Non-Q Design Analysis Cover Sheet

Complete only applicable items.

N/A

QA: Page: 1

1.

Of: 58

2. DESIGN ANALYSIS TITLE								
Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network								
3. DOCUMENT IDENTIFIER (Inclu	ding Rev. No.)	4. REV. NO.	5. TOTAL PAGES					
A0000000-01717-0200-00050	REV 00	REV 00	5658 36 11					
6. TOTAL ATTACHMENTS	7. ATTACHMENT NUMBERS - NO	D. OF PAGES IN EACH 8. SYSTE	MELEMENT					
7	See Section 9 - Total Attachm	ent pages 30 N/A						
	Print Name	Signature	Date					
9. Originator	E. Tuttle	E. Tuttle EB Juttle						
10. Checker	S. Goluoglu	flohigt	11/13/97					
11. Lead Design Engineer	P. Gottlieb	P. Soutich	11/19/97					
12. Department Manager	H.A. Benton	1. altering	- 1.29.98					
13. Remarks								

$\mathcal{N}_{\partial \gamma}$ -Q Design Analysis Revision Record

Complete only applicable items.

1.) | Page: 2

Of: 58

2. DESIGN ANALYSIS TITLE						
Criticality Analysis o	of Pu and U Accumulations in a Tuff Fracture Network					
3. DOCUMENT IDENTIFIER (Inc	sluding Rev. No.}					
A00000000-01717-02	200-00050 REV 00	_				
4. Revision No.	5. Description of Revision					
00	Issued for initial release					

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 3 of 58

Table of Contents

<u>Secti</u>	n P	age
1.	Purpose	4
2.	Quality Assurance	4
3.	Method	4
4.	Design Inputs4.1Material Properties4.2Criteria4.3Assumptions4.4Codes and Standards	4 5 7 7
5.	References	7
6.	Use of Computer Software	8
7.	Design Analysis7.1MCNP Model Description7.2Material Composition Description7.3MCNP Results for Fissile Mixtures with Water7.3.1Results for 0.1 cm Fracture Width7.3.2Results for 0.001 cm Fracture Width7.3.3Results for 0.005 cm Fracture Width7.3.4Results for 0.002 cm Fracture Width7.3.5Results for 0.001 cm Fracture Width7.3.6K _{eff} as a Function of Fracture Width7.3.7Fissile Weight Evaluations for a k_{eff} of 0.937.4MCNP Results for 0.1 cm Fracture Width7.4.1Results for 0.01 cm Fracture Width7.4.2Results for 0.01 cm Fracture Width7.4.3Results for 0.005 cm Fracture Width7.4.4Results for 0.005 cm Fracture Width7.4.5Results for 0.005 cm Fracture Width7.4.6K _{eff} as a Function of Fracture Width7.4.6K _{eff} as a Function of Fracture Width	9 9 20 20 24 29 32 34 36 38 39 39 39 43 47 50 52 54
8.	Conclusions	55
9.	Attachments	58

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 4 of 58

1. Purpose

The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of uranium minerals (soddyite), plutonium oxide (PuO_2), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water or clayey material fraction in the accumulation and the water fraction in the tuff.

2. Quality Assurance

The Quality Assurance (QA) program does not apply to this analysis. The Waste Package Development Department responsible manager has evaluated this activity in accordance with QAP-2-0, *Conduct of Activities*. The *Studies Not Supported by OCRWM* (Ref. 5.1) activity evaluation has determined that work associated with the immobilized Pu task is not subject to *Quality Assurance Requirements and Description* (QARD; Ref 5.2) requirements.

3. Method

The solution method is to use the MCNP4A computer program (CSCI:30006 V4A) to calculate k-effective for criticality safety evaluations.

4. Design Inputs

4.1 Material Properties

The five materials considered in this evaluation are Topopah Spring Welded tuff, soddyite, plutonium oxide, clayey material from degraded HLW glass, and water. The physical parameters of these materials are listed in Table 4-1. It is noted that the weight percents for the tuff do not sum to 1.0. However, the difference is small and will have no significant effect on calculational results.

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 5 of 58

Table 4-1 Material Properties						
Compound	Wt %					
Topopah Spring Welde Dry, $\rho = 2$	Topopah Spring Welded Tuff (Ref. 5.3, p. I-9) Dry, $\rho = 2.247$ g/cm ³					
SiO ₂ 76.827						
Al ₂ O ₃	12.740					
Fe0	0.842					
CaO	0.560					
MgO	0.245					
TiO ₂	0.098					
Na ₂ O	3.593					
K ₂ O	4.930					
P ₂ O ₅	0.015					
MnO	0.067					
Total	99.917					
Soddyite $\rho = 4.7$	(Ref. 5.4) 7 g/cm ³					
$(^{235}UO_2)_2(SiO_4):2H_2O$	100.00					
Plutonium Oz	kide (Ref. 5.5)					
$\rho = 11.4$	46 g/cm ³					
²³⁹ PuO ₂	100.00					
Clayey Material (Ref. 5.3, p. I-21) $\rho = 2.62 \text{ g/cm}^3$						
See Attachments VI and VII						
Water $\rho = 1.00 \text{ g/cm}^3$						
H ₂ O	100.00					

4.2 Criteria

The Engineered Barrier Design Requirements Document (EBDRD; Ref. 5.10) contains several criteria which relate to criticality control. The "TBD" (to be determined) items identified in these criteria will not be carried to the conclusions of this analysis based on the rationale that the conclusions are for preliminary design, and will not be used as input to design documents supporting construction, fabrication, or procurement. A review of the EBDRD identified the following relevant

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 6 of 58

requirements:

The EBDRD requirements 3.2.2.6 and 3.7.1.3.A both indicate that a WP criticality shall not be possible unless at least two unlikely, independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety. These requirements also indicate that the design must provide for criticality safety under normal and accident conditions, and, that the calculated effective multiplication factor (k_{eff}) must be sufficiently below unity to show at least a five percent margin after allowance for the bias in the method of calculation and the uncertainty in the experiments used to validate the methods of calculation. The latter requirement contains a "TBD" at the end.

Controlled Design Assumptions document (CDA) assumption EBDRD 3.7.1.3.A (Ref. 5.11, p. 4-32) clarifies that the above requirement is applicable to only the preclosure phase of the MGDS, in accordance with the current DOE position on postclosure criticality. This assumption also indicates that for postclosure, the probability and consequences of a criticality provide reasonable assurance that the performance objective of 10CFR60.112 is met. While the Nuclear Regulatory Commission (NRC) has not yet endorsed any specific change for postclosure, they have indicated that they agree that one is necessary.

Finally, EBDRD 3.3.1.G indicates that "The Engineered Barrier Segment design shall meet all relevant requirements imposed by 10CFR60." The NRC has recently revised several parts of 10CFR60 which relate to the identification and analysis of design basis events (Ref. 5.12) including the criticality control requirement, which was moved to 60.131(h). These changes are not reflected in the current versions of the EBDRD or the CDA. The change to the criticality requirement simply replaces the phrase "criticality safety under normal and accident conditions" with "criticality safety assuming design basis events."

This analysis contributes to satisfying the above requirements by providing k_{eff} of degraded MIT and ORR fuel This analysis provides information which will be used in probabilistic analyses of postclosure criticality as part of Total System Performance Assessment (TSPA)-Viability Assessment (VA) to demonstrate compliance with the performance objective of §60.112 (or, as appropriate, other applicable performance objectives in effect or proposed by the NRC at the time the TSPA-VA analysis is performed).

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 7 of 58

4.3 Assumptions

- 4.3.1 Based on the inspection of ESF by P. Gottlieb, W. Davis and P. Cloke on July 23, 1997, the worst case fracture density in the walls of an emplacement drift is assumed to be the equivalent of parallel plane spacings of ~3cm in three dimensions. The entire model volume is one meter cube.
- 4.3.2 Only the principle fissile isotopes ²³⁵U and ²³⁹Pu are considered in the composition of the accumulation due to the scoping nature of this evaluation.

4.4 Codes and Standards

Not Applicable. Neutronic design of the waste package is not controlled by codes and standards.

5. **References**

- 5.1 QAP-2-0 Activity Evaluations, ID No. WP-30, Perform Criticality, Thermal, Structural, and Shielding Analyses as Required for DOE Spent Fuel Characterization, Dated 8/3/97, Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O).
- 5.2 Quality Assurance Requirements and Description, DOE/RW-0333P REV 7, U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).
- 5.3 Evaluation of the Potential for Deposition of Uranium/Plutonium from Repository Waste Packages, DI Number: BBA000000-01717-0200-00050 REV. 00, CRWMS M&O.
- 5.4 Roberts, W.L., Rapp, G.R., Jr., and Weber, J., *Encyclopedia of Minerals*, van Nostrad, New York, 1974.
- 5.5 Handbook of Chemistry and Physics, 66th Edition, CRC Press, 1985
- 5.6 *Material Compositions and Number Densities For Neutronics Calculations*, DI Number: BBA000000-01717-0200-00002 REV 00, CRWMS M&O.
- 5.7 Wilson, M.L., et al., Total-System Performance Assessment for Yucca Mountain SNL Second Iteration (TSPA-1993), Volume 1, SAND93-2675, April, 1994.
- 5.8 MCNP-A General Monte Carlo N-Particle Transport Code, Version 4A, LA-12625-M, Los Alamos National Laboratory, November 1993.

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 8 of 58

- 5.9 Software Qualification Report for MCNP4A, CSCI: 30006 V4A, DI Number: 30006-2003 REV 02, CRWMS M&O.
- 5.10 Engineered Barrier Design Requirements Document, YMP/CM-0024, REV 0, ICN 1, Yucca Mountain Site Characterization Project.
- 5.11 Controlled Design Assumptions Document, Document Identifier (DI) Number: B0000000-01717-4600-00032 REV 04, ICN 01, CRWMS M&O.
- 5.12 10 CFR Part 60; Disposal of High-Level Radioactive Wastes in Geologic Repositories; Design Basis Events; Final Rule, U.S. Nuclear Regulatory Commission, Federal Register, Volume 61, Number 234, pp. 64257-64270, December 4, 1996.
- 5.13 Electronic Attachments for A00000000-01717-0200-00050 REV 00, Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network, Colorado Backup Tape, RPC Batch Number MOY-980129-02, CRWMS M&O.

6. Use of Computer Software

The calculation of effective multiplication factor was performed with the MCNP4A (Ref. 5.8) computer code, CSCI: 30006 V4A. MCNP4A calculates k_{eff} for a variety of geometric configurations with neutron cross sections for elements and isotopes described in the Evaluated Nuclear Data File version B-V (ENDF-B/V). MCNP4A is appropriate for the geometries and materials required for these analyses. The calculations using the MCNP4A software were executed on a Hewlett-Packard 9000 Series 735 workstation. The software qualification of the MCNP4A software, including problems related to calculation of k-effective for fissile systems, is summarized in the Software Qualification Report for the Monte Carlo N-Particle code (Ref. 5.9). The MCNP4A software used. Access to and use of the MCNP4A software for this analysis was granted by Software Configuration Management and performed in accordance with the QAP-SI series procedures. Inputs and outputs for the MCNP4A software are included as attachments (see Section 9.2) as described in the following design analysis.

The computation of number densities was performed with Microsoft Excel Version 7.0. Microsoft Excel 7.0 was executed on an IBM PC compatible personal computer. Microsoft Excel 7.0 was used simply to provide data manipulation for the analyses and is considered Computational Support Software. These files are included as attachments (see Section 9.3).

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 9 of 58

7. Design Analysis

7.1 MCNP Model Description

Investigations of the thermally altered tuff around a drift indicate fracture spacings of $\sim 3 \text{ cm}$ (centerto-center) in three dimensions. The maximum fracture aperture is expected to be about 0.1 cm. This fracture scenario is approximated with a cubical representation of the fractured tuff. A threedimensional array of cubes, 3 cm on a side, will represent the fracture area. The inner cube (a minimum of 2.900 cm on a side) is filled with porous tuff. The outer cubic shell represents the fracture filled with an aqueous or clayey material mixture of soddyite, PuO₂, or a 50/50 mixture of soddyite and PuO₂. The total fracture region is modeled as a one meter cube of cubic fractures surrounded by a one meter thick, cubic shell reflector of tuff with the same porosity and water content as the inner fractured tuff. The MCNP geometry is shown in Figure 7.1-1.

The evaluation examines material composition effects related to the moderator fraction in both the tuff and the fissile material. The evaluation also determines the effects of the size of the fracture aperture which range from 0.001 to 0.100 cm thick.

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier:A00000000-01717-0200-00050 REV 00Page 10 of 58

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 11 of 58

7.2 Material Composition Description

The MCNP model used for this analysis assumes that the material specifications are in terms of elemental mass densities. Thus, the data in Table 4-1 must be manipulated into the correct format to characterize the addition of moderating material, i.e., water or clayey material, in various proportions. The generation of the elemental mass densities follows the methodology described in "Material Compositions and Number Densities for Neutronics Calculations" (Ref. 5.6). Table 7.2-1 lists the elemental mass densities for the compounds listed in Table 4-1, as well as their elemental weight fraction. The elemental densities in Table 7.2-1 are listed by compound for each material for both primary elements and oxide components. The elemental densities are obtained with the following formula:

$$(\rho_e)_i = \frac{(\rho_m)(w_c)(N_i * amu_i)}{\sum_{\rho_e \in c} \rho_e}$$

where,

 $(\rho_e)_I$ is the elemental density of element I in the compound, g/cm³, ρ_m is the material density, g/cm³, w_c is the weight fraction of the compound in the material, N_i is the number of atoms of the element I in the compound, amu_i is the atomic mass of the element I, and $\Sigma(\rho_e)$ is the summation of all the elemental densities in the compound c.

For example, for the compound SiO_2 in tuff (see Table 7.2-1), the elemental densities are:

$$(\rho_e)_{Si} = \frac{(2.247) (0.76827) (1*28.086)}{1*28.086+2*15.994915} = 0.807062$$

$$(\rho_e)_o = \frac{(2.247) (0.76827) (2*15.994915)}{1*28.086+2*15.994915} = 0.919240$$

The elemental weight fractions for a material are obtained by dividing the elemental density by the sum of the elemental densities of all compounds in the material, i.e.,

$$(W_e)_i = \frac{(\rho_e)_i}{\sum_{\rho_e \in m} \rho_e},$$

Title: Criticality Analys	is of Pu and U Accumulations in a '	Fuff Fracture Network
Document Identifier: A	0000000-01717-0200-00050 REV (00 Page 12 of 58

where W_e is the elemental weight fraction in the material m for element I. For example, the element weight fraction of silicon and oxygen in tuff is:

$$W_{si} = \frac{0.807062}{2.245135} = 0.359472$$
$$W_o = \frac{1.105025}{2.245135} = 0.492186,$$

where the values are obtained from Table 7.2-1. The elemental densities given in Table 7.2-1 are for pure quantities of the materials listed. For the MCNP evaluation, elemental densities of water contained in, or mixed with, the materials are desired. These quantities are obtained from the product of the elemental densities and the volume fractions of the components in the mixture. Results for tuff are listed in Table 7.2-2. It is noted that tuff is a porous material with a porosity of 0.139 (Ref. 5.7). The water that is mixed with the tuff is assumed to reside in the pores of the material. Thus, the elemental densities of the tuff remain at a volume fraction of 1.0 and water, up to a volume fraction of 0.139, can reside in the pores of the tuff. This increases the density of the tuff to the sum of the densities of tuff and the interstitial water in the pores. For this evaluation four volume fractions of water are examined: 0.13, 0.08, 0.04, and 0.00, i.e., dry tuff. For tuff and other materials, the elemental density is found from:

$$(\rho_{e,i})_m = (\rho_e)_i (V_f)_c$$

where,

Waste Package Development

 $(\rho_{e,i})_c$ is the elemental density of element I for compound c in the mixture,

 $(\rho_e)_I$ is the elemental density of the I-th element of compound c,

 $(V_f)_c$ is the volume fraction of compound c in the mixture.

The elemental densities are used in the input file for MCNP to characterize the material composition. It is noted that MCNP sums the elemental densities and normalizes the values to a total sum of 1.0 to obtain an elemental weight fraction. In addition, MCNP requires the specification of the density of the material. The density of the mixture, ρ_m , is just the sum of the elemental densities, i.e.,

$$\rho_m = \sum_i (\rho_{e,i})_m$$

Elemental densities for the mixtures of soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide with water or clayey material were determined using Excel spreadsheets Tuff.Xls and Clay.Xls, respectively. The elemental densities for some configurations are shown in

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 13 of 58

Tables 7.2-2 thru 7.2.4.

Description of Tuff.Xls (spreadsheet for fissile mixtures in water)

- 1) determine no. of atoms of each element in each compound (soddyite, water and PuO₂)
- 2) multiply no. of atoms of each element by the atomic weight
- 3) determine atomic weight for each compound
- 4) determine volume fraction and density for each compound
- 5) calculate fractional density for each element in each compound: vol. fraction x density x weight percent of element in compound
- 6) sum fractional densities for each element Note MCNP input is in g/cc
- Description of Clay.Xls (spreadsheet for fissile mixtures in clayey material)
- 1) determine no. of atoms of each element in clayey material
- 2) determine mass of each compound in clayey material
- 3) determine total volume of clayey material
- 4) determine atomic weight of each compound in clayey material
- 5) determine fractional density for each element in clayey material:

(no. of atoms x mass of compound / total vol. / atomic weight of compound x Avogadros number) for each compound containing that element

6) using Tuff.Xls, determine fractional densities for each element in 100% volume fraction soddyite and PuO_2 (no. of atoms x Avogadros number x density / atomic weight)

7) determine volume fraction for clayey material, soddyite and PuO_2

8) multiply volume fractions by fractional densities for each element - <u>Note</u> - MCNP input is in atomic units

In addition to the base fissile fractions of 0.1, 0.5. and 0.9, additional fractions are included that were necessary to estimate the fraction that would result in a k_{eff} of 0.93 for various mixtures.

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 14 of 58

Table 7.2-1 Elemental Weight Percents									
		Primary Element	Oxygen	Element	Elemental				
Compound	Compound	Density (g/cm ³)	Element		Weight				
	<u>Wt %</u>		Density (g/cm ³)		Fraction				
Tuff, ρ=2.247									
SiO ₂	76.827	0.807062	0.919240	Si	0.359472				
Al ₂ O ₃	12.740	0.151527	0.134740	Al	0.067491				
FeO	0.842	0.014707	0.004212	Fe	0.006551				
CaO	0.560	0.008994	0.003589	Ca	0.004006				
MgO	0.245	0.003321	0.002185	Mg	0.001479				
TiO ₂	0.098	0.001320	0.000882	Ti	0.000588				
Na ₂ O	3.593	0.059898	0.020837	Na	0.026679				
K ₂ O	4.930	0.091967	0.018810	K	0.040963				
P_2O_5	0.015	0.000147	0.000190	P	0.000066				
MnO	0.067	0.001166	0.000339	Mn	0.000519				
total	99.917	1.140109	1.140109 1.105025		0.492186				
		245135	total	1.000000					
		Water, p	=1.000						
H ₂ O	100	0.111915	0.888085	Н	0.111915				
total	100	0.111915	0.888085	0	0.888085				
		sum =	= 1.0	total	1.0				
	_								
	<u></u> _	Soddyite	, ρ=4.7						
$((^{235}UO_2)_2)$	100	3.336704	0.454130	²³⁵ U	0.709937				
SiO ₄):2H ₂ O		0.199356	0.454130	Si	0.042416				
		0.028614	0.227065	H	0.006088				
total	100	3.564674	1.135326	0	0.241559				
		sum =	= 4.7	total	1.0				
$PuO_{2}, \rho = 11.46$									
²³⁹ PuO ₂	100	10.107429	1.352571	²³⁹ Pu	0.881975				
total	100	10.107429	1.352571	0	0.118025				
		sum =	11.46	total	1.0				

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 15 of 58

Table 7.2-2 Soddyite/Water Mixture Elemental Densities									
Element	MCNP.ID		Elemental Density, g/cm ³						
Soddyite volum	e fraction =	1.0	0.1	0.5	0.9	0.35	0.36		
²³⁵ U	92235.50C	3.336704	0.333670	1.668352	3.003034	1.167846	1.201213		
Si	14000.50C	0.199356	0.019936	0.099678	0.179420	0.069774	0.071768		
H	1001.50C	0.028614	0.002861	0.014307	0.025753	0.010015	0.010301		
0	8016.50C	1.135326	0.113533	0.567663	1.021793	0.397364	0.408717		
Water volume	fraction =	1.0	0.9	0.5	0.1	0.65	0.64		
Н	1001.50C	0.111915	0.100723	0.055957	0.011191	0.072745	0.071626		
0	8016.50C	0.888085	0.799277	0.444043	0.088809	0.577255	0.568374		
H(total)	1001.50C		0.103585	0.070265	0.036944	0.082760	0.081927		
O(total)	8016.50C		0.912809	1.011706	1.110602	0.974619	0.977092		
I	Density =		1.370	2.850	4.330	2.295	2.332		

Table 7.2-2 (cont.) Soddyite/Water Mixture Elemental Densities										
Element	MCNP.ID		Elemental Density, g/cm ³							
Soddyite volu	ume fraction=	0.44	0.46	0.71	0.72	0.98				
²³⁵ U	92235.50C	1.468150	1.534884	2.369060	2.402427	3.269970				
Si	14000.50C	0.087716	0.091704	0.141543	0.143536	0.195369				
H	1001.50C	0.012590	0.013163	0.020316	0.020602	0.028042				
0	8016.50C	0.499543	0.522250	0.806081	0.817435	1.112620				
Water volur	ne fraction =	0.56	0.54	0.29	0.28	0.02				
Н	1001.50C	0.062672	0.060434	0.032455	0.031336	0.002238				
0	8016.50C	0.497328	0.479566	0.257545	0.248664	0.017762				
H(total)	1001.50C	0.075263	0.073597	0.052772	0.051938	0.030280				
O(total)	8016.50C	0.996871	1.001816	1.063626	1.066099	1.130381				
Dens	sity =	2.628	2.702	3.627	3.664	4.626				

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 16 of 58

٠

Table 7.2-3 Plutonium Oxide/Water Mixture Elemental Densities									
Element	MCNP.ID		Elemental Density, g/cm ³						
PuO, volun	ne fraction =	1.0	0.1	0.5	0.9	0.06	0.07		
²³⁹ Pu	94239.55C	10.107429	1.010743	5.053715	9.096686	0.606446	0.707520		
0	8016.50C	1.352571	0.135257	0.676285	1.217314	0.081154	0.094680		
H_2O volume fraction =		1.0	0.9	0.5	0.1	0.94	0.93		
Н	1001.50C	0.111915	0.100723	0.055957	0.011191	0.105200	0.104081		
0	8016.50C	0.888085	0.799277	0.444043	0.088809	0.834800	0.825919		
O(total)	8016.50C		0.934534	1.120328	1.306122	0.915954	0.920599		
Density =			2.046	6.230	10.414	1.6276	1.7322		

Table 7.2-3 (cont.) Plutonium Oxide/Water Mixture Elemental Densities									
Element	MCNP.ID		Elemental Density, g/cm ³						
PuO ₂ volum	ne fraction =	0.08	0.11	0.12	0.13	0.15	0.16		
²³⁹ Pu	94239.55C	0.808594	1.111817	1.212892	1.313966	1.516114	1.617189		
0	8016.50C	0.108206	0.148783	0.162308	0.175834	0.202886	0.216411		
H ₂ O volum	e fraction =	0.92	0.89	0.88	0.87	0.85	0.84		
Н	1001.50C	0.102962	0.099604	0.098485	0.097366	0.095128	0.094009		
0	8016.50C	0.817038	0.790396	0.781515	0.772634	0.754872	0.745991		
O(total)	8016.50C	0.925244	0.939179	0.943823	0.948468	0.957758	0.962403		
Dei	nsity =	1.8368	2.1506	2.2552	2.3598	2.569	2.6736		

T	Table 7.2-3 (cont.) Plutonium Oxide/Water Mixture Elemental Densities								
Element	MCNP.ID		Elemental Density, g/cm ³						
PuO ₂ volum	ne fraction =	0.31	0.32	0.38	0.39	0.63	0.64		
²³⁹ Pu	94239.55C	3.133303	3.234377	3.840823	3.941897	6.367680	6.468755		
0	8016.50C	0.419297	0.432823	0.513977	0.527503	0.852120	0.865645		
H ₂ O volum	e fraction =	0.69	0.68	0.62	0.61	0.37	0.36		
Н	1001.50C	0.077221	0.076102	0.069387	0.068268	0.041409	0.040289		
0	8016.50C	0.612779	0.603898	0.550613	0.541732	0.328591	0.319711		
O(total)	8016.50C	1.032076	1.036721	1.064590	1.069235	1.180711	1.185356		
De	nsity =	4.2426	4.3472	4.9748	5.0794	7.5898	7.6944		

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 17 of 58

Tal	Table 7.2-3 (cont.) Plutonium Oxide/Water Mixture Elemental Densities							
Element	MCNP.ID		I	Elemental D	ensity, g/cn	n ³		
PuO ₂ volum	e fraction =	0.78	0.79	0.91	0.92	0.1162	0.1446	
²³⁹ Pu	9 <u>42</u> 39.55C	7.883795	7.984869	9.197761	9.298835	1.174520	1.461477	
0	8016.50C	1.055005	1.068531	1.230839	1.244365	0.157174	0.195574	
H ₂ O volum	e fraction =	0.22	0.21	0.09	0.08	0.8837964	0.8554057	
H	1001.50C	0.024621	0.023502	0.010072	0.008953	0.098910	0.095733	
0	8016.50C	0.195379	0.186498	0.079928	0.071047	0.784886	0.759673	
O(total)	8016.50C	1.250384	1.255029	1.310767	1.315412	0.942060	0.955247	
Der	nsity =	9.1588	9.2634	10.5186	10.6232	2.2155	2.5125	

Table 7.2-4 Soddyite, Plutonium Oxide, Water Mixture Elemental Densities								
Element	MCNP ID	MCNP ID Elemental Density, g/cm ³						
Soddyite volu	me fraction =	1.0	0.05	0.25	0.45	0.055	0.06	
²³⁵ U	92235.50C	3.336704	0.166835	0.834176	1.501517	0.183519	0.200202	
Si	14000.50C	0.199356	0.009968	0.049839	0.089710	0.010965	0.011961	
Н	1001.50C	0.028614	0.001431	0.007154	0.012876	0.001574	0.001717	
0	8016.50C	1.135326	0.056766	0.283832	0.510897	0.062443	0.068120	
PuO ₂ volum	e fraction =	1.0	0.05	0.25	0.45	0.055	0.06	
²³⁹ Pu	94239.55C	10.107429	0.505371	2.526857	4.548343	0.555909	0.606446	
0	_8016.50C	1.352571	0.067629	0.338143	0.608657	0.074391	0.081154	
Water volun	ne fraction =	1.0	0.90	0.50	0.10	0.89	0.88	
Н	1001.50C	0.111915	0.100723	0.055957	0.011191	0.099604	0.098485	
0	8016.50C	0.888085	0.799277	0.444043	0.088809	0.790396	0.781515	
H(total)	1001.50C		0.102154	0.063111	0.024068	0.101178	0.100202	
O(total)	8016.50C		0.923671	1.066017	1.208362	0.927230	0.930789	
	Density =		1.708	4.540	7.372	1.779	1.850	

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Page 18 of 58 Document Identifier: A0000000-01717-0200-00050 REV 00

Table 7.2-4	Table 7.2-4 (cont.) Soddyite, Plutonium Oxide, Water Mixture Elemental Densities								
Element	MCNP.ID		Elemental Density, g/cm ³						
Soddyite volum	e fraction =	0.065	0.105	0.11	0.125	0.13	0.27		
²³⁵ U	92235.50C	0.216886	0.350354	0.367037	0.417088	0.433772	0.900910		
Si	14000.50C	0.012958	0.020932	0.021929	0.024919	0.025916	0.053826		
Н	1001.50C	0.001860	0.003005	0.003148	0.003577	0.003720	0.007726		
0	8016.50C	0.073796	0.119209	0.124886	0.141916	0.147592	0.306538		
PuO ₂ volume	fraction =	0.065	0.105	0.11	0.125	0.13	0.27		
²³⁹ Pu	94239.55C	0.656983	1.061280	1.111817	1.263429	1.313966	2.729006		
0	8016.50C	0.087917	0.142020	0.148783	0.169071	0.175834	0.365194		
Water volume	fraction =	0.87	0.79	0.78	0.75	0.74	0.46		
H	1001.50C	0.097366	0.088413	0.087294	0.083936	0.082817	0.051481		
0	8016.50C	0.772634	0.701587	0.692706	0.666064	0.657183	0.408519		
H(total)	1001.50C	0.099226	0.091417	0.090441	0.087513	0.086537	0.059207		
O(total)	8016.50C	0.934347	0.962816	0.966375	0.977051	0.980610	1.080251		
Density	y =	1.920	2.487	2.558	2.770	2.841	4.823		

Table 7.2-4	Table 7.2-4 (cont.) Soddyite, Plutonium Oxide, Water Mixture Elemental Densities								
Element	MCNP.ID		Elemental Density, g/cm ³						
Soddyite volu	me fraction =	0.275	0.33	0.335	0.39	0.395	0.49		
²³⁵ U	92235.50C	0.917594	1.101112	1.117796	1.301315	1.317998	1.634985		
Si	14000.50C	0.054823	0.065787	0.066784	0.077749	0.078745	0.097684		
Н	1001.50C	0.007869	0.009443	0.009586	0.011160	0.011303	0.014021		
0	8016.50C	0.312215	0.374658	0.380334	0.442777	0.448454	0.556310		
PuO ₂ volume	e fraction =	0.275	0.33	0.335	0.39	0.395	0.49		
²³⁹ Pu	94239.55C	2.779543	3.335452	3.385989	3.941897	3.992435	4.952640		
0	8016.50C	0.371957	0.446348	0.453111	0.527503	0.534265	0.662760		
Water volum	e fraction =	0.45	0.34	0.33	0.22	0.21	0.02		
Н	1001.50C	0.050362	0.038051	0.036932	0.024621	0.023502	0.002238		
0	8016.50C	0.399638	0.301949	0.293068	0.195379	0.186498	0.017762		
H(total)	1001.50C	0.058231	0.047494	0.046518	0.035781	0.034805	0.016259		
O(total)	8016.50C	1.083810	1.122955	1.126514	1.165658	1.169217	1.236831		
Densi	ity =	4.894	5.673	5.744	6.522	6.593	7.938		

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 19 of 58

Table 7.2-4 (cont.)	Table 7.2-4 (cont.) Soddyite, Plutonium Oxide, Water Mixture Elemental Densities						
Element	MCNP.ID	Elemental Density, g/cm ³					
Soddyite volu	me fraction =	0.087425	0.10875				
²³⁵ U	92235.50C	0.291711	0.362867				
Si	14000.50C	0.017429	0.021680				
Н	1001.50C	0.002502	0.003112				
0	8016.50C	0.099256	0.123467				
PuO ₂ volum	e fraction =	0.087425	0.10875				
²³⁹ Pu	94239.55C	0.883642	1.099183				
0	8016.50C	0.118248	0.147092				
Water volun	ne fraction =	0.82515	0.7825				
Н	1001.50C	0.092347	0.087573				
0	8016.50C	0.732803	0.694927				
H(total)	1001.50C	0.094848	0.090685				
O(total)	8016.50C	0.950308	0.965485				
dens	ity =	2.238	2.540				

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 20 of 58

7.3 MCNP Results for Fissile Mixtures with Water

The results for various fracture contents and widths are provided in this section for fissile mixtures with water. The results are categorized by fracture width and fracture content.

7.3.1 Results for 0.1 cm Fracture Width

Tables 7.3-1, 7.3-2, and 7.3-3 list the results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide for fracture widths of 0.1 cm. The evaluation of the 50/50 mixture of soddyite and plutonium oxide in water provides results bracketed by those of soddyite and plutonium oxide. The tables cover a range of water volume fractions in the tuff for the fissile volume fractions required for a k_{eff} of 0.93. The results are fairly consistent for each fissile material with the volume fraction increasing as the amount of water in the tuff decreases. For soddyite they range from 3.1% to 3.8%, for plutonium oxide they range from .57% to .64% and for the 50/50 mixture of soddyite and plutonium oxide they range from .96% to 1.08%.

