	Subtract 320.02			Subtracting 320.02 hours	
	FROM	TO	$\begin{aligned} & \mathrm{SPEFD} \\ & (\mathrm{ft} / \mathrm{sec}) \\ & \hline \end{aligned}$	DISTANCE (FT)	$\begin{aligned} & \text { DISTANCE } \\ & \text { (mi) } \\ & \hline \end{aligned}$	Time Step	Rounded Up	Highway		(Dist-Highway)	YMT to ToGROATruck			Model Hours	Source Hours
	IPT	Youngstown155	58.67	2217600	420.00	1.31	2	420		0.00					
	Yourngstown23	Omaha2 33	58.67	4598880	871.00	2.72	3	871		0.00					
	Omaha 1	St. George1	58.67	6431040	1218.00	3.81	4	1218		0.00					
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	St. George1	YMT	58.67	0	0.00	0	0	214		-214.00					
$\stackrel{\rightharpoonup}{0}$	YMT	ToGROATruck	58.67	1689696	320.02	1	1			320.02					
N	Totals			14937216	2829.02	8.84	10	2723		106.02	-214.00			62.72	68.07
¢														Difference	-7.9\%



¢	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
$\stackrel{+}{+}$	Site Name	Monticello								Difference	Subtract 320.02			Subtracting 320.02 hours	
$\stackrel{1}{6}$	FROM	TO	$\begin{aligned} & \mathrm{SPEFD} \\ & (\mathrm{ft} / \mathrm{sec}) \end{aligned}$	DISTANCE (FT)	$\begin{aligned} & \text { DISTANCE } \\ & \text { (mi) } \\ & \hline \end{aligned}$	Time Step	Rounded Up	Highway		(Dist-Highway)	YMT to ToGROATruck			Model Hours	Source Hours
o	MONT	Bloomington1 11	58.67	1689696	320.02	1	1	51		269.02					
	Bloomington2 3	Omaha2 33	58.67	2022240	383.00	1.20	2	383		0.00					
	Omaha 1	St. George1	58.67	6431040	1218.00	3.81	4	1218		0.00					
	St. George1	YMT	58.67	0	0.00	0	0	214		-214.00					
	YMT	ToGROATruck	58.67	1689696	320.02	1	1			320.02					
	Totals			11832672	2241.04	7.00	8	1866.00		375.04	55.02			48.02	46.65
														Difference	2.9\%
	Site Name	Palisades								Difference	Subtract 320.02			Subtracting 320.02 hours	
	FROM	TO	$\begin{aligned} & \text { SPEED } \\ & (\mathrm{ft} / \mathrm{sec}) \\ & \hline \end{aligned}$	DISTANCE (FT)	$\begin{aligned} & \text { DISTANCE } \\ & \text { (mi) } \\ & \hline \end{aligned}$	Time Step	Rounded Up	Highway		(Dist-Highway)	YMT to ToGROATruck			Model Hours	Source Hours
$9$	PALT	Omaha2 33	58.67	3083520	584.00	1.82	2	584		0.00					
	Omaha 1	St. George1	58.67	6431040	1218.00	3.81	4	1218		0.00					
	St. George1	YMT	58.67	0	0.00	0	0	214		-214.00					
	YMT	ToGROATruck	58.67	1689696	320.02	1	1			320.02					
	Totals			11204256	2122.02	6.63	7	2016.00		106.02	-214.00			45.05	50.40
														Difference	-10.6\%
	Site Name	Pilgrim								Difference	Subtract 320.02			Subtracting 320.02 hours	
	FROM	TO	$\begin{array}{\|l} \hline \mathrm{SPEFD} \\ (\mathrm{ft} / \mathrm{sec}) \end{array}$	DISTANCE (FT)	$\begin{aligned} & \text { DISTANCE } \\ & \text { (mi) } \\ & \hline \end{aligned}$	Time Step	Rounded Up	Highway		(Dist-Highway)	YMT to ToGROATruck			Model Hours	Source Hours
	PILT	Painesville 5	58.67	3437280	651.00	2.03	3	651		0.00					
	Painesville2 3	Omaha2 33	58.67	4493280	851.00	2.66	3	851		0.00					
	Omana 1	St. George1	58.67	6431040	1218.00	3.81	4	1218		0.00					
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	St. George1	YMT	58.67	0	0.00	0	0	214		-214.00					
$\stackrel{\rightharpoonup}{0}$	YMT	ToGROATruck	58.67	1689696	320.02	1	1			320.02					
N	Totals			16051296	3040.02	9.50	11	2934.00		106.02	-214.00			68.00	73.35
$8$														Difference	-7.3\%


	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
$\stackrel{+}{+}$															
E															
?	Site Name	St Lucie								Difference	Subtract 320.02			Subtracting 320.02 hours	
8	FROM	TO	$\begin{aligned} & \text { SPEED } \\ & (\mathrm{ft} / \mathrm{sec}) \\ & \hline \end{aligned}$	DISTANCE (FT)	$\begin{aligned} & \text { DISTANCE } \\ & \text { (mi) } \\ & \hline \end{aligned}$	Time Step	Rounded Up	Highway		(Dist-Highway)	YMT to ToGROATruck			Model Hours	Source Hours
	SLT	Metropolis1 44	58.67	5142720	974.00	3.04	4	974		0.00					
	Metropolis2 3	St Joseph2 33	58.67	2555520	484.00	1.51	2	484		0.00					
	St. Joseph1	Omaha 1	58.67	718080	136.00	0.42	1	182		-46.00					
	Omaha 1	St. George1	58.67	6431040	1218.00	3.81	4	1218		0.00					
	St. George1	YMT	58.67	0	0.00	0	0	214		-214.00					
	YMT	ToGROATruck	58.67	1689696	320.02	1	1			320.02					
	Totals			16537056	3132.02	- 9.79	12	3072.00		60.02	-260.00			70.30	76.80
														Difference	-8.5\%
	Site Name	Turkey Point								Difference	Subtract 320.02			Subtracting 320.02 hours	
	FROM	TO	$\begin{aligned} & \text { SPEFD } \\ & (\mathrm{ft} / \mathrm{sec}) \\ & \hline \end{aligned}$	DISTANCE (FT)	$\begin{aligned} & \text { DISTANCE } \\ & \text { (mi) } \\ & \hline \end{aligned}$	Time Step	Rounded Up	Highway		(Dist-Highway)	YMT to ToGROATruck			Model Hours	Source Hours
	TPT	Metropolis1 44	58.67	5976960	1132.00	3.54	4	1132		0					
	Metropolis2 3	St Joseph2 33	58.67	2555520	484.00	1.51	2	484		0.00					
	St. Joseph1	Omaha 1	58.67	718080	136.00	0.42	1	182		-46.00					
	Omaha 1	St. George1	58.67	6431040	1218.00	3.81	4	1218		0.00					
	St. George1	YMT	58.67	0	0.00	0	0	214		-214.00					
	YMT	ToGROATruck	58.67	1689696	320.02	1	1			320.02					
	Totals			17371296	3290.02	10.28	12	3230.00		60.02	-260.00			74.25	80.75
														Difference	-8.0\%
$\stackrel{1}{0}$															
9															
N															



## APPENDIX D

## BARGE AND HEAVY HAUL DISTANCES

INTENTIONALLY LEFT BLANK

## APPENDIX D <br> BARGE AND HEAVY HAUL DISTANCES

This appendix contains the output of EXCEL Workbook Barge and HH_Appendix Dd_6_21_06_revd_8_31_07.xls, with a manual adjustment of Humboldt Bay for TSM Version 6 highlighted.

Column A: This column lists the Site ID as used in the TSM.
Column B: This column lists the sites which used barges and heavy haul trucks for transportation.
Column C: This column lists the barge distances in miles as listed in BargeHH_Distance table in MIS-WAT-SE-000001 (BSC 2003a).
Column D: As part of the cost calculations, the distance in Column C is multiplied by 2 to determine the round trip distance in miles.
Column E: For costs, the distance from Column D is divided by 7 miles per hour to determine the hours of travel then divided by 8 for the time steps.
Column F: This column lists the time steps determined from the distance in Column C divided by 7 miles per hour (the speed listed on page 34 of MIS-WAT-SE-000001 [BSC 2003a] and identified in Cell A40 on the worksheet) then divided by 8 hours. The result is rounded up to give time steps.
Column G: This column list the number of time steps to load and unload. For the load/unload time, page 34 of MIS-WAT-SE-000001 (BSC 2003a) uses 48 hours meaning 24 hours for the load (3 time steps) and 24 hours for the unload.
Column H: This column list the time steps used in the TSM on the connector from the rail site to the barge sites. The total time steps for the rail site to the barge site is 3 time steps plus travel time.
Column I: This column list the time steps used in the TSM on the connector from the barge site to the rail sites. The total time steps for the barge site to the rail site is 3 time steps plus travel time.
Column J: This column lists the HH distances as listed in BargeHH_Distance table in MIS-WAT-SE-000001 (BSC 2003a).
Column K: This column divides the distance in Column J by 7 mph which is used as the HH speed based on page 34 of MIS-WAT-SE-000001 (BSC 2003a) to give the hours of travel.
Column L: For cost calculations, the hours of travel from Column K is divided by 8 hours to determine the number of time steps.
Column M: This column uses the hours of travel determined in Column K and divides that time by 8 hours to give time steps. This number is rounded up to the nearest whole number.
Column N: This column list the number of time steps to load and unload. For the load/unload time, page 34 of MIS-WAT-SE-000001 (BSC 2003a) uses 48 hours meaning 24 hours for the load (3 time steps) and 24 hours for the unload.
Column O: This column list the time steps used in the TSM on the connector from the rail site to the HH sites. The total time steps for the rail site to the barge site is 3 time steps plus travel time.
Column P: This column list the time steps used in the TSM on the connector from the HH site to the rail sites. The total time steps for the barge site to the rail site is 3 time steps plus travel time.

## INTENTIONALLY LEFT BLANK




## APPENDIX E

## CONNECTOR TIMING PARAMETERS

INTENTIONALLY LEFT BLANK

## APPENDIX E CONNECTOR TIMING PARAMETERS

This appendix lists the connectors in the transportation maps in TSM and the associated timing parameter, either the input transit time or the speed/distance TSM uses to calculate the transit time. As discussed in the text, most connector timings are set by the distance divided by the conveyance speed. This appendix contains the output of connection timing for EXCEL workbook "Appendix E_V6 Connector Timing.xls" listed in Section 8. The Alpha Order worksheet is used for this appendix. This workbook does not have any calculations; EXCEL is used because it is the simplest way to format and manipulate connector information downloaded from the TSM analysis menu.

The values in this appendix can be used with the maps in Appendix A to understand the connector parameters. Use the site names from Appendix A to find the connectors in this appendix. However, the easiest way to understand the TSM settings is by using the TSM GUI and double clicking on the connector of interest. This appendix includes all truck sites including truck sites that have not been used and are not active and checked. The active sites are in Appendix C. These connectors will be checked if the truck site is activated.

Column A: Process Name. Truck sites end with "T", rail sites end with "R", barge sites end with" B", and Heavy haul sites end with "HH". Some processes are transportation nodes for major cites where several connectors may merge or for major cities for example "Atlanta". Where possible, nodes are named to match key nodes in the FEIS.

Column B: Connector Name or "From to". This column indicates the connector name for named connectors or the points the connectors links C: "from to". Connectors are not typically named but are assigned names in some case such as when the connector includes program extensions.

Column C: Connector Time or Distance. This column indicates the input transit time in time steps formatted as D-Days: Hours: Min: Seconds for more than one day and Hours: Min: Seconds for less than 1 day format. This column will have the distance (Dist.) in feet for connectors where the distance and speed is used for the transit time. For connections less than 8 hours (1 time step) 8 hours is used. Barge and HH route connectors have 4 time steps (D 1-8: 0: 0 ).

Column D: Conveyance Speed. This column indicates the speed used for that connector. Note that $58.67 \mathrm{ft} / \mathrm{s}(40 \mathrm{mph})$ is the speed for a truck and $35.20 \mathrm{ft} / \mathrm{s}(24 \mathrm{mph})$ is the speed for a dedicated rail shipment.

