CRWMS/M&O

Calculation Cover Sheet

Complete only applicable items.

MOL.19980728.0003

QA: L 1. Page: 1

Of: 76

2. Calculation Title	<u></u>			
CRC Reactivity Calo	culations for Three Mile	Island Unit 1		
3. Document Identifie B00000000-01717-0	r (including Revision Numb 0210-00008 REV 00	er)		4. Total Pages 76
5. Total Attachments 4	6. Attachr I: 1, II: 1,	nent Numbers - Numbe III: 1, IV: 1 (See rem	r of pages in each arks in Box 10)	
		Print Name	Signature	Date
7. Originator	Ken	neth D. Wright	Kennet D. T.	ill 6/4/98
8. Checker	Joh	n M. Scaglione	John M. Sca	plione 6/4/98
9. Lead Design Engine	er Dar	iiel A. Thomas 🛛 🧹	= Dal hon	un) 06/04/98
The electric checked.	JOHN M. John M. John 1	uts have bee SCAGLIONE M. Scaplico	n -e 6/1/98	
		Kevision	History 	<u></u>
11. Revision No.	12. Date Approved		13. Description of R	levision
00	· · ·	Initial Issuance		
			•	•
			•	
R 2 27 (54-min 01/00/00)	·			

V

Item

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Vaste	Package	Operati	ions

2.	Method	4
3.	Assumptions	4
4.	Use of Computer Software	4
	4.1. Software Approved for QA Work	4
	4.1.1. MCNP	4
	4.2. Software Routines	5
	4.2.1. MACE	
	4.2.2. Excel	5
5.	Calculation	5
	5.1. Three Mile Island Unit 1 CRC Reactivity Calculations	6
	5.2. Three Mile Island Unit 1 MCNP Geometrical Descriptions	6
	5.2.1. Three Mile Island Unit 1 Reactor Core Geometric Description	6
	5.2.2. Three Mile Island Unit 1 Fuel Assembly Geometric Descriptions	
	5.2.3. Fuel Pin Geometric Description	14
	5.2.4. Guide Tube Geometric Description	15
	5.2.5. Instrument Tube Geometric Description	16
	5.2.6. BPRA Geometric Description	17
	5.2.7. RCCA Geometric Description	
	5.2.8. APSRA Geometric Description	21
	5.3. Three Mile Island Unit 1 MCNP Material Descriptions	23
	5.3.1. MCNP Cross Section Libraries	23
	5.3.2. Reactor Materials	
	5.3.3. Fuel Assembly Materials	51
	5.3.4. Fuel Rod Materials	61
	5.3.5. Guide Tube and Instrument Tube Materials	67
	5.3.6. BPRA Materials	68
	5.3.7. RCCA Materials	68
	5.3.8. Black APSRA Materials	68

Engineering Calculation

Page 2 of 76

Page

Engineering Calculation

	5.4. Core Dowing Decemptions
6.	Results74
7.	References
8.	Attachments

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 4 of 76

Engineering Calculation

1. Purpose

The purpose of this calculation is to document the Three Mile Island Unit 1 pressurized water reactor (PWR) reactivity calculations performed as part of the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid-cycle when the reactor resumed operation after a shutdown. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.

2. Method

The calculational method used to perform the Three Mile Island Unit 1 core reactivity calculations consisted of using the MCNP code (Ref. 7.1) to calculate the effective neutron multiplication factor (k_{eff}) for the various critical core configurations. Each of the critical core configurations were modeled in detail using measured critical conditions. The various fuel assemblies were modeled explicitly in the critical core configurations. The SAS2H code of the SCALE 4.3 modular code system (Ref. 7.2) was used to deplete the various fuel assemblies as necessary to obtain the burned fuel isotopics for use in the reactivity calculations documented herein. These fuel assembly depletion calculations are documented in Reference 7.3. The Three Mile Island Unit 1 CRC configurations are actual PWR cores which contained fuel loadings that varied from all fresh fuel (BOL) to a mixture of fresh and burned fuel (BOC) to a mixture of all burned fuel (mid-cycle restart).

3. Assumptions

Not Used

4. Use of Computer Software

4.1. Software Approved for QA Work

4.1.1. MCNP

The MCNP code was used to calculate the k_{eff} of the Three Mile Island Unit 1 critical reactor configurations. The software specifications are as follow:

- Program Name: MCNP
- Version/Revision Number: Version 4B2
- CSCI Number: 30033 V4BLV
- Computer Type: HP 9000 Series Workstations

The input and output files for the various MCNP calculations are documented in the attachments to this calculation file as described in Sections 5 and 8, such that an independent repetition of the software use may be performed. The MCNP software used was: (a) appropriate for the application of commercial

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

eactor k_{eff} calculations. (b) used only within the range of validation as documented through

reactor k_{eff} calculations, (b) used only within the range of validation as documented throughout References 7.1 and 7.4, (c) obtained from the Software Configuration Manager in accordance with appropriate procedures.