Design Analysis

 Waste Package Development
 Design A

 Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network
 Design A
 Document Identifier: A0000000-01717-0200-00050 REV 00 Page 21 of 58

	Table 7	.3-1 Soddyite MCNP	Results in	0.1 cm Wid	e Fracture			
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
13 Volume Percent Interstitial Water in Tuff								
0.030	9.68	p87s03.0	0.9164	0.0021	0.0036	571.1		
0.031	10.00	p87s031.0	0.9270	0.0014	0.0036	553.9		
0.0312	10.07	linear interpolation	0.9300	-	-	-		
0.032	10.33	p87s032.o	0.9398	0.0018	0.0037	535.7		
0.040	12.91	p87s04.0	1.0266	0.0015	0.0044	426.8		
		8 Volume Percent I	nterstitial W	ater in Tuff				
0.030	9.68	p92s03.0	0.9023	0.0020	0.0039	449.2		
0.0322	10.39	linear interpolation	0.9300	-	-	-		
0.034	10.97	p92s034.0	0.9536	0.0020	0.0042	395.3		
0.035	11.29	p92s035.0	0.9571	0.0020	0.0046	_384.8		
0.040	12.91	p92s04.o	1.0089	0.0017	0.0051	335.4		
		4 Volume Percent I	nterstitial W	ater in Tuff	•			
0.030	9.68	p96s03.o	0.8817	0.0019	0.0048	351.9		
0.0347	11.20	linear interpolation	0.9300	-	-	_		
0.035	11.29	p96s035.0	0.9322	0.0018	0.0053	301.2		
0.040	12.91	p96s04.o	0.9818	0.0026	0.0054	262.4		
0.050	16.13	p96s05.0	1.0592	0.0026	0.0064	209.0		
		0 Volume Percent 1	Interstitial W	/ater in Tuff				
0.030	9.68	p100s03.o	0.8527	0.0019	0.0054	254.7		
0.0380	12.26	linear interpolation	0.9300	-	-	-		
0.040	12.91	p100s04.o	0.9491	0.0021	0.0060	189.6		
0.050	16.13	p100s05.o	1.0157	0.0020	0.0070	150.7		

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 22 of 58

,	Table 7.3-2 Plutonium Oxide MCNP Results in 0.1 cm Wide Fracture								
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio			
	13 Volume Percent Interstitial Water in Tuff								
0.005	4.89	p87p005.o	0.8783	0.0016	0.0032	1161.0			
0.0057	5.57	linear interpolation	0.9300						
0.006	5.86	p87p006.o	0.9522	0.0020	0.0038	963.5			
0.010	9.77	p87p01.o	1.1388	0.0018	0.0056	579.9			
		8 Volume Percent I	nterstitial W	ater in Tuff	· · · · · · · · · · · · · · · · · · ·				
0.005	4.89	p92p005.o	0.8719	0.0020	0.0039	915.2			
0.0058	5.67	linear interpolation	0.9300						
0.006	5.86	p92p006.o	0.9434	0.0019	0.0042	759.5			
0.010	9.77	p92p01.o	1.1184	0.0020	0.0057	456.9			
		4 Volume Percent I	nterstitial W	ater in Tuff					
0.005	4.89	р96р005.0	0.8631	0.0018	0.0043	718.9			
0.006	5.86	p96p006.o	0.9279	0.0023	0.0049	596.4			
0.00604	5.90	linear interpolation	0.9300						
0.007	6.84	р96р007.0	0.9793	0.0025	0.0048	512.4			
0.010	9.77	p96p01.o	1.0927	0.0020	0.0066	358.6			
		0 Volume Percent I	nterstitial W	ater in Tuff					
0.005	4.89	p100p005.o	0.8491	0.0016	0.0046	522.9			
0.006	5.86	p100p006.o	0.9129	0.0016	0.0054	433.7			
0.0064	6.26	linear interpolation	0.9300						
0.007	6.84	p100p007.o	0.9584	0.0017	0.0060	372.5			
0.010	9.77	p100p01.o	1.0634	0.0016	0.0070	260.5			

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 23 of 58

	Table 7.3-3 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.1 cm Wide Fracture									
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio				
	13 Volume Percent Interstitial Water in Tuff									
0.009	5.85	p87sp009.o	0.9061	0.0025	0.0034	969.8				
0.0096	6.24	linear interpolation	0.9300	-	1	-				
0.010	6.50	p87sp01.0	0.9483	0.0013	0.0038	867.0				
0.020	13.00	p87sp02.0	1.1945	0.0024	0.0061	431.7				
	8 Volume Percent Interstitial Water in Tuff									
0.009	5.85	p92sp009.o	0.8989	0.0020	0.0036	764.2				
0.0099	6.44	linear interpolation	0.9300	-	-	-				
0.010	6.50	p92sp01.0	0.9329	0.0018	0.0041	683.2				
0.020	13.00	p92sp02.0	1.1641	0.0015	0.0071	339.8				
		4 Volume Percent I	nterstitial W	ater in Tuff		_				
0.010	6.50	p96sp01.0	0.9207	0.0022	0.0043	536.3				
0.0102	6.63	linear interpolation	0.9300	-	-	-				
0.011	7.15	p96sp011.o	0.9590	0.0019	0.0049	487.4				
0.012	7.80	p96sp012.o	0.9856	0.0018	0.0051	446.6				
0.020	13.00	p96sp02.0	1.1336	0.0017	0.0075	266.4				
		0 Volume Percent I	nterstitial W	ater in Tuff						
0.010	6.50	p100sp01.o	0.9042	0.0022	0.0051	389.7				
0.0108	7.02	linear interpolation	0.9300	-	-	-				
0.011	7.15	p100sp0a.o	0.9351	0.0021	0.0060	354.1				
0.016	10.40	p100sp0f.o	1.0467	0.0020	0.0073	242.7				

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fractu	re Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 24 of 58

7.3.2 **Results for 0.01 cm Fracture Width**

Tables 7.3-4, 7.3-5, and 7.3-6 list the results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide for fracture widths of 0.01 cm. The tables cover a range of fissile mixtures with water and water in the tuff matrix.

The results for soddyite, Table 7.3-4, show a range of k_{eff} values from about 0.48 to 1.20 as the amount of soddyite increase from a volume fraction of 10% to 90% for a water volume fraction of 13% in the tuff. A similar range is seen for 8% and 4% water volume in the tuff with slightly lower k_{eff} values. For no water in the tuff, the k_{eff} 's are considerably lower, but the general trend is the same. To obtain a value of k_{eff} of 0.93, volume fractions about 0.355, 0.438 and 0.722 are required for tuff with 13%, 8% and 4% volume fraction water, respectively. For no water in the tuff, the maximum value of k_{eff} is about 0.705.

For plutonium oxide, the general trend is the same (see Table 7.3-5); however, the values of k_{eff} are significantly higher. They range from about 0.92 to 1.37 for 13% water, 0.91 to 1.28 for 8% water and 0.90 to 1.15 for 4% water. For no water in the tuff, the results are significantly lower. Volume fractions of about 0.062, 0.074 and 0.113 are required to produce a k_{eff} of about 0.93 for tuff water volume fractions of 13%, 8% and 4%, respectively. The case with no water in the tuff has a k_{eff} below 0.93 with a maximum k_{eff} of about 0.923 for 92% plutonium oxide volume fraction in the fracture.

For 50/50 mixture of soddyite and plutonium oxide (see Table 7.3-6) the k_{eff} values range from about 0.91 to 1.34 for a tuff water volume percent of 13% with slightly smaller values for 8% and 4%. For no water in the tuff, the k_{eff} is significantly lower. The fissile mixture volume percent required for a 0.93 k_{eff} are about 0.105, 0.125 and 0.195 for 13%, 8% and 4% tuff water volume fractions, respectively. Without water in the tuff, no values approaching 0.93 are possible.

The trend of decreasing k_{eff} with decreasing water in the tuff could be caused by leakage through the reflector in the model. To assess this possibility, an additional evaluation examined the effect of water in the reflector. Models with a 50/50 mixture of soddyite and PuO₂ fissile volume fraction of 11% and a tuff water volume fraction of 13% in the reflector were evaluated. The results are shown in Table 7.3-7. As is noted, there is no significant k_{eff} change over the cases with 8% and 0% water in the reflector. The small change is about what would be expected for the slight change in fissile volume fraction for the 8% and 0% tuff water fractions. Thus, the trend is controlled by the water content of the tuff within the fracture zone rather than leakage from the region.

Design Analysis

 Waste Package Development
 Design A

 Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network
 Document Identifier: A0000000-01717-0200-00050 REV 00 Page 25 of 58

	Table 7.3-4 Soddyite MCNP Results in 0.01 cm Wide Fracture								
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio			
		13 Volume Percent Int	erstitial Wa	ter in Tuff					
0.10	3.33	t87s10.0	0.4757	0.0010	0.0028	1082.4			
0.35	11.64	t87s35.0	0.9228	0.0016	0.0051	305.0			
0.355	11.81	linear interpolation	0.9300	_	-	-			
0.36	11.97	t87s36.0	0.9363	0.0013	0.0053	296.3			
0.50	16.63	t87s50.0	1.0438	0.0019	0.0067	211.7			
0.90	29.93	t87s90.0	1.2018	0.0022	0.0105	115.0			
		8 Volume Percent Inte	erstitial Wat	er in Tuff					
0.10	3.33	t92s10.o	0.4496	0.0014	0.0033	693.5			
0.438	14.57	linear extrapolation	0.9300	-	-	<u> </u>			
0.44	14.63	t92s44.o	0.9316	0.0020	0.0079	153.0			
0.46	15.30	t92s46.0	0.9463	0.0025	0.0086	146.1			
0.50	16.63	t92s50.o	0.9694	0.0021	0.0085	134.0			
0.90	29.93	t92s90.o	1.1059	0.0024	0.0135	71.8			
		4 Volume Percent Inte	erstitial Wat	er in Tuff	<u></u>	<u>.</u>			
0.10	3.33	t96s10.0	0.4007	0.0010	0.0043	382.6			
0.50	16.63	t96s50.o	0.8540	0.0020	0.0110	71.8			
0.72	23.94	t96s72.o	0.9276	0.0027	0.0140	48.1			
0.722	24.01	linear interpolation	0.9300	-	-	-			
0.73	24.28	t96s73.0	0.9375	0.0026	0.0138	47.4			
0.90	29.93	t96s90.o	0.9689	0.0023	0.0168	37.3			
	·····	0 Volume Percent Inte	erstitial Wat	ter in Tuff					
0.10	3.33	t100s10.0	0.2823	0.0010	0.0068	72.4			
0.50	16.63	t100s50.0	0.6129	0.0019	0.0175	9.8			
0.90	29.93	t100s90.0	0.7022	0.0018	0.0266	2.9			
0.98	32.59	t100s98.o	0.7046	0.0024	0.0293	2.2			

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 26 of 58

T	Table 7.3-5 Plutonium Oxide MCNP Results in 0.01 cm Wide Fracture							
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.06	6.04	t87p06.0	0.9196	0.0020	0.0047	606.1		
0.062	6.25	linear interpolation	0.9300	-	-	-		
0.07	7.05	t87p07.o	0.9727	0.0017	0.0052	519.1		
0.10	10.07	t87p10.o	1.0807	0.0024	0.0068	362.6		
0.50	50.37	t87p50.0	1.3393	0.0023	0.0277	70.4		
0.90	90.66	t87p90.0	1.3747	0.0024	0.0483	38.0		
		8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.07	7.05	t92p07.o	0.9149	0.0023	0.0066	332.6		
0.074	7.45	linear interpolation	0.9300	-	-	-		
0.08	8.06	t92p08.o	0.9556	0.0017	0.0073	290.7		
0.10	10.07	t92p10.o	1.0118	0.0026	0.0081	232.1		
0.50	50.37	t92p50.o	1.2381	0.0029	0.0331	44.3		
0.90	90.66	t92p90.o	1.2805	0.0017	0.0602	23.4		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	10.07	t96p10.o	0.9034	0.0027	0.0109	127.8		
0.11	11.08	t96p11.o	0.9257	0.0023	0.0113	115.9		
0.113	11.38	linear interpolation	0.9300	-	-	-		
0.12	12.09	t96p12.o	0.9419	0.0023	0.0123	106.0		
0.50	50.37	t96p50.o	1.1080	0.0021	0.0410	23.4		
0.90	90.66	t96p90.o	1.1533	0.0025	0.0738	11.9		
		0 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	10.07	t100p10.o	0.6697	0.0022	0.0162	23.6		
0.50	50.37	t100p50.o	0.8625	0.0030	0.0630	2.6		
0.90	90.66	t100p90.o	0.9162	0.0029	0.1054	0.3		
0.91	91.67	t100p91.o	0.9230	0.0022	0.1074	0.3		
0.92	92.68	t100p92.o	0.9234	0.0023	0.1081	0.2		

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 27 of 58

Table 7.3-6 50/50 Mixture of Soddyite and Plutonium Oxide							
	MCNP Results in 0.01 cm wide Fracture						
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.10	6.70	t87sp10.0	0.9111	0.0018	0.0047	543.4	
0.105	7.03	linear interpolation	0.9300	-	•	-	
0.11	7.37	t87sp11.0	0.9483	0.0019	0.0049	493.7	
0.50	33.50	t87sp50.0	1.2907	0.0030	0.0173	105.9	
0.90	60.30	t87sp90.0	1.3351	0.0023	0.0295	57.3	
		8 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	6.70	t92sp10.0	0.8589	0.0020	0.0054	348.0	
0.12	8.04	t92sp12.0	0.9187	0.0024	0.0063	289.4	
0.125	8.37	linear interpolation	0.9300	-	-	-	
0.13	8.71	t92sp13.0	0.9427	0.0025	0.0070	266.9	
0.50	33.50	t92sp50.0	1.1922	0.0023	0.0213	66.8	
0.90	60.30	t92sp90.o	1.2339	0.0022	0.0375	35.6	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	6.70	t96sp10.0	0.7765	0.0021	0.0071	191.8	
0.19	12.73	t96sp19.0	0.9247	0.0024	0.0116	99.3	
0.195	13.06	linear interpolation	0.9300		-	-	
0.20	13.40	t96sp20.0	0.9348	0.0020	0.0119	94.2	
0.50	33.50	t96sp50.0	1.0561	0.0021	0.0266	35.6	
0.90	60.30	t96sp90.0	1.0943	0.0039	0.0463	18.3	
		0 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	6.70	t100sp10.0	0.5819	0.0020	0.0112	35.9	
0.50	33.50	t100sp50.0	0.7937	0.0028	0.0418	4.4	
0.90	60.30	t100sp90.0	0.8419	0.0020	0.0692	94.0	
0.94	62.98	t100sp94.0	0.8527	0.0016	0.0712	0.8	
0.98	65.66	t100sp98.0	0.8533	0.0021	0.0732	0.6	

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 28 of 58

Table 7.3-7 50/50 Mixture of Soddyite and Plutonium Oxide in 0.01 cm Wide Fracture with 11% Fissile Volume Fraction (7.37 kg Fissile Material)								
Reflector H ₂ O Vol %	MCNP Case ID	Vol % H ₂ O Central Region	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
0	t87spy.o	13	0.9741	0.0019	0.0051	493.7		
8	t87spx.o	13	0.9533	0.0019	0.0049	493.7		
13	t87sp11.0	13	0.9483	0.0019	0.0049	493.7		
0	t92spx.o	8	0.9210	0.0020	0.0061	316.4		
8	t92sp11.0	8	0.8903	0.0020	0.0056	316.4		
13	t92spy.o	8	0.8886	0.0022	0.0062	316.4		

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 29 of 58

7.3.3 Results for 0.005 cm Fracture Width

The results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide mixtures filling a 0.005 cm fracture are listed in Tables 7.3-8, 7.3-9, and 7.3-10. The general trend of the data is similar to that for the 0.01 cm wide fracture with higher fissile volume fractions for the same k_{eff} .

	Table 7.3-8 Soddyite MCNP Results in 0.005 cm Wide Fracture						
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.50	8.33	n87s50.0	0.8008	0.0014	0.0048	415.3	
0.71	11.83	n87s71.0	0.9283	0.0015	0.0057	290.7	
0.714	11.89	linear interpolation	0.9300	-	-	•	
0.72	11.99	n87s72.0	0.9325	0.0018	0.0055	286.6	
0.90	14.99	n87s90.o	1.0087	0.0021	0.0064	228.1	
	8 Volume Percent Interstitial Water in Tuff						
0.50	8.33	n92s50.o	0.7427	0.0019	0.0055	259.1	
0.899	14.97	linear interpolation	0.9300		-	-	
0.90	14.99	n92s90.0	0.9305	0.0021	0.0078	141.4	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	8.33	n96s50.0	0.6475	0.0016	0.0071	134.4	
0.90	14.99	n96s90.o	0.8085	0.0028	0.0102	72.1	
0.98	16.32	n96s98.0	0.8227	0.0021	0.0106	65.7	
		0 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	8.33	n100s50.0	0.4266	0.0018	0.0132	9.8	
0.90	14.99	n100s90.o	0.5390	0.0020	0.0180	2.9	

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 30 of 58

Ta	Table 7.3-9 Plutonium Oxide MCNP Results in 0.005 cm Wide Fracture						
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.10	5.05	n87p10.o	0.8479	0.0017	0.0046	704.4	
0.12	6.05	n87p12.o	0.9143	0.0015	0.0051	586.4	
0.125	6.31	linear interpolation	0.9300	-		-	
0.13	6.56	n87p13.o	0.9448	0.0018	0.0055	_541.2	
0.50	25.23	n87p50.o	1.2646	0.0019	0.0149	138.8	
0.90	45.41	n87p90.o	1.3231	0.0022	0.0252	75.9	
	8 Volume Percent Interstitial Water in Tuff						
0.10	5.05	n92p10.o	0.8006	0.0018	0.0051	442.2	
0.15	7.57	n92p15.o	0.9259	0.0024	0.0075	293.9	
0.152	7.67	linear interpolation	0.9300	-	-	-	
0.16	8.07	n92p16.o	0.9484	0.0019	0.0074	275.4	
0.50	25.23	n92p50.o	1.1598	0.0026	0.0172	86.3	
0.90	45.41	n92p90.o	1.2151	0.0029	0.0306	46.8	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	5.05	n96p10.0	0.7194	0.0017	0.0067	232.7	
0.26	13.12	n96p26.0	0.9289	0.0020	0.0137	87.9	
0.262	13.22	linear interpolation	0.9300	-	-	-	
0.27	13.62	n96p27.o	0.9342	0.0019	0.0140	84.5	
0.50	25.23	n96p50.o	1.0176	0.0023	0.0230	44.4	
0.90	45.41	n96p90.o	1.0716	0.0024	0.0397	23.5	
		0 Volume Percent Int	erstitial Wat	er in Tuff			
0.50	25.23	n100p50.o	0.7207	0.0021	0.0372	2.6	
0.90	45.41	n100p90.o	0.7892	0.0028	0.0624	0.3	

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A00000000-01717-0200-00050 REV 00 Page 31 of 58

Table 7.3-10 50/50 Mixture of Soddyite and Plutonium OxideMCNP Results in 0.005 cm Wide Fracture						
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.10	3.36	n87sp10.0	0.6478	0.0014	0.0034	1055.0
0.21	7.05	n87sp21.0	0.92319	0.00184	0.0052	500.6
0.214	7.18	linear interpolation	0.93	-	-	-
0.22	7.38	n87sp22.0	0.94253	0.00200	0.0051	477.6
0.50	16.78	n87sp50.0	1.17436	0.00234	0.0098	208.3
0.90	30.20	n87sp90.0	1.27168	0.00221	0.0160	114.2
		8 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	3.36	n92sp10.0	0.62067	0.00173	0.0037	662.5
0.25	8.39	n92sp25.0	0.91879	0.00166	0.0073	263.1
0.258	8.66	linear interpolation	0.93	-	-	-
0.26	8.72	n92sp26.0	0.93330	0.00216	0.0082	252.7
0.50	16.78	n92sp50.o	1.08224	0.00283	0.0118	129.8
0.90	30.20	n92sp90.o	1.16276	0.00260	0.0202	70.6
	·	4 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	3.36	n96sp10.0	0.56314	0.00160	0.0053	348.9
0.44	14.76	n96sp44.0	0.92732	0.00220	0.0137	76.6
0.444	14.90	linear interpolation	0.93		<u> </u>	
0.45	15.10	n96sp45.0	0.93410	0.00231	0.0135	74.9
0.50	16.78	n96sp50.o	0.95194	0.00228	0.0151	67.0
0.90	30.20	n96sp90.0	1.01926	0.00224	0.0257	35.7
		0 Volume Percent Int	erstitial Wat	er in Tuff	· · · · · · · · · · · · · · · · · · ·	
0.50	16.78	n100sp50.0	0.65109	0.00194	0.0262	4.4
0.90	30.20	n100sp90.0	0.72542	0.00147	0.0407	0.9

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 32 of 58

7.3.4 Results for 0.002 cm Fracture Width

For the 0.002 cm fracture width only plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide cases were evaluated. Further, for these cases only the conditions for a tuff water fraction of 0.13, 0.08 and 0.04 and fissile volume fractions of 0.5 and 0.9 were evaluated. Results for these cases are listed in Tables 7.3-11 and 7.3-12. Due to lower possible fissile mass in the fracture, a significant reduction in k_{eff} is noted.

Table 7.3-11 Plutonium Oxide MCNP Results in 0.002 cm Wide Fracture							
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.31	6.26	h87p31.o	0.9204	0.0018	0.0050	555.3	
0.317	6.40	linear interpolation	0.9300	-	-	-	
0.32	6.46	h87p32.o	0.9341	0.0021	0.0055	537.9	
0.50	10.10	h87p50.o	1.0684	0.0018	0.0072	343.3	
0.90	18.18	h87p90.o	1.2098	0.0023	0.0109	189.6	
		8 Volume Percent Inte	erstitial Wat	er in Tuff			
0.38	7.68	h92p38.o	0.9232	0.0021	0.0074	279.9	
0.388	7.84	linear interpolation	0.9300	-	-	-	
0.39	7.88	h92p39.o	0.9320	0.0022	0.0078	272.6	
0.50	10.10	h92p50.o	0.9938	0.0026	0.0093	212.1	
0.90	18.18	h92p90.o	1.1073	0.0022	0.0144	116.7	
	·	4 Volume Percent Inte	erstitial Wat	er in Tuff	<u></u>		
0.50	10.10	h96p50.o	0.8719	0.0022	0.0121	107.3	
0.72	14.54	h96p72.o	0.9273	0.0027	0.0151	73.7	
0.723	14.61	linear interpolation	0.9300	-		-	
0.73	14.75	h96p73.o	0.9358	0.0025	0.0151	72.6	
0.90	18.18	h96p90.o	0.9575	0.0021	0.0174	58.4	

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 33 of 58

	Table 7.3-12 50/50 Mixture of Soddyite and Plutonium OxideMCNP Results in 0.002 cm Wide Fracture							
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
	_	13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.50	6.72	h87sp50.0	0.9055	0.0019	0.0049	514.5		
0.54	7.25	h87sp54.0	0.9285	0.0017	0.0048	476.1		
0.541	7.27	linear interpolation	0.9300	•	-	-		
0.55	7.39	h87sp55.0	0.9404	0.0023	0.0050	467.4		
0.90	12.09	h87sp90.0	1.0869	0.0021	0.0073	284.3		
		8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.50	6.72	h92sp50.0	0.8511	0.0021	0.0064	318.0		
0.66	8.87	h92sp66.0	0.9290	0.0028	0.0078	240.1		
0.662	8.89	linear interpolation	0.9300		-	-		
0.67	9.00	h92sp67.0	0.9345	0.0021	0.0078	236.5		
0.90	12.09	h92sp90.0	1.0055	0.0023	0.0093	175.2		
	4 Volume Percent Interstitial Water in Tuff							
0.50	6.72	h96sp50.0	0.7514	0.0024	0.0078	161.1		
0.90	12.09	h96sp90.0	0.8775	0.0025	0.0121	88.0		
0.98	13.17	h96sp98.0	0.8960	0.0031	0.0126	80.5		

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 34 of 58

7.3.5 Results for 0.001 cm Fracture Width

For a further reduction in the fracture width, 0.001 cm, with 13%, 8% and 4% water in the tuff a further reduction in k_{eff} is noted as shown in Tables 7.3-13 and 7.3-14.

Table 7.3-13 Plutonium Oxide MCNP Results in 0.001 cm Wide Fracture							
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{erf}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.63	6.37	k87p63.o	0.9234	0.0020	0.0053	542.8	
0.638	6.45	linear interpolation	0.9300	-	-	-	
0.64	6.47	k87p64.o	0.9323	0.0020	0.0052	534.3	
0.90	9.09	k87p90.o	1.0399	0.0023	0.0069	379.2	
		8 Volume Percent Inte	erstitial Wat	er in Tuff			
0.78	7.88	k92p78.o	0.9258	0.0022	0.0075	269.6	
0.784	7.92	linear interpolation	0.9300	-	-	-	
0.79	7.98	k92p79.o	0.9350	0.0019	0.0071	266.1	
0.90	9.09	k92p90.o	0.9646	0.0019	0.0084	233.3	
	4 Volume Percent Interstitial Water in Tuff						
0.90	9.09	k96p90.o	0.8464	0.0020	0.0106	116.7	
0.98	9.90	k96p98.o	0.8601	0.0023	0.0111	106.9	

 Waste Package Development
 Design A

 Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network
 Design A
 Document Identifier: A0000000-01717-0200-00050 REV 00 Page 35 of 58

Table 7.3-14 50/50 Mixture of Soddyite and Plutonium OxideMCNP Results in 0.001 cm Wide Fracture								
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{erf}	σ	Average Energy of Fission (MeV)	H/X Ratio		
	13 Volume Percent Interstitial Water in Tuff							
0.90	6.05	k87sp90.0	0.8640	0.0017	0.0047	568.3		
0.98	6.59	k87sp98.0	0.8999	0.0020	0.0051	521.6		
		8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.90	6.05	k92sp90.o	0.8115	0.0020	0.0065	349.8		
0.98	6.59	k92sp98.0	0.8417	0.0016	0.0059	320.9		
4 Volume Percent Interstitial Water in Tuff								
0.90	6.05	k96sp90.0	0.7145	0.0017	0.0077	175.2		
0.98	6.59	k96sp98.0	0.7392	0.0024	0.0086	160.6		

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 36 of 58

7.3.6 K_{eff} as a Function of Fracture Width

The results listed in the previous tables allow trending of the k_{eff} as a function of fracture width for plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide for 90 volume percent fissile material in water and 13 volume percent water in the tuff. Table 7.3-15 lists the k_{eff} as a function of the fracture width. The trend of the data is illustrated in Figure 7.3-1. For the 50/50 mixture of soddyite and plutonium oxide, a fracture width of about 0.0013 cm is required to obtain a k_{eff} of 0.93. Due to the slope of the PuO₂ curve no estimate is made for the thickness required for a k_{eff} of 0.93 for plutonium oxide.

Table 7.3-15 Plutonium Oxide and 50/50 Mixture of Soddyite/PuO2MCNP Results As a Function of Fracture Width for90 Volume Percent Fissile Material and 13 Volume Percent Water in Tuff								
Fracture Width (cm)	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ				
		Plutonium Oxide						
0.001	9.09	k87p90.o	1.03986	0.00230				
0.002	18.18	h87p90.o	1.20977	0.00228				
0.005	45.41	n87p90.o	1.32308	0.00218				
0.010	90.66	t87p90.0	1.37472	0.00238				
	50/50 Mixture of Soddyite/Plutonium Oxide							
0.001	6.05	k87sp90.o	0.86399	0.00166				
0.0013	-	linear interpolation	0.93	-				
0.002	12.09	h87sp90.0	1.08692	0.00208				
0.005	30.20	n87sp90.0	1.27168	0.00221				
0.010	60.30	t87sp90.0	1.33505	0.00232				
Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 37 of 58

Figure 7.3-1 K_{eff} as a Function of Fracture Width

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 38 of 58

7.3.7 Fissile Weight Evaluations for a k_{eff} of 0.93

The criticality safety criterion can be satisfied with a maximum k_{eff} from MCNP of about 0.93. This section presents an evaluation that determines the k_{eff} of fissile masses of both plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide for a total fissile mass equal to the mass of soddyite that produces a k_{eff} of 0.93.

Table 7.3-16 lists results from a series of cases that examined an equivalent mass of fissile material. The fissile mass of plutonium oxide and the 50/50 mixture of soddyite and plutonium oxide was set equal to the mass of ²³⁵U required to give a k_{eff} of 0.93 (from linear interpolation) in tuff with both 13 and 8 volume percent interstitial water. As seen from the table, the equivalent mass of plutonium oxide is more reactive by about 19% or 16% Δk_{eff} for tuff with 13 and 8 volume fraction interstitial water, respectively. The 50/50 mixture of soddyite and plutonium oxide has Δk_{eff} values about 3% less than for the plutonium oxide mixture. Based upon these results, plutonium oxide mixtures provide the bounding material for the three fissile mixtures examined in this evaluation.

Table 7.3-16 K _{eff} for Equal Fissile Masses, 0.01 cm Fracture Width									
Material	erial Fissile Volume Fissile Mass, MCNP C		MCNP Case ID	k _{eff}	σ				
	Fraction	Kg							
	13 Vo	lume Percent In	terstitial Water in	n Tuff					
Soddyite	0.3520	11.71	Estimated	0.93	-				
Plutonium	0.1162	11.71	t87pue.o	1.12427	0.00192				
Mixture	0.17485	11.71	t87spue.o	1.09043	0.00174				
	8 Vol	ume Percent Int	terstitial Water in	Tuff					
Soddyite	0.4380	14.57	Estimated	0.93	-				
Plutonium	0.1446	14.57	t92pue.o	1.09287	0.00231				
Mixture	0.2175	14.57	t92spue.o	1.06700	0.00222				

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 39 of 58

7.4 MCNP Results for Fissile Mixtures with Clayey Material

The results for various fracture contents and widths are provided in this section for fissile mixtures with clayey material. The results are categorized by fracture width and fracture content.

7.4.1 Results for 0.1 cm Fracture Width

Tables 7.4-1, 7.4-2, and 7.4-3 list the results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide for fracture widths of 0.1 cm. The tables cover a range of water volume fractions in the tuff for the fissile volume fractions required for a k_{eff} of 0.93. The results for each fissile material show the volume fraction increasing as the amount of water in the tuff decreases. For soddyite they range from 3.89% to 27.1%, for plutonium oxide they range from .67% to 9.7% and for the 50/50 mixture of soddyite and plutonium oxide they range from 1.15% to 14.3%.

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 40 of 58

	Table 7.4-1 Soddyite Results in 0.1 cm Wide Fracture							
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent	Interstitial V	Vater in Tuff	£			
0.030	9.68	e87s03.o	0.8440	0.0020	0.0050	323.8		
0.0389	12.55	linear interpolation	0.9300	-	-	-		
0.039	12.58	e87s039.0	0.9310	0.0022	0.0056	249.1		
0.040	12.91	e87s04.0	0.9428	0.0025	0.0058	243.5		
0.100	32.27	e87s10.o	1.2023	0.0021	0.0111	98.0		
		8 Volume Percent I	nterstitial W	ater in Tuff				
0.040	12.91	e92s04.o	0.8716	0.0017	0.0071	150.9		
0.0498	16.07	linear interpolation	0.9300		-			
0.050	16.13	e92s05.o	0.9312	0.0018	0.0084	121.2		
0.100	32.27	e92s10.o	1.1036	0.0022	0.0136	61.2		
		4 Volume Percent I	nterstitial W	ater in Tuff				
0.070	22.59	e96s07.0	0.8917	0.0021	0.0136	44.3		
0.080	25.81	e96s08.0	0.9258	0.0028	0.0140	39.1		
0.082	26.46	linear interpolation	0.9300	-	-	-		
0.090	29.04	e96s09.o	0.9497	0.0027	0.0157	35.0		
0.100	32.27	e96s10.o	0.9641	0.0020	0.0171	31.8		
0.500	161.34	e96s50.o	1.2021	0.0024	0.0674	7.9		
	<u>.</u>	0 Volume Percent	Interstitial V	Vater in Tuff				
0.27	87.12	e100s27.o	0.9283	0.0023	0.0557	2.1		
0.271	87.44	linear interpolation	0.9300	-		-		
0.28	90.35	e100s28.o	0.9409	0.0026	0.0569	2.1		
0.29	93.57	e100s29.o	0.9475	0.0020	0.0591	2.1		
0.34	109.71	e100s34.o	0.9807	0.0024	0.0667	2.1		
0.50	161.34	e100s50.o	1.0670	0.0031	0.0873	2.0		

Design Analysis

 Waste Package Development
 Design A

 Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network
 Design A
 Document Identifier: A0000000-01717-0200-00050 REV 00 Page 41 of 58

	Table 7.4-2 Plutonium Oxide MCNP Results in 0.1 cm Wide Fracture						
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent	Interstitial V	Vater in Tuf	f		
0.006	5.86	e87p006.0	0.8906	0.002	0.0049	558.0	
0.0067	6.55	linear interpolation	0.9300	-	-	_	
0.007	6.84	e87p007.o	0.9437	0.0017	0.0051	461.0	
0.010	9.77	e87p01.o	1.0475	0.0024	0.0064	321.3	
		8 Volume Percent I	nterstitial W	ater in Tuff			
0.007	6.84	e92p007.o	0.8755	0.0027	0.0063	284.2	
0.008	7.82	e92p008.o	0.9143	0.0022	0.0070	251.4	
0.0085	8.31	linear interpolation	0.9300	-	-	-	
0.009	8.80	e92p009.o	0.9434	0.0024	0.0082	225.4	
0.010	9.77	e92p01.o	0.9664	0.0023	0.0086	198.1	
0.020	19.55	e92p02.o	1.0993	0.0023	0.0152	99.0	
		4 Volume Percent I	Interstitial W	ater in Tuff	· · · · · · · · · · · · · · · · · · ·		
0.010	9.77	e96p01.o	0.8446	0.0017	0.0106	99.7	
0.016	15.64	e96p016.0	0.9286	0.0021	0.0153	62.1	
0.0162	15.83	linear interpolation	0.9300	-	-	_	
0.017	16.62	e96p017.o	0.9364	0.0028	0.0161	58.7	
0.020	19.55	e96p02.o	0.9621	0.0021	0.0183	49.8	
0.030	29.33	e96p03.0	1.0091	0.0024	0.0263	33.2	
		0 Volume Percent	Interstitial W	ater in Tuff	•		
0.090	87.97	e100p09.o	0.9115	0.0023	0.1005	0.1	
0.097	94.81	linear interpolation	0.9300	-	-	-	
0.100	97.74	e100p10.o	0.9380	0.0022	0.1097	0.1	
0.200	195.49	e100p20.o	1.0866	0.0028	0.1827	0.1	

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 42 of 58

	Table	7.4-3 50/50 Mixture of MCNP Results in	of Soddyite 0.1 cm Wie	and Pluton de Fracture	ium Oxide	
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent	Interstitial '	Water in Tu	ff	
0.010	6.50	e87sp01.0	0.8812	0.0017	0.0050	491.5
0.011	7.15	e87sp011.o	0.9145	0.0019	0.0050	438.8
0.0115	7.48	linear interpolation	0.9300	-	-	-
0.012	7.80	e87sp012.o	0.9422	0.0017	0.0051	410.0
0.020	13.00	e87sp02.o	1.0946	0.0023	0.0077	241.0
		8 Volume Percent	Interstitial W	Vater in Tuf	f	
0.014	9.10	e92sp014.o	0.9225	0.0022	0.0068	217.1
0.0144	9.36	linear interpolation	0.9300		-	-
0.015	9.75	e92sp015.o	0.9407	0.0025	0.0080	199.9
0.020	13.00	e92sp02.o	1.0075	0.0020	0.0096	148.8
		4 Volume Percent	Interstitial V	Vater in Tuf	f	
0.024	15.60	e96sp024.o	0.9114	0.0021	0.0143	62.8
0.0273	17.75	linear interpolation	0.9300	-		
0.028	18.20	e96sp028.o	0.9339	0.0027	0.0171	54.1
0.030	19.50	e96sp03.0	0.9470	0.0024	0.0171	50.6
0.100	65.00	e96sp10.0	1.0908	0.0031	0.0487	15.4
0.200	130.01	e96sp20.0	1.1759	0.0026	0.0880	7.9
	<u></u>	0 Volume Percent	Interstitial V	Vater in Tuf	f	
0.100	65.00	e100sp10.o	0.8668	0.0024	0.0703	0.7
0.140	91.01	e100sp14.o	0.9248	0.0027	0.0910	0.6
0.143	96.48	linear interpolation	0.9300	-	-	
0.150	97.51	e100sp15.o	0.9397	0.0022	0.0947	0.6
0.160	104.01	e100sp16.o	0.9515	0.0024	0.0994	0.6

7.4.2 Results for 0.01 cm Fracture Width

Tables 7.4-4, 7.4-5, and 7.4-6 list the results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide for fracture widths of 0.01 cm. The tables cover a range of fissile mixtures with clayey material and water in the tuff matrix.