Changes for TSM Version 6.0 are highlighted.

	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
3	ANOR	-		
4		C: ANOR to Kansas City	Dist:2143680	$35.20 \mathrm{ft} / \mathrm{s}$
5	ANOT	-		
6		C: ANOT to LV2 22	Dist:8838720	$58.67 \mathrm{ft} / \mathrm{s}$
7	Atlanta	-		
8		C: Atlanta to Lawrenceville1 109	Dist:2629440	$35.20 \mathrm{ft} / \mathrm{s}$
9		C: Atlanta to Lawrenceburg1 109	Dist:2180640	$35.20 \mathrm{ft} / \mathrm{s}$
10	Barstow	-		
11		C: Barstow to NVR	8:00:00	
12	BFB	-		
n13		C: BFB to BFR	D 1-8: 0: 0	
14		C: BFB to Cairo	Dist:1161600	$35.20 \mathrm{ft} / \mathrm{s}$
15		-		
16		C: BFR to BFB	D 1-8: 0: 0	
17	BFT	-		
18		C: BFT to Metropolis1 44	8:00:00	
19	Blair6 6	-		
20		C: Blair6 6 to Uvada1 66	D 1-8: 0: 0	
21	Bloomington2 3	-		
22		C: Bloomington2 3 to Omaha2 33	Dist:2022240	$58.67 \mathrm{ft} / \mathrm{s}$
23	BRAR	-		
24		C: BRAR to Blair2 78	Dist:2793120	$35.20 \mathrm{ft} / \mathrm{s}$
25	BRAT	-		
26		C: BRAT to Omaha2 33	Dist:3505920	$58.67 \mathrm{ft} / \mathrm{s}$
27	BRPHH	-		
28		C: BRPHH to BRPR	D 1-8: 0: 0	
29		C: BRPHH to Blair2 78	Dist:4994880	$35.20 \mathrm{ft} / \mathrm{s}$
30	BRPR	-		
31		C: BRPR to BRPHH	D 1-8: 0: 0	
32	BRPT	-		
33		C: BRPT to Omaha2 33	Dist:6684480	$58.67 \mathrm{ft} / \mathrm{s}$
34	BRUR	-		
35		C: BRUR to Atlanta	Dist:2439360	$35.20 \mathrm{ft} / \mathrm{s}$
36	BRUT	-		
37		C: BRUT to Roanoke 44	Dist:6272640	$58.67 \mathrm{ft} / \mathrm{s}$
38	BVHH	-		
39		C: BVHH to ColumbianaNE	8:00:00	
40		C: BVHH to BVR	D 1-8: 0: 0	
41	BVR	-		
42		C: BVR to BVHH	D 1-8: 0: 0	
43	BVT	-		
44		C: BVT to Youngstown1 55	8:00:00	
45	BYRR	-		
46		C: BYRR to Blair2 78	Dist:2191200	$35.20 \mathrm{ft} / \mathrm{s}$
47	BYRT	-		


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
48		C: BYRT to Omaha2 33	Dist:3453120	$58.67 \mathrm{ft} / \mathrm{s}$
49	Cairo8	-		
50		C: Cairo8 to KansasCity2 78	Dist:2381280	$35.20 \mathrm{ft} / \mathrm{s}$
51	CALHH	-		
52		C: CALHH to CALR	D 1-8: 0: 0	
53		C: CALHH to KansasCity2 78	8:00:00	
54	CALR	-		
55		C: CALR to CALHH	D 1-8: 0: 0	
56	CALT	-		
57		C: CALT to St. Joseph2 33	8:00:00	
58	CATR	-		
59		C: CATR to Lawrenceburg1 109	Dist:2877600	$35.20 \mathrm{ft} / \mathrm{s}$
60	CATT	-		
61		C: CATT to Metropolis1 44	Dist:3331680	$58.67 \mathrm{ft} / \mathrm{s}$
62	CCB	-		
63		C: CCB to CCR	D 1-16: 0: 0	
64		C: CCB to Youngstown-NA	Dist:1980000	$35.20 \mathrm{ft} / \mathrm{s}$
65	CCR	-		
66		C: CCR to CCB	D 1-16: 0: 0	
67	CCT	-		
68		C: CCT to Youngstown 155	Dist:2576640	$58.67 \mathrm{ft} / \mathrm{s}$
69	CGSR	-		
70		C: CGSR to Uvada1 66	D 1-8: 0: 0	
71	CGST	-		
72		C: CGST to St. George1	Dist:5137440	$58.67 \mathrm{ft} / \mathrm{s}$
73	Cincinnati2 3	-		
74		C: Cincinnati2 3 to St. Joseph2 33	Dist:3300000	$58.67 \mathrm{ft} / \mathrm{s}$
75	CLIR	-		
76		C: CLIR to Blair2 78	Dist:2819520	$35.20 \mathrm{ft} / \mathrm{s}$
77	CLIT	-		
78		C: CLIT to Omaha2 33	Dist:2624160	$58.67 \mathrm{ft} / \mathrm{s}$
79	Columbiana	-		
80		C: Columbiana to KansasCity2 78	Dist:4461600	$35.20 \mathrm{ft} / \mathrm{s}$
81	CPR	-		
82		C: CPR to Denver2 87	D 1-0: 0: 0	
83	CPRB	-		
84		C: CPRB to CPRR	D 1-16: 0: 0	
85		C: CPRB to Omaha	8:00:00	
86	CPRR	-		
87		C: CPRR to CPRB	D 1-16: 0: 0	
88	CPRT	-		
89		C: CPRT to Omaha 1	8:00:00	
90	CPT	-		
91		C: CPT to LV2 22	Dist:8991840	$58.67 \mathrm{ft} / \mathrm{s}$
92	CRYR	-		
93		C: CRYR to Atlanta	Dist:2539680	$35.20 \mathrm{ft} / \mathrm{s}$


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
94	CRYT	-		
95		C: CRYT to Metropolis144	Dist:4260960	$58.67 \mathrm{ft} / \mathrm{s}$
96	DBR	-		
97		C: DBR to Blair2 78	Dist:3875520	$35.20 \mathrm{ft} / \mathrm{s}$
98	DBT	-		
99		C: DBT to Omaha2 33	Dist:6082560	$58.67 \mathrm{ft} / \mathrm{s}$
100	DCCR	-		
101		C: DCCR to Blair2 78	Dist:2940960	$35.20 \mathrm{ft} / \mathrm{s}$
102	DCCT	-		
103		C: DCCT to Omaha2 33	Dist:2925120	$58.67 \mathrm{ft} / \mathrm{s}$
104	DCHH	-		
105		C: DCHH to Barstow	Dist:1906080	$35.20 \mathrm{ft} / \mathrm{s}$
106		C: DCHH to DCR	D 1-8: 0: 0	
107	DCR	-		
108		C: DCR to DCHH	D 1-8: 0: 0	
109	DCT	-		
110		C: DCT to Fresno2 2	8:00:00	
111	Denver1 66	-		
112		C: Denver1 66 to Uvada1 66	16:00:00	
113	DeramusSW	-		
114		C: DeramusSW to Kansas City	Dist:2904000	$35.20 \mathrm{ft} / \mathrm{s}$
115	DRER	-		
116		C: DRER to Blair2 78	Dist:2539680	$35.20 \mathrm{ft} / \mathrm{s}$
117	DRET	-		
118		C: DRET to Omaha2 33	Dist:3453120	$58.67 \mathrm{ft} / \mathrm{s}$
119	DUAR	-		
120		C: DUAR to Blair2 78	Dist:1420320	$35.20 \mathrm{ft} / \mathrm{s}$
121	DUAT	-		
122		C: DUAT to Omaha2 33	Dist:1694880	$58.67 \mathrm{ft} / \mathrm{s}$
123	EastPalestine2 78	-		
124		C: EastPalestine2 78 to Blair2 78	Dist:4783680	$35.20 \mathrm{ft} / \mathrm{s}$
125	FARR	-		
126		C: FARR to Atlanta	Dist:1367520	$35.20 \mathrm{ft} / \mathrm{s}$
127	FART	-		
128		C: FART to Shreveport2 44	Dist:4044480	$58.67 \mathrm{ft} / \mathrm{s}$
129	FCHH	-		
130		C: FCHH to Blair6 6	8:00:00	
131		C: FCHH to FCR	D 1-8: 0: 0	
132	FCR	-		
133		C: FCR to FCHH	D 1-8: 0: 0	
134	FCT	-		
135		C: FCT to St. George1	Dist:6573600	$58.67 \mathrm{ft} / \mathrm{s}$
136	FERR	-		
137		C: FERR to Blair2 78	Dist:4387680	$35.20 \mathrm{ft} / \mathrm{s}$
138	FERT	-		
139		C: FERT to Omaha2 33	Dist:6357120	$58.67 \mathrm{ft} / \mathrm{s}$


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
140	FITR	-		
141		C: FITR to Painesville 10	Dist:1779360	$35.20 \mathrm{ft} / \mathrm{s}$
142	FITT	-		
143		C: FITT to Painesville 5	Dist:2322600	$58.67 \mathrm{ft} / \mathrm{s}$
144	Fresno2 2	-		
145		C: Fresno2 2 to LV2 22	Dist:2608320	$58.67 \mathrm{ft} / \mathrm{s}$
146	FSVR	-		
147		C: FSVR to Denver1 66	8:00:00	
148	FSVT	-		
149		C: FSVT to St. George1	Dist:4239840	$58.67 \mathrm{ft} / \mathrm{s}$
150	GGB	-		
151		GGR	8:00:00	
152		C: GGB to Deramus	8:00:00	
153		C: GGB to GGR	D 1-8: 0: 0	
154	GGR	-		
155		C: GGR to GGB	D 1-8: 0: 0	
156	GGT	-		
157		C: GGT to Shreveport2 44	8:00:00	
158	GINHH	-		
159		C: GINHH to GINR	D 1-8: 0: 0	
160		C: GINHH to Painesville 10	Dist:1473120	$35.20 \mathrm{ft} / \mathrm{s}$
161	GINR	-		
162		C: GINR to GINHH	D 1-8: 0: 0	
163	GINT	-		
164		C: GINT to Painesville 5	8:00:00	
165	HADB	-		
166		C: HADB to HADR	D 1-16: 0: 0	
167		C: HADB to Schenectady	Dist:966240	$35.20 \mathrm{ft} / \mathrm{s}$
168	HADR	-		
169		C: HADR to HADB	D 1-16: 0: 0	
170	HADT	-		
171		C: HADT to Youngstown1 55	Dist:3268320	$58.67 \mathrm{ft} / \mathrm{s}$
172	HANR	-		
173		C: HANR to Uvada1 66	D 1-8: 0: 0	
174	HANT	-		
175		C: HANT to St. George1	Dist:5042400	$58.67 \mathrm{ft} / \mathrm{s}$
176	Harlan 6	-		
177		C: Harlan 6 to Blair6 6	8:00:00	
178	HARR	-		
179		C: HARR to Atlanta	Dist:2112000	$35.20 \mathrm{ft} / \mathrm{s}$
180	HART	-		
181		C: HART to Roanoke 44	Dist:5723520	$58.67 \mathrm{ft} / \mathrm{s}$
182	HATR	-		
183		C: HATR to Atlanta	Dist:1061280	$35.20 \mathrm{ft} / \mathrm{s}$
184	HATT	-		
185		C: HATT to Metropolis1 44	Dist:3564000	$58.67 \mathrm{ft} / \mathrm{s}$


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
186	HCB	-		
187		C: HCB to HCR	D 1-8: 0: 0	
188		C: HCB to ColumbianaNE	Dist:2196480	$35.20 \mathrm{ft} / \mathrm{s}$
189	HCR	-		
190		C: HCR to HCB	D 1-8: 0: 0	
191	HCT	-		
192		C: HCT to Youngstown155	Dist:3289440	$58.67 \mathrm{ft} / \mathrm{s}$
193	HUMB	-		
194		C: HUMB to HUMR	D 2-16: 0: 0	
195		C: HUMB to Modesto1 66	8:00:00	
196	HUMR	-		
197		C: HUMR to HUMB	D 2-16: 0: 0	
198	HUMT	-		
199		C: HUMT to Fresno1 11	Dist:2518560	$58.67 \mathrm{ft} / \mathrm{s}$
200	INLR	-		
201		C: INLR to Uvada1 66	8:00:00	
202	INLT	-		
203		C: INLT to St. George1	Dist:2808960	$58.67 \mathrm{ft} / \mathrm{s}$
204	IPHH	-		
205		C: IPHH to IPR	D 1-8: 0: 0	
206		C: IPHH to Schenectady	8:00:00	
207	IPR	-		
208		C: IPR to IPHH	D 1-8: 0: 0	
209	IPT	-		
210		C: IPT to Youngstown1 55	Dist:2217600	$58.67 \mathrm{ft} / \mathrm{s}$
211	JCT New Portage	-		
212		C: JCT New Portage to EastPalestine1 910	8:00:00	
213	KansasCity1 66	-		
214		C: KansasCity1 66 to Uvada1 66	D 1-8: 0: 0	
215	KEWHH	-		
216		C: KEWHH to KEWR	D 1-8: 0: 0	
217		C: KEWHH to Blair2 78	Dist:3711840	$35.20 \mathrm{ft} / \mathrm{s}$
218	KEWR	-		
219		C: KEWR to KEWHH	D 1-8: 0: 0	
220	KEWT	-		
221		C: KEWT to Omaha2 33	Dist:4546080	$58.67 \mathrm{ft} / \mathrm{s}$
222	LACR	-		
223		C: LACR to Plattsmouth	Dist:2893440	$35.20 \mathrm{ft} / \mathrm{s}$
224	LACT	-		
225		C: LACT to Omaha2 33	Dist:2328480	$58.67 \mathrm{ft} / \mathrm{s}$
226	Lake Charles 87	-		
227		C: Lake Charles 87 to Barstow	Dist:9720480	$35.20 \mathrm{ft} / \mathrm{s}$
228	Lawrenceburg2 78	-		
229		C: Lawrenceburg2 78 to KansasCity2 78	Dist:3289440	$35.20 \mathrm{ft} / \mathrm{s}$
230	Lawrenceville	-		
231		C: Lawrenceville to KansasCity2 78	Dist:2170080	$35.20 \mathrm{ft} / \mathrm{s}$


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
232	LIMR	-		
233		C: LIMR to ColumbianaNE	Dist:2085600	$35.20 \mathrm{ft} / \mathrm{s}$
234	LIMT	-		
235		C: LIMT to Youngstown1 55	Dist:2534400	$58.67 \mathrm{ft} / \mathrm{s}$
236	LSR	-		
237		C: LSR to Plattsmouth	Dist:2244000	$35.20 \mathrm{ft} / \mathrm{s}$
238	LST	-		
239		C: LST to Omaha2 33	Dist:3505920	$58.67 \mathrm{ft} / \mathrm{s}$
240	Lunita1 87	-		
241		C: Lunita1 87 to Denver2 87	D 1-16: 0: 0	
242	MCGR	-		
243		C: MCGR to Atlanta	Dist:1689600	$35.20 \mathrm{ft} / \mathrm{s}$
244	MCGT	-		
245		C: MCGT to Roanoke 44	Dist:5654880	$58.67 \mathrm{ft} / \mathrm{s}$
246	Metropolis2 3	-		
247		C: Metropolis2 3 to St. Joseph2 33	Dist:2555520	$58.67 \mathrm{ft} / \mathrm{s}$
248	MILR	-		
249		C: MILR to Schenectady	Dist:1188000	$35.20 \mathrm{ft} / \mathrm{s}$
250	MILT	-		
251		C: MILT to Youngstown155	Dist:2692800	$58.67 \mathrm{ft} / \mathrm{s}$
252	Minneapolis	-		
253		C: Minneapolis to Denver1 66	Dist:4973760	$35.20 \mathrm{ft} / \mathrm{s}$
254	Modesto2 87	-		
255		C: Modesto2 87 to Barstow	Dist:1784640	$35.20 \mathrm{ft} / \mathrm{s}$
256	MONR	-		
257		C: MONR to Minneapolis	8:00:00	
258	MONT	-		
259		C: MONT to Bloomington1 11	8:00:00	
260	MOR	-		
261		C: MOR to Blair2 78	Dist:2529120	$35.20 \mathrm{ft} / \mathrm{s}$
262	MOT	-		
263		C: MOT to Omaha2 33	Dist:3453120	$58.67 \mathrm{ft} / \mathrm{s}$
264	MYR	-		
265		C: MYR to Schenectady	Dist:1779360	$35.20 \mathrm{ft} / \mathrm{s}$
266	MYT	-		
267		C: MYT to Painesville 5	Dist:4667520	$58.67 \mathrm{ft} / \mathrm{s}$
268	NAR	-		
269		C: NAR to Youngstown-NA	Dist:2560800	$35.20 \mathrm{ft} / \mathrm{s}$
270	NAT	-		
271		C: NAT to Cincinnati 55	Dist:3067680	$58.67 \mathrm{ft} / \mathrm{s}$
272	NMPR	-		
273		C: NMPR to Painesville 10	Dist:1779360	$35.20 \mathrm{ft} / \mathrm{s}$
274	NMPT	-		
275		C: NMPT to Painesville 5	Dist:2322600	$58.67 \mathrm{ft} / \mathrm{s}$
276	NVR	-		
277		C: NVR to ToNevIMF	8:00:00	


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
278	Oakley1 1	-		
279		C: Oakley1 1 to St. George1	Dist:5728800	$58.67 \mathrm{ft} / \mathrm{s}$
280	OCB	-		
281		OCR	8:00:00	
282		C: OCB to OCR	D 1-16: 0: 0	
283		C: OCB to ColumbianaNE	Dist:2555520	$35.20 \mathrm{ft} / \mathrm{s}$
284	OCOHH	-		
285		OCOR	8:00:00	
286		C: OCOHH to OCOR	D 1-8: 0: 0	
287		C: OCOHH to Lawrenceburg1 109	Dist:2613600	$35.20 \mathrm{ft} / \mathrm{s}$
288	OCOR	-		
289		C: OCOR to OCOHH	D 1-8: 0: 0	
290	OCOT	-		
291		C: OCOT to Metropolis1 44	Dist:3315840	$58.67 \mathrm{ft} / \mathrm{s}$
292	OCR	-		
293		C: OCR to OCB	D 1-16: 0: 0	
294	OCT	-		
295		C: OCT to Youngstown1 55	Dist:3025440	$58.67 \mathrm{ft} / \mathrm{s}$
296	Omaha	-		
297		C: Omaha to Uvada1 66	D 1-8: 0: 0	
298	Omaha 1	-		
299		C: Omaha 1 to St. George1	Dist:6431040	$58.67 \mathrm{ft} / \mathrm{s}$
300	Painesville 8	-		
301		C: Painesville 8 to Blair2 78	Dist:4445760	$35.20 \mathrm{ft} / \mathrm{s}$
302	Painesville2 3	-		
303		C: Painesville2 3 to Omaha2 33	Dist:4493280	$58.67 \mathrm{ft} / \mathrm{s}$
304	PALHH	-		
305		C: PALHH to PALR	D 1-8: 0: 0	
306		C: PALHH to Blair2 78	Dist:3490080	$35.20 \mathrm{ft} / \mathrm{s}$
307	PALR	-		
308		C: PALR to PALHH	D 1-8: 0: 0	
309	PALT	-		
310		C: PALT to Omaha2 33	Dist:3083520	$58.67 \mathrm{ft} / \mathrm{s}$
311	PEAHH	-		
312		C: PEAHH to PEAR	D 1-8: 0: 0	
313		C: PEAHH to ColumbianaNE	Dist:1805760	$35.20 \mathrm{ft} / \mathrm{s}$
314	PEAR	-		
315		C: PEAR to PEAHH	D 1-8: 0: 0	
316	PEAT	-		
317		C: PEAT to Youngstown155	Dist:2006400	$58.67 \mathrm{ft} / \mathrm{s}$
318	PERR	-		
319		C: PERR to KansasCity2 78	Dist:4208160	$35.20 \mathrm{ft} / \mathrm{s}$
320	PERT	-		
321		C: PERT to Painesville2 3	0:00:00	
322	PILB	-		
323		C: PILB to Schenectady	Dist:1140480	$35.20 \mathrm{ft} / \mathrm{s}$


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
324		C: PILB to PILR	D 1-8: 0: 0	
325	PILR	-		
326		C: PILR to PILB	D 1-8: 0: 0	
327	PILT	-		
328		C: PILT to Painesville 5	Dist:3437280	$58.67 \mathrm{ft} / \mathrm{s}$
329	PIR	-		
330		C: PIR to StPaul2 78	8:00:00	
331	PIT	-		
332		C: PIT to Bloomington2 3	8:00:00	
333	Plattsmouth6	-		
334		C: Plattsmouth6 to Denver1 66	Dist:2951520	$35.20 \mathrm{ft} / \mathrm{s}$
335	POIHH	-		
336		C: POIHH to POIR	D 1-8: 0: 0	
337		C: POIHH to Blair2 78	Dist:2845920	$35.20 \mathrm{ft} / \mathrm{s}$
338	POIR	-		
339		C: POIR to POIHH	D 1-8: 0: 0	
340	POIT	-		
341		C: POIT to Omaha2 33	Dist:4546080	$58.67 \mathrm{ft} / \mathrm{s}$
342	Portsmouth2 78	-		
343		C: Portsmouth2 78 to KansasCity2 78	Dist:4451040	$35.20 \mathrm{ft} / \mathrm{s}$
344	PVR	-		
345		C: PVR to Barstow	Dist:2175360	$35.20 \mathrm{ft} / \mathrm{s}$
346	PVT	-		
347		C: PVT to LV2 22	Dist:3796320	$58.67 \mathrm{ft} / \mathrm{s}$
348	QCR	-		
349		C: QCR to Plattsmouth	Dist:2053920	$35.20 \mathrm{ft} / \mathrm{s}$
350	QCT	-		
351		C: QCT to Omaha2 33	Dist:2624160	$58.67 \mathrm{ft} / \mathrm{s}$
352	RBR	-		
353		C: RBR to Shreveport2 109	Dist:1436160	$35.20 \mathrm{ft} / \mathrm{s}$
354	RBT	-		
355		C: RBT to Shreveport2 44	8:00:00	
356	Red Oak 6	-		
357		C: Red Oak 6 to Blair6 6	8:00:00	
358	Roanoke2 5	-		
359		C: Roanoke2 5 to Cincinnati 55	Dist:2270400	$58.67 \mathrm{ft} / \mathrm{s}$
360	ROBR	-		
361		C: ROBR to Atlanta	Dist:1599840	$35.20 \mathrm{ft} / \mathrm{s}$
362	ROBT	-		
363		C: ROBT to Metropolis1 44	Dist:4183040	$58.67 \mathrm{ft} / \mathrm{s}$
364	RSR	-		
365		C: RSR to Modesto1 66	8:00:00	
366	RST	-		
367		C: RST to Fresno1 11	8:00:00	
368	SALB	-		
369		C: SALB to SALR	D 1-8: 0: 0	