The results for soddyite (Table 7.4-4) show a range of k_{eff} values from about 0.47 to 1.20 as the amount of soddyite increases from a volume fraction of 10% to 90% for a water volume fraction of 13% in the tuff. A similar range is seen for 8% and 4% water volume in the tuff with slightly lower k_{eff} values. For no water in the tuff, the k_{eff} 's are considerably lower, but the general trend is the same. To obtain a value of k_{eff} of 0.93, volume fractions about 0.359, 0.455 and 0.7598 are required for tuff with 13%, 8% and 4% volume fraction water, respectively. For no water in the tuff, the maximum value of k_{eff} is about 0.703.

For plutonium oxide, the general trend is the same (see Table 7.4-5); however, the values of k_{eff} are significantly higher. They range from about .91 to 1.37 for 13% water, 0.90 to 1.28 for 8% water and 0.86 to 1.15 for 4% water. For no water in the tuff, the results are significantly lower. Volume fractions of about 0.064, 0.079 and 0.143 are required to produce a k_{eff} of about 0.93 for tuff water volume fractions of 13%, 8% and 4%, respectively. The case with no water in the tuff has a k_{eff} below 0.93 with a maximum k_{eff} of about 0.928 for 98% plutonium oxide volume fraction in the fracture.

The evaluation of the 50/50 mixture of soddyite and plutonium oxide in clayey material provides results bracketed by those of soddyite and plutonium oxide (see Table 7.4-6). The k_{eff} values range from about 0.90 to 1.34 for a tuff water volume percent of 13% with slightly smaller values for 8% and 4%. For no water in the tuff, the k_{eff} is significantly lower. The fissile mixture volume percent required for a 0.93 k_{eff} are about 0.109, 0.134 and 0.2403 for 13%, 8% and 4% tuff water volume fractions, respectively. Without water in the tuff, no values approaching 0.93 are possible.

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 44 of 58

	Table 7.4	I-4 Soddyite MCNP Re	esults in 0.0	1 cm Wide	Fracture	
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.10	3.33	a87s10.0	0.4674	0.0012	0.0029	1018.8
0.35	11.64	a87s35.0	0.9152	0.0022	0.0049	291.0
0.359	11.94	linear interpolation	0.9300	_	-	-
0.36	11.97	a87s36.0	0.9323	0.0015	0.0054	282.7
0.50	16.63	a87s50.0	1.0397	0.0021	0.0071	204.1
0.90	29.93	a87s90.o	1.1977	0.0018	0.0108	114.2
		8 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	3.33	a92s10.0	0.4387	0.0012	0.0035	627.4
0.45	14.97	a92s45.0	0.9248	0.0022	0.0077	140.2
0.455	15.13	linear interpolation	0.9300	-		
0.46	15.30	a92s46.0	0.9354	0.0030	0.0087	137.1
0.50	16.63	a92s50.o	0.9553	0.0021	0.0082	126.3
0.90	29.93	a92s90.o	1.1013	0.0026	0.0132	71.0
		4 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	3.33	a96s10.0	0.3783	0.0010	0.0045	314.6
0.50	16.63	a96s50.o	0.8305	0.0024	0.0111	64.1
0.75	24.94	a96s75.0	0.9231	0.0031	0.0147	43.4
0.7598	25.27	linear interpolation	0.9300	-	_	-
0.76	25.27	a96s76.0	0.9301	0.0026	0.0151	42.8
0.90	29.93	a96s90.o	0.9627	0.0025	0.0166	36.5
		0 Volume Percent Int	erstitial Wat	er in Tuff		
0.10	3.33	a100s10.0	0.2281	0.0007	0.0092	2.4
0.50	16.63	a100s50.0	0.5570	0.0015	0.0195	2.0
0.90	29.93	a100s90.0	0.6876	0.0017	0.0284	2.0
0.98	32.59	a100s98.0	0.7034	0.0020	0.0297	2.0

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 45 of 58

Т	able 7.4-5 I	Plutonium Oxide MCN	P Results ir	n 0.01 cm W	/ide Fractu	re
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.06	6.04	a87p06.o	0.9068	0.0016	0.0050	567.1
0.064	6.45	linear interpolation	0.9300	-	-	-
0.07	7.05	a87p07.o	0.9603	0.0020	0.0061	486.1
0.10	10.07	a87p10.o	1.0706	0.0018	0.0079	339.3
0.50	50.37	a87p50.o	1.3301	0.0023	0.0280	67.8
0.90	90.66	a87p90.o	1.3731	0.0020	0.0495	37.7
		8 Volume Percent Inte	erstitial Wat	er in Tuff		
0.07	7.05	a92p07.o	0.8960	0.0017	0.0066	299.0
0.079	7.96	linear interpolation	0.9300	_		-
0.08	8.06	a92p08.o	0.9330	0.0022	0.0075	260.6
0.10	10.07	a92p10.o	0.9916	0.0024	0.0088	208.7
0.50	50.37	a92p50.o	1.2239	0.0018	0.0342	41.7
0.90	90.66	a92p90.o	1.2755	0.0027	0.0601	23.3
		4 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	10.07	a96p10.o	0.8625	0.0025	0.0114	104.3
0.14	14.10	a96p14.o	0.9253	0.0023	0.0146	74.6
0.143	14.41	linear interpolation	0.9300		-	-
0.15	15.11	a96p15.o	0.9391	0.0016	0.0150	69.5
0.50	50.37	a96p50.o	1.0807	0.0024	0.0432	20.8
0.90	90.66	a96p90.o	1.1519	0.0024	0.0730	11.6
		0 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	10.07	a100p10.0	0.5524	0.0020	0.0202	0.1
0.50	50.37	a100p50.o	0.8018	0.0027	0.0665	0.0
0.90	90.66	a100p90.o	0.9094	0.0032	0.1085	0.0
0.98	98.72	a100p98.o	0.9278	0.0020	0.1126	0.0

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 46 of 58

	Table 7.4-6 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.01 cm Wide Fracture							
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.10	6.70	a87sp10.0	0.9019	0.0020	0.0050	510.0		
0.109	7.30	linear interpolation	0.9300	_				
0.11	7.37	a87sp11.0	0.9345	0.0016	0.0056	462.7		
0.50	33.50	a87sp50.0	1.2837	0.0027	0.0174	102.0		
0.90	60.30	a87sp90.0	1.3386	0.0024	0.0300	56.9		
		8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	6.70	a92sp10.0	0.8441	0.0020	0.0062	313.8		
0.13	8.71	a92sp13.0	0.9241	0.0021	0.0078	241.1		
0.134	8.98	linear interpolation	0.9300	-	-	-		
0.14	9.38	a92sp14.0	0.9404	0.0024	0.0079	223.6		
0.50	33.50	a92sp50.0	1.1723	0.0025	0.0220	62.9		
0.90	60.30	a92sp90.0	1.2326	0.0029	0.0366	35.2		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	6.70	a96sp10.0	0.7411	0.0016	0.0083	157.1		
0.24	16.08	a96sp24.0	0.9297	0.0024	0.0153	65.6		
0.2403	16.10	linear interpolation	0.9300	-	-	-		
0.25	16.75	a96sp25.0	0.9383	0.0024	0.0152	62.9		
0.50	33.50	a96sp50.o	1.0298	0.0024	0.0286	31.7		
0.90	60.30	a96sp90.o	1.0942	0.0022	0.0458	17.8		
		0 Volume Percent Int	erstitial Wat	er in Tuff				
0.10	6.70	a100sp10.0	0.4780	0.0014	0.0144	0.7		
0.50	33.50	a100sp50.0	0.7353	0.0021	0.0456	0.5		
0.90	60.30	a100sp90.o	0.8323	0.0024	0.0690	0.5		
0.98	65.66	a100sp98.0	0.8507	0.0019	0.0720	0.5		

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 47 of 58

7.4.3 Results for 0.005 cm Fracture Width

The results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide mixtures with clayey material filling a 0.005 cm fracture are listed in Tables 7.4-7, 7.4-8, and 7.4-9. The general trend of the data is similar to that for the 0.01 cm wide fracture with lower k_{eff} values, as expected due to smaller possible masses of fissile material.

	Table 7.4-7 Soddyite MCNP Results in 0.005 cm Wide Fracture							
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent In	erstitial Wa	ter in Tuff				
0.50	8.33	b87s50.o	0.7951	0.0017	0.0048	407.8		
0.72	11.99	b87s72.o	0.9277	0.0021	0.0054	283.7		
0.724	12.06	linear interpolation	0.9300	-	-	-		
0.73	12.16	b87s73.o	0.9340	0.0019	0.0055	279.8		
0.90	14.99	b87s90.o	1.0023	0.0021	0.0073	227.4		
		8 Volume Percent Int	erstitial Wat	er in Tuff				
0.50	8.33	b92s50.o	0.7366	0.0015	0.0055	251.5		
0.90	14.99	b92s90.o	0.9257	0.0024	0.0081	140.6		
0.906	15.09	linear interpolation	0.9300	-	-	-		
0.91	15.16	b92s91.o	0.9329	0.0021	0.0080	139.0		
		4 Volume Percent Int	erstitial Wat	er in Tuff				
0.50	8.33	b96s50.o	0.6374	0.0015	0.0072	126.7		
0.90	14.99	b96s90.o	0.8042	0.0023	0.0102	71.2		
0.98	16.32	b96s98.o	0.8261	0.0021	0.0109	65.6		
		0 Volume Percent Int	erstitial Wat	er in Tuff				
0.50	8.33	b100s50.o	0.4017	0.0014	0.0140	2.0		
0.90	14.99	b100s90.o	0.5345	0.0017	0.0183	2.0		

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 48 of 58

Ta	able 7.4-8 P	lutonium Oxide MCNI	P Results in	0.005 cm V	Vide Fractu	re
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.10	5.05	b87p10.o	0.8441	0.0018	0.0044	681.3
0.12	6.05	b87p12.o	0.9097	0.0020	0.0053	568.1
0.127	6.41	linear interpolation	0.9300	-	-	-
0.13	6.56	b87p13.o	0.9371	0.0022	0.0057	524.5
0.50	25.23	b87p50.o	1.2597	0.0024	0.0158	136.2
0.90	45.41	b87p90.o	1.3209	0.0021	0.0258	75.6
		8 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	5.05	b92p10.o	0.7946	0.0023	0.0056	418.9
0.15	7.57	b92p15.o	0.9149	0.0017	0.0078	279.1
0.158	7.97	linear interpolation	0.9300	-	-	-
0.16	8.07	b92p16.o	0.9332	0.0024	0.0084	261.7
0.50	25.23	b92p50.o	1.1569	0.0021	0.0178	83.8
0.90	45.41	b92p90.o	1.2150	0.0024	0.0321	46.5
		4 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	5.05	b96p10.o	0.7045	0.0022	0.0070	209.3
0.29	14.63	b96p29.o	0.9290	0.0021	0.0153	72.2
0.292	14.73	linear interpolation	0.9300	-	-	-
0.30	15.14	b96p30.o	0.9357	0.0020	0.0158	69.7
0.50	25.23	b96p50.o	1.0034	0.0024	0.0247	41.8
0.90	45.41	b96p90.o	1.0722	0.0026	0.0401	23.2
		0 Volume Percent Inte	erstitial Wat	er in Tuff		
0.50	25.23	b100p50.o	0.6884	0.0018	0.0421	0.0
0.90	45.41	b100p90.o	0.7861	0.0019	0.0625	0.0

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 49 of 58

	Table 7.4-9 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.005 cm Wide Fracture							
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.10	3.36	b87sp10.0	0.6446	0.0015	0.0038	1023.3		
0.21	7.05	b87sp21.0	0.9222	0.0023	0.0054	486.3		
0.214	7.18	linear interpolation	0.9300	-	-	-		
0.22	7.38	b87sp22.o	0.9402	0.0019	0.0054	463.9		
0.50	16.78	b87sp50.o	1.1656	0.0021	0.0100	204.4		
0.90	30.20	b87sp90.o	1.2679	0.0022	0.0162	113.8		
		8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	3.36	b92sp10.o	0.6130	0.0015	0.0044	629.5		
0.26	8.72	b92sp26.o	0.9226	0.0022	0.0074	241.8		
0.267	8.96	linear interpolation	0.9300	_	_	-		
0.27	9.06	b92sp27.o	0.9332	0.0020	0.0073	232.7		
0.50	16.78	b92sp50.o	1.0727	0.0020	0.0129	125.9		
0.90	30.20	b92sp90.o	1.1652	0.0025	0.0207	70.1		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	3.36	b96sp10.o	0.5496	0.0016	0.0054	314.8		
0.47	15.77	b96sp47.o	0.9231	0.0023	0.0149	67.1		
0.479	16.07	linear interpolation	0.9300			-		
0.48	16.11	b96sp48.0	0.9307	0.0023	0.0146	65.8		
0.50	16.78	b96sp50.o	0.9389	0.0021	0.0157	63.1		
0.90	30.20	b96sp90.o	1.0166	0.0025	0.0262	35.3		
		0 Volume Percent Inte	erstitial Wat	er in Tuff				
0.50	16.78	b100sp50.o	0.6225	0.0016	0.0273	0.5		
0.90	30.20	b100sp90.o	0.7189	0.0020	0.0415	0.5		

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 50 of 58

7.4.4 Results for 0.002 cm Fracture Width

For the 0.002 cm fracture width only plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide cases were evaluated. Further, for these cases only the conditions for a tuff water fraction of 0.13, 0.08 and 0.04 were evaluated. Results for these cases are listed in Tables 7.4-10 and 7.4-11. Due to lower possible fissile mass in the fracture, a significant reduction in k_{eff} is noted.

Table 7.4-10 Plutonium Oxide MCNP Results in 0.002 cm Wide Fracture								
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.31	6.26	c87p31.o	0.9192	0.0021	0.0052	549.7		
0.319	6.44	linear interpolation	0.9300	_	_			
0.32	6.46	c87p32.o	0.9311	0.0018	0.0054	532.6		
0.50	10.10	c87p50.o	1.0736	0.0021	0.0073	340.8		
0.90	18.18	c87p90.o	1.2078	0.0017	0.0121	189.2		
	_	8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.40	8.08	c92p40.o	0.9295	0.0026	0.0071	262.0		
0.4004	8.09	linear interpolation	0.9300	-	-			
0.41	8.28	c92p41.o	0.9410	0.0020	0.0076	255.5		
0.50	10.10	c92p50.o	0.9928	0.0023	0.0085	209.6		
0.90	18.18	c92p90.o	1.1064	0.0020	0.0143	116.4		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.50	10.10	c96p50.o	0.8637	0.0024	0.0118	104.7		
0.72	14.54	c96p72.o	0.9285	0.0035	0.0150	72.7		
0.722	14.59	linear interpolation	0.9300	-	•	-		
0.73	14.75	с96р73.0	0.9372	0.0018	0.0156	71.7		
0.90	18.18	c96p90.o	0.9583	0.0021	0.0190	58.1		

_

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 51 of 58

Table 7.4-11 50/50 Mixture of Soddyite and Plutonium OxideMCNP Results in 0.002 cm Wide Fracture								
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{erf}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.50	6.72	c87sp50.o	0.9027	0.0016	0.0053	510.6		
0.53	7.12	c87sp53.o	0.9278	0.0016	0.0054	481.9		
0.533	7.16	linear interpolation	0.9300	-	-	_		
0.54	7.25	c87sp54.0	0.9348	0.0018	0.0050	472.8		
0.90	12.09	c87sp90.o	1.0892	0.0022	0.0078	283.9		
		8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.50	6.72	c92sp50.o	0.8463	0.0023	0.0061	314.2		
0.65	8.73	c92sp65.o	0.9269	0.0022	0.0073	241.9		
0.658	8.84	linear interpolation	0.9300	-	-	-		
0.66	8.87	c92sp66.0	0.9309	0.0018	0.0073	238.2		
0.90	12.09	c92sp90.o	1.0047	0.0021	0.0090	174.8		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.50	6.72	c96sp50.o	0.7416	0.0024	0.0085	157.2		
0.90	12.09	c96sp90.o	0.8761	0.0018	0.0127	87.6		
0.98	13.17	c96sp98.0	0.8936	0.0026	0.0124	80.4		

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 52 of 58

7.4.5 Results for 0.001 cm Fracture Width

For a further reduction in the fracture width, 0.001 cm, with 13%, 8% and 4% water in the tuff, a further reduction in k_{eff} is noted as shown in Tables 7.4-12 and 7.4-13 for these cases.

Table 7.4-12 Plutonium Oxide MCNP Results in 0.001 cm Wide Fracture								
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
	13 Volume Percent Interstitial Water in Tuff							
0.64	6.47	d87p64.o	0.9288	0.0017	0.0054	532.8		
0.641	6.48	linear interpolation	0.9300	-	-	-		
0.65	6.57	d87p65.o	0.9387	0.0018	0.0051	524.7		
0.90	9.09	d87p90.o	1.0494	0.0017	0.0069	378.9		
	·	8 Volume Percent Inte	erstitial Wat	er in Tuff	<u></u>			
0.70	7.07	d92p78.o	0.9005	0.0024	0.0074	299.7		
0.785	7.93	linear interpolation	0.9300	_	-	-		
0.79	7.98	d92p79.o	0.9318	0.0023	0.0073	265.4		
0.90	9.09	d92p90.0	0.9685	0.0022	0.0087	232.9		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.90	9.09	d96p90.o	0.8462	0.0024	0.0103	116.4		
0.98	9.90	d96p98.o	0.8631	0.0020	0.0112	106.9		

.

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 53 of 58

Table 7.4-13 50/50 Mixture of Soddyite and Plutonium OxideMCNP Results in 0.001 cm Wide Fracture							
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
13 Volume Percent Interstitial Water in Tuff							
0.90	6.05	d87sp90.o	0.8645	0.0018	0.0052	567.9	
0.98	6.59	5.59 d87sp98.0		0.0015	0.0050	521.6	
8 Volume Percent Interstitial Water in Tuff							
0.90	6.05	d92sp90.o	0.8097	0.0017	0.0057	349.4	
0.98	6.59	d92sp98.o	0.8387	0.0020	0.0062	320.9	
4 Volume Percent Interstitial Water in Tuff							
0.90	6.05	d96sp90.o	0.7180	0.0017	0.0074	174.8	
0.98	6.59	d96sp98.o	0.7393	0.0018	0.0078	160.6	

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier:A00000000-01717-0200-00050 REV 00Page 54 of 58

7.4.6 K_{eff} as a Function of Fracture Width

The results listed in the previous tables allow trending of the k_{eff} as a function of fracture width for plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide for 90 volume percent fissile material in clayey material and 13 volume percent water in the tuff. Table 7.4-14 lists the k_{eff} as a function of the fracture width. For the 50/50 mixture of soddyite and plutonium oxide, a fracture width of about 0.0013 cm is required to obtain a k_{eff} of 0.93. Due to the slope of the PuO₂ curve no estimate is made for the thickness required for a k_{eff} of 0.93 for plutonium oxide.

Table 7.4-14 Plutonium Oxide and 50/50 of Mixture Soddyite/PuO2MCNP Results As a Function of Fracture Width for90 Volume Percent Fissile Material and 13 Volume Percent Water in Tuff						
Fracture Width	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ		
	Plutonium Oxide					
0.001	9.09	d87p90.o	1.04943	0.00166		
0.002	18.18	c87p90.o	1.20775	0.00168		
0.005	45.41	b87p90.o	1.32091	0.00211		
0.010	90.66	a87p90.o	1.37312	0.00201		
	50/50 Mixture of Soddyite and Plutonium Oxide					
0.001	6.05	d87sp90.0	0.86451	0.00184		
0.0013	_	linear interpolation	0.93	-		
0.002	12.09	c87sp90.0	1.08915	0.00224		
0.005	30.20	b87sp90.o	1.26786	0.00219		
0.010	60.30	a87sp90.0	1.33863	0.00242		

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 55 of 58

8. Conclusions

The tables in the previous sections provide the k_{eff} results for the fissile material as a function of fracture width or fissile concentration. In addition, an estimate of the fissile volume fraction and weight that would produce a k_{eff} of 0.93 is tabulated based on linear interpolation. These interpolated values are gathered and listed in Tables 8-1 and 8-2 as a function of spacing and material. The trend of the data indicates that the volume fraction of fissile material is inversely proportional to the fracture width by almost a constant factor, i.e. the volume fraction approximately doubles for a reduction in the width by a factor of 2. Stated another way, the fissile mass to produce a k_{eff} of 0.93 essentially remains constant for a given material. For uranium, the required weight seems almost constant with small deviations probably due to the statistical nature of the results and linear interpolation. However, for the materials containing plutonium, there seems to be a slight increase in mass as the fissile volume fraction increases. This may also be due to statistics and interpolation. However, since the trend is followed for four sets of data, it is probably related to either the fissile mass increase or the decrease in the hydrogen content of the fissile material.

Other observations that can be made from this data are:

- 1) soddyite is the least reactive fissile material and plutonium oxide is the most reactive
- 2) the results for fissile mixtures with water and fissile mixtures with clayey material are very similar
- 3) the fissile volume fraction increases as the amount of water in the tuff decreases

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 56 of 58

Table 8-10.93 K _{eff} Fissile Volume Fractions and WeightsMCNP Results for Fissile Mixtures with Water									
Fracture	13%	Water VF in	Tuff	8%	Water VF in	Tuff	4%	Water VF in	Tuff
Width, cm	Soddyite	PuO ₂	Mixture	Soddyite	PuO ₂	Mixture	Soddyite	PuO ₂	Mixture
	Fissil	e Volume Fr	action	Fissil	e Volume Fr	raction	Fissile Volume Fraction		
0.100	0.0312	0.0057	0.0096	0.0322	0.0058	0.0099	0.0347	0.00604	0.0102
0.010	0.355	0.062	0.105	0.438	0.074	0.125	0.722	0.113	0.195
0.005	0.714	0.125	0.214	0.899	0.152	0.258	-	0.262	0.444
0.002	-	0.317	0.541	-	0.388	0.662	-	0.723	-
0.001	-	0.638	-	-	0.784	· -	-	-	-
	Fis	sile Weight,	Kg	Fis	issile Weight, Kg		Fissile Weight, Kg		Kg
0.100	10.07	5.57	6.24	10.39	5.67	6.44	11.20	5.90	6.63
0.010	11.81	6.25	7.03	14.57	7.45	8.37	24.01	11.38	13.06
0.005	11.89	6.31	7.18	14.97	7.67	8.66	-	13.22	14.90
0.002	-	6.40	7.27	-	7.84	8.89	-	14.61	-
0.001		6.45	_	-	7.92	-	-	-	-

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 57 of 58

Table 8-20.93 K _{eff} Fissile Volume Fractions and WeightsMCNP Results for Fissile Mixtures with Clayey Material										
Fracture	13%	Water VF in	Tuff	8%	Water VF in	Tuff	4%	4% Water VF in Tuff		
Width, cm	Soddyite	PuO ₂	Mixture	Soddyite	PuO ₂	Mixture	Soddyite	PuO ₂	Mixture	
	Fissil	e Volume Fr	action	Fissil	e Volume Fr	action	Fissile Volume Fraction		action	
0.100	0.0389	0.0067	0.0115	0.0498	0.0085	0.0144	0.082	0.0162	0.0273	
0.010	0.359	0.064	0.109	0.455	0.079	0.134	0.7598	0.143	0.2403	
0.005	0.724	0.127	• 0.214	0.906	0.158	0.267	-	0.292	0.479	
0.002	-	0.319	0.533		0.4004	0.658	-	0.722	-	
0.001	-	0.641	-	-	0.789	-	-	-	-	
	Fis	sile Weight,	Kg	Fis	Fissile Weight, Kg		Fissile Weight, Kg		Kg	
0.100	12.55	6.55	7.48	16.07	8.31	9.36	26.46	15.83	17.75	
0.010	11.94	6.45	7.30	15.13	7.96	8.98	25.27	14.41	16.10	
0.005	12.06	6.41	7.18	15.09	7.97	8.96	-	14.73	16.07	
0.002	-	6.44	7.16	-	8.09	8.84	-	14.59	-	
0.001	-	6.48	-	-	7.97	-	-	-	-	

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 58 of 58

9. Attachments

The following is a list of attachments. Electronic attachments are provided on Colorado DT-350 backup tapes (Ref. 5. 13) and listed in Attachment II.

Attachment	Description	Number of Pages	Date
I	Sample MCNP input file listings	6	11/17/97
П	List of MCNP output files supporting results	10	11/17/97
ш	Listing of EXCEL spreadsheet Tuff.xls,Sheet1	4	11/17/97
IV	Listing of EXCEL spreadsheet Tuff.xls,Sheet2	2	11/17/97
V	Listing of EXCEL spreadsheet Tuff.xls,Sheet3	1	11/17/97
VI	Listing of EXCEL spreadsheet Clay.xls,Sheet1	6	11/17/97
VII	Listing of EXCEL spreadsheet Clay.xls,Sheet2	1	11/17/97

Attachment I

A listing of three typical MCNP input files is provided in this section. The files represent a fracture width of 0.01 cm for 10% soddyite, plutonium oxide, and soddyite/PuO₂ mixtures in tuff with 8%, 13%, and 0% interstitial water, respectively. Note that the titles in the input files refer to the fracture thickness at the edge of a fracture cube. The fracture width, twice this value, is used in previous sections to distinguish among the fracture width evaluations.

NEAR-FIELD CRITICALITY ANALYSIS

C t92s10: .005 cm, 8% water, 10% soddyite C CELL SPECIFICATIONS C inner region 1 1-2.325135 -1 2 -3 4 -5 6 U=1 IMP:N=1 2 2 -1.37 1: -2: 3: -4: 5: -6 U=1 IMP:N=1 C 3 cm cube 3 0 -11 12 -13 14 -15 16 LAT=1 FILL=1 U=2 IMP:N=1 C 1 meter cube 4 0 -21 22 -23 24 -25 26 FILL=2 U=3 IMP:N=1 5 1-2.325135 21: -22: 23: -24: 25: -26 U=3 IMP:N=1 C 3 meter cube 6 0 -31 32 -33 34 -35 36 FILL=3 IMP:N=1 SURFACE SPECIFICATIONS С C inner region - tuff 1 PX 1.495 2 PX -1.495 3 PY 1.495 4 PY -1.495 5 PZ 1.495 6 PZ -1.495 C outer region - soddyite PX 1.5 11 12 PX -1.5 13 PY 1.5 PY -1.5 14 15 PZ 1.5 16 PZ -1.5 C 1 meter cube 21 PX 50. 22 PX -50. 23 PY 50. 24 PY -50.

25 PZ 50.

Attachment I

26 PZ -50. C reflector *31 PX 150. *32 PX -150. *33 PY 150. *34 PY -150. *35 PZ 150. *36 PZ -150. MODE N \$ neutron transport KCODE 4000 1. 7 37 \$ criticality source SDEF RAD=D1 ERG=D2 \$ general source SI1 50 \$ source information SP2 -3 \$ source probability, watt fission spectrum C MATERIAL SPECIFICATIONS C 100% tuff, 8% water, density 2.325135 g/cc M1 8016.50c -1.176071 \$ oxygen 14000.50c -.807062 \$ silicon 13027.50c -.151527 \$ aluminum 26000.55c -.014707 \$ iron 20000.50c -.008994 \$ calcium 12000.50c -.003321 \$ magnesium \$ titanium 22000.50c -.001320 11023.50c -.059898 \$ sodium 19000.50c -.091967 \$ potassium \$ phosphorus 15031.50c -.000147 25055.50c -.001166 \$ manganese 1001.50c -.008953 \$ hydrogen MT1 LWTR.01T C 10% soddyite, 90% water, density 1.37 g/cc M2 92235.50c -.333670 \$ uraniun 8016.50c -.912809 \$ oxygen 14000.50c -.019936 \$ silicon 1001.50c -.103585 \$ hydrogen MT2 LWTR.01T PRINT NEAR-FIELD CRITICALITY ANALYSIS C t87p10: .005 cm, 13% water, 10% PuO2 C CELL SPECIFICATIONS C inner region

1 1-2.375135 -1 2 -3 4 -5 6 U=1 IMP:N=1

Page 2

Attachment I

2 2 -2.046 1: -2: 3: -4: 5: -6 U=1 IMP:N=1 C 3 cm cube 3 0 -11 12 -13 14 -15 16 LAT=1 FILL=1 U=2 IMP:N=1 C 1 meter cube 4 0 -21 22 -23 24 -25 26 FILL=2 U=3 IMP:N=1 5 1-2.375135 21: -22: 23: -24: 25: -26 U=3 IMP:N=1 C 3 meter cube 6 0 -31 32 -33 34 -35 36 FILL=3 IMP:N=1 С SURFACE SPECIFICATIONS C inner region - tuff 1 PX 1.495 2 PX -1.495 3 PY 1.495 4 PY -1.495 5 PZ 1.495 6 PZ -1.495 C outer region - soddyite 11 PX 1.5 12 PX -1.5 13 PY 1.5 14 PY -1.5 15 PZ 1.5 PZ -1.5 16 C 1 meter cube 21 PX 50. 22 PX -50. 23 PY 50. PY -50. 24 25 PZ 50. 26 PZ -50. C reflector *31 PX 150. *32 PX -150. *33 PY 150. *34 PY -150. *35 PZ 150. *36 PZ -150.

MODEN\$ neutron transportKCODE40001.737\$ criticality sourceSDEFRAD=D1ERG=D2\$ general source

SI1 50 \$ source information SP2 -3 \$ source probability, watt fission spectrum C MATERIAL SPECIFICATIONS C 100% tuff, 13% water, density 2.375135 g/cc M1 8016.50c -1.220476 \$ oxygen 14000.50c -.807062 \$ silicon 13027.50c -.151527 \$ aluminum 26000.55c -.014707 \$ iron \$ calcium 20000.50c -.008994 12000.50c -.003321 \$ magnesium 22000.50c -.001320 \$ titanium 11023.50c -.059898 \$ sodium 19000.50c -.091967 \$ potassium 15031.50c -.000147 \$ phosphorus \$ manganese 25055.50c -.001166 1001.50c -.014549 \$ hydrogen MT1 LWTR.01T C 10% PuO2, 90% water, density 2.046 g/cc M2 94239.55c -1.010743 \$ plutonium 8016.50c -.934534 \$ oxygen 1001.50c -.100723 \$ hydrogen MT2 LWTR.01T PRINT NEAR-FIELD CRITICALITY ANALYSIS C CELL SPECIFICATIONS (T100sp10: .005 cm, 0% water, 10% Soddyite/PuO2) C inner region 1 1-2.245135 -1 2 -3 4 -5 6 U=1 IMP:N=1 2 2 -1.708 1: -2: 3: -4: 5: -6 U=1 IMP:N=1 C 3 cm cube -11 12 -13 14 -15 16 LAT=1 FILL=1 U=2 IMP:N=1 3 0 C 1 meter cube 4 0 -21 22 -23 24 -25 26 FILL=2 U=3 IMP:N=1 5 1-2.245135 21: -22: 23: -24: 25: -26 U=3 IMP:N=1C 3 meter cube 6 0 -31 32 -33 34 -35 36 FILL=3 IMP:N=1

C SURFACE SPECIFICATIONS

```
C inner region - tuff
1 PX 1.495
```

- 2 PX -1.495
- 3 PY 1.495

Attachment I

4 PY -1.495
5 PZ 1.495
6 PZ -1.495
C outer region - soddyite
11 PX 1.5
12 PX -1.5
13 PY 1.5
14 PY -1.5
15 PZ 1.5
16 PZ -1.5
C 1 meter cube
21 PX 50.
22 PX -50.
23 PY 50.
24 PY -50.
25 PZ 50.
26 PZ -50.
C reflector
*31 PX 150.
*32 PX -150.
*33 PY 150.
*34 PY -150.
*35 PZ 150.
*36 PZ -150.
MODE N \$ neutron transport
KCODE 4000 1. 7 37 \$ criticality source
SDEF RAD=D1 ERG=D2 \$ general source
SI1 50 \$ source information
SP2 -3 \$ source probability, watt fission spectrum
C MATERIAL SPECIFICATIONS
C 100% tuff, no water, density 2.245135 g/cc
M1 8016.50c -1.105025 \$ oxygen
14000.50c807062 \$ silicon
13027.50c151527 \$ aluminum
26000.55c014707 \$ iron
20000.50c008994 \$ calcium
12000.50c003321 \$ magnesium
22000.50c001320 \$ titanium
11023.50c059898 \$ sodium
19000.50c091967 \$ potassium
15031.50c000147 \$ phosphorus

Attachment I

25055.50c -.001166 \$ manganese C 5% soddyite, 5% plutonium, 90% water, density 1.708 g/cc M2 92235.50c -.166835 \$ uraniun 8016.50c -.923671 \$ oxygen 14000.50c -.009968 \$ silicon 1001.50c -.102154 \$ hydrogen 94239.55c -.505371 \$ plutonium MT2 LWTR.01T PRINT

Attachment II

A list of the MCNP output cases that are referenced in this document are listed in the following sub-sections.