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
370		C: SALB to ColumbianaNE	Dist:2196480	$35.20 \mathrm{ft} / \mathrm{s}$
371	SALR	-		
372		C: SALR to SALB	D 1-8: 0: 0	
373	SALT	-		
374		C: SALT to Youngstown1 55	Dist:3236640	$58.67 \mathrm{ft} / \mathrm{s}$
375	Schenectady	-		
376		C: Schenectady to Painesville 10	Dist:2629440	$35.20 \mathrm{ft} / \mathrm{s}$
377	SEAR	-		
378		C: SEAR to Schenectady	Dist:1277760	$35.20 \mathrm{ft} / \mathrm{s}$
379	SEAT	-		
380		C: SEAT to Painesville 5	Dist:4139520	$58.67 \mathrm{ft} / \mathrm{s}$
381	SEQR	-		
382		C: SEQR to Lawrenceburg1 109	Dist:1393920	$35.20 \mathrm{ft} / \mathrm{s}$
383	SEQT	-		
384		C: SEQT to Metropolis1 44	Dist:1721280	$58.67 \mathrm{ft} / \mathrm{s}$
385	Shreveport1 2	-		
386		C: Shreveport1 2 to LV2 22	Dist:9403680	$58.67 \mathrm{ft} / \mathrm{s}$
387	ShreveportSW	-		
388		C: ShreveportSW to Denver2 87	D 1-8: 0: 0	
389	SLB	-		
390		C: SLB to SLR	D 1-16: 0: 0	
391		C: SLB to Atlanta	Dist:3864960	$35.20 \mathrm{ft} / \mathrm{s}$
392	SLR	-		
393		C: SLR to SLB	D 1-16: 0: 0	
394	SLT	-		
395		C: SLT to Metropolis1 44	Dist:5142720	$58.67 \mathrm{ft} / \mathrm{s}$
396	SOR	-		
397		C: SOR to Barstow	8:00:00	
398	SOT	-		
399		C: SOT to LV2 22	Dist:1768800	$58.67 \mathrm{ft} / \mathrm{s}$
400	SRSR	-		
401		C: SRSR to Atlanta	Dist:1145760	$35.20 \mathrm{ft} / \mathrm{s}$
402	SRST	-		
403		C: SRST to Metropolis1 44	Dist:3136320	$58.67 \mathrm{ft} / \mathrm{s}$
404	St. George1	-		
405		C: St. George1 to YMT	0:00:00	
406	St. Joseph1	-		
407		C: St. Joseph1 to Omaha 1	8:00:00	
408	StartBarge1 9	-		
409		C: StartBarge1 9 to GGR	0:00:00	
410	StartBarge16 6	-		
411		C: StartBarge16 6 to CPRR	0:00:00	
412	StartBarge16 7	-		
413		C: StartBarge16 7 to DCR	0:00:00	
414	StartBarge17	-		
415		C: StartBarge17 to HUMR	0:00:00	


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
416	StartBarge2 9	-		
417		C: StartBarge2 9 to BFR	0:00:00	
418	StartBarge3 9	-		
419		C: StartBarge3 9 to SLR	0:00:00	
420	StartBarge4 9	-		
421		C: StartBarge4 9 to TPR	0:00:00	
422	StartHH1 9	-		
423		C: StartHH1 9 to OCOR	0:00:00	
424	StartHH13 8	-		
425		C: StartHH13 8 to PALR	0:00:00	
426	StartHH14 8	-		
427		C: StartHH14 8 to KEWR	0:00:00	
428	StartHH15 8	-		
429		C: StartHH15 8 to POIR	0:00:00	
430	StartHH5 8	-		
431		C: StartHH5 8 to BRPR	0:00:00	
432	StartHH6 8	-		
433		C: StartHH6 8 to CALR	0:00:00	
434	StartHH7 6	-		
435		C: StartHH7 6 to FCR	0:00:00	
436	StPaul1 66	-		
437		C: StPaul1 66 to Blair6 6	Dist:1816320	$35.20 \mathrm{ft} / \mathrm{s}$
438	STPR	-		
439		C: STPR to Barstow	Dist:9313920	$35.20 \mathrm{ft} / \mathrm{s}$
440	STPT	-		
441		C: STPT to LV2 22	Dist:9794400	$58.67 \mathrm{ft} / \mathrm{s}$
442	SUMR	-		
443		C: SUMR to Lawrenceburg1 109	Dist:2666400	$35.20 \mathrm{ft} / \mathrm{s}$
444	SUMT	-		
445		C: SUMT to Metropolis1 44	Dist:3315840	$58.67 \mathrm{ft} / \mathrm{s}$
446	SURB	-		
447		C: SURB to Portsmouth9 10	Dist:2777280	$35.20 \mathrm{ft} / \mathrm{s}$
448		C: SURB to SURR	D 1-8: 0: 0	
449	SURR	-		
450		C: SURR to SURB	D 1-8: 0: 0	
451	SURT	-		
452		C: SURT to Cincinnati 55	Dist:3595680	$58.67 \mathrm{ft} / \mathrm{s}$
453	SUSR	-		
454		C: SUSR to JCT New Portage	Dist:1267200	$35.20 \mathrm{ft} / \mathrm{s}$
455	SUST	-		
456		C: SUST to Youngstown1 55	Dist:1816320	$58.67 \mathrm{ft} / \mathrm{s}$
457	TMIR	-		
458		C: TMIR to ColumbianaNE	Dist:1737120	$35.20 \mathrm{ft} / \mathrm{s}$
459	TMIT	-		
460		C: TMIT to Youngstown155	Dist:1742400	$58.67 \mathrm{ft} / \mathrm{s}$
461	TPB	-		


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
462		C: TPB to TPR	D 1-8: 0: 0	
463		C: TPB to Atlanta	Dist:4002240	$35.20 \mathrm{ft} / \mathrm{s}$
464	TPR	-		
465		C: TPR to TPB	D 1-8: 0: 0	
466	TPT	-		
467		C: TPT to Metropolis1 44	Dist:5976960	$58.67 \mathrm{ft} / \mathrm{s}$
468	TROR	-		
469		C: TROR to Uvada1 66	D 1-8: 0: 0	
470	TROT	-		
471		C: TROT to St. George1	Dist:5728800	$58.67 \mathrm{ft} / \mathrm{s}$
472	Uvada2 87	-		
473		C: Uvada2 87 to NVR	8:00:00	
474	VOGR	-		
475		C: VOGR to Atlanta	Dist:1246080	$35.20 \mathrm{ft} / \mathrm{s}$
476	VOGT	-		
477		C: VOGT to Metropolis1 44	Dist:3109920	$58.67 \mathrm{ft} / \mathrm{s}$
478	VYR	-		
479		C: VYR to Schenectady	8:00:00	
480	VYT	-		
481		C: VYT to Painesville 5	Dist:3263040	$58.67 \mathrm{ft} / \mathrm{s}$
482	WATR	-		
483		C: WATR to Lunita1 9	Dist:1135200	$35.20 \mathrm{ft} / \mathrm{s}$
484	WATT	-		
485		C: WATT to Shreveport2 44	8:00:00	
486	WBR	-		
487		C: WBR to Lawrenceburg1 109	Dist:1209120	$35.20 \mathrm{ft} / \mathrm{s}$
488	WBT	-		
489		C: WBT to Metropolis1 44	Dist:2402400	$58.67 \mathrm{ft} / \mathrm{s}$
490	WCR	-		
491		C: WCR to Kansas City	8:00:00	
492	WCT	-		
493		C: WCT to Oakley2 22	Dist:1821600	$58.67 \mathrm{ft} / \mathrm{s}$
494	WVR	-		
495		C: WVR to Painesville 10	Dist:1198560	$35.20 \mathrm{ft} / \mathrm{s}$
496	WVT	-		
497		C: WVT to Painesville 5	8:00:00	
498	YMR	-		
499	YMT	-		
500		C: YMT to ToGROATruck 9	8:00:00	
501	Youngstown 7	-		
502		C: Youngstown 7 to Blair2 78	Dist:4683360	$35.20 \mathrm{ft} / \mathrm{s}$
503	Youngstown2 3	-		
504		C: Youngstown2 3 to Omaha2 33	Dist:4598880	$58.67 \mathrm{ft} / \mathrm{s}$
505	YRHH	-		
506		C: YRHH to YRR	D 1-8: 0: 0	
507		C: YRHH to Painesville 10	Dist:2977920	$35.20 \mathrm{ft} / \mathrm{s}$


	A	B	C	D
	Process Name	Connector Name or "From To"	Connector	Conveyance
			Time or Distance	Speed
508	YRR	-		
509		C: YRR to YRHH	D 1-8: 0: 0	
510	YRT	-		
511		C: YRT to Painesville 5	Dist:3263040	$58.67 \mathrm{ft} / \mathrm{s}$
512	ZIOR	-		
513		C: ZIOR to Blair2 78	Dist:2645280	$35.20 \mathrm{ft} / \mathrm{s}$
514	ZIOT	-		
515		C: ZIOT to Omaha2 33	Dist:3875520	$58.67 \mathrm{ft} / \mathrm{s}$
516	z-StartBarge11 10	-		
517		C: z-StartBarge11 10 to SALR	0:00:00	
518	z-StartBarge12 10	-		
519		C: z-StartBarge12 10 to HCR	0:00:00	
520	z-StartBarge5 10	-		
521		C: z-StartBarge5 10 to OCR	0:00:00	
522	z-StartBarge6 10	-		
523		C: z-StartBarge6 10 to CCR	0:00:00	
524	z-StartBarge7 10	-		
525		C: z-StartBarge7 10 to HADR	0:00:00	
526	z-StartBarge8 10	-		
527		C: z-StartBarge8 10 to PILR	0:00:00	
528	z-StartBarge9 10	-		
529		C: z-StartBarge9 10 to SURR	0:00:00	
530	z-StartHH	-		
531		C: z-StartHH to BVR	0:00:00	
532	z-StartHH10 10	-		
533		C: z-StartHH10 10 to IPR	0:00:00	
534	z-StartHH2 10	-		
535		C: z-StartHH2 10 to GINR	0:00:00	
536	z-StartHH3 10	-		
537		C: z-StartHH3 10 to PEAR	0:00:00	
538	z-StartHH4 10	-		
539		C: z-StartHH4 10 to YRR	0:00:00	

INTENTIONALLY LEFT BLANK

## APPENDIX F

## STATE LINE CROSSINGS

INTENTIONALLY LEFT BLANK

## APPENDIX F <br> STATE LINE CROSSINGS

This appendix contains the output of the EXCEL workbook "Appendix F_statelines_7_20_07.xls" listed in Section 8. The spreadsheet shown document the state line crossings used in the TSM and compares it to the state line crossings in the 2003 TSLCC. State line crossings values are used to assign resources to the connectors to calculate the total state line crossings for cost estimating purposes.

Column A: Site ID as used in the TSM
Column B: Site Name
Column C: State lines (SLT) crossed along projected truck routes according to Calvin_2K.mdb
Column D: State lines (SLR) crossed along projected rail routes according to Calvin_2K.mdb
Column E: Map in the TSM where the site is found.
Column F: Blank
Column G: SLT crossed along the TSM routes by manual inspection of belt_1.prn in Section 8.
Column H: SLR crossed along the TSM routes by manual inspection of ec_n15.prn and ec_n15b.prn in Section 8
Column I: Blank .
Columns J-P: Not used (Hidden)
Column Q: Difference in the rail state lines crossed (Column C- Column G).
Column R: Difference in the truck state lines crossed (Column D-Column H)
Column S: Blank
Column T: Current state lines in TSM for truck routes from the hard-coded SLT in the extension for each connector in each route.
Column U: Current state lines in TSM for rail routes from the hard-coded SLR in the extension for each connector in each route
Column V: TSM difference from Calvin (Column U-Column D)
Column W: TSM difference from Calvin (Column T-Column C)

## INTENTIONALLY LEFT BLANK



A	B	C	D	E	F	G	H	1	Q	R	S	T	U	V	W
VYR	Vt Yankee	13	13	NE		13	13		0	0		11	13	0	-2
WVR	WVDP	11	11	NE		11	11		0	0		10	11	0	-1
YRR	Yankee-ROWE	13	13	NE		12	13		1	0		11	13	0	-2
CGSR	WASH NUCLEAR	6	5	NW		6	5		0	0		6	5	0	0
CPRR	COOPER STN	7	5	NW		6	5		1	0		5	5	0	-2
FCR	FORT CALHOUN	5	5	NW		5	5		0	0		5	5	0	0
HANR	HANFORD	6	5	NW		6	5		0	0		6	5	0	0
HUMR	HUMBOLDT BAY	3	2	NW		2	2		1	0		2	2	0	-1
INLR	INEEL-DOE	4	3	NW		4	3		0	0		4	3	0	0
MONR	MONTICELLO	7	8	NW		7	7		0	1		7	8	0	0
RSR	RaNCHO SECO	2	2	NW		2	2		0	0		2	2	0	0
TROR	TROJAN	6	4	NW		6	5		0	-1		6	5	1	0
BFR	BROWNS FERRY	10	12	SE		11	12		-1	0		11	13	1	1
BRUR	BRUNSWICK	11	15	SE		13	15		-2	0		14	14	-1	3
CATR	CATAWBA	11	13	SE		12	13		-1	0		12	13	0	1
CYRR	CRYSTAL RVR	11	14	SE		12	14		-1	0		12	13	-1	1
FARR	FARLEY	9	13	SE		10	13		-1	0		9	13	0	0
GGR	GRAND GULF	8	11	SE		8	12		0	-1		8	12	1	0
HARR	HARRIS	12	15	SE		13	15		-1	0		14	14	-1	2
HATR	HATCH	10	13	SE		11	12		-1	1		11	12	-1	1
MCGR	MCGUIRE	12	13	SE		13	15		-1	-2		14	12	-1	2
OCOR	OCONEE	11	14	SE		12	13		-1	1		12	13	-1	1
RBR	RVR BEND	6	10	SE		7	6		-1	4		7	7	-3	1
ROBR	ROBINSON	11	14	SE		12	14		-1	0		12	13	-1	1
SEQR	SEQUOYAH	10	13	SE		10	11		0	2		10	11	-2	0
SLR	ST LUCIE	11	14	SE		12	14		-1	0		12	13	-1	1
SRSR	SAV RIVER-DOE	11	12	SE		12	14		-1	-2		12	13	1	1
SUMR	SUMMER	11	13	SE		12	13		-1	0		12	13	0	1
TPR	TURKEY PT	11	14	SE		12	14		-1	0		12	13	-1	1
VOGR	VOGTLE	10	13	SE		11	12		-1	1		12	12	-1	2
WATR	WATERFORD	6	10	SE		7	6		-1	4		7	7	-3	1
WBR	WATTS BAR	9	11	SE		10	11		-1	0		10	11	0	1
ANOR	ARK NUCLEAR	7	9	SW		7	9		0	0		7	7	-2	0
CPR	COMANCHEPK	5	5	SW		6	5		-1	0		6	6	1	1
DCR	DIABLO CANYON	2	2	SW		2	2		0	0		2	2	0	0
PVR	PALO VERDE	3	3	SW		3	3		0	0		3	3	0	0
SOR	SAN ONOFRE	2	2	SW		2	2		0	0		2	2	0	0
STPR	SOUTH TEXAS	5	9	SW		5	5		0	4		5	5	-4	0
WCR	WOLF CREEK	5	7	SW		6	7		-1	0		6	7	0	1
	Total State Lines	694	761			716	747					710	742		
	$\begin{aligned} & \text { Total Difference to } \\ & \text { TSLCC } \end{aligned}$								-22	14				-19	16
	$\begin{gathered} \hline \text { \% Difference to } \\ \text { TSLCC } \\ \hline \end{gathered}$											2.31	-2.50		

## APPENDIX G

TIMING TESTS

## INTENTIONALLY LEFT BLANK

## APPENDIX G TIMING TESTS

This appendix contains the key results from EXCEL workbook "App. G TimeTesting_comparison _7_26_07_slt.xls" that is attached in Section 8. The timing tests are described in Section 2.6 .1 of the main text. The timing test results include the time at the waste sites to receive cask loads from the "Distribute" process and form the consist. The time to transport the consist from the waste site to Yucca Mountain is also shown. The results also show a comparison of results for the progression of TSM development from Version 4.0 in SimCAD ${ }^{\text {TM }} 7.0$ to Version 6.0 in SimCAD ${ }^{\text {TM }} 7.1$. Notice that the Version 6.0 tests were conducted using an interim version of Version 6.0. As discussed in Section 1.2, there will be some additional refinements to this interim version but these should not impact the conclusions from these tests.

## Results

Table G-1 The first table shows results for TSM Version 4.0 in SimCAD ${ }^{\text {TM }} 7.0$ followed by Tables G-2 through G-5 for the other tests.

The columns are arranged to show the 3 timing tests that were run. Each test is followed by the Travel Time Steps which is the run time from completion of the consist to arrival at NVR/YMT. The time step are then converted to hours. Following the 3 timing tests, the average for the tests are calculated and the standard deviation is also provided. During the tests substantial test-to-test variations were observed so standard deviations were added to assess the variations. The Average Steps to make a consist at the site is followed by the Average Total Steps or step to reach NVR/YMT. The difference in the time to make the consist and the time to reach NVR/YMT is the travel time from the site to NVR/YMT. Results for rail sites are shown at the top of the tables and truck sites are shown at the bottom of the tables.

All test and evaluation times are shown as TSM simulation 8-hour time steps and in hours. The sites include:
\(\left.$$
\begin{array}{ll}\text { Rail Sites } & \begin{array}{l}\text { Typically commercial waste sites using rail form a 3-cask consist for } \\
\text { shipments (DOE sites use 5-cask consists). The simulation time in } \\
\text { this case represents loading the casks and forming the consist. Sites }\end{array}
$$ <br>
ending in "R" in the SiteID column. <br>
Barge sites are a special type of rail site and the waste site time <br>
includes the time for the barge to make cyclical trips with loaded and <br>
empty transportation cask between the TSM "R sites" and the "B <br>

sites" until the consist is completed. Sites ending in "B" in the\end{array}\right\}\) Barge Sites | SiteID column. |
| :--- |
| HH sites are a special type of rail site and the waste site time |
| includes the time for the HH trailer to make cyclical trips with |
| loaded and empty transportation cask between the TSM "R sites" |
| and the "HH sites" until the consist is completed. Sites ending in |
| "HH" in the SiteID column. |

therefore shorter than a rail site time. Sites ending in " T " in the SiteID column.

The columns in the table include:

Test Column: Site Three columns with values for the times manually recorded as the tests are performed. Sub-columns are:
Site: The time from when the first cask load enters the TSM until the consist is formed and departs the waste site.
NVR or YMT: The time from when the first cask load enters the TSM until the consist is arrives at NVR/YMT.
Travel Time steps: The difference in the above site and NVR/YMT that represents the travel time.
Travel Hours: Travel time steps converted to hours for general interest.

Analysis Columns Averages and standard deviations for the three tests for Site, NVR/YMT total, and Travel Time.

Difference Columns Differences between Site and Travel Time results between various versions of TSM and SimCAD ${ }^{\text {TM }}$ as numerical value and as a percent. Numerical differences in Travel Time in hours is also presented for interest.

All of the active rail and truck sites in TSM were not included in the timing tests and are not presented in this appendix. The sites selected were chosen to provide representative results that covered all of the main routes in all of the TSM map departments. The tested sites are adequate to draw insights on the differences version of TSM and SimCAD ${ }^{\mathrm{TM}}$.

## Inputs for Cycle Time Tests

Some of the results of these timing tests are used for the cycle time tests. Notice that the BFB, PEAHH, and SUMR sites that are used in the cycle time analysis discussed in Section 2.6.2 and presented in Section 5.6.2 are circled in the tables. As shown in the detail below from Figure A8 in Appendix A, the timing tests and the TSM programming include a one-step connector prior to "ToNevIMF" is not included in the timing tests in this appendix. Therefore 1 step needs to be added to the test time to arrive at the cycle time that will be in the simulation to reach Yucca Mountain. There is a similar situation for the YMT site, see Figure A-2. This correction is made in the results tables in Section 5.6.2.


## Analysis

The timing tests assess the consistency of TSM through changes in TSM and SimCAD ${ }^{\mathrm{TM}}$. However, the comparisons must take into account the considerable variation in the tests and that exact matches of timings run to run and model-to-model are not expected. Considerations of the standard deviations of the averaged test data are used to assist in the evaluation and variations. Standard deviations greater than $10 \%$ are highlighted to give a general idea of the variation and to indicate large differences in the comparisons. Differences in case-to-case results greater than $10 \%$ are also highlighted.

Results for two identical tests shown in "Timing Test 2 for TSM Version 5.0 in SimCAD ${ }^{\text {TM }} 7.1$ " show considerable variation and provide insight on the amount of variation below which two results may be considered as the numerically equivalent. The maximum difference is $22 \%$, indicating that differences of $22 \%$ may be viewed as numerically equivalent. This large percentage indicates that this type of timing test alone may not be sufficient to judge consistency between two versions. Therefore, cycle time testing must also be performed to validate TSM V6.0.

The evaluation also included a review of results with large standard deviations. The test data are reviewed for outliers and the standard deviation for individual test cases to justify comparisons showing large differences.

Based on the variations inherent in these tests, consideration of outliers in the tests, and observations of the model behavior during tests, the results between the variations show no model-to-model inconsistencies. However, this result must be qualified as being only a general indication of consistency given the large variation in identical tests.

The timing tests can be improved by running more than 3 test runs to narrow the differences between the test averages. However, a more comprehensive and conclusive test is available using the cycle time testing as described in Section 2.6.2 and 5.6.2. Cycle time tests effectively run thousands of objects through the processes providing more statistically meaningful results. However, the cycle time are limited in that they provide no data specifically on the times for cask allocation and consist formation because these results are influence by system effects such as the competition by the various cask loads. Also, the cycle time test cannot provide specific data on the travel times from the sites to the GROA since these are not recorded during full run simulations.