Results for 0.1 cm Fracture Width

Directory of C:\Work\tuttle\transoct\pluto5 HEADOUT 3,696 11-06-97 2:54p headout HXAVE OUT PIOOPOOS 63.081 11-06-97 2:55p hxave.out 2,194 11-06-97 2:55p p100p005 116,899 11-06-97 2:56p p100p005.0 P100P005 O 2,195 11-06-97 2:55p p100p006 118,002 11-06-97 2:56p p100p006.0 2,195 11-06-97 2:55p p100p007 P100P006 P100P006 O P100P007 116,899 11-06-97 2:56p p100p007.o 2,189 11-06-97 2:55p p100p01 116,900 11-06-97 2:56p p100p01.o P100P007 O P100P01 P100P01_0 2,236 11-06-97 2:55p p100s03 117,143 11-06-97 2:56p p100s03.0 P100S03 P100S03 O P100S04 2.236 11-06-97 2:55p p100s04 118.117 11-06-97 2:56p p100s04.0 2,236 11-06-97 2:55p p100s05 117.116 11-06-97 2:56p p100s05.0 P100S04_0 P100S05 P100S05 O 2.299 11-06-97 2:55p p100sp01 118.592 11-06-97 2:56p p100sp01.o P100SP01 P100SP01 O P100SP0A 2,306 11-06-97 2:55p p100sp0a P100SP0A O 118.589 11-06-97 2:56p p100sp0a.c P100SP0F 2,304 11-06-97 2:55p p100sp0f P100SP0F O 118.375 11-06-97 2:56p p100sp0f.o P87P(X)5 2.252 11-06-97 2:55p p87p005 118.029 11-06-97 2:56p p87p005.0 P87P005 O P87P(X)6 2.253 11-06-97 2:55p p87p006 P87P006 O 116.286 11-06-97 2:56p p87p006.o 2,247 11-06-97 2:55p p87p01 P87P01 P87P01 O 117,953 11-06-97 2:56p p87p01.o 2.294 11-06-97 2:55p p87s03 118.414 11-06-97 2:56p p87s03.0 P87S03 P87S03 O P87S031 2.302 11-06-97 2:55p p87s031 P87S031_O 118.082 11-06-97 2:56p p87s031.o 2.302 11-06-97 2:55p p87s032 P87S032 P87S032 O 117,503 11-06-97 2:56p p87s032.0 P87504 2,294 11-06-97 2:55p p87s04 118.329 11-06-97 2:56p p87st)4.0 P87504 0 P87SP009 2,366 11-06-97 2:55p p87sp(09 P87SP009-0 118,188 11-06-97 2:56p p87sp009.0 2.359 11-06-97 2:55p p87sp01 118.583 11-06-97 2:56p p87sp01.0 P87SP01 P87SP01 O P87SP02 2.357 11-06-97 2:55p p87sp02 117,138 11-06-97 2:56p p87sp02.0 P87SP02 O P92P005 2.250 11-06-97 2:54p p92p005 118.329 11-06-97 2:56p p92p(0)5.o P92P005_O P92P006 2,251 11-06-97 2:55p p92p006 P92P006 O 118,199 11-06-97 2:57p p92p006.o P92P01 2,245 11-06-97 2:55p p92p01 116.423 11-06-97 2:57p p92p01.0 2.293 11-06-97 2:55p p92s03 P92P01 O P92S03 P92503_O 117.684 11-06-97 2:57p p92s03.o 2,301 11-06-97 2:55p p92s034 P92S034 P92S034 O 118.443 11-06-97 2:57p p92s034.0 2,301 11-06-97 2:55p p92s035 117,442 11-06-97 2:57p p92s035.0 P92S035 P92\$035 O 2,293 11-06-97 2:55p p92stH 117,838 11-06-97 2:57p p92stH.o P92504 P92504 O P92SP009 2.362 11-06-97 2:55p p92sp(0)9 P92SP009 O P92SP01 117.916 11-06-97 2:57p p92sp009.0 2.355 11-06-97 2:55p p92sp01 118.189 11-06-97 2:57p p92sp01.0 P92SP01_O 2.353 11-06-97 2:55p p92sp02 116.872 11-06-97 2:57p p92sp02.0 P92SP02 P92SP02 O P96P005 2,250 11-06-97 2:55p p96p005 P96P005 O 117,469 11-06-97 2:57p p96p(N)5.0 2,251 11-06-97 2:55p p96p(N)6 P96P006 P96P006 O 118,142 11-06-97 2:57p p96p006.o 2.251 11-06-97 2:55p p96p007 117.924 11-06-97 2:57p p96p007.0 P96P007 P96P007 O P96P01 2,245 11-06-97 2:55p p96p01 P96P01 O 117.928 11-06-97 2:57p p96p01.0 2,293 11-06-97 2:55p p96s03 P96S03 P96S03 O 118,416 11-06-97 2:57p p96s(13.0 2,301 11-06-97 2:55p p96s035 118,573 11-06-97 2:57p p96s035.0 P965035 P965035 O P96S04 2,293 11-06-97 2:55p p96s/04 P96504 0 118.412 11-06-97 2:57p p96s04.0 2.293 11-06-97 2:55p p96s05 P96S05 P96S05 O 118,169 11-06-97 2:57p p96s()5.0 P965P01 2,355 11-06-97 2:55p p96sp01 118,945 11-06-97 2:57p p96sp01.0 P96SP01 O .363 11-06-97 2:55p p96sp011 P96SP011 P96SP011 O 119.074 11-06-97 2:57p p96sp011.a

Attachment II

A0000000-01717-0200-00050 REV 00

P963P012 2.361 11-06-97 2:35p p96sp012
P96SP012 O 119.048 11-06-97 2:57p p96sp012.0
P96SP02 2,353 11-06-97 2:55p p96sp02
P96SP02 O 118,699 11-06-97 2:57p p96sp02.0
PLUTO5 HX 5.350 11-06-97 2:55p pluto5.hx
PLUTO5-1 KEF 3.364 11-06-97 2:54p pluto5.keff
SUMRY-1 OUT 3,093,492 11-06-97 2:55p sumry.outlst
TEMP 6.025 11-06-97 2:54p temp

Results for 0.01 cm Fracture Width

	
HEADING	133 10-24-97 1:266 heading
HEADOUT	5.605 10-24-97 1:26p headout
HXAVE OUT	55,044 10-24-97 1:26p hxave.out
PLUTOI~I KEP	2.936 10-24-97 1:27p pluto Lkeff
SUMRY~I OU	T 1.037.057 10-24-97 1:27p sumry.outlst
TOSPUR	2.933 10-24-97 1:27p t0sp11r
TIOPIO	2 154 10-24-97 1:27p t08p11r.0
T100P10 Q	118.511 10-24-97 1:27p t100p10.o
T100P50	2.153 10-24-97 1:27p t100p50
T100P50 O	117,966 10-24-97 1:27p t100p50.o
T100P90	2,155 10-24-97 1:27p t100p90
T100P90_0	2 155 10-24-97 1:27p (100p90.0
T100P91 O	117.965 10-24-97 1:27p t100p91.o
T100P92	2,155 10-24-97 1:27p t100p92
T100P92 O	117,294 10-24-97 1:27p t100p92.o
T100S10	2,198 10-24-97 1:27p t100s10
T100\$10 O	118.755 10-24-97 1:27p t100s10.0
T100550 O	117 540 10-24-97 1:27p (10050 o
T100S90	2,198 10-24-97 1:27p t100s90
T100\$90 O	117.669 10-24-97 1:27p t100s90.o
T100S98	2.198 10-24-97 1:27p t100s98
T100598 O	118,755 10-24-97 1:27p t100s98.0
TIOOSPIO	118 957 10-24-97 1:27p (100sp10)
T100SP50	2.258 10-24-97 1:27p t100sp50
T100SP50 O	118.011 10-24-97 1:27p t100sp50.o
T100SP90	2,259 10-24-97 1:27p t100sp90
T100SP90 O	118.041 10-24-97 1:27p t100sp90.o
T1005P94 O	121 J 54 10-24-97 1:27p (100sp94 o
T100SP98	2.259 10-24-97 1:27p t100sp98
T100SP98 O	119,226 10-24-97 1:27p t100sp98.o
T87P()6	2.215 10-24-97 1:27p t87p06
187906 O	118,105 10-24-97 1:27p t87p06.0
T87P07 0	116.530 10-24-97 1:27p t87p07 o
T87P10	2.255 10-24-97 1:27p t87p10
T87P10 O	116,420 10-24-97 1:27p t87p10.0
T87P50	2,254 10-24-97 1:27p t87p50
187250 U T87290	116,174 10-24-97 1:27p t87p50.6
T87P90 O	116.146 10-24-97 1:27p t87p90.u
T87PUE	2.286 10-24-97 1:27p t87pue
T87PUE O	116,648 10-24-97 1:27p t87pue.o
T87S10	2,302 10-24-97 1:27p t87s10
T87510 0	2 297 10-24-97 1:27p 187810.0
T87S35 O	117,841 10-24-97 1:27p t87s35.0
T87S36	2.305 10-24-97 1:27p 187s36
T87S36 O	117.842 10-24-97 1:27p t87s36.0
T87S50	2.304 10-24-97 1:27p t87s50
T87590	2 304 10-24-97 1:27p (8750.0
T87S90 O	119,390 10-24-97 1:27p t87s90.0
T87SP10	2.317 10-24-97 1:27p t87sp10
T87SP10 O	117,952 10-24-97 1:27p t87sp10.o
TR7SP11	2,322 10-24-97 1:27p t87sp11
T87SP50	2.363 10-24-97 1:27p t87sp11.0
T87SP50 O	116,921 10-24-97 1:27p t87sp50.0
T87SP90	2,364 10-24-97 1:27p t87sp90
T87SP90 O	116,920 10-24-97 1:27p t87sp90.0
TRISPUE	2,385 IF24-97 1:27p t8/spue
TRISPUE OO	118.670 10-24-97 1:27p t87spue.o
TESPIIR	2.998 10-24-97 1:27p t8spl1r
TESPIIR O	120,484 10-24-97 1:27p t8sp11r.o
T92P07	2.212 10-24-97 1:27p t92p07
192P07 O	118.075 10-24-97 1:27p 192p07.0 7 212 10-24-97 1:27p 192p08
T92P08 O	118.104 10-24-97 1:27p 192p08 a
T92P10	2.253 10-24-97 1:27p t92p10

.....

-

Attachment II

T92P10 O	118,169 10-24-97 1:27p t92p10.0
T92P50	2,252 10-24-97 1:27p t92p50
T92P50 O	117.925 10-24-97 1:28p t92p50.0
T92P90	2,254 10-24-97 1:27p t92p90
T92P90 O	117.923 10-24-97 1:28p t92p90.0
T92PUE	2.285 10-24-97 1:27p r92pue
TY2PUE O	116 549 10-24-97 1-28n t92nue o
T92510	2 301 10-24-97 1-27p (92910
192510 0	117 930 10-24-97 1-28o (92s10 o
T02544	2 257 10-24-97 1-276 192:44
T02544 0	118 318 10-24-07 1-296 (07-41-)
T01944 0	2 257 10-24-97 1-27n t02-46
T01546 0	118 348 10.24.97 1.27p (9284)
T02540 U	1 201 10.24.97 1.20p (52340.0
T01550 0	117 712 30 24 97 1.270 52350
192330 U	1 201 10 24 97 1.28p (92850.0
192390	118 \$4\$ 10 21 07 1.28 402-00 -
192590 0	118.340 10-24-97 1:28p (92890.0
1925010	2.360 10-24-97 1:27p (92sp10
192SP10-0	118,994 IV-24-97 1:28p t92sp10.0
T92SP12	2,361 10-24-97 1:27p t92sp12
192SP12 O	118,184 10-24-97 1:28p 192sp12.0
T92SP13	2.320 10-24-97 1:27p t92sp13
T92SP13 O	[18,851 10-24-97 1:28p t92sp13.o
T92SP50	2,361 10-24-97 1:27p t92sp50
T92SP50 O	120,624 10-24-97 1:28p t92sp50.o
T92SP90	2,362 10-24-97 1:27p t92sp90
T92SP90 O	120,050 10-24-97 1:28p t92sp90.o
T92SPUE	2.388 10-24-97 1:27p t92spue
T92SPUE O	118.918 10-24-97 1:28p t92spue.o
T96P10	2.253 10-24-97 1:27p t96p10
T96P10 O	118.385 10-24-97 1:28p t96p10.o
T96P11	2.254 10-24-97 1:27p t96p11
T96P11 O	117,470 10-24-97 1:28p t96p11.0
T96P12	2.254 10-24-97 1:27p t96p12
T96P12 O	117,470 10-24-97 1:28p t96p12.o
T96P50	2,252 10-24-97 1:27p t96p50
T96P50 O	118,329 10-24-97 1:28p t96p50.o
T96P50 O T96P90	118.329 10-24-97 1:28p t96p50.o 2.254 10-24-97 1:27p t96p90
T96P50 O T96P90 T96P90 O	118,329 10-24-97 1:28p t96p50.o 2,254 10-24-97 1:27p t96p90 117,470 10-24-97 1:28p t96p90.o
T96P50 O T96P90 T96P90 O T96S10	118.329 10-24-97 1:28p t96p50.o 2.254 10-24-97 1:27p t96p90 117,470 10-24-97 1:28p t96p90.o 2.301 10-24-97 1:27p t96s10
T96P50 O T96P90 T96P90 O T96S10 T96S10 O	118.329 10-24-97 1:28p (96p50.o 2.254 10-24-97 1:27p 196p90 117,470 10-24-97 1:28p 196p90.o 2.301 10-24-97 1:28p 196s10 118.246 10-24-97 1:28p 196s10.o
T96P50 O T96P90 T96P90 O T96S10 T96S10 O T96S50 T96S50	118.329 10-24-97 1:28p 996950.0 2.254 10-24-97 1:27p 996990 117,470 10-24-97 1:28p 196p90.0 2.301 10-24-97 1:28p 196510 118,246 10-24-97 1:28p 196510.0 2.301 10-24-97 1:27p 196550
T96P50 O T96P90 T96P90 O T96S10 T96S10 O T96S50 O	118.329 10-24-97 1:28p t%650.0 2.254 10-24-97 1:27p t%6990 117.470 10-24-97 1:28p t%6990.0 2.301 10-24-97 1:28p t%610.0 2.301 10-24-97 1:27p t%6510.0 2.301 10-24-97 1:27p t%650.0 118.759 10-24-97 1:28p t%650.0
T96P50 O T96P90 O T96P90 O T96S10 T T96S10 O T96S50 O T96S50 O T96S50 O T96S72	118.329 10-24-97 1:28p t96p50.o 2.254 10-24-97 1:22p t96p90 117,470 10-24-97 1:22p t96p90. 2.301 10-24-97 1:22p t96s10 118.246 10-24-97 1:22p t96s10. 2.301 10-24-97 1:22p t96s50 118.759 10-24-97 1:22p t96s50. 2.302 10-24-97 1:22p t96s50.
T96P50 O T96P50 O T96P50 O T96S10 O T96S10 O T96S50 O T96S50 O T96S50 O T96S50 O T96S72 D T96S72 O	118.329 10-24-97 1:28p t96p50.0 2.254 10-24-97 1:27p t96p90 117,470 10-24-97 1:28p t96p90.0 2.301 10-24-97 1:27p t96s10 118.246 10-24-97 1:27p t96s10 2.301 10-24-97 1:27p t96s50 118.759 10-24-97 1:27p t96s50.0 2.302 10-24-97 1:27p t96s72 118.660 10-24-97 1:27p t96s72
T96P50 O T96P50 O T96P50 O T96S10 O T96S10 O T96S50 O T96S50 O T96S72 O T96S73 O	118.329 10-24-97 1:28p t96p50.0 2.254 10-24-97 1:28p t96p90 117.470 10-24-97 1:28p t96p90.0 2.301 10-24-97 1:28p t96s10 118.246 10-24-97 1:28p t96s10.0 2.301 10-24-97 1:28p t96s50.0 118.759 10-24-97 1:28p t96s50.0 2.302 10-24-97 1:28p t96s72 118.660 10-24-97 1:28p t96s72.0 2.302 10-24-97 1:28p t96s73.0
T96P50 O T96P50 O T96P50 O T96S10 O T96S10 O T96S50 O T96S50 O T96S72 T96S72 T96S73 O	118.329 10-24-97 1:28p t96p50.0 2:254 10-24-97 1:27p t96p50 117,470 10-24-97 1:27p t96p50 117,470 10-24-97 1:27p t96s10 118.246 10-24-97 1:27p t96s10 2:301 10-24-97 1:27p t96s50 118.759 10-24-97 1:27p t96s72 118.660 10-24-97 1:27p t96s72 118.660 10-24-97 1:27p t96s73 118.660 10-24-97 1:27p t96s73 118.660 10-24-97 1:27p t96s73 2:302 10-24-97 1:27p t96s
T96P50 O T96P50 O T96P50 O T96S10 O T96S10 O T96S50 O T96S50 O T96S72 T T96S73 O T96S73 O T96S73 O T96S90 O	118.329 10-24-97 1:22p (96p50.) 2.254 10-24-97 1:22p (96p50) 2.301 10-24-97 1:22p (96p50) 118.246 10-24-97 1:22p (96s10) 118.246 10-24-97 1:22p (96s50) 118.759 10-24-97 1:22p (96s50) 118.759 10-24-97 1:22p (96s50) 118.660 10-24-97 1:22p (96s72) 118.660 10-24-97 1:22p (96s73) 118.630 10-24-97 1:22p (96s9)
T96P50 O T96P50 O T96P50 O T96S10 O T96S10 O T96S50 O T96S50 O T96S72 O T96S73 O T96S73 O T96S90 O	118.329 10-24-97 1:28p t96p50.0 2.254 10-24-97 1:28p t96p90 117.470 10-24-97 1:28p t96p90, 117.470 10-24-97 1:28p t96p90,0 2.301 10-24-97 1:27p t96s10 118.246 10-24-97 1:27p t96s50 118.759 10-24-97 1:28p t96s50.0 2.302 10-24-97 1:27p t96s72 118.660 10-24-97 1:27p t96s72 118.630 10-24-97 1:28p t96s72.0 2.302 10-24-97 1:27p t96s73 118.630 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:27p t96s73 118.630 10-24-97 1:27p t96s73 118.630 10-24-97 1:27p t96s73.0 2.301 10-24-97 1:27p t96s90 118.687 10-24-97 1:27p t96s90
T96P50 O T96P50 O T96P50 O T96S10 O T96S50 O T96S50 O T96S50 O T96S72 T96S73 T96S73 T96S90 T96S90 O T96S90 O	118.329 10-24-97 1:28p (96p50.o 2:254 10-24-97 1:27p (96p50) 117,470 10-24-97 1:28p (96p50) 2:301 10-24-97 1:27p (96s10) 118.246 10-24-97 1:28p (96s10) 2:301 10-24-97 1:27p (96s50) 118.650 10-24-97 1:28p (96s72.o 2:302 10-24-97 1:27p (96s72) 118.660 10-24-97 1:28p (96s73.o) 2:301 10-24-97 1:27p (96s73) 118.663 10-24-97 1:27p (96s90) 118.687 10-24-97 1:28p (96s90).o 12:361 10-24-97 1:28p (96s90).o
T96P50 O T96P50 O T96P50 O T96S10 O T96S50 O T96S50 O T96S72 O T96S73 O T96S90 O T96S90 O T96S90 O T96S90 O T96S90 O T96S910 O	118.329 10-24-97 1:22p (96p50.o 2.254 10-24-97 1:22p (96p50) 117,470 10-24-97 1:22p (96p50) 2.301 10-24-97 1:22p (96s10) 118.246 10-24-97 1:22p (96s10) 118.246 10-24-97 1:22p (96s50) 118.759 10-24-97 1:22p (96s72) 118.660 10-24-97 1:22p (96s72) 118.660 10-24-97 1:22p (96s73) 2.302 10-24-97 1:22p (96s73) 2.302 10-24-97 1:22p (96s73) 2.301 10-24-97 1:22p (96s90) 2.301 10-24-97 1:22p (96s90) 118.687 10-24-97 1:22p (96s90) 118.687 10-24-97 1:22p (96s90) 2.301 10-24-97 1:22p (96s90) 2.301 10-24-97 1:22p (96s90) 2.360 10-24-97 1:22p (96s90)
T96P50 O T96P50 O T96P50 O T96S10 O T96S50 O T96S50 O T96S72 O T96S73 O T96S90 O T96S90 O T96S90 O T96S910 O T96S910	118.329 10-24-97 1:28p t96p50.0 2.254 10-24-97 1:28p t96p90 117,470 10-24-97 1:28p t96p90 118.246 10-24-97 1:28p t96s10 118.246 10-24-97 1:27p t96s10 118.246 10-24-97 1:28p t96s50 118.759 10-24-97 1:28p t96s50 2.302 10-24-97 1:27p t96s72 118.660 10-24-97 1:28p t96s72.0 2.302 10-24-97 1:28p t96s73 118.630 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:28p t96s90 118.687 10-24-97 1:28p t96s90 128.687 10-24-97 1:28p t96s910 121.115 10-24-97 1:28p t96s910.0 2.365 10-365 10-36591.0 2.365 10-3659
T96P50 O T96P50 O T96P50 O T96S10 O T96S10 O T96S50 O T96S50 O T96S72 O T96S73 O T96S90 O T96S90 O T96S90 O T96S90 O T96S910 O T96SP10 O T96SP10 O T96SP10 O T96SP10 O T96SP10 O	118.329 10-24-97 1:28p t96p50.0 2:254 10-24-97 1:27p t96p50 117,470 10-24-97 1:27p t96p50 117,470 10-24-97 1:27p t96p50 118.246 10-24-97 1:27p t96s10 118.246 10-24-97 1:27p t96s50 118.759 10-24-97 1:27p t96s50 118.660 10-24-97 1:27p t96s72 118.660 10-24-97 1:27p t96s73 118.660 10-24-97 1:27p t96s73 118.663 10-24-97 1:27p t96s73 118.687 10-24-97 1:27p t96s90 123.687 10-24-97 1:27p t96s90 2.360 10-24-97 1:27p t96s90 2.360 10-24-97 1:27p t96s910 121.115 10-24-97 1:28p t96s910 121.115 10-24-97 1:27p t96s919 118.432 10-24-97 1:27p t96s919 118.432 10-24-97 1:27p t96s919
T96P50 O T96P50 O T96P50 O T96P50 O T96S10 O T96S50 O T96S50 O T96S72 O T96S73 O T96S90 T96S90 T96S90 O T96S90 O T96S90 O T96S910 O T96S910 O T96S910 O T96S910 O T96S919 O T96S910 O	118.329 10-24-97 1:28p t96p50.0 2.254 10-24-97 1:27p t96p50 117,470 10-24-97 1:28p t96p50.0 2.301 10-24-97 1:28p t96s10.0 2.301 10-24-97 1:27p t96s10 118.246 10-24-97 1:27p t96s50 118.759 10-24-97 1:28p t96s70.0 2.302 10-24-97 1:28p t96s72 118.660 10-24-97 1:28p t96s72.0 2.302 10-24-97 1:28p t96s73.0 2.302 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:28p t96s90.0 118.687 10-24-97 1:28p t96s90.0 2.360 10-24-97 1:28p t96s910 121.115 10-24-97 1:28p t96sp10.0 2.365 1
T96P50 O T96P50 O T96P50 O T96S10 O T96S50 O T96S50 O T96S72 O T96S73 O T96S90 O T96S90 O T96S90 O T96S910 O T96S910 O T96S910 O T96S910 O T96S910 O T96S910 O T96S920 O T96S9210 O T96S9210 O	118.329 10-24-97 1:28p t96p50.0 2.254 10-24-97 1:27p t96p90 117,470 10-24-97 1:28p t96p90.0 118,246 10-24-97 1:28p t96s10.0 2.301 10-24-97 1:27p t96s50 118.759 10-24-97 1:27p t96s50 118.759 10-24-97 1:27p t96s72 118.660 10-24-97 1:27p t96s73 118.6630 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:28p t96s90.0 118.687 10-24-97 1:28p t96s90.0 123.615 10-24-97 1:28p t96s910.0 2.365 10-24-97 1:28p t96s910.0 2.365 10-24-97 1:28p t96s919.0 2.361 10-24-97 1:28p t96s919.0 2.363 10-24-97 1:28p t96s919.0 2.364 10-24-97 1:28p t96s919.0 2.365 10-24-97 1:28p t96s919.0 2.364 10-24-97 1:28p t96s919.0 2.365 10-24-97 10-24-97 10-24-97 10
T96P50 O T96P50 O T96P50 O T96P50 O T96S10 O T96S50 O T96S50 O T96S50 O T96S72 T96S72 T96S73 O T96S90 O T96S90 O T96S910 T96S910 T96S910 O T96S910 O T96S910 O T96S910 O T96S920 O T96S920 O T96S920 O T96S920 O T96S920 O	118.329 10-24-97 1:28p t96p50.0 2:254 10-24-97 1:27p t96p50 117,470 10-24-97 1:28p t96p50 2:301 10-24-97 1:27p t96s10 118.246 10-24-97 1:28p t96s10.0 2:301 10-24-97 1:27p t96s50 118.759 10-24-97 1:28p t96s50.0 2:302 10-24-97 1:28p t96s72.0 118.660 10-24-97 1:28p t96s73.0 2:302 10-24-97 1:27p t96s73 118.660 10-24-97 1:28p t96s90.0 2:360 10-24-97 1:28p t96s90.0 2:360 10-24-97 1:28p t96s910.0 2:361 10-24-97 1:28p t96sp19.0 121.115 10-24-97 1:28p t96sp19.0 118.432 10-24-97 1:28p t96sp19.0 2:363 10-24-97 1:28p t96sp19.0 2:364 10-24-97 1:28p t96sp19.0 2:365 10-24-97 1:28p t96sp19.0 2:363 10-24-97 1:28p t96sp19.0 2:363 10-24-97 1:28p t96sp20.0 1:36,10-24-97 1:28p t96sp20.0 1:36,10-34-97 1:38p t96sp20.0 1:36,10-34-97 1:38p t96sp20.0 1:36,10-34-97 1:38p t96sp20.0 1:36,10-34-97 1:38p t96sp20.0 1:36,10-34-97 1:37p t96sp20.0 1:36,10-36-37 1
T96P50 O T96P50 O T96P50 O T96P50 O T96S10 O T96S50 O T96S50 O T96S72 O T96S73 O T96S90 T96S90 T96S90 O T96S90 O T96S910 O T96S910 O T96S910 O T96S919 O T96S920 T96S920 T96S920 O T96S920 D T96S920 O T96S950 C	118.329 10-24-97 1:28p (96p50.o 2.254 10-24-97 1:27p (96p50) 117,470 10-24-97 1:28p (96p50) 118,246 10-24-97 1:28p (96s50) 118.246 10-24-97 1:27p (96s50) 118.259 10-24-97 1:27p (96s50) 118.259 10-24-97 1:28p (96s72) 118.660 10-24-97 1:28p (96s72) 118.660 10-24-97 1:28p (96s73) 118.6630 10-24-97 1:28p (96s73) 118.6630 10-24-97 1:28p (96s73) 118.6630 10-24-97 1:28p (96s73) 118.6630 10-24-97 1:28p (96s73) 118.6687 10-24-97 1:28p (96s90) 12.301 10-24-97 1:28p (96s90) 12.365 10-24-97 1:28p (96s910) 12.115 10-24-97 1:28p (96s910) 2.365 10-24-97 1:28p (96s910) 2.363 10-24-97 1:28p (96s910) 2.363 10-24-97 1:28p (96s920) 119.189 10-24-97 1:28p (96s920) 119.189 10-24-97 1:28p (96s950) 118.199 10-24-97 1:28p (96s950) 118 10-24-97 1:28p (
T96P50 O T96P50 O T96P50 O T96S10 O T96S50 O T96S50 O T96S50 O T96S72 O T96S73 O T96S90 O T96S90 O T96S910 O T96S910 O T96S910 O T96S910 O T96S919 O T96S9210 O T96S950 T96S950 T96S950 D	118.329 10-24-97 1:28p t96p50.0 2.254 10-24-97 1:27p t96p50 117,470 10-24-97 1:28p t96p50.0 2.301 10-24-97 1:28p t96s10.0 2.301 10-24-97 1:27p t96s50 118.246 10-24-97 1:27p t96s50 118.759 10-24-97 1:27p t96s72 118.660 10-24-97 1:27p t96s72 2.302 10-24-97 1:27p t96s73.0 2.302 10-24-97 1:28p t96s73.0 2.301 10-24-97 1:28p t96s70.0 2.360 10-24-97 1:28p t96s90.0 126.678 10-24-97 1:28p t96s910 121.115 10-24-97 1:28p t96s910 121.115 10-24-97 1:28p t96s910.0 2.361 10-24-97 1:28p t96s920 118.432 10-24-97 1:28p t96s920 119.189 10-24-97 1:28p t96sp20 119.189 10-24-97 1:28p t96sp50.0 2.361 10-24-97 1:28p t96sp50.0 2.361 10-24-97 1:28p t96sp50.0 2.362 10-24-97 1:28p t96sp50.0 2.364 10-24-97 1:28p t96sp50.0 2.365 10-34-97 1:28p t96sp50.0 2.365 10
T96P50 O T96P50 O T96P50 O T96P510 O T96S10 O T96S510 O T96S510 O T96S50 O T96S72 T96S72 T96S73 O T96S90 O T96S910 T96S910 T96S910 O T96S910 O T96S910 O T96S910 O T96S910 O T96S920 O T96S920 O T96S950 O T96S9740 O	118.329 10-24-97 1:28p t96p50.0 2:254 10-24-97 1:27p t96p50 117,470 10-24-97 1:27p t96p50 117,470 10-24-97 1:28p t96p50 2:301 10-24-97 1:27p t96s10 118.246 10-24-97 1:28p t96s10.0 2:301 10-24-97 1:27p t96s50 118.660 10-24-97 1:28p t96s72.0 118.660 10-24-97 1:28p t96s73.0 2:302 10-24-97 1:27p t96s73 118.660 10-24-97 1:28p t96s90.0 2:360 10-24-97 1:28p t96s90.0 2:360 10-24-97 1:28p t96s910.0 2:361 10-24-97 1:28p t96sp10.0 2:361 10-24-97 1:28p t96sp10.0 2:361 10-24-97 1:28p t96sp10.0 2:361 10-24-97 1:28p t96sp10.0 2:363 10-24-97 1:28p t96sp10.0 2:363 10-24-97 1:28p t96sp10.0 2:363 10-24-97 1:28p t96sp20.0 2:361 10-24-97 1:28p t96sp20.0 2:361 10-24-97 1:28p t96sp50 118.158 10-24-97 10-24-97 10-24-97 128 t96sp50 118.158 10-24-97 10-24-97 128 t96sp50 118.158 10-24-97 10-24-97 128 t96sp50 118 t98 1

Results from new runs

Directory of C:\	Work\tuttle\transoct\newruns
TOSPITR	3,019 01-28-98 3:37p t0sp11r
TOSPHIRO	121.160 01-28-98 3:37p t0sp11ro
T87SPX	2,993 01-28-98 3:37p t87spx
T87SPXO	121,186 01-28-98 3:37p t87spxo
T87SPY	2,994 01-28-98 3:37p t87spy
T87SPYO	121,234 01-28-98 3:37p t87spyo
T8SPIIR	3.086 01-28-98 3:37p t8sp11r
T8SPI1RO	121.481 01-28-98 3:37p t8sp11ro
T92SP11	2,392 01-28-98 3:37p t92sp11
T92SP110	119.151 01-28-98 3:37p t92sp11o
T92SPX	2.947 01-28-98 3:37p t92spx
T92SPXO	121,112 01-28-98 3:37p t92spxo
T92SPY	2,993 01-28-98 3:37p t92spy
T92SPYO	121,291 01-28-98 3:37p t92spyo

Results for 0.005 cm Fracture Width

Directory of C:\Work\tuttle\transoct\pluto2		
HEADING	133 10-24-97 1:28p heading	
HEADOUT	3.938 10-24-97 1:28p headout	