Table G-1. Timing Test for TSM Version 4.0 in SimCAD ${ }^{\text {™ }} 7.0$

	$\begin{gathered} \text { Test1 } \\ \text { Pause Time } \end{gathered}$					${ }_{\text {Pause Timest2 }}^{\text {it }}$				$\begin{gathered} \text { Test3 } \\ \text { Pause Time i } \end{gathered}$				Average Steps to make consist at site			Avg TotalSteps			Version 7.0   Run Averages   Travel Steps			$\begin{array}{\|l\|l\|} \hline \text { Average } \\ \hline \text { Travel Hrs } \end{array}$
SitelD	Map	Site	NVR	Travel TimeStep	Travel Hrs	Site	NVR	Travel TimeSteps	Travel Hrs	Site	NVR	Travel TimeStep TimeStep	Travel Hrs	Site	Dev	Std Dev\%	NVR	Std	Dev\%	Travel Time Steps	Std Dev	Std Dev\%	
BRAR	MWrail	14	24	10	80	14	23	9	72		23	10	80	13.67	0.58	4\%	23.33	0.58	2\%	9.67	0.58	6\%	77
BYRR	MWrail	17	28	11	88	14	24	10	80	14	27	13	104	15.00	1.73	12\%	${ }^{26.33}$	2.08	8\%	11.33	1.53	13\%	91
LIMR	NErail	16	32	16	128	15	33	18	144	15	30	15	120	${ }^{15.33}$	0.58	4\%	31.67	1.53	5\%	16.33	1.53	9\%	131
PEAHH	NErail	35	48	13	104	38	53	15	120	37	52	15	120	36.67	1.53	4\%	51.00	2.65	5\%	(14.33)	1.15	8\%	115
CGSR	NWrail	13	20	7	56	13	21	8	64	16	23	7	56	14.00	1.73	12\%	21.33	1.53	7\%	7.33	0.58	8\%	59
HANR	NWrail	14	21	7	56	14	21	7	56	15	23	8	64	14.33	0.58	4\%	21.67	1.15	5\%	7.33	0.58	8\%	59
BFB	SErail	34	48	14	112	35	47	12	96	36	48	12	96	35.00	1.00	3\%	47.67	0.58	1\%	12.67	1.15	9\%	101
SUMR	SErail	14	27	13	104	15	29	14	112	14	30	16	128	14.33	0.58	4\%	28.67	1.53	5\%	(14.33	1.53	11\%	115
ANOR	Swrail	15	26	11	88	14	25	11	88	16	27	11	88	15.00	1.00	7\%	${ }^{26.00}$	1.00	4\%	11.00	0.00	0\%	88
PVR	sWrail	15	20	5	40	15	19	+	32	16	20	4	32	15.33	0.58	4\%	19.67	0.58	3\%	4.33	0.58	13\%	35
	Pause Time ${ }^{\text {Test1 }}$					${ }_{\text {Pause Time it }}^{\text {Test }}$				$\begin{gathered} \text { Test3 } \\ \text { Pause Time } \mathrm{i} \end{gathered}$				$\begin{aligned} & \text { Average Steps } \\ & \text { to make } \\ & \text { consist ta site } \\ & \hline \end{aligned}$			Avg TotalSteps			Run Averages Avg Steps			Avg Hrs
Siteld	Map	Site	ymt	$\begin{aligned} & \text { Travel } \\ & \text { Time } \end{aligned}$	Travel Hrs	Site	Ymt	Travel Time Steps	Travel Hrs	Site	ymt	Travel Time	Travel Hrs 5s	Site	Sta Dev	Std Dev\%	YMT	Std Dev	Std Dev\%	$\begin{array}{\|c\|} \hline \text { Travel Time } \\ \text { Steps } \end{array}$	Std Dev	Std Dev\%	Travel Hrs
CPRT	NWWruck	9	16	7	56	11	16	7	56	10	${ }^{16}$	7	56	9.00	0.00	0\%	16.00	0.00	0\%	7.00	0.00	0\%	56
GINT	NEtruck	9	21	12	96	11	21	10	80	10	20	10	80	10.00	1.00	10\%	20.67	0.58	3\%	10.67	1.15	11\%	85
HANT	NWWruck	12	15	3	24	11	14	3	24	11	15	4	32	11.33	0.58	5\%	14.67	0.58	4\%	3.33	0.58	17\%	27
INLT	NWtruck	7	10	3	24	9	12	3	24		10	3	24	7.67	1.15	15\%	10.67	1.15	11\%	3.00	0.00	0\%	
IPT	NEtruck	12	22	10	80	11	20	9	72	12	21	9	72	11.67	0.58	5\%	21.00	1.00	5\%	9.33	0.58	6\%	75
LACT	MWtruck	8	15	7	56	8	16	8	64	7	15	8	64	7.67	0.58	8\%	15.33	0.58	4\%	7.67	0.58	8\%	61
CRYT	SEtruck	10	22	12	96	11	23	12	96	10	22	12	96	10.33	0.58	6\%	22.33	0.58	3\%	12.00	0.00	0\%	96
DCCT	MWtruck	10	17	7	56	13	20		56	10	17		56	11.00	1.73	16\%	18.00	1.73	10\%	7.00	0.00	0\%	56
CLIT	MWtruck	10	17	7	56	8	15	7			16	7	56	9.00	1.00	11\%	16.00	1.00	6\%	7.00	0.00	0\%	56
TPT	SEtruck	12	25	13	104	10	23	13	104	12	25	13	104	11.33	1.15	10\%	${ }_{24} 2.33$	1.15	5\%	13.00	0.00	0\%	104

Table G-2. Timing Test for TSM Version 4.0 in SimCAD ${ }^{\text {TM }} 7.1$

														V4 in Versio	7.1									Difference	(v4 in	7 7.1)-(v4	7.0)							
						Pause Time it				${ }^{\text {Test3 }} \text { Pause Time i }$				$\begin{array}{\|l} \text { Average Step } \\ \text { Aomak } \\ \text { consist a t site } \end{array}$			Avg Total Steps			Run Average Travel Steps			Average	$\begin{aligned} & \text { Average Steps } \\ & \text { comak } \\ & \text { consist at site } \end{aligned}$		Avg Tota Steps		Run Average   Travel Step		Average				
		Site NVR		Travel Time	${ }_{\text {cher }}$	Site NVR Time Steps Travel Hrs				Travel Time $\begin{gathered}\text { Travel } \\ \text { Hios } \\ \text { Hes }\end{gathered}$										Travel Time														
Stield	Map			Steps						Site	NVR	Steps	Hrs	Site	Sta Dev	Std Dev\%	NVR	Sta Dev	Std Dev\%	Steps	Sta Dev	Std Dev\%	Travel Hrs	Site	Site \%	NVR	NVR \%	Travel	Travel \%	Travel H Is				
BRAR	MWrail MWrail	13 16	${ }_{27}^{24}$	11 11	88 88	15 14	${ }_{24}^{26}$	11 10	88 80	14	${ }_{28}^{24}$	10 12	80 96	14.00 15.33	${ }_{1.15}^{1.00}$	8\% ${ }_{8 \%}$	${ }_{26.33}^{24.67}$	1.15   2.08	5\%	10.67 11.00	0.58 1.00	5\%	85.33 88.00	0.33 0.33	${ }_{2 \%}^{2 \%}$	1.33 0.00	6\%	- $\begin{aligned} & 1.00 \\ & -0.33\end{aligned}$	10\%	${ }_{-2.67}^{8.00}$				
LIMR	NErail	14	31	17	136	15	30	15	120	16	33	17	136	15.00	1.00	7\%	31.33	1.53	5\%	16.33	1.15	7\%	130.67	-0.33	-2\%	-0.33	-1\%	0.00	\%	0.00				
PEAHH	NErail	32	46	14	112	35	49	14	112	36	51	15	120	(34.33)	2.08	6\%	48.67	2.52	5\%	(14.33)	0.58	4\%	114.67	-2.33	-6\%	-2.33	-5\%	0.00	0\%	${ }_{0} 0.00$				
CGSR	NWrail	16	22	6	48	15	22	7	56	14	22	8	64	15.00	1.00	7\%	22.00	0.00	0\%	7.00	1.00	14\%	56.00	1.00	7\%	${ }_{0}^{0.67}$	3\%	${ }^{-0.33}$	-5\%	-2.67				
HANR	NWrail	18	25	7	56	18	25	7	56	17	25	8	64	17.67	0.58	3\%	25.00	0.00	0\%	7.33	0.58	8\%	58.67	3.33	23\%	${ }^{3.33}$	15\%	0.00	0\%	0.00				
Bfb	SErail	35	48	13	104	36	50	14	112	34	46	12	96	35.00	1.00	3\%	48.00	2.00	4\%	13.00	1.00	8\%	104.00	0.00	0\%	0.33	1\%	0.33	3\%	2.67				
SUMR	SErail	15	30	15	120	15	30	15	120	14	31	17	136	14.67	0.58	4\%	30.33	0.58	2\%	15.67	1.15	7\%	${ }^{125.33}$	0.33	2\%	1.67	6\%	1.33	9\%	10.67				
ANOR	Swrail	14	24	10	80	13	24	11			27	11		14.33	1.53	11\%	25.00	1.73	7\%		0.58	5\%	85.33	-0.67		-1.00		-0.33						
PV	sWrail	15	20	5	40	16	21	5	40	15	20	5	40	15.33	0.58	4\%	20.33	0.58	3\%	5.00	0.00	0\%	40.00	0.00	0\%	0.67	3\%	0.67	5\%	5.33				
$\begin{gathered} \text { Test1 } \\ \text { Pause Time it } \end{gathered}$						${ }_{\text {Pause Time it }}^{\text {Test2 }}$				${ }^{{ }_{\text {Testi3 }}} \text { Pause Time }$				$\begin{aligned} & \text { Average Steps } \\ & \text { to make } \\ & \text { consist at site } \end{aligned}$			Avg Total			Run Averages   Avg Steps				$\begin{aligned} & \begin{array}{l} \text { Average Steps } \\ \text { tomek } \\ \text { consist at site } \end{array} \end{aligned}$		Avg Total		Run Averages						
						Avg	YMT YMT\%		Travel Hrs																									
Siteld		Site	YMT	Trave T Ime	${ }_{\text {Hrs }}^{\text {Travel }}$							Travel			Travel Hrs	Site				Site	Std Dev Std Dev\%		YmT Sta Dev Std Dev\%			(tares	Steps Std Dev Stt Dev\%		Travel Hrs			Travel Travel \%		
CPRT	NWtruck	6	14		64					10	18	8		$7{ }^{1}$			48	7.67	2.08	27\%	$\begin{array}{lll}15.00 & 2.65 & 18 \% \\ 20.33 & 1.53 & 8 \% \\ & \\ 10\end{array}$			$\begin{aligned} & \frac{7.33}{10.00} \\ & \hline 10 \end{aligned}$	1.151.00	${ }_{\text {Std Dev\% }}^{16 \%}$	Site Site   -133    $-15 \%$			${ }^{-1.00}$				
GINT	NEtruck	10	20	10	80	10	19	9		72	11	22	11	88				10\%	58.67	0.33 $3 \%$   0.00 $3 \%$   $0 \%$    0.60		-0.33 $\quad-2 \%$				$\begin{aligned} & -5.53 \\ & 2.67 \end{aligned}$								
HANT	NWtruck	11	14	3	${ }^{24}$	12	16	4	32	11	15	4	32	$\begin{gathered} 11.33 \\ 8.33 \end{gathered}$	$\begin{aligned} & 0.58 \\ & 0.58 \\ & 0.58 \end{aligned}$	5\%$7 \%$	$\begin{aligned} & 15.00 \\ & 11.33 \end{aligned}$		1.000.58						7\%		$\begin{aligned} & 3.67 \\ & 3.00 \end{aligned}$	0.580.00	${ }^{29.33}$	0.67 6\%		$\begin{array}{ll} 0.33 & 10 \% \\ 0.00 & 0 \% \\ 1.93 \end{array}$		
${ }^{\text {INLT }}$	NWtruck	9	12	3	24		11	3	24		11	3	24					0\%		24.00	0.67    -1.00		$\begin{aligned} & 0.00 \\ & 10.67 \\ & 1.07 \end{aligned}$											
IPT	NEtruck	11	21	10	80	10	21	11	88	11	22	11	88	10.67	0.58			${ }^{0.58}$		7.0012.33			1.00	14\%	${ }^{85.33}$	${ }^{0.33}$			0\% $14 \%$					
LACT	MWtruck	9	17	8	64	8	14	6	48	8	15		56	10.0011.0011.00	0.581.001	9\% ${ }_{\text {9\% }}$	15.3323.33	1.53   0.58	2\% ${ }_{\text {2\% }}$		56.0098.67	$\begin{array}{cc} 0.67 & 6 \% \\ 0.60 \\ 0.00 & 0 \% \\ -2.00 & -22 \% \\ 0.67 & 6 \% \\ \hline \end{array}$			0.001.000.070.67	- $4 \%$	-0.67 $-9 \%$   0.33 $3 \%$   0		10.67   -5.33   5.37					
CRYT	SEtruck	11	23	12	96	10	23	13	104	12	24	12	96																			$\begin{aligned} & 2.67 \\ & 5.37 \\ & -. .67 \\ & -2.67 \end{aligned}$		
DCCT	MWruck	10	17	7	56	13	21	8	64		18		64		1.73	16\%	${ }^{18.67}$	2.08	11\%	7.67	0.58				8\%	${ }^{61.33}$	${ }^{0.67}$	4\%	0.67	10\%				
CLIT	MWtruck	12	${ }^{13}$	${ }_{6}$	48	7	${ }^{13}$	${ }^{13}$	48		${ }^{15}$	14	${ }_{64}^{64}$	7.00	0.00	\%\%	13.67   233	${ }^{1.15}$	8\%	${ }_{6}^{6.67}$	${ }^{1.15}$			17\%	${ }_{5}^{53.33}$	-2.33	-15\%	-0.33	-5\%					
TPT	SEtruck	12	25		104	12	25	13	104		26	14	112	12.00	0.00	0\%	25.33	0.58	2\%	13.33	0.58			4\%	106.67	1.00	4\%	0.33	3\%					