Attachment II

NIGOPSO 1:0012407 1:28p nIGOpSO NIGOPSO 20,708 10:24-97 1:28p nIGOpSO NIGOPSO 21,0708 10:24-97 1:28p nIGOpSO NIGOPSO 21,0708 10:24-97 1:28p nIGOpSO NIGOPSO 21,04 10:24-97 1:28p nIGOpSO NIGOPSO 2:04 10:24-97 1:28p nIGOpSO NIGOSPO 2:04 10:24-97 1:28p nIGOpSO NIGOPSO 2:264 10:24-97 1:28p nIGOpSO NIGOSPO 118.042 10:24-97 1:28p nIGOpSO NIGOSPO 2:261 10:24-97 1:28p n87p10 NIGOPSO 118.059 10:24-97 1:28p n87p13 NIGOSPO 116:210-24-97 1:28p n87p13 NIGOPSO 2:261 10:24-97 1:28p n87p13 NIGOPSO 116:210-124-97 1:28p n87p13 NIGOPSO 2:261 10:24-97 1:28p n87p13 NRTPIC 2:263 10:24-97 1:28p n87p13 NRTPISO 116:210-24-97 1:28p n87p510	HYAVE OUT	46 786 10-74-07 1-785 brave out
N100P30 120.708 10.24-97 1:28p n100P30 N100P30 2.161 10.24-97 1:28p n100p30 N100P30 2.161 10.24-97 1:28p n100p30 N100S50 2.175 10.24-97 1:28p n100s50 N100S90 117.316 10.24-97 1:28p n100sp50 N100SP50 2.265 10.24-97 1:28p n87p10 N87P10 2.263 10.24-97 1:28p n87p13 N87P13 116.2149 1:28p n87p50 N87p50 N87p50 116.2149 1:28p n87p51.0 N87p51 N87p50 118.415 10.24-97 1:28p n87p51.0 N87p51 2.311 10.24-97 1:28p n87p51.0 N87p510 118.415	N100P50	2.159 10-24-97 1:28p n100n50
N100P90 2.161 10-24-97 1:28p n100p90 N100550 2.204 10-24-97 1:28p n100b50 N100550 2.204 10-24-97 1:28p n100b50 N100550 2.204 10-24-97 1:28p n100b50 N100590 2.264 10-24-97 1:28p n100b50 N100590 2.264 10-24-97 1:28p n100b50 N100590 2.265 10-24-97 1:28p n100b50 N100590 2.265 10-24-97 1:28p n87p10 N87P10 0 118.058 10-24-97 1:28p n87p11 N87P11 2.263 10-24-97 1:28p n87p50 N87P50 116.214 10-24-97 1:28p n87p50 N87P50 116.214 10-24-97 1:28p n87s71 N87550 117.616 10-24-97 1:28p n87s71 N87571 2.312 10-24-97 1:28p n87s71 N87590 118.416 <td>N100P50 O</td> <td>120.708 10-24-97 1:28p n100p50.o</td>	N100P50 O	120.708 10-24-97 1:28p n100p50.o
N100P91 O 117.398 10-24-97 1:28p n100550 N100S50 2.204 10-24-97 1:28p n100550. N100S50 2.204 10-24-97 1:28p n100s90. N100S50 2.204 10-24-97 1:28p n100s90. N100S50 2.204 10-24-97 1:28p n100s90. N100S590 118.042 10-24-97 1:28p n100s90. N100S590 2.263 10-24-97 1:28p n100s90. N100S590 2.263 10-24-97 1:28p n87p12. N87P10 2.263 10-24-97 1:28p n87p13. N87P50 116.2144 10-24-97 1:28p n87p50. N8750 118.415 10-24-97 1:28p n87s50. N8750 117.679 10-24-97 1:28p n87s50. N87571 117.683 10-24-97 1:28p n87s71. N87571 117.683 10-24-97 1:28p n87s91. N875500 118.13	N100P90	2,161 10-24-97 1:28p n100p90
N100550 2.204 10-24-97 1:28 p.100550 N100550 2.204 10-24-97 1:28 p.100550 N100590 2.204 10-24-97 1:28 p.100590 N1005950 118.042 10-24-97 1:28 p.100590 N1005P90 2.265 10-24-97 1:28 p.100590 N1005P90 2.265 10-24-97 1:28 p.87p10 N87P10 2.263 10-24-97 1:28 p.87p10 N87P10 2.263 10-24-97 1:28 p.87p13 N87P12 0 117.599 10-24-97 1:28 p.87p13 N87P13 0 118.199 10-24-97 1:28 p.87p50 N87P50 2.261 10-24-97 1:28 p.87p510 N87P50 2.361 10-24-97 1:28 p.87p510 N87570 116.314 10-24-97 1:28 p.87p10 N87571 0 117.816 10-24-97 1:28 p.87p10 N87572 2.312 10-24-97 1:28 p.87p10 N87p510 N87572 2.376 10-24-97 1:28 p.87p10	N100P90_O	117.398 10-24-97 1:28p n100p90.o
N100590 117.574 10-24-97 1:28p n100590 N100590 2:264 10-24-97 1:28p n100590 N1005P50 2:265 10-24-97 1:28p n1005900 N1005P50 2:265 10-24-97 1:28p n1005900 N1005P50 2:265 10-24-97 1:28p n1005900 N1005P50 2:265 10-24-97 1:28p n87p10 N87P10 2:263 10-24-97 1:28p n87p110 N87P11 2:263 10-24-97 1:28p n87p13 N87P12 2:263 10-24-97 1:28p n87p50 N87P50 2:261 10-24-97 1:28p n87p50 N87P50 2:361 10-24-97 1:28p n87p50 N87P50 2:311 10-24-97 1:28p n87p510 N87570 2:312 10-24-97 1:28p n87p510 N87570 117.681 10-24-97 1:28p n87sp10 N875800 118.416	N100S50	2,204 10-24-97 1:28p n100s50
N100S90 2.204 102497 1:28p n100s90.0 N100SP50 2.264 10-24-97 1:28p n100sp50 N100SP50 2.264 10-24-97 1:28p n100sp50 N100SP50 2.261 10-24-97 1:28p n100sp50 N100SP50 2.262 10-24-97 1:28p n87p10 N87P10 2.263 10-24-97 1:28p n87p12 N87P12 2.263 10-24-97 1:28p n87p13 N87P13 2.263 10-24-97 1:28p n87p50 N87P50 2.261 10-24-97 1:28p n87p50. N87P50 116.204 10-24-97 1:28p n87s50. N87550 2.311 10-24-97 1:28p n87s71. N87571 117.816 10-24-97 1:28p n87s70. N87580 2.311 10-24-97 1:28p n87s70. N875810 118.316 10-24-97 1:28p n87s91. N875820 2.311	N100550 O	117.574 10-24-97 1:28p n100s50.o
N100590 2.264 117.316 107.424-97 1:28 p n1005950 N1005P50 2.265 10-24-97 1:28 p n1005950.0 N1005P90 2.265 10-24-97 1:28 p n1005950.0 N1005P90 2.265 10-24-97 1:28 p n87p10.0 N87P10 2.263 10-24-97 1:28 p n87p10.0 N87P12 2.263 10-24-97 1:28 p n87p13.0 N87P13 118.199 10-24-97 1:28 p n87p50.0 N87P50 2.261 10-24-97 1:28 p n87p50.0 N87P50 2.361 10-24-97 1:28 p n87p50.0 N8750 118.415 10-24-97 1:28 p n87s71.0 N8751 2.312 10-24-97 1:28 p n87s71.0 N87571 2.312 10-24-97 1:28 p n87s71.0 N87590 118.416 10-24-97 1:28 p n87s71.0 N875910 118.416 10-24-97 1:28 p n87s910.0 N875910 118.416 10-24-97 1:28 p n87s910.0 N875910 118.416 10-24-97 1:28 p n87s910.0	N100S90	2,204 10-24-97 1:28p n100s90
N100SP50 12.04 10:24-97 1:28p n100ksp50. N100SP90 2.265 10:24-97 1:28p n100ksp50. N100SP90 2.265 10:24-97 1:28p n100ksp50. N100SP90 2.265 10:24-97 1:28p n87p10. N87P10 2.263 10:24-97 1:28p n87p10. N87P12 2.263 10:24-97 1:28p n87p13. N87P13 2.263 10:24-97 1:28p n87p13. N87P14 2.263 10:24-97 1:28p n87p13. N87P50 116.214/10:24-97 1:28p n87p50. N87P50 116.214/10:24-97 1:28p n87p50. N87P50 116.214/10:24-97 1:28p n87s51. N87550 2.311 10:24-97 1:28p n87s71. N87550 2.311 10:24-97 1:28p n87s72. N87571 2.376 10:24-97 1:28p n87s71. N87570 2.376 10:24-97 1:28p n87s91. N87580 2.371 10:24-97 1:28p n87s91. N875810 2.376 10:24-97 1:28p n87s91. N875810 2.376 10:24-97 1:28p n87s91. N875821 118.158 10:24-97 1:28p n87s92. </td <td>N100590 O</td> <td>117.316 10-24-97 1:28p n100s90.o</td>	N100590 O	117.316 10-24-97 1:28p n100s90.o
N100SP30 116.02 110.24-97 1:28p n100sp30. N100SP90 2.262 10-24-97 1:28p n100sp30. N87P10 2.262 10-24-97 1:28p n87p10. N87P11 2.263 10-24-97 1:28p n87p12. N87P12 2.263 10-24-97 1:28p n87p13. N87P13 2.263 10-24-97 1:28p n87p13. N87P13 2.261 10-24-97 1:28p n87p30. N87P50 2.261 10-24-97 1:28p n87p30. N87P50 2.16.204 10-24-97 1:28p n87p30. N87S50 118.415 10-24-97 1:28p n87s50. N87S51 117.816 10-24-97 1:28p n87s72. N87S71 117.816 10-24-97 1:28p n87s72. N87S70 118.416 10-24-97 1:28p n87sp10. N87S710 118.136 10-24-97 1:28p n87sp10. N87S72 2.312 10-24-97 1:28p n87sp10. N87S720 118.136 10-24-97 1:28p n87sp10. N87S721 <td< td=""><td>NICOSPOO</td><td>2.264 10-24-97 1:28p n100sp50</td></td<>	NICOSPOO	2.264 10-24-97 1:28p n100sp50
N100SP910 1:2257 1:229 11004590.0 N100SP910 2:652 10-24-97 1:28p n87p10 N87P10 2:265 10-24-97 1:28p n87p12 N87P12 2:265 10-24-97 1:28p n87p13 N87P13 118.059 10-24-97 1:28p n87p13 N87P50 2:263 10-24-97 1:28p n87p50 N87P50 2:263 10-24-97 1:28p n87p50 N87P50 2:263 10-24-97 1:28p n87p50 N87550 2:311 10-24-97 1:28p n87p50 N87550 117.681 10-24-97 1:28p n87s71 N87571 1:7.32 1:28p n87s71 2:370 10-24-97 1:28p n87s90 N87572 117.683 10-24-97 1:28p n87s91 2:370 10-24-97 1:28p n87s921 N875910 118.136 10-24-97 1:28p n87s921 N87s921 118.136 10-24-97 1:28p n87s921 N87s921 118.671 10-24-97 1:28p n	NICOSPOC U	7 765 10 74 97 1:28p n100sp000
NRTP10 2.262 10.24.97 1:28p n87p10 NRTP10 118.058 10.24.97 1:28p n87p12 NRTP12 117.599 10.24.97 1:28p n87p13 NRTP13 2.263 10.24.97 1:28p n87p13 NRTP13 2.263 10.24.97 1:28p n87p50 NRTP50 116.214 10.24.97 1:28p n87p50 NRTP50 116.214 10.24.97 1:28p n87p50 NRTP50 116.214 10.24.97 1:28p n87s50 NRTS50 2.311 10.24.97 1:28p n87s10 NRTS50 2.312 10.24.97 1:28p n87s12 NRTS71 2.312 10.24.97 1:28p n87s12 NRTS71 2.311 10.24.97 1:28p n87s12 NRTS90 2.370 10.24.97 1:28p n87s910 NRTS910 118.156 10.24.97 1:28p n87s910 NRTS92 2.370 10.24.97 1:28p n87s910 NRTS92 2.371 10.24.97 1:28p n87s910 NRTS92 118.158 10.24	NIGOSP90 O	119 257 10-24-97 1.260 n100ke90 o
N87P10 0 118,058 10-24-97 1:28p n87p12 N87P12 2,263 10-24-97 1:28p n87p13 N87P13 0 117,99 10-24-97 1:28p n87p13 N87P13 0 118,199 10-24-97 1:28p n87p13 N87P50 2,263 10-24-97 1:28p n87p50 N87P50 116,204 10-24-97 1:28p n87s50 N87P50 2,311 10-24-97 1:28p n87s50 N87S51 0 117,816 10-24-97 1:28p n87s71 N87S71 0 117,816 10-24-97 1:28p n87s72 N87S72 2,312 10-24-97 1:28p n87s91 N87S91 N87S90 0 118,416 10-24-97 1:28p n87s921.0 N87S910 118,136 10-24-97 1:28p n87s921.0 N87S921 118,136 10-24-97 1:28p n87s921.0 N87S920 118,214 10-24-97 1:28p n87s921.0 N87S920 118,671 10-24-97 1:28p n87s920.0 N87S990	N87P10	2.262 10-24-97 1:28p n87n10
N87P12 2.263 10-24-97 1:28p n87p12 N87P13 2.17,599 10-24-97 1:28p n87p13 N87P13 2.18 10-24-97 1:28p n87p13 N87P13 118,199 10-24-97 1:28p n87p50 N87P50 2.261 10-24-97 1:28p n87p50 N87P50 2.263 10-24-97 1:28p n87p50 N87P50 2.161 10-24-97 1:28p n87p50 N87P50 117,679 10-24-97 1:28p n87s50 N87550 118,415 10-24-97 1:28p n87s50 N87571 2.312 10-24-97 1:28p n87s71 N87572 2.312 10-24-97 1:28p n87s71 N87571 2.370 10-24-97 1:28p n87s71 N87590 2.371 10-24-97 1:28p n87s90 N875910 118,416 10-24-97 1:28p n87s910 N875910 118,158 10-24-97 1:28p n87s910 N875921 2.370 10-24-97 1:28p n87s921 N875920 118,214 10-24-97 1:28p n87s920 N875950 118,617 10-24-97 1:28p n87s900 N875950 118,618 10-24-97 1:28p n87s900 N875950 118,611 10-24-97 1:28p n87s900 N875950 118,611 10-24-97 1:28p n87s900 N875950 118,613 10-24-97 1:28p n87s900 N875950 118,613 10-24-97 1:2	N87P10 O	118,058 10-24-97 1:28p n87p10.0
N87P12 O 117.599 10-24-97 1:28p n87p13 N87P13 2.263 10-24-97 1:28p n87p13 N87P50 2.261 10-24-97 1:28p n87p50 N87P50 2.16 10-24-97 1:28p n87p50 N87P50 116.204 10-24-97 1:28p n87p50 N87P50 116.214 10-24-97 1:28p n87s50 N87S50 2.311 10-24-97 1:28p n87s71 N87S71 0 117.615 10-24-97 1:28p n87s72 N87S90 2.311 10-24-97 1:28p n87s72 N87S910 2.370 10-24-97 1:28p n87s910 N87S910 2.376 10-24-97 1:28p n87s910 N87S9210 118.158 10-24-97 1:28p n87s921.0 N87S9210 118.316 10-24-97 1:28p n87s950 N87S920 2.371 10-24-97 1:28p n87s950 N87S920	N87P12	2,263 10-24-97 1:28p n87p12
N87P13 2.263 10.24-97 1:28p n87p13.0 N87P50 2.261 10.24-97 1:28p n87p50 N87P50 2.263 10.24-97 1:28p n87p50 N87P50 116.214 10.24-97 1:28p n87p50 N87P50 116.717 10.24-97 1:28p n87p50 N87550 118.415 10.24-97 1:28p n87s1 N87571 2.312 10.24-97 1:28p n87s1 N87572 2.312 10.24-97 1:28p n87s1 N87571 117.816 10.24-97 1:28p n87s10 N87590 118.416 10.24-97 1:28p n87s10 N875910 118.136 10.24-97 1:28p n87sp10.0 N875921 118.136 10.24-97 1:28p n87sp21.0 N875920 118.136 10.24-97 1:28p n87sp21.0 N875921 118.214 10.24-97 1:28p n87sp21.0 N875920 118.618 1:24-97 1:28p n87sp0.0 N875920 118.618 1:24-97 1:28p n87sp0.0 N875920 118.6	N87P12 O	117.599 10-24-97 1:28p n87p12.0
N87P13 O 118.199 10.24-97 1:28p n87p50 N87P50 O 116.204 10.24-97 1:28p n87p50 N87P50 O 116.204 10.24-97 1:28p n87p50 N87P50 O 117.679 10.24-97 1:28p n87s50 N87S50 O 118.415 10.24-97 1:28p n87s50 N87S71 O 117.681 10.24-97 1:28p n87s71 N87S72 2.312 10.24-97 1:28p n87s72 0 N87S90 O 118.416 10.24-97 1:28p n87s91 N87S910 118.136 10.24-97 1:28p n87s921 0 N87SP10 2.370 10.24-97 1:28p n87s921 0 N87SP21 118.158 10.24-97 1:28p n87s921 0 118.361 10.24-97 1:28p n87s921 N87SP20 118.214 10.24-97 1:28p n87s921 0 116.893 10.24-97 1:28p n87s920 N87SP50 2.370 10.24-97 1:28p n87s950 0 1285p n92p10 <td>N87P13</td> <td>2,263 10-24-97 1:28p n87p13</td>	N87P13	2,263 10-24-97 1:28p n87p13
N87P50 2.201 10-24-97 1:28 p.87p50.0 N87P50 2.63 10-24-97 1:28 p.87p50.0 N87P50 2.17,679 10-24-97 1:28 p.87p50.0 N87550 117,679 10-24-97 1:28 p.87p50.0 N87550 117,616 10-24-97 1:28 p.87p51.0 N87571 2.312 10-24-97 1:28 p.87p51.0 N87572 2.311 10-24-97 1:28 p.87p1.0 N87590 2.311 10-24-97 1:28 p.87p1.0 N87590 118.166 10-24-97 1:28 p.87p1.0 N875910 2.370 10-24-97 1:28 p.87p2.0 N875921 2.372 10-24-97 1:28 p.87p2.0 N875920 118.161 10-24-97 1:28 p.87p2.0 N875950 2.370 10-24-97 1:28 p.87p2.0 N875950 118.617 10-24-97 1:28 p.87p2.0 N875950 118.618 10-24-97 1:28 p.87p0.0 N875950 118.616 10-24-97 1:28 p.87p0.0 N92110 2.2601 10-24-97 <td>N87P13 O</td> <td>118,199 10-24-97 1:28p n87p13.0</td>	N87P13 O	118,199 10-24-97 1:28p n87p13.0
N87P90 Clinic 10 Current Print N87P90 Clinic 10 Current Print Current Print N87P50 Clinic 10 Current Print Current Print N87P50 Clinic 10 Current Print Current Print N87P50 Clinic 10 Current Current N87S71 Clinic 10 Current Current N87S71 Clinic 10 Current Current N87S70 Clinic 10 Current Current N87S90 Clinic 10 Current Current N87S91 Clinic 10 Current Current N87S91 Clinic 10 Current Current N87S91 Clinic 10 Current Current N87S92 Clinic 10 Current Current Current N87S92 Clinic 10 Current Current Current N87S92 Clinic 24 Current Current Current N87S92 Clinic 24 Current Curent Curent Curent<	N8/P30	2.201 1(F24-97 1:28p n8/p51)
Natry Ni 1210, 1024-97 1228 pa7p90.0 Natry Ni 118, 415 10-24-97 1228 pa7p90.0 Natry Ni 2, 311 10-24-97 1228 pa7p90.0 Natry Ni 2, 312 10-24-97 1228 pa7p90.0 Natry Ni 2, 312 10-24-97 1228 pa7p91.0 Natry Ni 2, 312 10-24-97 1228 pa7p91.0 Natry Ni 2, 311 10-24-97 1228 pa7p91.0 Natry Ni 2, 311 10-24-97 128 pa7p91.0 Natry Ni 2, 370 10-24-97 128 pa7p91.0 Natry Ni 2, 376 10-24-97 128 pa7p91.0 Natry Ni 118, 136 10-24-97 128 pa7p91.0 Natry Ni	N87P30_0	2 263 10-24-97 1:28p n87p30.0
Nation Col 111110 12111 112111 112111 112111 112111 112111 112111 112111 112111 112111 112111 112111 112111 112111 112111 112111 112111 112111 1121111 112	N87P90 O	117 679 1(-24-97 1.28p n87p9() o
N87550 0 118.415 10-24-97 1:28p n87510 N87571 2.312 10-24-97 1:28p n87571 N87571 2.312 10-24-97 1:28p n87572 N87572 2.312 10-24-97 1:28p n87572 N87570 2.311 10-24-97 1:28p n87590 N87590 2.311 10-24-97 1:28p n875910 N875910 2.370 10-24-97 1:28p n875910 N875910 118.136 10-24-97 1:28p n875921 N875922 2.372 10-24-97 1:28p n875921.0 N875920 118.158 10-24-97 1:28p n875921.0 N875950 2.370 10-24-97 1:28p n87590.0 N875950 2.371 10-24-97 1:28p n87590.0 N875990 116.893 10-24-97 1:28p n87590.0 N87590 116.893 10-24-97 1:28p n87590.0 N92110 2.260 10-24-97 1:28p n92p10.0 N9215 0 118.168 10-24-97 1:28p n92p15.0	N87550	2.311 10-24-97 1:28p n87s50
N87571 2.312 10-24-97 1:28p n87s71 N87572 2.312 10-24-97 1:28p n87s72 N87572 2.311 10-24-97 1:28p n87s72 N87572 117.816 10-24-97 1:28p n87s72 N87590 2.311 10-24-97 1:28p n87s910 N87590 2.370 10-24-97 1:28p n87s910 N875910 2.370 10-24-97 1:28p n87s910 N875910 2.376 10-24-97 1:28p n87s921. N875921 2.376 10-24-97 1:28p n87s921. N875922 2.372 10-24-97 1:28p n87s921. N875920 118.158 10-24-97 1:28p n87s950. N875950 2.371 10-24-97 1:28p n87s950. N875950 2.371 10-24-97 1:28p n87s950. N875950 2.371 10-24-97 1:28p n87s950. N875990 2.361 10-24-97 1:28p n92p10. N92P10 118.411 10-24-97 1:29p n92p10. N92P16 2.261 10-24-97 1:28p n92p15. N92P16 2.18.00 10-24-97 1:28p n92p15. N92P16 2.18.01 0-24-97 1:28p n92p10. N92P50 117.934 10-24-97 1:28p n92p50. N92P50 117.934 10-24-97 1:28p n92p50. N92P50 2.378 10-24-97 1:28p n92p50. N92S910 2.308 10-24-97	N87550 O	118,415 10-24-97 1:28p n87s50.0
N87S71 O 117.816 10-24-97 1:28p n87s72 2.312 10-24-97 1:28p n87s72 0 117.816 10-24-97 1:28p n87s72 0 117.816 10-24-97 1:28p n87s90 0 118.416 10-24-97 1:28p n87s910 0 118.416 10-24-97 1:28p n87s910 0 118.156 10-24-97 1:28p n87s911.0 N87SP21 2.376 10-24-97 1:28p n87s921.0 N87SP21 118.158 10-24-97 1:28p n87sp51.0 N87SP52 2.371 10-24-97 1:28p n87sp50.0 N87SP50 2.371 10-24-97 1:28p n87sp50.0 N87SP50 2.371 10-24-97 1:28p n87sp50.0 N87SP50 2.371 10-24-97 1:28p n87sp60 N87SP50 118.671 10-24-97 1:28p n87sp60 N87SP50 118.411 10-24-97 1:28p n87sp60 N87SP50 118.416 10-24-97 1:28p n92p15.0 N92p16 2.261 10-24-97 1:28p<	N87571	2.312 10-24-97 1:28p n87s71
N87572 2.312 10-24-97 1:28p n87572.0 N87572 0 11.683 10-24-97 1:28p n87590.0 N87590 2.311 10-24-97 1:28p n87590.0 N87590 2.310 10-24-97 1:28p n87590.0 N875910 2.370 10-24-97 1:28p n87591.0 N875P10 118.136 10-24-97 1:28p n875p21.0 N875P21 2.370 10-24-97 1:28p n875p22.0 N875P20 2.370 10-24-97 1:28p n875p22.0 N875P50 2.370 10-24-97 1:28p n875p20.0 N875P50 2.371 10-24-97 1:28p n875p30.0 N875P90 2.361 10-24-97 1:28p n875p30.0 N875P90 2.16.86 10-24-97 1:28p n92p10.0 N92P16 118.461 10-24-97 1:28p n92p10.0 N92P15 2.261 10-24-97 1:28p n92p15.0 N92P16 118.168 10-24-97 1:28p n92p50.0 N92P90 2.308 10-24-97 1:28p n92p50.0 <	N87571 O	117.816 10-24-97 1:28p n87s71.0
N87572 O 117.683 10.24.97 1:28p n87s12.0 N87590 2.311 10.24.97 1:28p n87s910 N87590 118.416 10.24.97 1:28p n87s910 N875P10 2.370 10.24.97 1:28p n87s910 N87SP10 2.370 10.24.97 1:28p n87sp11. N87SP21 2.372 10.24.97 1:28p n87sp21.0 N87SP22 2.372 10.24.97 1:28p n87sp21.0 N87SP20 118.214 10.24.97 1:28p n87sp21.0 N87SP50 2.371 10.24.97 1:28p n87sp20.0 N87SP50 2.371 10.24.97 1:28p n87sp50.0 N87SP50 2.371 10.24.97 1:28p n87sp50.0 N87SP50 2.461 10.24.97 1:28p n82p01.0 N92P10 2.261 10.24.97 1:28p n92p15.0 N92P15 2.261 10.24.97 1:28p n92p15.0 N92P16 118.168 10.24.97 1:28p n92p30.0 N92P50 117.931 10.24.97 1:28p n92p30.0 <t< td=""><td>N87S72</td><td>2.312 10-24-97 1:28p n87s72</td></t<>	N87S72	2.312 10-24-97 1:28p n87s72
N87590 2.311 10-24-97 1:28p n875910 N875910 2.370 10-24-97 1:28p n875910 N875910 2.370 10-24-97 1:28p n875910 N875910 2.376 10-24-97 1:28p n875910 N875910 118.158 10-24-97 1:28p n875921.0 N875921 118.158 10-24-97 1:28p n875921.0 N875920 2.371 10-24-97 1:28p n875950 N875950 2.371 10-24-97 1:28p n875950 N875990 2.351 10-24-97 1:28p n875950 N875990 2.360 10-24-97 1:28p n87590.0 N875990 2.361 10-24-97 1:28p n92p10.0 N92P10 2.261 10-24-97 1:28p n92p15.0 N92P16 2.261 10-24-97 1:28p n92p16.0 N92P16 2.261 10-24-97 1:28p n92p10.0 N92P50 117.954 10-24-97 1:28p n92p0.0 N92P50 117.954 10-24-97 1:28p n92s0.0 N92S250 117.13	N87572 O	117,683 10-24-97 1:28p n87s72.0
Na 7501 O 118.416 10:24-97 1:28p n87sp10. N87SP10 O 118.136 10:24-97 1:28p n87sp10. N87SP10 O 118.136 10:24-97 1:28p n87sp11. N87SP21 O 118.136 10:24-97 1:28p n87sp21. N87SP21 O 118.158 10:24-97 1:28p n87sp21. N87SP20 O 118.214 10:24-97 1:28p n87sp20. N87SP50 O 118.671 10:24-97 1:28p n87sp50. N87SP50 O 118.671 10:24-97 1:28p n87sp50. N87SP90 O 118.431 10:24-97 1:28p n87sp50. N87SP90 O 118.411 10:24-97 1:28p n92p15 N92P10 D 2.261 10:24-97 1:28p n92p15. N92P16 O 118.168 10:24-97 1:28p n92p15. N92P16 O 118.200 10:24-97 1:28p n92p15. N92P16 O 118.201 10:24-97 1:28p n92p50. N92P50 O 117.954 10:24-97 1:28p n92p50. N92S90 O 117.930 10:24-97 1:28p n92sp0. </td <td>N87590</td> <td>2,311 10-24-97 1:28p n87s90</td>	N87590	2,311 10-24-97 1:28p n87s90
1837510 1.3.16 1.2.497 1.2.89 1.2.89 1.3.163 1837510 1.3.16 10.2.497 1.2.89 87.591.0 1837521 2.376 10.2.4.97 1.2.89 887.5921.0 1837522 2.372 10.2.4.97 1.2.89 887.5922.0 1837522 2.370 10.2.4.97 1.2.89 887.5921.0 1837550 2.371 10.2.4.97 1.2.89 887.590.0 18.671 10.2.4.97 1.2.89 887.590.0 118.610 1.2.89 1.2.89 87.590.0 N875P90 2.351 10.2.4.97 1.2.89 87.590.0 N92.110 2.2.61 10.2.4.97 1.2.89 87.590.0 N92.15 2.2.61 10.2.4.97 1.2.89 19.2.15.0 N92.15 2.2.61 10.2.4.97 1.2.89 1.2.89 1.0.9.9.0 N92.16 118.200 10.2.4.97 1.2.89 1.9.9.9.0 N92.550.0 117.930 10.2.4.97 1.2.89 1.9.9.0 N92.550.0 1.3.08 10.2.4.97 1.2.89	N8/590 U	118.410 10-24-97 1:28p n8/590.0
Nation Construction Nation Construction Nation Construction 110:12:00 10:24:97 1:28p n87sp21 Nation Construction 118:158 10:24:97 1:28p n87sp21 Nation Construction 118:158 10:24:97 1:28p n87sp21 Nation Construction 118:14 10:24:97 1:28p n87sp22 Nation Construction 118:14 10:24:97 1:28p n87sp50 Nation Construction 118:14 10:24:97 1:28p n87sp50 Nation Construction 2:301 10:24:97 1:28p n87sp50 Nation Construction 2:261 10:24:97 1:28p n87sp50 Nation Construction 118:168 10:24:97 1:28p n92p10 N92P16 118:168 10:24:97 1:28p n92p15 N92P15 2:261 10:24:97 1:28p n92p30 N92P30 118:058 10:24:97 1:28p n92p30 N92P30 118:058 10:24:97 1:28p n92s0 N92P30 117:13 10:24:97 1:28p n92s0 N92S90 117:713 10:24:97 1:28	N875P10 0	118 136 10-24-97 1:28p n87sp10 p
N87SP21 118.158 10-24-97 1:28p.n87sp21.o N87SP22 2.372 10-24-97 1:28p.n87sp22.o N87SP20 118.214 10-24-97 1:28p.n87sp50 N87SP50 2.370 10-24-97 1:28p.n87sp50 N87SP50 2.371 10-24-97 1:28p.n87sp50 N87SP90 2.371 10-24-97 1:28p.n87sp50.o N87SP90 2.361 10-24-97 1:28p.n87sp50.o N87SP90 2.661 10-24-97 1:28p.n92p10.o N92P10 2.260 10-24-97 1:29p.n92p10.o N92P15 2.18.168 10-24-97 1:29p.n92p16.o N92P16 2.259 10-24-97 1:28p.n92p16.o N92P50 117.954 10-24-97 1:28p.n92p0.o N92P50 117.954 10-24-97 1:28p.n92s0.o N92S90 2.308 10-24-97 1:28p.n92s0.o N92S90 2.308 10-24-97 1:28p.n92s0.o N92S910 118.056 10-24-97 1:28p.n92s0.o N92S925	N87SP21	2.376 10-24-97 1:28p n87sp10.0
N87SP22 2.372 10-24-97 1:28p n87sp52 N87SP52 118.214 10-24-97 1:28p n87sp50 N87SP50 1.370 10-24-97 1:28p n87sp50 N87SP50 2.371 10-24-97 1:28p n87sp50 N87SP90 2.371 10-24-97 1:28p n87sp90 N87SP90 2.361 10-24-97 1:28p n87sp90 N87SP90 2.661 10-24-97 1:29p n92p10 N92P10 2.260 10-24-97 1:29p n92p15 N92P16 2.261 10-24-97 1:29p n92p16 N92P16 118.168 10-24-97 1:29p n92p50 N92P50 117.954 10-24-97 1:29p n92p50 N92P50 117.930 10-24-97 1:29p n92p50 N92S50 117.930 10-24-97 1:29p n92p50 N92S50 117.733 10-24-97 1:29p n92p50 N92S510 2.368 10-2	N87SP21 O	118,158 10-24-97 1:28p n87sp21.0
N87SP22 O 118.214 10-24-97 1:28p n87sp22.0 N87SP50 2.370 10-24-97 1:28p n87sp50 N87SP50 2.371 10-24-97 1:28p n87sp50 N87SP50 116.893 10-24-97 1:28p n92p10 N92P10 2.260 10-24-97 1:28p n92p15 N92P15 2.261 10-24-97 1:28p n92p15 N92P16 2.261 10-24-97 1:29p n92p16 N92P16 2.261 10-24-97 1:29p n92p16 N92P16 2.259 10-24-97 1:28p n92p50 N92P50 2.259 10-24-97 1:28p n92p50 N92P50 2.308 10-24-97 1:28p n92p50 N92P50 2.308 10-24-97 1:28p n92p0.0 N92S50 117.930 10-24-97 1:28p n92s90.0 N92S50 117.13 10-24-97 1:28p n92s91.0 N92S50 117.13 10-24-97 1:28p n92s91.0 N92S50 118.368 10-24-97 1:28p n92s91.0 N92S50 117.910 10-24-97 1:28p n92sp10.0 N92S50 117.910 10-24-97 1:28p n92sp10.0 N92S50 118.376 10-24-97 1:28p n92sp10.0 N92S525 2.372 10-24	N87SP22	2.372 10-24-97 1:28p n87sp22
N875P50 2.370 10-24-97 1:28p n87sp50 N875P50 118.671 10-24-97 1:28p n87sp50.0 N875P50 118.671 10-24-97 1:28p n87sp50.0 N875P90 116.393 10-24-97 1:28p n87sp50.0 N875P90 116.393 10-24-97 1:28p n87sp50.0 N92P10 2.260 10-24-97 1:28p n92p110.0 N92P15 2.261 10-24-97 1:28p n92p15.0 N92P16 118.168 10-24-97 1:28p n92p16.0 N92P16 118.200 10-24-97 1:28p n92p50.0 N92P50 2.359 10-24-97 1:28p n92p90.0 N92P50 118.058 10-24-97 1:28p n92s90.0 N92S90 117.713 10-24-97 1:28p n92s90.0 N92S910 2.368 10-24-97 1:28p n92s91.0 N92S925 2.372 10-24-97 1:28p n92sp10.0 N92S925 118.376 10-24-97 1:28p n92sp10.0 N92S925 118.376 10-24-97 1:28p n92sp10.0 N92	N87SP22 O	118,214 10-24-97 1:28p n87sp22.o
N87SP50 O 118.671 10-24-97 1:28p n87sp50. N87SP90 2.371 10-24-97 1:28p n87sp50. N87SP90 2.361 10-24-97 1:28p n87sp50. N87SP90 2.660 10-24-97 1:28p n87sp50. N92P10 2.260 10-24-97 1:28p n92p15. N92P15 2.261 10-24-97 1:28p n92p15. N92P16 2.261 10-24-97 1:28p n92p16. N92P16 2.259 10-24-97 1:28p n92p16. N92P50 2.17,954 10-24-97 1:28p n92p50. N92P50 117,954 10-24-97 1:28p n92p50. N92S90 2.308 10-24-97 1:28p n92s50. N92S90 117,733 10-24-97 1:28p n92s90. N92S910 118.431 10-24-97 1:28p n92s91. N92S925 2.372 10-24-97 1:28p n92sp2. N92S925 118.376	N87SP50	2.370 10-24-97 1:28p n87sp50
N87SP90 2.371 10-24-97 1:28p n87sp90 N87SP90 11.6393 10-24-97 1:28p n87sp90.0 N87SP0 11.6393 10-24-97 1:28p n92p10 N92P10 2.260 10-24-97 1:28p n92p110 N92P10 2.261 10-24-97 1:28p n92p15 N92P15 2.261 10-24-97 1:28p n92p15 N92P16 118.200 10-24-97 1:28p n92p16.0 N92P16 2.251 10-24-97 1:28p n92p16.0 N92P50 2.251 10-24-97 1:28p n92p50 N92P50 2.261 10-24-97 1:28p n92p50 N92P50 2.308 10-24-97 1:28p n92p00.0 N92S90 117.930 10-24-97 1:28p n92s90.0 N92S910 2.368 10-24-97 1:28p n92s90.0 N92S92 118.361 10-24-97 1:28p n92s90.0 N92S920 118.361 10-24-97 1:28p n92s90.0 N92S920 2.368 10-24-97 1:28p n92s90.0 N92S9210 118.341	N87SP50 O	118.671 10-24-97 1:28p n87sp50.o
N87590 0 116.893 (10:24-97 1:28p n92p10 N92P10 2,266 (10:24-97 1:28p n92p10, 0) N92P15 2,261 (10:24-97 1:29p n92p15, 0) N92P16 118.411 (10:24-97 1:29p n92p15, 0) N92P16 2,261 (10:24-97 1:28p n92p16, 0) N92P16 2,261 (10:24-97 1:28p n92p16, 0) N92P16 2,259 (10:24-97 1:28p n92p16, 0) N92P50 2,259 (10:24-97 1:28p n92p50, 0) N92P50 2,261 (10:24-97 1:28p n92p50, 0) N92P50 2,261 (10:24-97 1:28p n92p50, 0) N92P50 2,368 (10:24-97 1:28p n92p50, 0) N92S50 2,308 (10:24-97 1:28p n92s50, 0) N92S50 2,308 (10:24-97 1:28p n92s90, 0) N92S50 117,930 (10:24-97 1:28p n92s91, 0) N92S50 117,131 (10:24-97 1:28p n92s92, 0) N92S510 118.376 (10:24-97 1:29p n92s92, 0) N92S525 2,372 (10:24-97 1:28p n92s92, 0) N92S526 2,371 (10:24-97 1:29p n92s92, 0) N92S526 118.374 (10:24-97 1:29p n92s92, 0) N92S526 118.388 (10:24-97 1:28p n92s90, 0) N92S526 118.381 (10:24-97 1:29p n92s92, 0) N92S526 118.431 (10:24-97 1:29p n	N87SP90	2.371 10-24-97 1:28p n87sp90
N92P10 2,200 10:24-97 1128 pr92p10. N92P10 118,168 10:24-97 1128 pr92p10. N92P15 2,261 10:24-97 1128 pr92p10. N92P15 2,261 10:24-97 1128 pr92p15. N92P16 118,168 10:24-97 1128 pr92p16. N92P16 118,200 10:24-97 128 pr92p16. N92P50 2,259 10:24-97 128 pr92p30. N92P50 2,308 10:24-97 128 pr92p30. N92P50 118,058 10:24-97 129 pr92p30. N92S50 2,308 10:24-97 129 pr92s50. N92S50 2,308 10:24-97 129 pr92s0.0 N92S50 2,308 10:24-97 129 pr92s0.0 N92S910 2,368 10:24-97 129 pr92sp10. N92S925 2,372 10:24-97 129 pr92sp10. N92S926 118,376 10:24-97 129 pr92sp25. N92S926 118,376 10:24-97 129 pr92sp5.0 N92S926 118,388 10:24-97	N875P90_0	116.893 10-24-97 1:29p n87sp90.0
132410 1134411 1024497 1:28p 1052115 132411 1024497 1:28p 1052115 132511 1024497 1:28p 1052116 132521 1024497 1:28p 105210 132521 1024497 1:28p 105250 1330 1024497 1:28p 105250 1330 1024497 1:28p 105250 13330 1024497 1:28p 105250 13331 1024497 1:28p 1052250 13354 102497 1:28p 1052250 13354 102497 1:28p 1052250 13354 102497 1:28p 1052250 13354 102497 1:28p 1052250 13354 102497 <t< td=""><td>N92P10</td><td>2,200 10-24-97 1:28p m92p10</td></t<>	N92P10	2,200 10-24-97 1:28p m92p10
N32115 1:201 <t< td=""><td>N92P10 0</td><td>2 261 10-24-97 1:29p my2p10.0</td></t<>	N92P10 0	2 261 10-24-97 1:29p my2p10.0
N92P16 2.261 10-24-97 1:28 n92p16 N92P16 1.18.200 10-24-97 1:28 n92p16 N92P50 2.259 10-24-97 1:28 n92p50 N92P50 2.259 10-24-97 1:28 n92p50 N92P50 2.17,954 10-24-97 1:29 n92p50. N92P50 117,954 10-24-97 1:29 n92p50. N92P50 2.308 10-24-97 1:29 n92p50. N92S50 2.308 10-24-97 1:29 n92s50. N92S90 2.308 10-24-97 1:29 n92s90. N92S90 117,930 10-24-97 1:29 n92s90. N92S910 2.368 10-24-97 1:29 n92s91. N92S920 2.371 10-24-97 1:29 n92s91. N92S920 118.376 10-24-97 1:29 n92s92. N92S920 118.376 10-24-97 1:29 n92sp2. N92S920 2.368 10-24-97 1:29 n92sp3. N92S920 2.368 10-24-97 1:29 n92sp3. N92S920 2.366 10-24-9	N92P15_O	118 168 10-24-97 1:29p n92p15
N92P16 O 118.200 10-24-97 1:29p n92p50 N92P50 2.259 10-24-97 1:29p n92p50 N92P50 2.259 10-24-97 1:28p n92p50 N92P50 2.261 10-24-97 1:28p n92p50 N92P50 2.308 10-24-97 1:28p n92p50 N92S50 2.308 10-24-97 1:28p n92s50 N92S50 2.308 10-24-97 1:28p n92s50 N92S510 2.368 10-24-97 1:28p n92sp10 N92SP10 2.368 10-24-97 1:28p n92sp10 N92SP10 2.368 10-24-97 1:28p n92sp10 N92SP25 2.372 10-24-97 1:28p n92sp25 0.370 10-24-97 1:28p n92sp50 N92SP26 2.368 10-24-97 1:28p n92sp50 0.368 10-24-97 1:28p n92sp50 0 118.381 10-24-97 1:28p n92sp50 N92SP50 0 118.38	N92P16	2.261 10-24-97 1:28p n92p16
N92P50 2,259 10-24-97 1:28p n92p50 2,17.954 10-24-97 1:28p n92p50 0 117.954 10-24-97 1:28p n92p50 0 2,261 10-24-97 1:28p n92p50 0 117.954 10-24-97 1:28p n92p50 0 117.954 10-24-97 1:28p n92p50 0 117.930 10-24-97 1:28p n92s50 0 10.730 10-24-97 1:28p n92s50 0 10.730 10-24-97 1:28p n92s910 0 118.058 10-24-97 1:28p n92s910 N92s910 2.308 10-24-97 1:28p n92sp10 N92s910 2.372 10-24-97 1:28p n92sp25 0 118.376 10-24-97 1:28p n92sp25 0 13.376 10-24-97 1:28p n92sp25 10.376 10-24-97 1:28p n92sp50 10.8388 10-24-97 1:28p n92sp50 118.381 10-24-97 1:28p n92sp50 118.381 10-24-97 1:28p n94sp10	N92P16 O	118,200 10-24-97 1:29p n92p16.o
N92590 O 117.954 10.24.97 1:28 p. n92p90 N92P90 2.261 10.24.97 1:28 p. n92p90 N92P90 2.261 10.24.97 1:28 p. n92p90 N92P90 2.308 10.24.97 1:28 p. n92p90 N92S50 2.308 10.24.97 1:28 p. n92p90 N92S50 2.308 10.24.97 1:28 p. n92p90 N92S50 2.308 10.24.97 1:28 p. n92p90 N92S90 2.368 10.24.97 1:28 p. n92p90 N92S910 2.368 10.24.97 1:29 p. n92p910 N92SP10 2.368 10.24.97 1:29 p. n92p10 N92SP25 2.370 10.24.97 1:29 p. n92p25.0 N92SP26 2.370 10.24.97 1:29 p. n92p30.0 N92SP26 2.368 10.24.97 1:29 p. n92p90.0 N92SP20 2.368 10.24.97 1:29 p. n92p90.0 N92SP20 118.881 10.24.97 1:29 p. n92p90.0 N92SP20 2.369 10.24.97 1:29 p. n96p10.0	N92P50	2,259 10-24-97 1:28p n92p50
N92P90 2.261 10-24-97 1:28p n92p90.0 N92P90 0 118.058 10-24-97 1:29p n92p90.0 N92S50 2.308 10-24-97 1:28p n92s50 N92S50 2.308 10-24-97 1:28p n92s50 N92S90 2.308 10-24-97 1:28p n92s50 N92S90 117.930 10-24-97 1:28p n92s90 N92S910 2.368 10-24-97 1:28p n92s90.0 N92SP10 2.368 10-24-97 1:28p n92s91.0 N92SP10 2.368 10-24-97 1:28p n92s91.0 N92SP25 2.371 10-24-97 1:28p n92s92.5.0 N92SP26 118.376 10-24-97 1:29p n92sp2.6.0 N92SP26 118.376 10-24-97 1:29p n92sp2.6.0 N92SP50 2.368 10-24-97 1:29p n92sp2.6.0 N92SP50 2.368 10-24-97 1:29p n92sp2.6.0 N92SP50 118.831 10-24-97 1:29p n94sp2.6.0 N92SP50 118.831 10-24-97 1:29p n94sp2.6.0	N92P50 O	117,954 10-24-97 1:29p n92p50.o
N92580 O 118,058 10:24-97 11:28p 19:2500 N92550 2,308 10:24-97 1:28p 19:2500 N92550 2,308 10:24-97 1:28p 19:2500 N92550 2,308 10:24-97 1:28p 19:2500 N92590 2,308 10:24-97 1:28p 19:2500 N925910 2,368 10:24-97 1:28p 19:2500 N925P10 2,368 10:24-97 1:28p 19:2510 N925P25 2,372 10:24-97 1:28p 19:2525 N925P26 2,372 10:24-97 1:28p 19:2525 N925P26 118.376 10:24-97 1:28p 19:25250 N925P26 118.381 10:24-97 1:28p 19:2550 N925P26 118.381 10:24-97 1:28p 19:2550 N925P26 118.381 10:24-97 1:28p 10:24:97 N925P26 118.311 10:24-97 1:28p 10:24:97 N96P26	N92P90	2,261 10-24-97 1:28p n92p90
192530 2.306 10.24.97 1.22 pt 19250 N92550 117,93 10.24.97 1:29 pt 92550.0 N92590 2.308 10.24.97 1:29 pt 92550.0 N92590 2.308 10.24.97 1:29 pt 92550.0 N925910 2.368 10.24.97 1:29 pt 925910.0 N925910 118.431 10.24.97 1:29 pt 925910.0 N925925 2.372 10.24.97 1:29 pt 92525.0 N925926 2.370 10.24.97 1:29 pt 92525.0 N925926 2.376 10.24.97 1:29 pt 92525.0 N925926 2.369 10.24.97 1:29 pt 92525.0 N925920 2.368 10.24.97 1:29 pt 92590.0 N925950 118.888 10.24.97 1:29 pt 92590.0 N925950 118.81 10.24.97 1:29 pt 92590.0 N925950 118.81 10.24.97 1:29 pt 950.0 N925950 118.415 10.24.97 1:29 pt 950.0 N96510 2.261 10.24.97 1:29 pt 9562.0 N96626 </td <td>N92P90 0</td> <td>118,058 10-24-97 1:29p n92p90.0</td>	N92P90 0	118,058 10-24-97 1:29p n92p90.0
N92590 2117.030 10.24-97 1:28p 10.2500 N92590 2.308 10.24-97 1:28p 10.2500 N925910 2.368 10.24-97 1:28p 10.2500 N925P10 2.368 10.24-97 1:28p 10.92501 N925P10 2.368 10.24-97 1:28p 10.92501 N925P10 118.331 10.24-97 1:28p 10.92501 N925P25 2.370 10.24-97 1:28p 19.92510 N925P26 2.370 10.24-97 1:28p 19.925250 N925P50 2.368 10.24-97 1:28p 19.92550 N925P50 2.368 10.24-97 1:28p 10.925901 N925P50 2.368 10.24-97 1:28p 10.925901 N925P50 2.368 10.24-97 1:29p 19.99010 N965P50 118.881 10.24-97 1:29p 19.99010 N96P51 2.261 10.24-97 1:29p 10.99010 N96P50 2.261 </td <td>N92550 O</td> <td>117 930 10-24-97 1:28p 192530</td>	N92550 O	117 930 10-24-97 1:28p 192530
N92590 0 117,713 10-24-97 1:29p n92591.0 N925P10 2.368 10-24-97 1:29p n925p10 N925P10 2.368 10-24-97 1:29p n92sp10.0 N925P10 118,431 10-24-97 1:29p n92sp10.0 N925P20 2.370 10-24-97 1:29p n92sp25.0 N925P26 2.370 10-24-97 1:29p n92sp26.0 N925P26 2.368 10-24-97 1:29p n92sp26.0 N925P50 2.368 10-24-97 1:29p n92sp26.0 N925P50 2.368 10-24-97 1:29p n92sp50.0 N925P50 2.368 10-24-97 1:29p n92sp90.0 N925P90 118,831 10-24-97 1:29p n92sp90.0 N925P90 118,831 10-24-97 1:29p n96p10.0 N96P20 117,413 10-24-97 1:29p n96p26.0 N96P27 2.261 10-24-97 1:29p n96p20.0 N	N92590	2.308 10-24-97 1:28n n92s90
N92SP10 2.368 10-24-97 1:28p n92sp10 N92SP10 0 118.431 10-24-97 1:28p n92sp10. N92SP25 2.372 10-24-97 1:28p n92sp25 118.376 10-24-97 1:28p n92sp25 118.376 10-24-97 1:28p n92sp25 118.376 10-24-97 1:28p n92sp26 118.376 10-24-97 1:28p n92sp26. N92SP26 118.374 10-24-97 1:28p n92sp26. N92SP50 2.368 10-24-97 1:28p n92sp50 N92SP50 2.368 10-24-97 1:28p n92sp50 N92SP90 2.369 10-24-97 1:28p n92sp50 N92SP90 2.369 10-24-97 1:28p n94sp26 N96P26 N96P26 2.261 10-24-97 1:28p n96p26 N96P26 2.261 10-24-97 1:28p n96p26. N96P26 2.261 10-24-97 1:28p n96p27. N96P26 117.441 10-24-97 1:28p n96p50. 2.308 10-24-97 1:28p n96p50	N92S90 O	117,713 10-24-97 1:29p n92s90.0
N92SP10 O 118.431 10-24-97 1:29p n92sp10.0 N92SP25 2.372 10-24-97 1:28p n92sp25 N92SP26 2.372 10-24-97 1:28p n92sp25.0 N92SP26 2.371 10-24-97 1:28p n92sp25.0 N92SP26 2.371 10-24-97 1:28p n92sp26.0 N92SP26 2.361 10-24-97 1:28p n92sp26.0 N92SP50 2.368 10-24-97 1:28p n92sp50.0 N92SP90 2.369 10-24-97 1:28p n92sp50.0 N92SP90 2.369 10-24-97 1:28p n92sp10.0 N94SP90 118.331 10-24-97 1:28p n96p10 N96P10 2.260 10-24-97 1:28p n96p10 N96P26 118.415 10-24-97 1:28p n96p26.0 N96P27 2.261 10-24-97 1:28p n96p51 N96P50 117.441 10-24-97 1:28p n96p510.0 N96P50 117.441 10-24-97 1:28p n96p50.0 N96P50 2.308 10-24-97 1:28p n96p50.0 <t< td=""><td>N92SP10</td><td>2.368 10-24-97 1:28p n92sp10</td></t<>	N92SP10	2.368 10-24-97 1:28p n92sp10
N925P25 2.372 10-24-97 1:28p n92sp25 N925P26 118.376 10-24-97 1:28p n92sp25.0 N925P26 2.370 10-24-97 1:28p n92sp25.0 N925P26 2.370 10-24-97 1:28p n92sp26.0 N925P26 2.368 10-24-97 1:28p n92sp26.0 N925P50 2.368 10-24-97 1:28p n92sp50.0 N925P50 2.368 10-24-97 1:28p n92sp50.0 N925P50 2.369 10-24-97 1:28p n92sp50.0 N925P50 2.369 10-24-97 1:29p n92sp50.0 N925P50 2.369 10-24-97 1:29p n95p10.0 N96P50 2.261 10-24-97 1:28p n96p26.0 N96P50 2.261 10-24-97 1:28p n96p50.0 N96P50 2.261 10-24-97 1:28p n96p50.0 N96P50 2.308 10-24-97 1:28p n96p50.0 N96P50 2.308<	N92SP10 O	118.431 10-24-97 1:29p n92sp10.o
N925P25 O 118.376 10-24-97 1:28p n92sp26 N925P26 2.370 10-24-97 1:28p n92sp26 N925P26 2.370 10-24-97 1:28p n92sp26 N925P26 2.368 10-24-97 1:28p n92sp26 N925P50 2.368 10-24-97 1:28p n92sp50.0 N925P50 2.368 10-24-97 1:28p n92sp50.0 N925P50 2.368 10-24-97 1:28p n92sp50.0 N925P50 2.369 10-24-97 1:28p n92sp50.0 N925P50 2.361 10-24-97 1:28p n95p10.0 N96P50 118.415 10-24-97 1:28p n96p26.0 N96P27 2.261 10-24-97 1:28p n96p27.0 N96P26 117.441 10-24-97 1:29p n96p20.0 N96P50 117.441 10-24-97 1:29p n96p50.0 N96P50 117.441 10-24-97 1:29p n96s50.0 N96S90	N92SP25	2.372 10-24-97 1:28p n92sp25
N925P26 2.370 10:24-97 1:28p n925P26 N925P26 118.749 10:24-97 1:29p n925p26 N925P50 2.368 10:24-97 1:29p n925p50 N925P50 2.368 10:24-97 1:29p n925p50 N925P50 2.369 10:24-97 1:29p n925p50 N925P50 2.369 10:24-97 1:29p n925p90 N925P90 2.369 10:24-97 1:29p n925p90 N96P10 2.260 10:24-97 1:29p n95p26 N96P26 2.261 10:24-97 1:29p n95p26 N96P27 2.261 10:24-97 1:29p n95p26 N96P27 2.261 10:24-97 1:29p n95p20 N96P50 117,413 10:24-97 1:28p n95p20 N96P50 2.308 10:24-97 1:28p n95c0.0 N96P50 2.308 10:24-97 1:28p n95c0.0 N96S90 117,413 10:24-97	N92SP25 O	118,376 10-24-97 1:29p n92sp25.0
N925P50 Classifier N945P50 Classifier N965P50 Classifier N965P50 </td <td>N925P26</td> <td>2.370 10-24-97 1:28p n92sp26</td>	N925P26	2.370 10-24-97 1:28p n92sp26
N925950 118.888 10-24-97 1:29p 192550.0 N925950 2.369 10-24-97 1:29p 1925590.0 N925990 2.369 10-24-97 1:29p 1925590.0 N925990 0 118.831 10-24-97 1:29p 1925590.0 N96P10 2.260 10-24-97 1:29p 196501.0 N96P26 2.261 10-24-97 1:29p 196526.0 N96P26 2.261 10-24-97 1:29p 196526.0 N96P27 2.261 10-24-97 1:29p 196527.0 N96P50 2.261 10-24-97 1:29p 196550.0 N96P50 2.261 10-24-97 1:29p 196550.0 N96P50 2.308 10-24-97 1:29p 196550.0 N96P50 2.308 10-24-97 1:29p 196550.0 N96S50 118.604 10-24-97 1:29p 196550.0 N96S98 2.308 10-24-97 1:29p 196598.0 N96S98	N92SP50	2.368 10-24-97 1:29p n92sp26.0
N92SP90 2.369 10-24-97 1:28p n92sp91 N92SP90 2.369 10-24-97 1:28p n92sp91 N96P10 2.260 10-24-97 1:28p n92sp91 N96P10 2.260 10-24-97 1:28p n96p10 N96P10 2.260 10-24-97 1:28p n96p10 N96P26 2.261 10-24-97 1:28p n96p26 N96P27 2.261 10-24-97 1:28p n96p27 N96P27 2.261 10-24-97 1:28p n96p27 N96P27 120.123 10-24-97 1:28p n96p50 N96P50 2.259 10-24-97 1:28p n96p50 N96P50 2.308 10-24-97 1:28p n96p50 N96F50 2.308 10-24-97 1:28p n96p50 N96F50 2.308 10-24-97 1:28p n96s50 N96F50 2.308 10-24-97 1:28p n96s50 N96S90 117.957 10-24-97	N92SP50_O	118.888 10-24-97 1:29p n92sp50.0
N925P90 O 118.831 10-24-97 1:29p n925p90.0 N96P10 2,260 10-24-97 1:28p n96p10.0 N96P10 2,260 10-24-97 1:28p n96p10.0 N96P10 2,261 10-24-97 1:28p n96p10.0 N96P26 2,261 10-24-97 1:28p n96p26.0 N96P26 118,415 10-24-97 1:28p n96p27.0 N96P27 0 120,123 10-24-97 1:28p n96p27.0 N96P50 2,259 10-24-97 1:28p n96p50.0 N96P50.0 N96P50 2,308 10-24-97 1:29p n96p50.0 N96P50 2,308 10-24-97 1:29p n96s50.0 N96F50 0 117,413 10-24-97 1:29p n96s50.0 N96F50 0 117,451 10-24-97 1:29p n96s50.0 N96550 0 118,687 10-24-97 1:29p n96s50.0 N965594 0 117,957 <td>N92SP90</td> <td>2.369 10-24-97 1:28p n92sp90</td>	N92SP90	2.369 10-24-97 1:28p n92sp90
N96P10 2,260 10-24-97 1:28p p96p10 0 N96P26 2,261 10-24-97 1:29p n96p26 0 117,413 10-24-97 1:29p n96p26 0 118,415 10-24-97 1:29p n96p26 0 118,415 10-24-97 1:28p n96p26 0 118,415 10-24-97 1:28p n96p26 0 120,123 10-24-97 1:28p n96p26 0 120,123 10-24-97 1:28p n96p27.0 0 20,259 10-24-97 1:28p n96p50 2:259 10-24-97 1:28p n96p50 0 117,441 10-24-97 1:28p n96p50 0 117,413 10-24-97 1:28p n96p50.0 N96F90 0 117,413 10-24-97 1:28p n96s90.0 N96F90 0 117,413 10-24-97 1:28p n96s90.0 N96F90 0 117,413 10-24-97 1:28p n96s90.0 N96F90 0 117,9157 10-24-97 1:28p n96s90.0 N96F90	N92SP90 O	118.831 10-24-97 1:29p n92sp90.o
S96P10 O 117,413 10-24-97 1:28p p96p26 N96P26 2.261 10-24-97 1:28p p96p26 N96P26 2.261 10-24-97 1:28p p96p26 N96P27 2.261 10-24-97 1:28p p96p26 N96P27 2.261 10-24-97 1:28p p96p27.0 N96P50 2.259 10-24-97 1:28p p96p50 N96P50 2.251 10-24-97 1:28p p96p50 N96P50 2.261 10-24-97 1:28p p96p50 N96P50 2.308 10-24-97 1:28p p96p50 N96P50 2.308 10-24-97 1:28p p96p50.0 N96S50 118,604 10-24-97 1:29p p96s50.0 N96S90 2.308 10-24-97 1:29p p96s90.0 N96S90 2.308 10-24-97 1:29p p96s91.0 N96S98 2.309 10-24-97 1:29p p96s94.0 N96S980 118,617	N96P10	2.260 10-24-97 1:28p n96p10
Noh2:h 2.261 10:24-97 1:28p p96p26 N96P26 0 118,415 10:24-97 1:28p p96p26.o. N96P27 2.261 10:24-97 1:28p p96p27. N96P27 2.261 10:24-97 1:28p p96p27. N96P27 2.261 10:24-97 1:28p p96p50. N96P50 2.259 10:24-97 1:28p p96p50.o N96P50 117,441 10:24-97 1:28p p96p50.o N96P50 2.308 10:24-97 1:28p p96p50.o N96P50 2.308 10:24-97 1:28p p96p50.o N96S50 2.308 10:24-97 1:28p p96p50.o N96S50 2.308 10:24-97 1:28p p96s90.o N96S90 117,957 10:24-97 1:28p p96s96.o N96S98 2.309 10:24-97 1:28p p96s96.o N96S910 2.368 10:24-97 1:28p p96s96.o N96S944 2.	N96P10_O	117,413 10-24-97 1:29p n96p10.o
N96F20 C 118.413 (1):24-97 1:28p 1956p27 N96F27 C 120.123 (1):24-97 1:28p 1956p27 N96F27 C 120.123 (1):24-97 1:28p 1956p27 N96F27 C 120.123 (1):24-97 1:28p 1956p27 N96F20 C 2.59 10:24-97 1:28p 1956p30 N96F90 C 117.441 (1):24-97 1:28p 1956p30 N96F90 C 117.413 (1):24-97 1:28p 1956p30 N965S0 C 3.08 10:24-97 1:28p 1956s30 N965S0 C 116.604 10:24-97 1:28p 1956s30 N965S0 C 117.957 10:24-97 1:28p 1956s30 N965S91 C 3.08 10:24-97 1:28p 1956s40 N965S910 2.368 10:24-97 1:28p 1956s41 N965S945 C 119:131 10:24-97 1:29p	N90P20	2,261 10-24-97 1:28p n96p26
110 110 <th10< th=""> <th110< th=""> <th110< th=""></th110<></th110<></th10<>	N96P27	7 261 UL24-97 1.290 09020.0
N96P50 2,259 10-24-97 1:28p n96p50 N96P50 2,259 10-24-97 1:28p n96p50 N96P50 2,261 10-24-97 1:28p n96p50 N96P50 2,261 10-24-97 1:28p n96p50 N96P50 2,261 10-24-97 1:28p n96p50 N96P50 0 117,413 10-24-97 1:29p n96p50 N96S50 2,308 10-24-97 1:29p n96p50 N96S50 2,308 10-24-97 1:29p n96s50 N96S50 2,308 10-24-97 1:29p n96s90 N96S98 2,309 10-24-97 1:29p n96s98 N96S98 2,309 10-24-97 1:29p n96s98.0 N96S98 2,368 10-24-97 1:29p n96s98.0 N96S98 2,368 10-24-97 1:29p n96s98.0 N96S98 2,370 10-24-97 1:29p n96s94.0 N96S94 2,371 10-24-97 1:29p n96sp44.0 N96S94 2,374 10-24-97 1:29	N96P27 O	120 123 10-24-97 1:28p n90p27
N96P50 0 117.441 10-24-97 1:29p n96p50.0 N96P90 2.261 10-24-97 1:28p n96p50.0 N96P90 2.261 10-24-97 1:28p n96p50.0 N96P90 2.308 10-24-97 1:28p n96p50.0 N96S50 2.308 10-24-97 1:28p n96p50.0 N96S50 2.308 10-24-97 1:28p n96s50.0 N96S90 2.308 10-24-97 1:28p n96s90.0 N96S90 117,957 10-24-97 1:28p n96s90.0 N96S98 2.309 10-24-97 1:28p n96s96.0 N96S910 2.368 10-24-97 1:28p n96s96.0 N96S910 2.368 10-24-97 1:28p n96s96.0 N96S910 2.368 10-24-97 1:28p n96sp4.0 N96S944 2.370 10-24-97 1:29p n96sp4.0 N96S945 119,131 10-24-97 1:29p n96sp4.0 N96S945	N96P50	2.259 10-24-97 1:28p n96o50
N96P90 2.261 10-24-97 1:28p n96p90 0 N96F90 0 117.413 10-24-97 1:28p n96s50 2.308 10-24-97 1:28p n96s50 2.308 10-24-97 1:28p n96s50 0 118.604 10-24-97 1:28p n96s50 0 118.604 10-24-97 1:28p n96s50 0 117.957 10-24-97 1:28p n96s90 0 117.957 10-24-97 1:28p n96s98 0 10-24-97 1:28p n96s98 0 10-24-97 1:28p n96s98 0 10-24-97 1:28p n96s98 0 10-24-97 1:29p n96s98.0 N96SP10 2.368 10-24-97 1:29p n96sp10.0 N96SP44 2.370 10-24-97 1:29p n96sp44.0 N96SP44 0 119.131 10-24-97 1:28p n96sp44.0 N96SP45 0 119.189 10-24-97 1:28p n96sp44.0 N96SP45 0 119.189 10-24-97 1:28p n96sp45.0 N96SP45 <td>N96P50 O</td> <td>117,441 10-24-97 1:29p n96p50.o</td>	N96P50 O	117,441 10-24-97 1:29p n96p50.o
N96P90 O 117.413 10-24-97 1:28p p96s50 N96S50 2.308 10-24-97 1:28p p96s50 N96S50 2.308 10-24-97 1:28p p96s50 N96S50 2.308 10-24-97 1:28p p96s50.0 N96S90 2.308 10-24-97 1:28p p96s50.0 N96S90 2.308 10-24-97 1:28p p96s90.0 N96S90 2.308 10-24-97 1:28p p96s98.0 N96S98 118.687 10-24-97 1:28p p96s98.0 N96SP10 2.368 10-24-97 1:29p p96sp10.0 N96SP44 2.370 10-24-97 1:29p p96sp44.0 N96SP45 2.374 10-24-97 1:29p p96sp44.0 N96SP45 119.189 10-24-97 1:29p p96sp45.0 N96SP45 119.189 10-24-97 1:29p p96sp45.0 N96SP50 2.368 10-24-97 1:29p p96sp50.0 N96SP550	N96P90	2,261 10-24-97 1:28p n96p90
N96550 2.308 10-24-97 1:28p n96550 N96550 118.604 10-24-97 1:29p n96550.0 N96550 2.308 10-24-97 1:29p n96590.0 N96590 2.308 10-24-97 1:29p n96590.0 N96598 2.309 10-24-97 1:29p n96598.0 N96598 2.309 10-24-97 1:29p n96598.0 N96598 2.368 10-24-97 1:29p n96598.0 N965940 2.368 10-24-97 1:29p n96598.0 N9659410 2.368 10-24-97 1:29p n965910.0 N965944 2.370 10-24-97 1:29p n965944.0 N965945 2.374 10-24-97 1:29p n965943.0 N965945 119,189 10-24-97 1:29p n965943.0 N965950 119,189 10-24-97 1:29p n965545.0 N965950 2.368 10-24-97 1:29p n965545.0 N9659590 119,1	N96P90 O	117,413 10-24-97 1:29р п96р90.о
NYNSSI O 118,604 10-24-97 1:28p n96s50, N96S90 2,308 10-24-97 1:28p n96s90, N96S90 0 117,957 10-24-97 1:28p n96s90, N96S90 0 117,957 10-24-97 1:28p n96s90, N96S98 2,309 10-24-97 1:28p n96s98, N96S970 2,368 10-24-97 1:28p n96s98, N96S910 2,368 10-24-97 1:28p n96s910, N96SP10 2,368 10-24-97 1:28p n96s910, N96SP10 119,431 10-24-97 1:28p n96s94, N96SP44 2,370 10-24-97 1:28p n96s94, N96SP45 2,374 10-24-97 1:28p n96s94, N96SP45 2,374 10-24-97 1:28p n96s94, N96SP50 119,189 10-24-97 1:28p n96s95, N96SP50 2,368 10-24-97 1:28p n96s95, N96SP50 2,368 10-24-97 1:28p n96s95, N96SP50 2,368 10-24-97 1:28p n96s95, </td <td>N96S50</td> <td>2.308 10-24-97 1:28p n96s50</td>	N96S50	2.308 10-24-97 1:28p n96s50
(x70537) 2.308 (10-24-97) (128p (128p (196590) (0) (11,957) (10-24-97) (129p (196598) (0) <td>N96550 O</td> <td>118,604 10-24-97 1:29p n96s50.0</td>	N96550 O	118,604 10-24-97 1:29p n96s50.0
Nonsol 117:53 117:24-97 11:28p pMs580 N96598 2:309 10:24-97 1:28p pMs598 N96598 118:687 10:24-97 1:29p pMs598.0 N965910 2:368 10:24-97 1:28p pMs5910 N965910 2:368 10:24-97 1:28p pMs5p10.0 N965914 2:370 10:24-97 1:28p pMs5p44.0 N965944 2:370 10:24-97 1:28p pMs5p44.0 N965945 2:374 10:24-97 1:28p pMs5p44.0 N965945 2:374 10:24-97 1:28p pMs5p45.0 N965950 2:368 10:24-97 1:29p pMs5p50.0 N965950 2:368 10:24-97 1:29p pMs5p50.0 N965950 2:19:19:10:24-97 1:29p pMs5p50.0 N965950 2:19:10:24-97 1:29p pMs5p50.0 N965950 2:19:10:24-97 1:29p pMs5p50.0	NORSOL	2.308 10-24-97 1:28p n96890
N96598 O 118.687 10.24.97 1:29p p96598.0 N965P10 2.368 10.24.97 1:29p p96598.0 N965P10 2.368 10.24.97 1:29p p96591.0 N965P10 119.431 10.24.97 1:29p p965p10.0 N965P44 2.370 10.24.97 1:29p p965p44.0 N965P45 2.374 10.24.97 1:29p p965p44.0 N965P45 119.189 10.24.97 1:29p p965p45.0 N965P45 2.374 10.24.97 1:29p p965p45.0 N965P50 2.368 10.24.97 1:29p p965p50.0 N965P50 2.368 10.24.97 1:29p p965p50.0 N965P50 2.368 10.24.97 1:29p p965p50.0 N965P50 2.19.199 10.24.97 1:29p p965p50.0 N965P50 2.19.199 10.24.97 1:29p p965p50.0	N96S98	2.309 10-24-97 1:290 190590.0
N96SP10 2.368 10-24-97 1:28p m/staff N96SP10 0 119.431 10-24-97 1:29p m/staff N96SP44 2.370 10-24-97 1:28p m/staff m/staff N96SP44 2.370 10-24-97 1:28p m/staff m/staff N96SP45 2.374 10-24-97 1:28p m/staff m/staff N96SP45 2.374 10-24-97 1:28p m/staff m/staff N96SP45 2.374 10-24-97 1:28p m/staff m/staff N96SP45 0 119.189 10-24-97 1:28p m/staff m/staff N96SP50 2.368 10-24-97 1:28p m/staff m/staff m/staff N96SP50 119.189 10-24-97 1:28p m/staff m/staff N96SP50 2.368 10-24-97 1:28p m/staff m/staff N96SP50 2.368 10-24-97 1:28p m/staff m/staff N96SP50	N96S98 O	118,687 10-24-97 1:29p n96s98 o
N96SP10 119.431 10-24-97 1:29p n96sp10.0 N96SP44 2.370 10-24-97 1:28p n96sp44.0 N96SP44 2.370 10-24-97 1:28p n96sp44.0 N96SP45 2.374 10-24-97 1:28p n96sp45.0 N96SP45 2.374 10-24-97 1:28p n96sp45.0 N96SP45 119.189 10-24-97 1:28p n96sp45.0 N96SP50 2.368 10-24-97 1:28p n96sp50.0 N96SP50 2.368 10-24-97 1:29p n96sp50.0 N96SP50 2.368 10-24-97 1:29p n96sp50.0 N96SP50 2.369 10-24-97 1:29p n96sp50.0 N96SP50 2.369 10-24-97 1:29p n96sp50.0	N96SP10	2,368 10-24-97 1:28p n96sp10
N96SP44 2,370 10-24-97 1:28p n96sp44 N96SP44 0 119.13 10-24-97 1:29p n96sp44.0 N96SP45 2,374 10-24-97 1:28p n96sp45.0 N96SP45 119.189 10-24-97 1:28p n96sp45.0 N96SP50 119.189 10-24-97 1:28p n96sp50.0 N96SP50 2,368 10-24-97 1:28p n96sp50.0 N96SP50 2,369 10-24-97 1:28p n96sp50.0 N96SP50 2,192 10-24-97 1:28p n96sp50.0 N96SP50 2,192 10-24-97 1:28p n96sp50.0	N96SP10_O	119,431 10-24-97 1:29p n96sp10.o
Nv6SP44 O 119.13 10-24-97 1:29p.nv6sp44.0 Nv6SP45 2.374 10-24-97 1:28p.nv6sp45.0 Nv6SP45 119.189 10-24-97 1:29p.nv6sp45.0 Nv6SP50 2.368 10-24-97 1:29p.nv6sp45.0 Nv6SP50 2.368 10-24-97 1:29p.nv6sp50.0 Nv6SP50 119.189 10-24-97 1:29p.nv6sp50.0 Nv6SP50 2.368 10-24-97 1:29p.nv6sp50.0 Nv6SP50 2.369 10-24-97 1:29p.nv6sp50.0	N96SP44	2,370 10-24-97 1:28p n96sp44
NYOS243 2,374 10-24-97 1:28p n96sp45 NY6SP45 0 119,189 10-24-97 1:29p n96sp45.0 NY6SP50 2,368 10-24-97 1:28p n96sp50 N96SP50 2,368 10-24-97 1:28p n96sp50.0 N96SP50 119,189 10-24-97 1:29p n96sp50.0 N96SP50 0 119,189 10-24-97 1:29p n96sp50.0 N96SP60 119,189 10-24-97 1:29p n96sp50.0 119,189 10-24-97 1:29p n96sp50.0	N96SP44 O	119.131 10-24-97 1:29p n96sp44.0
NY6SP50 119,189 10-24-97 1:22pp n96sp50 N96SP50 2,368 10-24-97 1:28p n96sp50 N96SP50 119,189 10-24-97 1:29p n96sp50,0 N96SP50 2,368 10-24-97 1:29p n96sp50,0 N96SP50 2,369 10-24-97 1:29p n96sp50,0 N96SP60 2,369 10-24-97 1:29p n96sp50,0	N965P45	2.374 10-24-97 1:28p n96sp45
N96SP50 0 119,189 10-24-97 1:28p n96sp50. N96SP50 0 119,189 10-24-97 1:29p n96sp50.0 N96SP90 2 369 10-24-07 1:28p n96sp50.0	NUKSPEN	119.189 10-24-97 1:29p n96sp45.0
N96SP90 2 369 (0.24.07 1.290 n04cmin)	N96SP50 O	2.008 (0+2++97 1:28p n90sp30) 119 189 10-24-97 1-295 505500
	N96SP90	2,369 10-24-97 1:28p n96sp90