Table G-3. Timing Test for TSM Version 5.0 in SimCAD ${ }^{\text {TM }} 7.1$


Table G-4. Timing Test 2 for TSM Version 5.0 in SimCAD ${ }^{\text {TM }} 7.1$

	$\begin{gathered} \text { Test1 } \\ \text { Time in Time } \end{gathered}$					$\begin{gathered} \quad \begin{array}{r} \text { Test2 } \\ \text { Time in } \end{array} . \end{gathered}$				$\begin{gathered} \text { Test3 } \\ \text { Time in Time } \end{gathered}$				V5 in Version 7.1 test2										Difference (V5 in 7.1 test2)-(V5 in 7.1)										
						$\begin{array}{\|l} \text { Average Steps } \\ \text { to make } \\ \text { consist at site } \end{array}$	$\begin{array}{\|c} \text { Avg Total } \\ \text { Steps } \end{array}$							$\begin{aligned} & \text { Run Averages } \\ & \text { Travel Steps } \\ & \hline \text { Trovel Timn } \end{aligned}$			Avg	Average Steps   to make   consist at site		Avg Total		Avg		Avg										
Siteld		Site	NVR	$\begin{aligned} & \text { Travel } \\ & \text { Time } \end{aligned}$	$\begin{gathered} \text { Travel } \\ \text { Hrs } \end{gathered}$					Site	NVR	$\begin{aligned} & \text { Travel } \\ & \text { Time } \end{aligned}$	$\begin{gathered} \text { Travel } \\ \text { Hrs } \end{gathered}$	Site	NVR	$\begin{aligned} & \text { Travel } \\ & \text { Time } \end{aligned}$	$\begin{gathered} \text { Travel } \\ \text { Hrs } \end{gathered}$	Site	Std Dev	Std Dev\%	NVR	Std Dev	Std Dev\%		Sta Dev	Std Dev\%	Travel Hrs	Site	Site \%	NVR	NVR \%	Travel	Travel \%	Travel Hrs
brar	MWrail	13	23	10	80	14	24	10	80	15	26	11	88	14.00	1.00	7\%	24.33	1.53	6\%	10.33	0.58	6\%	82.67	-1.67	-11\%	${ }^{-1.67}$	-6\%	0.00	0\%	0.00				
BYRR	MWrail	16	27	11	88	16	27	11	88	14	27	13	104	15.33	1.15	8\%	27.00	0.00	0\%	11.67	1.15	10\%	93.33	0.00	0\%	0.67	3\%	0.67	6\%	5.33				
LIMR	NErail	16	30	14	112	14	32	18	144	15	30	15	120	15.00	1.00	7\%	30.67	1.15	4\%	15.67	2.08	13\%	125.33	0.33	2\%	0.67	2\%	0.33	2\%	2.67				
PEAHH	NErail	33	49	16	128	33	48	15	120	35	49	14	112	33.67	1.15	3\%	48.67	0.58	1\%	15.00	1.00	7\%	120.00	-0.67	-2\%	-0.33	-1\%	0.33	2\%	2.67				
CGSR	NWrail	12	21	9	72	15	21	6	48	16	23	7	56	14.33	2.08	15\%	21.67	1.15	5\%	7.33	1.53	21\%	58.67	0.33	2\%	0.00	0\%	-0.33	-4\%	-2.67				
HANR	NWrail	17	25	8	64	17	25		64	16	23	7	56	16.67	0.58	3\%	24.33	1.15	5\%	7.67	0.58	8\%	61.33	-1.00	-6\%	-1.33	-5\%	-0.33	-4\%	-2.67				
bFb	SErail	35	48	13	104	36	49	13	104	35	48	13	104	35.33	0.58	2\%	48.33	0.58	1\%	13.00	0.00	0\%	104.00	2.33	7\%	2.33	5\%	0.00	0\%	0.00				
SUMR	SErail	13	27	14	112	17	30	13	104	13	28	15	120	14.33	2.31	16\%	28.33	1.53	5\%	14.00	1.00	7\%	112.00	-0.33	-2\%	-0.67	-2\%	${ }^{-0.33}$	-2\%	-2.67				
ANOR	Swrail	14	26	12	96	15	24	9	72	16	25	9	72	15.00	1.00	7\%	25.00	1.00	4\%	10.00	1.73	17\%	80.00	0.00	0\%	-1.00	-4\%	-1.00	-9\%	-8.00				
PVR	sWrail	16	20	4	32	15	20	5	40	15	20	5	40	15.33	0.58	4\%	20.00	0.00	0\%	4.67	0.58	12\%	37.33	-0.33	-2\%	0.00	0\%	0.33	8\%	2.67				
		Time in Time ${ }^{\text {Test1 }}$				$\begin{gathered} \stackrel{\text { Test2 }}{ } \\ \text { Time in Time } \end{gathered}$				$\begin{gathered} \left.\begin{array}{c} \text { Test3 } \\ \text { Time in Timє } \end{array}\right) \end{gathered}$				$\begin{aligned} & \text { Average Steps } \\ & \text { to make } \\ & \text { consist at site } \end{aligned}$			$\begin{array}{\|c} \text { Avg Total } \\ \text { Steps } \end{array}$			Run Averages			Avg	$\begin{aligned} & \text { Average Steps } \\ & \text { to make } \\ & \text { consist at site } \end{aligned}$   consist at site		Avg Total Steps		Avg		Avg				
Siteld	Map	Site	YMT	Total	$\begin{gathered} \text { Travel } \\ \text { Hrs } \end{gathered}$	Site	YMT	Total Time	$\begin{gathered} \text { Travel } \\ \text { Hrs } \end{gathered}$	Site	YMT	Total Time	$\begin{gathered} \text { Travel } \\ \text { Hrs } \end{gathered}$	Site	Std Dev	Std Dev\%	YMT	Std Dev	Std Dev\%	$\begin{array}{\|c} \hline \begin{array}{c} \text { Total Time } \\ \text { Steps } \end{array} \\ \hline \end{array}$	Std Dev	Std Dev\%	Travel Hrs	Site	Site \%	YMT	Yмт\%	Travel	Travel \%	Site				
CPRT	NWtruck	8	15	7	56	9	17	8	64	8	15	7	56	8.33	0.58	7\%	15.67	1.15	7\%	7.33	0.58	8\%	58.67	1.33	19\%	2.00	15\%	0.67	10\%	5.33				
GINT	NEtruck	11	22	11	88	10	20	10	80	11	22	11	88	${ }^{10.67}$	0.58	5\%	21.33	1.15	5\%	10.67	0.58	5\%	85.33	${ }^{-0.33}$	-3\%	0.00	0\%	0.33	3\%	2.67				
hant	NWWruck		12		32	7	12	5	40	8	13	5	40	7.67	0.58	8\%	12.33	0.58	5\%	4.67	0.58	12\%	37.33	-0.33	-4\%	0.67	6\%	1.00	27\%	8.00				
INLT	NWWruck	9	12	3	24	8	11	3	24	8	11	3	24	8.33	0.58	7\%	11.33	0.58	5\%	3.00	0.00	0\%	24.00	0.33	4\%	0.00	0\%	-0.33	-10\%	-2.67				
IPT	NEtruck	10	21	11	88	11	22	11	88	12	22	10	80	11.00	1.00	9\%	21.67	0.58	3\%	10.67	0.58	5\%	85.33	0.67	6\%	1.33	7\%	0.67	7\%	5.33				
LACT	MWruck		13	10	56	8	17	13	72	8	16		64	7.33	1.15	16\%	15.33	2.08	14\%	8.00	1.00	13\%	64.00	0.00	0\%	0.67	5\%	0.67	9\%	5.33				
CRYT	SEtruck	13	23	10	80	11	24	13	104	12	22	10	80	12.00	1.00	8\%	23.00	1.00	4\%	11.00	1.73	16\%	88.00	1.00	9\%	0.00	0\%	-1.00	-8\%	-8.00				
DCCT	MWitruck	9	16	7	56	12	18	,	48	11	19		64	10.67	1.53	14\%	17.67	1.53	9\%	7.00	1.00	14\%	56.00	-0.33	-3\%	0.67	4\%	1.00	17\%	8.00				
CLIT	MWtruck	10	18	8	64	9	16	7	56	9	16	7	56	9.33	0.58	6\%	16.67	1.15	7\%	7.33	0.58	8\%	58.67	1.67	22\%	2.67	19\%	1.00	16\%	8.00				
TPT	SEtruck	11	25	14	112	11	24	13	104	11	25	14	112	11.00	0.00	0\%	24.67	0.58	2\%	13.67	0.58	4\%	109.33	0.00	0\%	-0.33	-1\%	-0.33	-2\%	-2.67				