N96SP90 O	119,132 10-24-97 1:29p n96sp90.o
PLUTO2-1 KEF	2.478 10-24-97 1:28p pluto2.keff
SUMRY-1 OUT	910,315 10-24-97 1:28p sumry.outlst

Results for 0.002 cm Fracture Width

 Directory of C:\Work\tutle\transoct\pluto3

 H87P31
 2.256
 10-24-97
 1:14p h87p31

 H87P31
 0
 118.172
 10-24-97
 1:29p h87p31.0
 H87P32 2.256 10-24-97 1:14p h87p32 117.543 10-24-97 1:29p h87p32.o H87P32 O H87P50 2.254 10-24-97 1:14p h87p50 H87250 O 116,449 10-24-97 1:29p h87p50.o 2.256 10-24-97 1:14p h87p90 116,448 10-24-97 1:29p h87p90.o H87P90 H87P90 O 2,363 10-24-97 1:14p h87sp50 118,159 10-24-97 1:29p h87sp50.o H87SP50 H87SP50 O H87SP54 2.365 10-24-97 1:14p h87sp54 H87SP54 O 117.532 10-24-97 1:29p h87sp54.0 2.368 10-24-97 1:14p h87sp55 H87SP55 118.319 10-24-97 1:29p h87sp55.o H87SP55 O 2.364 10-24-97 1:14p h87sp90 118.831 10-24-97 1:29p h87sp90.0 H87SP90 H87SP90 O H92P38 2.254 10-24-97 1:14p h92p38 H92P38 O 117,439 10-24-97 1:29p h92p38.o 117,439 10-24-97 1:29p 192p38.0 2.254 10-24-97 1:14p 192p39 117,300 10-24-97 1:29p 192p39.0 H92P39 H92P39 O H92P50 2,252 10-24-97 1:14p h92p50 117,443 10-24-97 1:29p h92p50.o H92P50 O H92P90 2.254 10-24-97 1:14p h92p90 H92P90 O 118,299 10-24-97 1:29p h92p90.o 2.361 10-24-97 1:14p h92sp50.0 118,215 10-24-97 1:29p h92sp50.0 H92SP50 H92SP50 O 2,363 10-24-97 1:14p h92sp66 118,918 10-24-97 1:29p h92sp66.0 2,367 10-24-97 1:14p h92sp67 H92SP66 H92SP66 O H92SP67 119.074 10-24-97 1:29p h92sp67.0 2.362 10-24-97 1:14p h92sp90 118.918 10-24-97 1:29p h92sp90.0 H92SP67 O H92SP90 H92SP90 O 2.252 10-24-97 1:14p h96p50 117.817 10-24-97 1:29p h96p50.o H96P50 H96P50 O H96P72 2.254 10-24-97 1:14p h96p72 H96P72 O 117.431 10-24-97 1:29p h96p72.0 2.254 10-24-97 1:14p h96p73 118.416 10-24-97 1:29p h96p73.0 H96P73 H96P73 O 2.254 10-24-97 1:14p h96p90 118.443 10-24-97 1:29p h96p90.o H96P90 H96P90 O H96SP50 2.361 10-24-97 1:14p h96sp50 119,406 10-24-97 1:29p h96sp50.0 2.362 10-24-97 1:14p h96sp90 120,727 10-24-97 1:29p h96sp90.0 H96SP50 O H96SP90 H96SP90 O 2.362 10-24-97 1:14p h96sp98 119.262 10-24-97 1:29p h96sp98.0 133 10-24-97 1:14p heading H96SP98 H96SP98 O HEADING 2,012 10-24-97 1:14p headout 23.637 10-24-97 1:14p headout 1,315 10-24-97 1:14p pluto3.keff HEADOUT HXAVE OUT PLUTO3~1 KEF SUMRY~I OUT 397.453 10-24-97 1:29p sumry.outist

Results for 0.001 cm Fracture Width

Directory of C:W	Work\tuttie\transoct\pluto4
HEADING	133 10-24-97 1:14p heading
HEADOUT	1.224 10-24-97 1:14p headout
HXAVE OUT	17.034 10-24-97 1:14p hxave.out
K87P63	2.263 10-24-97 1:14p k87p63
K87P63 O	117.371 10-24-97 1:29p k87p63.0
K87P64	2.263 10-24-97 1:14p k87p64
K87P64 O	117,470 10-24-97 1:29p k87p64.0
K87P90	2.263 10-24-97 1:14p k87p90
K87P90 O	117.955 10-24-97 1:29p k87p90.0
K87SP90	2,371 10-24-97 1:14p k87sp90
K87SP90 O	118,805 10-24-97 1:29p k87sp90.0
K87SP98	2.371 10-24-97 1:14p k87sp98
K87SP98 O	121.387 10-24-97 1:29p k87sp98.0
K92P78	2.261 10-24-97 1:14p k92p78
K92P78 O	118.169 10-24-97 1:29p k92p78.o
K92P79	2.261 10-24-97 1:14p k92p79
K92P79 O	118,299 10-24-97 1:29p k92p79.0
K92P90	2,261 10-24-97 1:14p k92p90
K92P90 O	118.199 10-24-97 1:29p k92p90.0
K92SP90	2.369 10-24-97 1:14p k92sp90
K92SP90 O	118,919 10-24-97 1:30p k92sp90.o
K92SP98	2.369 10-24-97 1:14p k92sp98

Attachment II

A0000000-01717-0200-00050 REV 00

K92SP98	0	118.918 10-24-97 1:30p k92sp98.o
K96P90		2,261 10-24-97 1:14p k96p90
K96P90	0	117.714 10-24-97 1:30p k96p90.o
K96P98		2,261 10-24-97 1:14p k96p98
K96P98	0	117,714 10-24-97 1:30p k96p98.o
K96SP90		2.369 10-24-97 1:14p k96sp90
K96SP90	0	119,072 10-24-97 1:30p k96sp90.a
K96SP98		2.369 10-24-97 1:14p k96sp98
K96SP98	0	[19,404 10-24-97 1:30p k96sp98.o
PLUTO4-	-1 KEF	976 10-24-97 1:14p pluto4.keff
SUMRY-	I OUT	229,080 10-24-97 1:29p sumry.outlst

.

Results for 0.1 cm Fracture Width

Directory of C:\\	Work/tuttle/transoci/clay5
CLAYS HX	4.812 11-06-97 2:56p clay5.hx
CLAYS~I KEF	3.024 11-06-97 2:55p clay5.kett
E100P09	2.960 11-06-97 2:55p e100p09
ETIOPUS O	122,001 11-06-97 2:58p e100p09.0
EICOPIO	2.902 11-10-97 2:35p e100p10
ETOPTO O	2.047 11.04.07 2:58p e100p10.0
E100P20	2,962 11-06-97 2:50p e100p20
E100P20 0	2.069 11.06.07 2:58p e100p20.0
E110327	2.508 11-06-97 2.50p c100c27
E11X)527 0	2 069 11 //6 07 2:56p e1(8)27.0
E100528	171 444 11-06-97 2:50p c100s28
E100528 0	2 968 11-06-97 2:56n e100e29
E100529 0	121.501 11-06-97 2:58n e100s29 o
F100534	2 968 11-06-97 2:56n e100e34
E100534 O	121.096 11-06-97 2:58n e100s34 o
E100\$50	2.968 11-06-97 2:55n e100s50
E100550_O	121.067 11-06-97 2:58p e100s50 o
E100SP10	3.039 11-06-97 2:55p e100sp10
E100SP10 O	121.976 11-06-97 2:58p c100sp10.0
E100SP14	3.039 11-06-97 2:56p e100sp14
E100SP14 O	123,003 11-06-97 2:58p e100sp14.0
E100SP15	3.043 11-06-97 2:56p e100sp15
E100SP15 O	123,059 11-06-97 2:58p e100sp15.0
E100SP16	3,039 11-06-97 2:56p e100sp16
E100SP16 O	123,060 11-06-97 2:58p e100sp16.0
E87P006	3.023 11-06-97 2:56p e87p006
E87P006 O	123.859 11-06-97 2:58p e87p006.0
E87P(X)7	3.023 11-06-97 2:56p e87p007
E87P007 O	123,863 11-06-97 2:58p e87p007.0
E87P01	3.019 11-06-97 2:55p e87p01
E87P01 O	121.337 11-06-97 2:58p e87p01.0
E87S03	3.026 11-06-97 2:56p e87s03
E87S03 O	122.396 11-06-97 2:58p e87s03.0
E87S039	3.033 11-06-97 2:56p e87s039
E87S039 O	123,805 11-06-97 2:58p e87s039.0
E87S04	3,026 11-06-97 2:56p e87s04
E87S04 O	122.285 11-06-97 2:58p e87s04.0
E87S10	3,028 11-06-97 2:55p c87s10
E87510 0	120.372 11-06-97 2:58p e87s10.0
E8/SPUI	3.100 11-06-97 2:55p e87sp01
E8/SPUL O	121,925 11-06-97 2:58p c8/sp01.0
E8/5P011	3.107 11-06-97 2:50p c8/sp011
E875P0110	1/15 11 //6 //7 2:56p c8/sp/(1.0
E8752012 0	122 028 11 06 07 2:50p corsport
E875P012 0	3 (098 11-06-07 2:56p e87sp(12:0
E875P02 0	127 595 11-06-97 2:50p carspiz
E970017	3 071 11-06-97 2:55p c0/sp/2:0
E92P007_0	122.366 11-06-97 2:58p e92p0017 v
E92P008	3.021 11-06-97 2:56p e92p008
E92P008 O	121,494 11-06-97 2:58p e92p008.0
E92P009	3.021 11-06-97 2:56p e92p009
E92P009_O	122,396 11-06-97 2:58p e92p009.0
E92P01	3.017 11-06-97 2:56p e92p01
E92P01 O	122.394 11-06-97 2:58p e92p01.o
E92P02	3.017 11-06-97 2:56p e92p02
E92P02 O	121.423 11-06-97 2:58p e92p02.0
E92S04	3,023 11-06-97 2:56p e92s04
E92S04 O	121.797 11-06-97 2:58p e92s04.o
E92S05	3.023 11-06-97 2:56p e92s05
E92S05 O	123,992 11-06-97 2:58p c92s05.0
E92510	3.025 11-06-97 2:55p e92s10
E92510 O	121,366 11-06-97 2:58p e92s10.0
E925P014	3,102 11-06-97 2:56p e92sp014
E925E014 U	121.784 11-06-97 2:58p e92sp()14.0
E925P015	2.004 11-06-97 2:56p e92sp015
E925P015 U	122.870 11-06-97 2:58p e92sp015.0
EVISION A	121 806 11 06 07 2:50p 6928p02
E923P02 U	141,020 11-00-97 2:38p e928p02.0
E96P01 0	122 369 11-06-97 2-58n #06n01 /
	Letters in the st store coupering

E96P016	3.024 11-06-97 2:56p e96p016
E96P016 O	121.827 11-06-97 2:58p e96p016.0
E96P017	3,024 11-06-97 2:56p e96p017
E96P017 O	121.667 11-06-97 2:58p e96p017.0
E96P02	3.017 11-06-97 2:56p e96p02
E96P02 O	122.395 11-06-97 2:58p e96p02.o
E96P03	3.017 11-06-97 2:56p e96p03
E96P03 O	123.834 11-06-97 2:58p e96p03.0
E96S07	3.023 11-06-97 2:56p c96s07
E96S07 O	121.640 11-06-97 2:58p e96s07.0
E96S08	3.023 11-06-97 2:56p e96s08
E96S08 O	122.339 11-06-97 2:58p e96s08.0
E96S09	3.023 11-06-97 2:56p e96s09
E96\$09 O	121.667 11-06-97 2:58p e96s09.0
E96S10	3.025 11-06-97 2:55p e96s10
E96S10 O	122.396 11-06-97 2:58p e96s10.0
E96S50	3.025 11-06-97 2:55p e96s50
E96S50 O	122.121 11-06-97 2:58p e96s50.0
E96SP024	3,104 11-06-97 2:56p e96sp024
E96SP024 O	123.270 11-06-97 2:58p e96sp024.0
E96SP028	3.104 11-06-97 2:56p e96sp028
E96SP028 O	122,955 11-06-97 2:58p e96sp028.o
E96SP03	3,099 11-06-97 2:56p e96sp03
E96SP03 O	123.057 11-06-97 2:58p e96sp03.o
E96SP10	3.096 11-06-97 2:55p e96sp10
E96SP10 O	122.057 11-06-97 2:59p e96sp10.o
E96SP20	3.098 11-06-97 2:56p e96sp20
E96SP20 O	121.925 11-06-97 2:59p e96sp20.o
HEADING	133 11-06-97 2:55p heading
HEADOUT	4.305 11-06-97 2:55p headout
HXAVE OUT	56,499 11-06-97 2:56p hxave.out
SUMRY~I OU	T 3.419.208 11-06-97 2:56p sumry.outist
TEMP	6.968 11-06-97 2:55p temp

Results for 0.01 cm Fracture Width

Directory of C:	Work\tuttle\transoct\clay1
A100P10	2.969 10-24-97 1:18p a100p10
A100P10_O	121,390 10-24-97 1:21p a100p10.0
A100P50	2.969 10-24-97 1:18p a100p50
A100P50_0	121.285 10-24-97 1:21p a100p50.p
A100P90	2,969 10-24-97 1:18p a100p90
A100P90_0	121.285 10-24-97 1:21p a100p90 o
A100P98	2.968 10-24-97 1-18n a100n98
A100P98_0	121 315 10-74-97 1-21p a100p98 o
A100510	2.975 10-24-97 1-18n a100s10
A100510_0	121 393 10-24-97 1-21n a100e10 o
A100550	2 975 10-24-97 1-18p at(0)-50
A100\$50 O	121 715 10-24-97 1-21n a100c50 o
A 100590	2 975 10-24-97 1-18p at 00-00
A100590 O	122 320 10-24-27 1.10p at (0.850)
A100509	2 074 10 34 07 1/18s all00-08
A100509 O	2.774 10-24-97 1.16p 2100596
A1006010	2/146 10 24 07 1:210 21(8598.0
ALOOSPIU	3,040 10-24-97 1:18p a100sp10
ATOOSPICO	121.949 10-24-97 1:21p a100sp10.0
ATRISPSO	3.048 10-24-97 1:18p a100sp50
A1005P50 O	121.975 10-24-97 1:21p a100sp50.o
A100SP90	3.048 10-24-97 1:18p a100sp90
A1005P90 0	123.060 10-24-97 1:21p a100sp90.o
A100SP98	3.047 10-24-97 1:18p a100sp98
A100SP98 O	121.521 10-24-97 1:21p a100sp98.o
A87P06	3.026 10-24-97 1:18p a87p06
A87P06 O	121,423 10-24-97 1:21p a87p06.o
A87P07	3.026 10-24-97 1:18p a87p07
A87P07 O	121.982 10-24-97 1:21p a87p07.o
A87P10	3.028 10-24-97 1:18p a87p10
A87P10 O	121,189 10-24-97 1:21p a87p10.o
A87P50	3.028 10-24-97 1:18p a87p50
A87P50 O	121.879 10-24-97 1:21p a87p50.o
A87P90	3.028 10-24-97 1:18p a87p90
A87P90 O	122,006 10-24-97 1:21p a87p90.0
A87S10	3.033 10-24-97 1:18p a87s10
A87510 O	122,339 10-24-97 1:21p a87s10.0
A87S35	3.034 10-24-97 1:18p a87s35
A87S35_O	121.392 10-24-97 1:21n a87s35 o
A87S36	3.034 10-24-97 1:18p a87s36
A87S36 Q	121.366 10-24-97 1:21n a87s36 o
A87550	3 ()35 1()-74-97 1-18n a87c5()
A87550 0	122 151 10-24-97 1:21n 987e50 a
A87590	3 035 10-24-97 1-186 487-90
487590 0	172 041 10-24-07 1-216 a87:00 a
A875P10	3 106 10-24-07 1-196 s97m10
ANTSPIO O	177 085 10 34 07 1.31m 497-10
A975D11	144,000 10-24-27 1:21p 2878p10.0
A975011 C	2.111 10-24-97 1:18p a8/sp11
A975060	3 107 10 34 07 1/19 (07-5)
A8/3P30	3.107 10-24-97 1:18p a87sp50
A8/5P50 0	121.008 10-24-97 1:21p a87sp50.0

Attachment II

A87SP90	3,107 10-24-97 1:18p a87sp90
A87SP90 O	120,734 10-24-97 1:21p a87sp90.o
A92007	3 074 10-74-07 1-185 207:07
A02007 O	100 369 10 24 07 1.0202-07 -
A32F01 U	122,306 IF24-97 1.22p a92p07.0
A92P08	3,024 10-24-97 1:18p a92p08
A92P08 O	121,392 10-24-97 1:22p a92p08.0
A92P10	3 (026 10-24-97 1-18p a92p10)
A02010 0	122 366 10 14 07 1/22- 02-10 -
A92F10 U	122,300 10-24-97 1.220 292010.0
A92P50	3,026 10-24-97 1:18p a92p50
A92P50 O	123,862 10-24-97 1:22p a92p50.o
A92P90	3.026 10-24-97 1:18p a92p90
AU2001 ()	123 831 10 24 07 1:225 292600 0
A72F 70 U	125,851 1/24-97 1.220 4920-0.0
A92510	3,032 10-24-97 1:18p a92s10
A92S10 O	122,369 10-24-97 1:22p a92s10.0
A92545	3.032 10-24-97 1.18p a92s45
A97545 O	177 360 10-24-07 1-22n 207s45 0
A02545 0	1 022 10 24 02 110- 02-44
A92546	3.032 10-24-97 1:18p a92s46
A92S46 O	122,366 10-24-97 1:22p a92s46.0
A92550	3.032 10-24-97 1:18p a92s50
A92550 0	173 867 10-24-07 1-22n 302c50 o
102500	2 022 10 24 02 110- 02-00
A92590	3.032 10-24-97 1:18p a92590
A92S90 O	123.963 10-24-97 1:22p a92s90.o
A92SP10	3,103 10-24-97 1:18p a92sp10
A925P10_0	123 302 10-24-97 1-22n a92sn10 o
A075B12	2 107 10 24 07 11 Pa +02++12
1923113	5.107 10+24-97 1.16p #925p15
A925P13 0	122,868 10-24-97 1:22p a92sp13.o
A92SP14	3.103 10-24-97 1:18p a92sp14
A92SP14 O	123.028 10-24-97 1:22p a92sp14.o
A925P50	3 105 10-24-97 1-18n a92sn50
A025050 0	122 795 10 24 07 1.102 252500
A923F30 U	122,785 ILF24-97 1:22p a92sp50.0
A92SP90	3.105 10-24-97 1:18p a92sp90
A92SP90 O	122,598 10-24-97 1:22p a92sp90.o
A96P10	3 026 10-24-97 1:18p a96p10
A06010 0	171 610 10 24 07 1/2206-10 -
ABOFIO O	121.010 10-24-97 1.22p a90p10.0
A96P14	3,026 10-24-97 1:18p a96p14
A96P14 O	122.171 10-24-97 1:22p a96p14.o
A96P15	3.026 10-24-97 1:18n a96n15
496PI5 0	122 307 10 24 07 1:220 -06015 -
	122.377 10-24-97 1.220 490013.0
A96P50	3.026 10-24-97 1:18p a96p50
A96P50 O	121,521 10-24-97 1:22p a96p50.o
A96P90	3.026 10-24-97 1:18n a96n90
406P00 0	122 151 10 24 07 1/22= -06=00 -
A30F90 0	122.151 10-24-97 1:22p asops0.0
A96510	3.032 10-24-97 1:18p a96s10
A96S10 O	122,653 10-24-97 1:22p a96s10.0
A96S50	3.032 10-24-97 1-18n a96s50
A96550 0	122 640 10-24-07 1-225 206:50 0
104076	1022 10 24 07 11220 2005000
A90373	5.052 10+24-97 1:18p a905/5
A96575 U	121.640 10-24-97 1:22p a96s75.0
A96S76	3.032 10-24-97 1:18p a96s76
A96S76 O	121.639 10-24-97 1:22p a96s76 o
496590	3 (132 1/) 24 07 1:180 206:00
100300	120 COC 10 24 97 1.180 290590
A90390 U	122,080 10-24-97 1:22p a96590.0
A96SP10	3.103 10-24-97 1:18p a96sp10
A96SP10 O	122,327 10-24-97 1:22p a96sp10.o
A965P24	3 105 10-24-97 1-18n #96cn24
AU46021 0	102 100 10 24 07 1.02- 04 24
A903P24 U	122,109 10-24-97 1:22p a96sp24.0
A96SP25	3.109 10-24-97 1:18p a96sp25
A96SP25 O	122.867 10-24-97 1:22p a96sp25.0
A96SP50	3.105 10-24-97 1.18n 296en50
A965250 O	122 120 10.24 07 1:220 0060050 -
10/05/00	122.327 IV-24-97 1.22p a90sp30.0
4202120	3.105 10-24-97 1:18p a96sp90
A96SP90 O	124.363 10-24-97 1:22p a96sp90.o
CLAY1~1 KEF	2,892 10-24-97 1; [8p clay] keff
HEADING	133 10-24-97 1-185 heading
HEADOUT	4 000 10 04 02 1-10 basels -
HEADOUT	4,502 IIF24-97 1:18p neadout
HXAVE OUT	54.271 10-24-97 1:18p hxave.out
SUMRY~1 OUT	1,133.538 10-24-97 1:23p sumry.outist

Results for 0.005 cm Fracture Width

Directory of C:V	Work\tuttle\transoct\clay2
B100P50	2.976 10-24-97 1:18p b100p50
B100P50_O	121.343 10-24-97 1:23p b100p50.0
B100P90	2.976 10-24-97 1:18p b100p90
B100P90_O	122.532 10-24-97 1:23p b100p90.0
B100S50	2.982 10-24-97 1:18p b100s50
B100S50_O	121.227 10-24-97 1:23p b100s50.o
B100S90	2,982 10-24-97 1:18p b100s90
B100S90_O	121.720 10-24-97 1:23p b100s90.0
B100SP50	3.055 10-24-97 1.18p b100sp50
B100SP50 O	122,596 10-24-97 1:23p b100sp50.o
B100SP90	3.055 10-24-97 1:18p b100sp90
B100SP90 O	123.059 10-24-97 1:23p b100sp90.0
B87P10	3,035 10-24-97 1:18p b87p10
B87P10 O	121,423 10-24-97 1:23p b87p10.0
B87P12	3.035 10-24-97 1:18p b87p12
B87P12 O	121,395 10-24-97 1:23p b87p12.0
Attachment II

B8/P13	3,035 10-24-97 1:18p 687p13
B87P13 O	[21,553 10-24-97 1:23p b87p13.o
B87P5()	3.035 10-24-97 1:18p b87p50
B87P50 O	121,908 10-24-97 1:23p b87p50.o
B87P90	3,035 10-24-97 1:18p b87p90
B87P90 O	121.878 10-24-97 1:23p b87p90.o
B87S50	3.042 10-24-97 1:18p b87s50
B87550 0	122 338 10-24-97 1:23 n N87:50 n
897577	2/42 10 24 07 1/18- 597-77
D07372	33/42 (1-24-57 1.16p 08/3/2
B8/5/2 U	122,124 IN-24-97 1:24p 08/s/2.0
887573	3.042 10-24-97 1:18p b87s73
B87S73 O	121.253 10-24-97 1:24p b87s73.o
B87S90	3.042 10-24-97 1:18p b87s90
B87S90 O	123,991 10-24-97 1:24p b87s90.u
B87SP10	3.113 10-24-97 1:18p b87sp10
B87SP10 O	122.002 10-24-97 1:24n b87sp10.o
B875P11	3 118 10-24-97 1-18n 587sn21
8875821 0	121 868 10 14 07 1:24s b87cs21 o
D075121 0	2 114 10 24 07 1.18- 687-22
D6/3F22	3.114 10-24-97 [:18p 08/sp22
B8/SP22 0	122.054 10-24-97 1:24p 08/sp22.0
B87SP50	3,114 10-24-97 1:18p b87sp50
B87SP50 O	121,064 10-24-97 1:24p b87sp50.o
B87SP90	3,114 10-24-97 1:18p b87sp90
B87SP90 O	122,383 10-24-97 1:24p b87sp90.o
B92P10	3.033 10-24-97 1:18p b92p10
B92P10 O	122.339 10-24-97 1:24n b92p10.0
B92P15	3 (133 10-24-97 1-18n b92n15
B92P15 O	12 553 10-24-97 1-24n h92n15 n
B02D14	2 032 10 24 07 1.18- 502-16
D92F10	3,033 10-24-97 1.160 092010
B92P16 U	121.306 10-24-97 1:24p 092p16.0
B92P50	3.033 10-24-97 1:18p 692p50
B92P50 O	122,281 10-24-97 1:24p b92p50.o
B92P90	3.033 10-24-97 1:18p b92p90
B92P90 O	121.881 10-24-97 1:24p b92p90.o
B92S50	3.039 10-24-97 1:18p 592s50
B92S50 O	122.640 10-24-97 1:24n b92s50.o
B92590	3 039 10-74-97 1-180 592-90
802500 0	173.964 10.14.07 1.124 502:00
B72370 0	2039 10 24 07 1.19- 503-01
D92391	3.036 10-24-97 1.180 092391
B92591 O	122,496 10-24-97 1:24p by2591.0
B92SP10	3,110 10-24-97 1:18p 592sp10
B92SP10 O	123.395 10-24-97 1:24p b92sp10.o
B92SP26	3,112 10-24-97 1:18p b92sp26
B92SP26 O	121,866 10-24-97 1:24p b92sp26.0
B92SP27	3.116 10-24-97 1:18p b92sp27
B92SP27 O	121.923 10-24-97 1-24n b92sp27 o
B925P50	3 117 10-24-97 1-1Rn h02sn50
B025B50 0	172 141 10 24 07 1:2 to 502:050 o
D723F30 0	2 122 10 24 07 1, 10-240 0923p.30.0
B923P90	3.112 10-24-97 1:18p 092sps0
B925P90 0	121.783 10-24-97 1:24p b92sp90.o
B96P10	3.033 10-24-97 1:18p b96p10
B96P10 O	122.369 10-24-97 1:24p b96p10.o
B96P29	3.033 10-24-97 1:18p b96p29
B96P29 O	121.639 10-24-97 1:24p b96p29.0
B96P30	3.033 10-24-97 1.18p b96p30
B96P30 O	122.369 10-24-97 1:24n b96p30.0
B96P50	3.033 10-24-97 1-18n b96n50
896P50 0	123 834 10.24.47 1-24n b06n50 n
R96P90	3 (33 11) 24.07 1.18 - 505-00
	100 000 10 04 07 1 04 107 00
B90190 U	122.339 10-24-97 1:24p b96p90.0
896550	3.039 10-24-97 1:18p 696850
B96S50 O	121,343 10-24-97 1:24p b96s50.o
B96S90	3.039 10-24-97 1:18p 596s90
B96S90 O	122,743 10-24-97 1:24p b96s90.o
B96S98	3.038 10-24-97 1:18p b96s98
B96S98 O	121,667 10-24-97 1:24p b96s98.o
B96SP10	3,110 10-24-97 1:18p 596sp10
896SP10_0	123.301 10-24-97 1:24n h96xn10 m
B965P47	3 116 10-24-97 1-18n b96sn47
B965P47 0	174 336 10-24-07 1-24- b06-047
B040047 U	2 112 10 24 07 1129 504-40
D703248	3,112 11-24-7/ 1:18p 090sp48
0703248 U	125,031 10-24-97 1:24p b96sp48.0
RA0262()	3,112 10-24-97 1:18p b96sp50
B96SP50 O	122,459 10-24-97 1:24p b96sp50.o
B96SP90	3,112 10-24-97 1:18p b96sp90
B96SP90) O	122.112 10-24-97 1:24p b96sp90.o
CLAY2~1 KEF	2.441 10-24-97 1:18p clay2.keff
HEADING	133 10-24-97 1:18p heading
HEADOUT	4.025 10-24-97 1:18n headout
HXAVE OUT	45 533 10-24-97 1-18n hyave out
SUMPLY OF	
JUMR (~1 UU	i o+r.z.iv iv-24-97 1:24p sumry.outist

Results for 0.002 cm Fracture Width

 Directory of C:\Work\tuttle\transvct\clay3

 C87P31
 3.028
 10-24-97
 1:18p c87p31

 C87P31
 0
 121.556
 10-24-97
 1:24p c87p31.0

.

C87P32	3.028 10-24-97 1:18p c87p32
C87P32 O	122.125 10-24-97 1:24p c87p32.0
C87P50	3,028 10-24-97 1:18p c87p50
C87P50 O	121.365 10-24-97 1:24p c87p50.o
C87P90	3.028 10-24-97 1:18p c87p90
C87P90 0	120,402 10-24-97 1:24p c87p90.o
C87SP50	3,107 10-24-97 1:18p c87sp50
C87SP50 O	121.761 10-24-97 1:24p c87sp50.0
C87SP53	3.111 10-24-97 1:18p c87sp53
C87SP53 O	121.925 10-24-97 1:24p c87sp53.0
C87SP54	3.107 10-24-97 1:18p c87sp54
C87SP54 O	122.872 10-24-97 1:24p c87sp54.o
C87SP90	3.107 10-24-97 1:18p c87sp90
C87SP90 O	121.924 10-24-97 1:24p c87sp90.0
C92P40	3.026 10-24-97 1:18p c92p40
C92P40 O	122,379 10-24-97 1:24p c92p40.o
C92P41	3.026 10-24-97 1:18p c92p41
C92P41 O	121,422 10-24-97 1:24p c92p41.o
C92P50	3.026 10-24-97 1:18p c92p50
C92P50 O	122.340 10-24-97 1:24p c92p50.0
C92P90	3,026 10-24-97 1:18p c92p90
C92P90 O	122,096 10-24-97 1:25p c92p90.o
C92SP50	3,105 10-24-97 1:18p c92sp50
C92SP50 O	123.058 10-24-97 1:25p c92sp50.o
C92SP65	3,109 10-24-97 1:18p c92sp65
C92SP65 O	122,024 10-24-97 1:25p c92sp65.o
C92SP66	3.105 10-24-97 1:18p c92sp66
C92SP66 O	121.898 10-24-97 1:25p c92sp66.o
C92SP90	3.105 10-24-97 1:18p c92sp90
C92SP90 O	122.868 10-24-97 1:25p c92sp90.o
C96P50	3.026 10-24-97 1:18p c96p50
C96P50 O	121.610 10-24-97 1:25p c96p50.o
C96P72	3.026 10-24-97 1:18p c96p72
C96P72 O	121.610 10-24-97 1:25p c96p72.0
C96P73	3.026 10-24-97 1:18p c96p73
C96P73 O	121.666 10-24-97 1:25p c96p73.o
C96P90	3.026 10-24-97 1:18p c96p90
C96P90 O	121.667 10-24-97 1:25p c96p90.o
C96SP50	3,105 10-24-97 1:18p c96sp50
C96SP50 O	123.274 10-24-97 1:25p c96sp50.o
C96SP90	3.105 10-24-97 1:18p c96sp90
C96SP90 O	123.142 10-24-97 1:25p c96sp90.o
C96SP98	3.104 10-24-97 1:18p c96sp98
C96SP98 O	123,086 10-24-97 1:25p c96sp98.o
CLAY3~1 KEF	1.316 10-24-97 1:18p clay3.keff
HEADING	133 10-24-97 1:18p heading
HEADOUT	2.012 10-24-97 1:18p headout
HXAVE OUT	23.627 10-24-97 1:18p hxave.out
SUMRY-1 OUT	904.963 10-24-97 1:18p sumry.outlst

Results for 0.001 cm Fracture Width

Directory of C:\	Work\tuttle\transoct\clay4
CLAY4~1 KEF	789 10-24-97 1:18p clay4 keff
D87P64	3.035 10-24-97 1:18p d87p64
D87P64 O	121.227 10-24-97 1:25p d87p64.p
D87P65	3.035 10-24-97 1:18p d87p65
D87P65 O	121,423 10-24-97 1:25p d87p65.o
D87P90	3.035 10-24-97 1:18p d87p90
D87P90 O	121.423 10-24-97 1:25p d87p90.o
D87SP90	3.114 10-24-97 1:18p d87sp90
D87SP90 O	122.597 10-24-97 1:25p d87sp90.0
D875P98	3.113 10-24-97 1:18p d87sp98
D87SP98_O	121.925 10-24-97 1:25p d87sp98.0
D92P78	3,033 10-24-97 1:18p d92p78
D92P78 O	121.769 10-24-97 1:25p d92p78.o
D92P79	3,033 10-24-97 1:18p d92p79
D92P79 O	121.396 10-24-97 1:25p d92p79.o
D92P9()	3,033 10-24-97 1:18p d92p90
D92P90 O	121.396 10-24-97 1:25p d92p90.o
D92SP9()	3,112 10-24-97 1:18p d92sp90
D92SP90 O	122.627 10-24-97 1:25p d92sp90.o
D92SP98	3.111 10-24-97 1:18p d92sp98
D92SP9K O	122.898 10-24-97 1:25p d92sp98.o
D96P90	3.033 10-24-97 1:18p d96p90
D96P90) O	121,666 10-24-97 1:25p d96p90.o
D96P98	3.032 10-24-97 1:18p d96p98
D96P98 O	121.667 10-24-97 1:25p d96p98.o
D96SP90	3,112 10-24-97 1:18p d96sp90
D96SP90 O	122.168 10-24-97 1:25p d96sp90.o
D96SP98	3,111 10-24-97 1:18p d96sp98
D96SP98_O	122,272 10-24-97 1:25p d96sp98.o
HEADING	133 10-24-97 1:18p heading
HEADOUT	1.224 10-24-97 1:18p headout
HXAVE OUT	13,363 10-24-97 1:18p hxave.out
SUMRY~1 OUT	522.358 10-24-97 1:25p sumry outlst

Tuff.xls,Sheet1

	A	В	С	D	E	F	G	Н		J	K	L	М	N	0	P	Q	R	S
1	From DAT-	TUFF.WK3							+			1			1	Element	0	Si	Al
2					1									1.		At. Wt.	15.995	28.086	26.982
3				·		-								1					
4						• • •				-									
5				Num	ber o	fAtom	s per (Comp	ound		1						Number of	Atoms * Ato	omic Weigh
6		• · · · ·						[· · ·	1	1				ſ					
7	Compound	Wt %	···	0	Si	AI	Fe	Са	Mg	Ti	Na	К	Ρ	Mn	Η		0	Si	Al
8		· · · · · ·			• • • - •	• • • • • •							+	+					·
9	SiO2	78.900		2	2	1	1										31.99	28.086	
10	AI2O3	12.300			3	2					-						47.985		53.964
11	Fe2O3	0.973	······	3	3		2			-	1		-				47.985		
12	CaO	0.451			1			1			-	·					15.995		
13	MaO	0.128			1		-		1								15.995	·····	
14	TiO2	0.093			2				1		1				•		31.99		
15	Na2O	3.920		·	1						2						15.995		
16	K2O	3.180	•		1		1		i	1		2					15.995		
17	P2O5	0.010		: : {	5								2	2			79.975		
18	MnO	0.046			1				1					1			15.995		
19		•		•			+						-				-		
20	H2O	100.000		:	1	i								1	2		15.995		
21	1	.		; 1					1	1							•		
22				ł	i														
23		• •		1					1							Fractional	Densities pe	er Compour	d and Ele
24				1										1					
25		Vol. Fract.	Dens.		,		ţ			-		T .			1	SiO2	0.466351	0.409439	
26	Dry Tuff	0.5	2.22				1						1			AI2O3	0.064261		0.072269
27	Water	0.5	1					-								FeO	0.003246		
28						i										CaO	0.001428		
29	··· • · ···		•			1		1	1					1	1	MgO	0.000564		1
30		· · ·		İ	1			1	1							TiO2	0.000413		
31		-			ŧ											Na2O	0.011230		
32	e in the second s							1	1	1		1	1			K2O	0.005994		
33												-				P2O5	0.000063		
34			•				1			1						MnO	0.000115		
35						• •	-				· · · ·	1							
36						•	1		1					1		H2O	0.444034		
37			-	• • •	i i					1							•		

_

Tuff.xls,Sheet1

Attachment III

	A	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S
38																Total	0.997699	0.409439	0.072269
39																			
40																Wt. Fract.	0.619684	0.254308	0.044887

.

-

Tuff.xls,Sheet1

Attachment III

	Т	U	V	W	Х		Y	Z	AA	AB	AC
1	Fe	Ca	Mg	Ti	Na	Κ		Ρ	Mn	Н	
2	55.847	40.080	24.312	47.900	22.990		39.102	30.974	54.938	1.008	
3						1					
4				-							
5											
6			•							···	
7	Fe	Са	Μα	Ti	Na	ĸ		Р	Mn	H	Total
8	· · · · ·	·····							•		· · · ·
9		· · · ·	•								60.076
10			• • • • •		-						101.949
11	111 694		• • • • • • • •								159.679
12		40.08	••••		1					• • •	56.075
13			24 312		· · ·						40.307
14	· ··- · · · · -·		2	47.9	• • ··	ł					79,890
15					45.98						61,975
16		,				ł	78 204				94,199
17		•				ţ		61,948			141.923
18			 	- -					54 938		70,933
10					1 1 1						
20	- · ·		· · · - ·		-					2.016	18.011
21			·								
22	-	-		f		l				-	
22	nt										
23			van e danse i i				÷				
24			: :								- ·
20							· ••				
20	0.007555										
21	0.00/000	0 002570			-						
20		0.003576									
29			0.000037	0.000610						.	
30				0.000019	0 020200						
31				· ···	0.032282	-	020204				
32		· · . · ··			· · · ·	U	.029304	0.000040			
33			•					0.000048	0 00000		-
34		-							0.000395		
35										0.055000	
36										0.055966	· /
37		9	».								

Attachment III

A0000000-01717-0200-00050 REV 00

Tuff.xls,Sheet1

.....

	Т	U	V	W	Х	Y	Z	AA	AB	AC
38	0.007555	0.003578	0.000857	0.000619	0.032282	0.029304	0.000048	0.000395	0.055966	1.610011
39									*	
40	0.004692	0.002222	0.000532	0.000384	0.020051	0.018201	0.000030	0.000246	0.034761	

Tuff.xls,Sheet2

	A	В	С	D	E	F	G	н		J	ĸ	L	M	N	0	Р	Q	R	S	Ť_	U
1	From FAX	Aug. 4		T		1				Ι		1				Element	0	Si	Al	Fe	Ca
2	· · · · · · · ·	T			1					1						At. Wt.	15.994915	28.086000	26.9815389	55.847000	40.080000
3	···· –		1			1		1	1	-			1	1						1	
4					+ · · =		1		1			1						1			
5	-	· · · · - ·		Num	ber of	Atom	s per (Comp	ound			t · · ·	· •	1	1 .		Number of	Atoms * Ato	mic Weight	<u>+</u>	
6		•			1		1		1		+						+		. T		
7	Compoun	Wt %		0	Si	AI	Fe	Са	Ma	Ti	Na	к	P	Mn	H		0	Si	Al	Fe	Ca
	Compoun	••••		· ·				1		+ · ·		<u> </u>	+	-	1				i i e e e	· · · · · · · · · · · · · · · · · · ·	
١, h	SiO2	76 827		1	<u>, </u>			-			<u></u> + · ·	}			1		31 989830	28 086000	•		
10	A1203	12 740	ļ		1	1			-	- · - ·							47 984745		53 963078	·	·
11	Fa0	0.942	ļ	1	1	-	1			·	• • • •	+					15 994915			55 847000	
1		0.642					1	1			+			+	+		15 994915				40 080000
12	MaO	0.500				1		'	1		+	+					15 004015			<u>}</u>	
	MgO	0.245			·	•					ł			-		+	31 080830		· · · · · ·		
14	1102	0.098				÷.						- · ·					15 004016			<u>↓</u>	·
15	Nazu	3.593		• · · · · · ·		-	•		····-		2						15.004015	÷			
16	K20	4.930	-					•	ļ			4				·	70 074575			•	
17	P205	0.015			2	•	;	1	1		-		4				15.974375			ł	÷
18	MnO	0.067		. 1	1	+					1		i	1			15.994915	ł			
19		+ · · · = · · · ·		i .			÷							1			1.5 00 10 15			-	
20	H2O	100.000	1 •	1	1	1				ļ	ļ				Z		15.994915				
21			•	ļ				-						į		· · · · · · · ·		•••••		<u>.</u>	
22		-	:			•			1									<u></u>	i		
23				1		1					1					Fractional	Densities pe	er Compound		14	
24											.					0:00		0.000000			
25		Vol. Fract.	Dens.													SIO2	0.919240	0.807062	A 464607		
26	Dry Tuff	1	2.247													AI2O3	0.134/40		0.151527	0.044707	
27	Water	0.13	1						l		. .					FeO	0.004212		· · · · · - ·	0.014/07	
28									1					1		CaO	0.003589		· · · - · · -		0.008994
29			L .	ļ							ļ			l .		MgO	0.002185			ļ	
30					Ì	•					.				· · · -	TiO2	0.000882				
31													1			Na2O	0.020837		: :		
32		1			Í.		l				Ł				<u>}</u> .	K2O	0.018810				i
33		I I I I I I I I I I I I I I I I I I I														P2O5	0.000190		· ·		1
34			I.		I			ļ								MnO	0.000339				
35						•	i	 			I	1									
36			Ì				i		1		[· · ·	1	1			H2O	0.115451				
37		=	1		-		1	1	1			1	1		1		1				
38		+ · · · ·	†			-	1	1	1	1	+	-	· † — ·	t	1	Total	1.220476	0.807062	0.151527	0.014707	0.008994
39		· · · · · · ·					1				†	1	1	1	1		1	†			
40						1	1				1	1 .	1		1	Wt. Fract.	0.513855	0.339796	0.063797	0.006192	0.003787

	V	W	X	Ý	Z	AA	AB	AC
1	Mg	Ti	Na	К	Р	Mn	Н	
2	24.312000	47.900000	22.9897707	39.102000	30.9737647	54.9380503	1.00782519	
3								
4								
5								
6								
7	Mg	Ti	Na	К	P	Mn	н	Total
8								
9					L			60.075830
10								101.947823
11					↓ ↓			71.841915
12								56.074915
13	24.312000							40.306915
14		47.900000			l			79.889830
15			45.979541		· · · · · · · · · · · · · · · · · · ·	l		61.974456
16				78.204000		l		94.198915
17					61.947529			141.922104
18						54.938050		70.932965
19				· · · · · · · · · · · · · · · · · · ·				
20							2.015650	18.010565
21				·				
22								
23								
24								
25					_			
26								
27								
28								
29	0.003321							
30		0.001320			Ì			
31			0.059898					
32				0.091967				
33					0.000147			
34						0.001166		
35						1		
36							0.014549	
37								
38	0.003321	0.001320	0.059898	0.091967	0.000147	0.001166	0.014549	2.375135
39								
40	0.001398	0.000556	0.025219	0.038721	0.000062	0.000491	0.006126	

	A	В	С	D	E	F	G	Н		J	K	L	M	N	0
1	Soddyite/P	lutonium							Element	0	Si	Н	U	Pu	
2									At. Wt.	15.994915	28.086000	1.00782519	235.043915	239.052146	
3						1									
4															
5		······································		Num	ber of	Atoms	s per (Comp	ound	Number of A	toms * Atom	ic Weight			
6		• · · · · ·				Γ									
7	Compoun	Wt %		0	Si	Н	U	Pu	1	0	Si	H	U	Pu	Total
8					1		1					· · · · ·			
9	Soddyite	100.000	0.004275	10	1	4	2			159.949150	28.086000	4.031301	470.087830		662.154281
10				0.04	0	0.02	0.01	1							
11	H2O	100.000	0.033439	1		2				15.994915		2.015650	•		18.010565
12				0.03	i	0.07							• • • • • • • • • • • • • • • • • • • •		
13	PuO2	100.000	0.025464	2				1		31.989830				239.052146	271.041976
14				0.05				0.03				· · ·	• • •		
15										-					
16					•										
17								I							
18					-			1							
19		1						1							
20		Vol. Fract.	Dens.				1		Fractional	Densities per	Compound	and Element			
21	Soddyite	0	4.7									•			
22	Water	0.73	1		. –				Soddyite	0.000000	0.000000	0.000000	0.000000	0.000000	
23	PuO2	0.27	11.46								2				
24									H2O	0.648302	0.000000	0.081698	0.00000	0.000000	
25															
26									PuO2	0.365194	0.000000	0.000000	0.000000	2.729006	
27															
28				-					Total	1.013496	0.000000	0.081698	0.000000	2.729006	3.824200
29			· · · -												
30									Wt. Fract.	0.265022	0.000000	0.021363	0.000000	0.713615	

	A	В	С	D	E	F	G	Н		J	ĸ	L	M
1	1		1	1					Solids produced at the end of cell 4, pass 0-Large Area Tuff	reaction			
2		Numbe	r Densi	ty Work	Isotope Lis	it			Phase/End-member	Log moles	Moles	Mass. q	Volume cc
3			γ	i –		ľ			······································				··· -···· · · · · · · · · · · · · · · ·
1 d		<u> </u>	 	<u> </u>					Albite low NaAlSi3O8	0.4603	2 8863	756.86	288 84
5		Element	Symbol	lisotope	MONPID	Atomic Weight	Isotopic Fra	action	Boray Na2B407*10(H20)	-1 8373	0.014544	5 5467	3 2384
ام	1	Hydrogen	н	H-1	1001 500	1 00782519	130topic i la		Celadonite KMoAISidO(10)(OH)2	-0.0172	0 12241	48 563	10.23
F	•	i iyalogcii	<u>n</u>	H-2	1002.550	2 01410222			Eluoranatite Ca5E/POA\3	-0.5122	0.001449	0 73062	0 22831875
1 a			т	H.3	1002.000	3.01604971			Maximum Microcline KAISi3O8	0 3221	2 0996	584.4	228 32
۴,	2	Helium	He	nat	2000.010	4 0026		······		.2 513	0.003069	1 6634	0.4505202
10	<u>-</u>		He	Ho_A	2004 500	4.00260312			Pu()2	-3 4514	0.000354	0.09761	0.0084277
11	2	Lithium			3006 500	6.0151247		··· · ·	Pyrolusite MoO2	-1 7122	0.000004	1 6866	0.333320158
12				11.7	3007 550	7.0160039			Quartz SiQ2	1 0195	10.46	628.5	237 32
13		Bervillium	Re	Bo-0	4009 500	9.0121855				1 5969	0.40	2 0200	0 47615
14		Beron	De	B 10	5010 50C	10.0120389	0 100		Toporite CuO	-1.5909	2 625 05	0.002093	0.47013
15		001011		B-10	5011 56C	11 0003053	0.199			-4.5019	2.022-03	0.002003	0.00032
16	6	Carbon		0-11	6000 EOC	12 01116	0.001		Carbonate Calaita	- 0,6062	0.20122		
17	0	Carbon	<u> </u>	0.12	6012 500	12.01115		- · · · · · · · · · · · · · · · · · · ·		-0.0903	0.20122	10.96	7 2000
		hlitragan		0-12	7044 500	14 00207420				-0.7024	0.19043	19.00	7.3266
10	/	Nittogen		IN-14	1014.500	14.00307439			Destastastia MacOn	-2.5549	0.002/0/	0.23498	0.078085
19	0	Oxygen		0-16	0010.500	15.994915			Rhodochrosite, MnCU3	-11.4657	3.42E-12	3.9333E-10	1.0633E-10
20	9	Fluonne	F	F-19	9019 500	18.9984046				-20.262	5.4/E-21	0.3308E-19	1.6068E-19
21	11	Sodium	Na	Na-23	11023.50	22.989/707			Smithsonite, ZhCO3	-15.84/1	1.42E-16	1 /832E-14	4.0208E-15
22	12	Magnesiu	Mg	nat.	12000.50	24.312			Strontianite, SrCO3	-8.8731	1.34E-09	1.9772E-07	5.2246E-08
23	13	Aluminum	Al	AI-27	13027.50	26.9815389							
24	14	Silicon	SI	nat.	14000.50	28.086			Smectite-di	-0.9185	0.12065		
25	15	Phosphoru	<u>Р</u>	P-31	15031.50	30.9/3/64/			Beidellite-Ca,	-19.8784	1.32E-20	4.8498E-18	1.7137E-18
26	16	Sulfur	S	S-32	16032.50	31.9720737			Beidellite-K	-18.9681	1.08E-19	4.0126E-17	1.4389E-17
27	17	Chlorine	CI	nat.	17000.50	35.452			Beidellite-Mg	-20.4681	3.4E-21	1.2388E-18	4.193E-19
28	19	Potasium	ĸ	nat.	19000.50	39.102			Beidellite-Na	-16.9541	1.11E-17	4.0854E-15	1.451E-15
29	20	Calcium	Ca	nat.	20000.50	40,08			Montmor-Ca	-12.9278	1.18E-13	4.3221E-11	5.9038E-11
30	22	Titanium	Ti	nat.	22000.50	47.9			Montmor-K	-11.8045	1.57E-12	5.8405E-10	7.8431E-10
31	23	Vanadium	V	nat.	23000.50	50.942			Montmor-Mg	-13.3066	4.94E-14	1.7942E-11	2.4684E-11
32	24	Chromium	Cr	nat.	24000.50	51.996			Montmor-Na	-9.8013	1.58E-10	5.7988E-08	7.8999E-08
33	25	Manganes	Mn	Mn-55	25055.50	54.9380503			Nontronite-Ca, Ca(0.165)Fe2Al(0.33)Si(3.67)O(10)(OH)2	-3.8541	0.00014	0.059377	0.018346
34	26	Iron	Fe	nat.	26000.55	55.847			Nontronite-K, K(0.33)Fe2Al(0.33)Si(3.67)O(10)(OH)2	-2.8351	0.001462	0.62947	0.19775
35	27	Cobalt	Co	Co-59	27059.50	58.933189			Nontronite-Mg, Mg(0.165)Fe2Al(0.33)Si(3.67)O(10)(OH)2	-4 4433	3.6E-05	0.015193	0.0046752
36	28	Nickel	Ni	nat.	28000.50	58.71			Nontronite-Na, Na(0.33)Fe2Al(0.33)Si(3.67)O(10)(OH)2	-0.9244	0.11901	50.612	15.723
37	29	Copper	Cu	nat.	29000.50	63.54				-			
38	30	Zinc	Zn	nat.		65.37			Rhabdophane-ss	-5.6277	2.36E-06		
39	33	Arsenic	As	As-75	33075.35	74.9215964			LaPO4:H2O	-6.402	3.96E-07	0.000099819	
40	38	Strontium	Sr	nat.		87.62			CePO4:H2O	-19.9869	1.03E-20	2.6087E-18	
41	40	Zirconium	Zr	nat.	40000.50	91.22			NdPO4:H2O	-6.3886	4.09E-07	0.00010513	
42	41	Niobium	Nb	Nb-93	41093.50	92.906382			GdPO4:H2O	-6.0807	8.3E-07	0.0002244	5.25527E-05
43	42	Molybden	Мо	nat.	42000.50	95.94			SmPO4:H2O	-6.142	7.21E-07	0.0001899	
44			Мо	Mo-95		94.905839						2101.482553	801.7961747
45	43	Technetiu	Tc	Tc-99*		98.90627501							
46	44	Ruthenium	Ru	Ru-101		100.905576							
47	45	Rhodium	Rh	Rh-103	45103.50	102 905511							
48	47	Silver	Ag	Ag-109	47109.50	108.904756							
49	48	Cadmium	Cd	nat.	48000.50	112.4							

clay.xls,Sheet1

.....

Attachment	VI
------------	----

—		T		T	T	T	<u> </u>	T	T		T V	1	T 64
ليبا	<u> </u>	b b		μ <u>υ</u>	- <u>-</u>	+	<u>+ </u>	<u>↓ ⊓</u>	I	J	<u> </u>	└── '	<u> </u>
50	431				50000 35	119.02	.t'	4			+	·•	+
벌	1 50			nat.	50000.55	110.09	. l '	┫			·	·	.+
<u> </u> ≥_	+	Cesium	Cs	US-133	'	132.905355	. '						
53	t <u> </u>	<u> </u> '	Cs	US-135	'	134.905//1	/ '				÷		+
54	1	Barium	Ba	nat.	'	137.34	 '	4	· · · · · · · · · · · · · · · · · · ·				
55	1-5/1	Lanthanu	La	nat.		138.91)	 '				·		
56	58)	Cerium	Ce	nat.		140.12	 '	┫					
57	60/	Neodymiu	Nd	Nd-143		142.909779	 '						- I
58	، '	 '	Nd	Nd-145	'	144.912536	 '	4			_		
59	<u>ا</u> ا	 '		_	'	JJ	 '	_	· · · · · · · · · · · · · · · · · · ·			4	
60	' '	 '		- 	- 	J	' ــــــــــــــــــــــــــــــــــــ	_					
61	<u> </u>	<u> </u>	<u> </u>			<u> </u>	 '						
62	<u>'</u> '	<u> </u>	<u> </u>	<u> </u>		ىى							·
63	1	Numbe	∍r Densi′	ty Work	Isotope Lir	st (Continued)	1						
64	+	<u> </u>	<u>г</u>	Ť T	+	1 +	('	1			1		1
65	(+	+	t	(· · · · · · · · · · · · · · · · · · ·	·			T
66	·+	Element	Symbol	Isotope	MCNP ID	Atomic Weight	(· · · · · · · · · · · ·				1	
67	62	Samarium	Sm	Sm-147		146.914867	·	1				+	
68	·,	1	Sm	Sm-149	62149.50	148.91718		· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	••••••	•	+	
69	(t'	ISm	Sm-150		149.917276	./ <i>'</i>	1	· · · · · · · · · · · · · · · · · · ·			1	1
701	·	t	Sm	Sm-151	+	150,919919		1	· •		÷		1
71	·+	t'	Sm	Sm-152	+	151,919756		1				1	1
72	63	Furopium	Fu	Fu-151	63151.55	150,919838		1	· · · · · · · · · · · · · · · · · · ·			j	1
73	·+	1	Fi	Fu-153	63153.55	152 921242	·	1		·			f · · · · · · · · · · · · · · · · · · ·
74	·+	t'		Fu-154	63154.50	153 923053	. '	1				· · · · ·+	t
75	64	Gadoliniu	Ga	Inat	64000.35	157.25	.[]	· · ····		•••	1	ł · · · · · · · · · · · · · · · · · · ·	t
76	·+	1	Ga	Gd-155	64155.50	154 922664	.t	4			+	+ · _ · · · · · · · · · · · · · · · · ·	t
177	r+	t'	64	Gd-157	64157.50	156.924025	.t'	• · · · · · · · ·	• ••••• •• ••••		• • • •	÷	1
78	72	Hafnium	Hr	Inat	72000.50	178,49	. '	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		↓	÷	f
79	73	Tantalum	Та	Ta-181	73181 50	180,948007	·'	4	······································			+	f
80	74	Tungsten	w	nat	74000 55	183 85		1			t	+	
81	82	llead	Pb	Inat	82000.50	207.19	, <u> </u>	1			1 · · · • •		
R2	92	l Iranium	1	11-233	02233.50	233.039522	,'	d	·			+	1
83	(;	1	ti	11.234	02234 50	234 040904			· ····································		•••	+ · · · - · · · · · · · · · · · · · · ·	t
84	·+	·	ti	11-235	92235 50	235.043915		1	· · · · · · · · · · · · · · · · · · ·			1	1
85	()	·	ti	11.236	92236 50	236 045637	·'	1 · · · ·			1	- 4	
86	,	f'	h	11.238	92238 50	238 05077	·'				· · ·		t
1 87	93	Nentunium	Nn	No.237	01237 55	237.048056	. '		······································		1	÷	t
HAR I	94	Diutonium		Du-238	04238 50	238 049511	I'	1	· · · · · · · · · · · · · · · · · · ·		÷	÷	t
80	ت	f	D	Du-239	04239 55	239 052146	. '	4	· · · · · · · · · · · · · · · · · · ·		÷ ····	44	t
1	·+	··	fo	Du-240	04240 50	240 053882	.t'	1	· · · · · · · · · · · · · · · · · · ·		• ·	· · · · · · · · · · · · · · · · · · ·	•
	/+	f'	Tou .	Di-241	04240.00	241.056737	ł'	.	· ····································		· · · · · · · · · · · · · · · · · · ·	÷	1
1	·+	f'		Du 242	04241.00	247.058725	├ ────	• • • • • • • •			· · · ·	łł	f
03	I	t'	10	Du 243	04242.00	242.00072	└──── ′	-	1		1 . 7	• • •	1
1 33	<u></u>	Americium	Am	Am-241	94243.55	243.001572	r'	· · · · ·	· · ··· · · · · · · · · · · ·		1	· · ····	
1 35		Americani		Am-242m	195247.50	242 059502	·'	4			· · · - − !		1
1 06	ł	·	Am /	Am-243	95242.50	242.035302	·'	4			1		1
07	·	Curium		Cm-243	06243 35	243 06137	r'	1	- · · · · · · · · · · ·		1	-	· ·····
		(Cunum)		Cm 245	06245.35	245.065371	·'	1 .	· · · ·			1	· ·····
			41.012	1 L AL LE 2 19 . 1	2701 Z mail 1 1 1 4 7	2 m			1		1	1	·

clay.xls,Sheet1

.

\Box	A	В	C	D	E	F	G	н		J	K	L	М
99			Cm	Cm-248	96248.35	248.0722							
100													
101													
102		Number Density Worksheet:											
103]					
104	Number Density = (Weight %) * (Density) * (Na) / (Aw)												
105		Avogadro's Number [0.602252]											
106		Atomic We	eight (Aw)										
107													

	N	0	P	Q	R	s	т	U	V
1					L	-			
2	Density g/cc		Atomic Weight	Atom Density			MCNP ID	Isotopic Atom Density	for MCNP
3				mass/(total volume)/AW	ľ'Av				
4	2.620343443		262.1886296	2.1683E-03	ľ		1001.50C	3.6517E-04	
5	1.712790267		381.2937137	1.0927E-05	***		6012.50C	1.5117E-04	
6	2.525377015		396.6941693	9.1953E-05			8016.50C	4.8406E-02	
7	3.2		504.2586787	1.0883E-06			9019.50C	1.0883E-06	
8	2.559565522		278.3008589	1.5773E-03			11023.50C	2.1978E-03	
9	3.692102532		538.9470628	2.3183E-06	***		12000.50C	9.4051E-05	
10	11.58204492		271.041976	2.7050E-07	***		13027.50C	3.8674E-03	
11	5.06		86.9278803	1.4574E-05			14000.50C	1.9795E-02	
12	2.648322939		60.07583	7.8581E-03			15031.50C	3.2649E-06	
13	4.244250761		79.88983	1.9001E-05			19000.50C	1.6696E-03	
14	6.509375		79.534915	1.9672E-08			20000.50C	1.5454E-04	
15							22000.50C	1.9001E-05	
16							25055.50C	1.4574E-05	
17	2.709857003		100.064745	1.4908E-04			26000.55C	1.8127E-04	
18	3.009284754		84.296745	2.0938E-06			29000.50C	1.9672E-08	
19	3.699144174		114.9227953	2.5708E-15					
20	3.943739109		115.831745	4.1092E-24			TOTAL	7.6920E-02	
21	4.434938321		125.365895	1.0684E-19	***				
22	3.784404548		147.615895	1.0061E-12	***				
23						l			
24									- · · · ·
25	2.830016922							·····	
26	2.788658003								
27	2.954447889								
28	2.815575465					1			
29	0.732087808								
30	0.744667287	· ····· · _ ·				·			
31	0.726867607					·			
32	0.734034608								
33	3.236509321		424.2413582	1.0513E-07				·	
34	3.183160556		430.5318182	1.0982E-06		- +			
35	3.249700548	-	421.0390382	2.7066E-08					·
30	3.2109/0300		423.214/023	0.94036-03	ttt indiant		ad in total or instants	aunahan danaitian	
31		<u> </u>	TOTAL	1 10735 03	indican	es not includ	eu in total or isotopic	number densides	
30				1.19/20-02		·			
39									
40	····· · · · · · · · · · · · · · · · ·	···							
41	4.97	···· ··· ·				-	<u>↓</u>		·····
44	4.2/					·	<u> </u>		
H H									
		··· ·· ·							
45	l								
49			∤ ·· - -						
41	· +							·····	
40			• • • • • • • • • • • • • • • • • • •						
49			1			1			

- ----

	N	0	Р	Q	R	S	т	Ų	V
50									
51				· · · · · · · · · · · · · · · · · · ·					
52						••••			
53								•••••••	
54									
55				······					
56			· ····						
57	······································	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·						
58		• • • • • • • • • • • • • • • • • • • •							
50			· · · · · · · · · · · · · · · · · · ·						··· · [
60								•••• • • • • • • • • • • • • • • • • •	
61									
62									
02				· · · · · · · · · · · · · · · · · · ·					
63									
64									[_
65									
66									
67									
68									
69									
70									
71						· · ·	· · · · · · · · · · · · · · · · · · ·		
72				···					-
73		• • • • •	.						
74	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·							
75			· · · · · · · · · · · · · · · · · · ·						
76		<u> </u> ·•••	····		1			• • • • • • • • • • • •	
77				·· —··· · · · · · ·					
78	• •					• • • •			
79					t				
80					·				· · -
81	•	İ	-			• • • • • • •			
82									
83									
84				· · · · · · · ·					
85						• ··· ···	· •• •• ·		
86				·····					
87								• • • • • • • • • • • • • • • • • • • •	
88			···· ••••						
89									
60									I
01									
02					····-+				l
02									
93									<u>├</u> [
34								···	} }
90		· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
30									·
97				· · ·		· · · · · ·			
98						l		L	

	N	0	Р	Q	R	S	Т	U	v
99									
100									
101									
102									
103									
104									
105									
106									
107									

	A	B	С	D	E	F	G	Н	I	J	К	L
1			0.76	0.12	0.12							
2]											
3	Element	MCNP ID	Clayey	Soddyite	PuO2	Total		MCNP ID	Total	\$	Element	
4												
5	Hydrogen	1001.50C	3.6517E-04	0.0171		2.3295E-03	M2	1001.50C	2.3295E-03	\$	Hydrogen	
6	Carbon	6012.50C	1.5117E-04			1.1489E-04		6012.50C	1.1489E-04	\$	Carbon	
7	Oxygen	8016.50C	4.8406E-02	0.04275	0.050928	4.8030E-02		8016.50C	4.8030E-02	\$	Oxygen	
8	Fluorine	9019.50C	1.0883E-06			8.2712E-07		9019.50C	8.2712E-07	\$	Fluorine	
9	Sodium	11023.50C	2.1978E-03			1.6703E-03		11023.50	1.6703E-03	\$	Sodium	
10	Magnesium	12000.50C	9.4051E-05			7.1479E-05		12000.50	7.1479E-05	\$	Magnesium	
11	Aluminum	13027.50C	3.8674E-03			2.9392E-03		13027.50	2.9392E-03	\$	Aluminum	
12	Silicon	14000.50C	1.9795E-02	0.004275		1.5557E-02		14000.50	1.5557E-02	\$	Silicon	
13	Phosphorus	15031.50C	3.2649E-06			2.4813E-06		15031.50	2.4813E-06	\$	Phosphorus	
14	Potasium	19000.50C	1.6696E-03			1.2689E-03		19000.50	1.2689E-03	\$	Potasium	
15	Calcium	20000.50C	1.5454E-04			1.1745E-04		20000.50	1.1745E-04	\$	Calcium	
16	Titanium	22000.50C	1.9001E-05			1.4440E-05		22000.50	1.4440E-05	\$	Titanium	
17	Manganese	25055.50C	1.4574E-05			1.1076E-05		25055.50	1.1076E-05	\$	Manganese	
18	Iron	26000.55C	1.8127E-04			1.3777E-04		26000.55	1.3777E-04	\$	Iron	
19	Copper	29000.50C	1.9672E-08			1.4951E-08		29000.50	1.4951E-08	\$	Copper	
20	Uranium	92235.50C		0.00855		1.0260E-03		92235.50	1.0260E-03	\$	Uranium	
21	Plutonium	94239.55C			0.025464	3.0557E-03		94239.55	3.0557E-03	\$	Plutonium	
22]											
23	l	TOTAL	7.6920E-02	0.072675	0.076392	7.6347E-02						