	Table G-5. Timing Test for TSM Version 6.0 in SimCAD ${ }^{\text {T }} 7.1$																																		
	$\begin{gathered} \text { Test1 } \\ \text { Pause Time in Time Steps } \end{gathered}$						$\begin{gathered} \text { Test2 } \\ \text { Pause Time in Time Steps } \end{gathered}$				$\begin{gathered} \text { Test3 } \\ \text { Pause Time in Time Steps } \end{gathered}$				V6 in Version 7.1 ${ }^{\text {T }}$ TSM_V6.007_71 _timelesting.SIM										Difference (V6 in 7.1)-(V5 in 7.1)										
							$\begin{array}{l}\text { Average Steps } \\ \text { to make } \\ \text { consist at site }\end{array}$	$\begin{array}{\|c} \hline \text { Avg Total } \\ \text { Steps } \end{array}$							$\begin{array}{\|l} \text { Run Averages } \\ \text { Travel Steps } \end{array}$			Average	$\begin{array}{\|l} \hline \text { Average Steps } \\ \text { to make } \\ \text { consist at site } \end{array}$		$\begin{array}{\|c\|} \hline \text { Avg Total } \\ \text { Steps } \\ \hline \end{array}$		Run AveragesTravel Steps		Average										
	Siteld	Map	Site	NVR	$\begin{gathered} \text { Travel } \\ \text { TimeSteps } \end{gathered}$	Travel Hrs					Site	NVR	$\begin{gathered} \text { Travel } \\ \text { TimeSteps } \end{gathered}$	Travel Hrs	Site	NVR	$\begin{gathered} \text { Travel } \\ \text { TimeSteps } \end{gathered}$	Travel Hrs		Std Dev	Std Dev\%	NVR	Std Dev	Std Dev\%	vel Time Ste	Sta Dev	Std Dev\%	Travel Hrs	Site	Site \%	NVR	NVR \%	Travel		Travel Hrs
	bRAR	MWrail	15	25	10	80	16	28	12	96	15	24	${ }_{9}$	72	${ }_{15} 15.33$	${ }^{\text {che }}$	4\%	25.67	${ }_{2} .08$	8\%	10.33	1.53	15\%		-0.33	-2\%	${ }^{\text {N0, }} \mathbf{-}$	-1\%	Travel	0\%					
	BYRR	MWrail	15	24	9	72	16	27	11	88	16	26	10	80	15.67	0.58	4\%	${ }_{25.67}^{2507}$	1.53 1.8	6\%	10.00	1.00	10\%	88.00	${ }_{0}^{0.33}$	2\%	${ }^{-0.67}$	-3\%	-1.00	-9\%	${ }_{-8.00}^{0.00}$				
	LIMR	NErail	16	33	17	136	13	29	16	128	15	31	16	128	14.67	1.53	10\%	31.00	2.00	6\%	16.33	0.58	4\%	130.67	0.00	0\%	1.00	3\%	1.00	7\%	8.00				
	PEAHH	NErail	31	46	15	120	35	49	14	112		47	14	112	33.00	2.00	6\%	47.33	1.53	3\%	(14.33)	0.58	4\%	114.67	${ }^{-1.33}$	-4\%	-1.67	-3\%	-0.33	-2\%	${ }_{-2.67}$				
	CGSR	NWrail	15	22	7	56	15	23	8	64	15	22	7	56	15.00	0.00	0\%	22.33	0.58	3\%	7.33	0.58	8\%	58.67	1.00	7\%	0.67	3\%	-0.33	-4\%	${ }_{-2.67}$				
	HANR	NWrail	18	25	7	56	17	25	8	64	15	22	7	56	16.67	1.53	9\%	24.00	1.73	7\%	${ }^{7.33}$	0.58	8\%	58.67	${ }^{-1.00}$	-6\%	${ }^{-1.67}$	-6\%	-0.67	-8\%	-5.33				
	BFB	SErail	33	45	12	96	35	47	12	96	37	50	13	104	35.00	2.00	6\%	47.33	2.52	5\%	12.33	0.58	5\%	98.67	2.00	6\%	1.33	3\%	-0.67	-5\%	-5.33				
	SUMR	SErail	14	28	14	112	14	27	13	104	14	29	15	120	14.00	0.00	0\%	28.00	1.00	4\%	114.00	1.00	7\%	112.00	${ }^{2}-0.67$	-5\%	-1.00	-3\%	${ }^{-0.33}$	-2\%	-2.67				
	ANOR	Swrail	14	25	11	88	15	27	12	96		27	11	88	15.00	1.00	7\%	26.33	1.15	4\%	11.33	0.58	5\%	90.67	0.00	0\%	0.33	1\%	0.33	3\%	2.67				
	PVR	sWrail	17	22	5	40	16	21	5	40		20		48	15.67	1.53	10\%	21.00	1.00	5\%	5.33	0.58	11\%	42.67	0.00	0\%	1.00	5\%	1.00	23\%	8.00				
															Average St																				
								Test2							to make			Avg Total			Run Average				to make		Avg Total		Run Avera						
			Time if	in Time			Time in	in Time			Time in	in Time			consist at sit			Steps			Avg Steps			Avg Hrs	consist at		Steps		Avg Steps		Avg Hrs				
	Siteld	Map	Site	YMT	$\begin{gathered} \text { Travel } \\ \text { T Time Steps } \end{gathered}$	$\begin{gathered} \text { Travel } \\ \text { Hrs } \end{gathered}$	Site	YMt $T$	$\begin{gathered} \text { Travel } \\ \text { Time Steps } \end{gathered}$	$\begin{aligned} & \text { Travel } \\ & \text { Hrs } \end{aligned}$	Site	YMT T	$\begin{gathered} \text { Travel } \\ \text { Time Steps } \end{gathered}$	$\begin{gathered} \text { Travel } \\ \text { Hrs } \end{gathered}$	Site	Std Dev	Std Dev\%	YMT	Std Dev	Std Dev\%	vel Time Ste	Std Dev	Std Dev\%	Travel Hrs	Site	Site \%	YMT	Үмт\%	Travel	Travel \%	Travel Hrs				
	CPRT	NWtruck	8	16	8	64	6	12	6	48	9	16	7	56	7.67	1.53	20\%	14.67	2.31	16\%	7.00	1.00	14\%	56.00	0.67	10\%	1.00	7\%	0.33	5\%	2.67				
	GINT	NEtruck	10	21	11	88	11	21	10	80	12	23	11	88	11.00	1.00	9\%	21.67	1.15	5\%	10.67	0.58	5\%	85.33	0.00	0\%	0.33	2\%	0.33	3\%	2.67				
	HANT	NWtruck	8	12	4	32	7	11	4	32		13	5	40	7.67	0.58	8\%	12.00	1.00	8\%	4.33	0.58	13\%	34.67	${ }^{-0.33}$	-4\%	0.33	3\%	0.67	18\%	5.33				
	INLT	NWtruck	9	12	3	24	8	11	3	24	9	12	3	24	8.67	0.58	7\%	11.67	0.58	5\%	3.00	0.00	0\%	24.00	0.67	8\%	0.33	3\%	-0.33	-10\%	-2.67				
	IPT	NEtruck	11	19	8	64	12	21	9	72		20	10	80	11.00	1.00	9\%	20.00	1.00	5\%	9.00	1.00	11\%	${ }^{72.00}$	0.67	6\%	-0.33	-2\%	-1.00	-10\%	-8.00				
	LACT	MWWruck	7	15	8	64	9	15	12	48	10	17	7	56	8.67	1.53	18\%	${ }^{15.67}$	1.15	7\%	7.00	1.00	14\%	56.00	${ }^{1.33}$	18\%	1.00	7\%	-0.33	-5\%	-2.67				
$\square$	${ }_{\text {CRYT }}$	SEtruck	10	22	12   8	96 64	10	22	${ }_{7}^{12}$	96 56	11	24	${ }^{13}$	104	10.33	0.58	6\%	22.67 1767	1.15	5\%	${ }^{12.33}$	0.58	5\%	${ }_{9}^{98.67}$	-0.67	-6\%	-0.33	-1\%	${ }^{0.33}$	3\%	2.67				
1	DCCT	MWtruck	11	19		64	10	17		56	11	17	${ }_{7}$	48	10.67   8.33   1.0	0.58	5\%	17.67	1.15	7\%	7.00	1.00	14\%	56.00	-0.33	-3\%	0.67	4\%	1.00	17\%	8.00				
の	CLIT TPT	MWrruck	${ }_{11}$	${ }_{23}^{15}$	${ }_{12}^{6}$	48 96	${ }_{12}$	16 24	8 12	64 96	$\stackrel{8}{10}$	15 24	7 14	56 112	8.33 11.00	0.58 1.00	7\%	15.33 23.67	0.58 0.58	4\%	7.00 12.67	1.00 1.15	14\%	56.00 1013	0.67 0.00	9\%	1.33 -1.33	10\%	0.67 -133	11\%	5.33 -10.67				

## APPENDIX H

TRANSPORTATION SHIPMENT REPORT GENERATOR VALIDATION

## INTENTIONALLY LEFT BLANK

## APPENDIX H TRANSPORTATION SHIPMENT REPORT GENERATOR VALIDATION

## OBJECTIVE AND BACKGROUND

The TSM report generators are post-processing tools created to facilitate the study and verification of results from TSM model runs. The TSM report generators were designed to automate the analysis of model data and computations through the use of Visual Basis (VB) macros in Microsoft Excel workbooks. This appendix validates the TSM Transportation Shipment Report Generator (TSRG). The TSRG provides information on:

- MTU (Metric Tonnes of Uranium) that traveled by rail and truck through each of the USA states,
- MTU that traveled by rail and truck through designated US cities,
- shipments that traveled by rail and truck through each of the USA states, and
- shipments that traveled by rail and truck through the designated US cities.

The TSRG also includes reference information for the locations traveled through by shipments from the TSM reactor sites to the repository. The reference worksheets list the TSM reactor sites and the corresponding routes that include key locations, US states in the routes and US cities in the routes. This information is also validated as described in this appendix.

## VALIDATION METHOD

## Results Worksheets

To verify the accuracy of the implementation, the validation process manually applied functions and formulas at the Excel worksheet cell level to compare to the VB results. The workbooks with the manual checks are attached to this report.

The validation was based on the 29B case from the file TSM_V30J2_Scn29B_russ_082605.zip. The input data is from Simdata file TSM_V3.0J2_Scn29B.simdata, mdb file TSM_Scn29B.mdb, and Initial State file IS_Scn29B_LE104_DOE_WO_082205.xls found in TSM_V30J2_Scn29B_russ_082605.zip.

To verify results, validation columns are added next to the columns of the worksheet generated by the VB. The inserted columns contain manually extracted data or the applied computation formula. The applied formula is not just a repeat of the formula contained in the macro or cells; the validation process considers what the desired computation and applies a new formula independently. A visual check is then made to compare results between the columns. This validates that the data was properly extracted from the results database and that the VB is performing the desired analysis.

Original columns of the generator have a white background. Validation columns have a colored background. In each worksheet, comment boxes provide clarification for the calculations. An explanation of colors is as follows:

Blue Indicates values extracted from the selected input file or reference worksheet.
Green Represents results of the validation.
Yellow Identifies data converted to 1s and 0s for comparison to reference file or worksheet.

A description of each step of the result worksheet validation procedure is described in Figure H1

## Reference Worksheets

The Reference Worksheets were generated from Excel files that are based on routing data from the text files ec_n15.prn and ec_n15b.prn. The ec_n15b.prn file contains rail routes that include barge transportation. Truck route files were extracted from the file belt_1.prn. The validation was done by manually checking the Reference Worksheet entries to the original text file information and in the transportation calculation that supports Version 4 of the TSM (BSC 2006a).

## USE OF COMPUTER SOFTWARE AND MODELS

In addition to the computer software listed in Section 4.0, the TSRG used these items:

- TSM Interim Version 3.0J2 (included in run files attached to this report). Version 3.0J2 was issued as Version 4.0. The minor revisions to routes and processes and in Version 5.0 and Version 6.0 would not have an impact on the validation.
- SimCAD ${ }^{\text {TM }}$ Pro Data Analyzer
- MS EXCEL 2003
- MS Access 2003
- TSM Transportation Shipment Report Generator 1-5


Figure H-1. Results Worksheet Validation Process Flowchart

## VALIDATION RESULTS

The validated results are in the file "TSM Transportation Shipment Report Generator_050807_validation.xls". A generator worksheet "passes" validation when the values in the validation columns match the original values in the corresponding columns. Discrepancies found during the validation process are identified as well as the reason for the discrepancy. Table H-1 lists each of the validation worksheets of the report generator and its validation status. Table H-2 lists manual checks to original input information that were performed on the reference sheets as the TSRG was being developed. Results from these checks were used in the final TSRG reference sheet validation in Table H-2. Table H-1 shows all worksheets are validated and the TSRG is ready for use.

Table H-1. Final TSRG Validation Results

TSRG Worksheet	Passed Validation	Input Files and Comments
1. MTU State-Rail	$\checkmark$	TSM_V3.0J2_Scn29B.simdata analyzed with SimdataAnalyzer to do shipments for each siteIS_Scn29B_LE104_DOE_WO_082205.xls for checkinggenerator with pivot.xls used to check the MTU sheets
2. MTU State-Truck	$\checkmark$	
3. MTU City-Rail	$\checkmark$	
14. MTU City-Truck	$\checkmark$	
5. Shipment State-Rail	$\checkmark$	TSM_V3.0J2_Scn29B.simdata analyzed with Simdata Analyzer to do shipments for each site   TSM Transportation Shipment Report Generator_with ref mods_TSRG 012507_TestingJ2_Scn29b.xls See Table H-1, Item 1.
6. Shipment State-Truck	$\checkmark$	
7. Shipment City-Rail	$\checkmark$	
18. Shipment City-Truck	$\checkmark$	
Ref Rail State	$\checkmark$	TSM Transportation Shipment Report Generator_with ref mods_TSRG 012507_TestingJ2_Scn29b.xls See Table H-1, Item 1.
\|Ref Rail City	$\checkmark$	
\|Ref Truck City	$\checkmark$	TSM Transportation Shipment Report   Generator_Scn29b_08_22_05_Gen110806.xIs See   Table H-1, Item 2.
\|Ref Truck State	$\checkmark$	
\|Ref Route Files	$\checkmark$	000-00C-G000-00900-000-00A (BSC 2006a), Appendix B and Appendix C.
\|Ref City	$\checkmark$	Manual check-these are inputs of desired cities.

Table H-2. TSRG Reference Sheet Validation Results
These manually validated hardcopy files have been scanned and are in file App. H TSRG Val notes.pdf. The workbooks in Item 1 and 2 are attachments as listed Table 3. The input files are attachments and are listed in Table 3.

TSRG Worksheet	Passed Validation	Input Files and Comments
-1. TSM Transportation Shipment Report Generator_with ref mods_TSRG 012507_TētingJ2_Scn2 $\overline{9}$ b.xls worksheets:   5. Shipment State-Rail   6. Shipment State-Truck   Sheet Ref Rail State   Sheet Ref Rail City   Hardcopy manual checks- Scanned in	$\checkmark$	000-00C-G000-00900-000-00A (BSC 2006a)   ecn15b.inp (See Section 8.0) edn15.inp (See Section 8.0)   TSM Transportation Shipment Report Generator__Scn29b_08_22_05_Gen110806.xls (For "Ref Rail City" only). See next item in this table)   The worksheets " 5 . Shipment State-Rail" and "6. Shipment State-Truck" used to check Items 5-8 in Table H-1.   The reference sheets in this workbook were manually checked against the files above then the results were cut and pasted into the workbook for the final check above.
-2. TSM Transportation Shipment Report Generator__Scn29b_08_22_05_Gen110806.xls   Sheet Ref Truck State Sheet Ref Truck City   Hardcopy manual checks- Scanned in	$\sqrt{ }$	belt_1.prn

## INTENTIONALLY LEFT BLANK