4.2. Software Routines

4.2.1. MACE

- Title: MCNP Accessory for CRC Evaluations (MACE)
- Version/Revision Number: Version 3

The MACE code automates the production of MCNP input decks to calculate the k_{eff} of the critical reactor configurations in the CRC evaluations. The input and output for the various MACE calculations are documented in Sections 5 and 8, such that an independent repetition of the software routine use may be performed. The description of the MACE software routine is provided in Attachment I of Reference 7.14. This description documentation contains the following information:

- Descriptions and equations of mathematical algorithms
- Description of software routine including execution environment
- Range of input parameter values for which results were verified
- Identification of any limitations on software routine applications or validity
- Reference list of all documentation relevant to the qualification
- Directory listing of executable and data files
- Computer listing of source code

The MCNP input decks that were produced for the Three Mile Island Unit 1 CRC evaluations and presented in this calculation file serve as the test cases for MACE. These input decks were thoroughly reviewed to verify that MACE was performing correctly.

4.2.2. Excel

- Title: Excel
- Version/Revision Number: Microsoft® Excel 97

The Excel spreadsheet program was used for simple numeric calculations as documented in Section 5 of this calculation file. The user-defined formulas, inputs, and results were documented in sufficient detail in Section 5 to allow an independent repetition of the various computations.

5. Calculation

The Three Mile Island Unit 1 CRC reactivity calculations are detailed calculations of the neutron multiplication factor for actual critical reactor configurations. This analysis provides the geometry, material, core loading, and calculational control descriptions for each CRC reactivity calculation performed with MCNP. The MCNP input decks for each CRC reactivity calculation documented in this analysis were created with the MACE software routine. Complete documentation of the MACE software routine and MACE input deck preparation instructions are provided in Attachment I of

Engineering Calculation

Page 6 of 76

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Reference 7.14. The MACE input decks used to create each of the MCNP input decks are presented in Attachment I (this attachment has been moved to Reference 7.15). The MACE generated MCNP input decks are presented in Attachment II (this attachment has been moved to Reference 7.15). The MCNP output decks are presented in Attachment III (this attachment has been moved to Reference 7.15). The MCNP keff results for each CRC reactivity calculation are presented in Section 6.

5.1. Three Mile Island Unit 1 CRC Reactivity Calculations

The Three Mile Island Unit 1 CRC reactivity calculations represent three critical statepoints at which either BOL, BOC, or mid-cycle reactor start-ups were performed. Table 5.1-1 presents a listing of these three statepoints by reactor cycle and effective full-power day (EFPD) time.

Aubre 217-1. McGune Chief 1 Cite Activity Culculations				
Cycle	Critical Statepoint EFPD Time			
1	0.0			
5	0.0			
5	114.4			

Table 5.1-1. McGuire Unit 1 CRC Reactivity Calculations

5.2. Three Mile Island Unit 1 MCNP Geometrical Descriptions

The MCNP models for the Three Mile Island Unit 1 PWR incorporated detailed and explicit representations of the fuel assemblies and reactor core components. Extensive fuel assembly and core modeling was incorporated for regions beyond the extent of the active fuel in the axial direction to ensure that neutron leakage was correctly simulated. Actual core loading patterns were utilized in all of the critical configuration models. Core symmetry was used wherever possible to minimize the number of unique fuel assembly descriptions that were required. The use of core symmetry also served to expedite the k_{eff} calculations. The depleted fuel in each assembly was composed of eighteen unique, axially delineated, fuel compositions. These depleted fuel compositions were calculated with SAS2H as documented throughout Reference 7.3. Burnable poison rod assemblies (BPRAs), rod cluster control assemblies (RCCAs), and axial power shaping rod assemblies (APSRAs) were modeled explicitly in the core locations corresponding to the measured critical conditions at the various statepoints. The average system temperature and soluble boron concentration that was measured at each critical statepoint was utilized in the MCNP models. Sections 5.2.1 through 5.2.8 discuss the MCNP geometric modeling details for the various components of the Three Mile Island Unit 1 CRC configurations.

5.2.1. Three Mile Island Unit 1 Reactor Core Geometric Description

The Three Mile Island Unit 1 PWR is a B&W reactor core design consisting of 177, 15x15 cell lattice, fuel assemblies (p. 5, Ref. 7.11). A core liner surrounds the periphery fuel assemblies in the core. The periphery of the reactor consists of the core barrel, the thermal shield, the pressure vessel liner, and the pressure vessel. These peripheral components are separated by a regions of moderator (borated water). A radial view of the reactor internals is shown in Figure 5.2.1-1. The height of the active fuel region in the core is 360.172 cm (p. 5, Ref. 7.11). The assembly pitch in the core is 21.81098 cm (p. 5, Ref. 7.11). Table 5.2.1-1 presents the dimensions from the center of the core to the outside surface of the pressure vessel. An axial view of the reactor core internals is shown in Figure 5.2.1-2. Due to their geometric complexity and low neutronic importance, the components in the reactor regions above and below the

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 7 of 76

upper and lower end-fittings of the fuel assemblies are homogenized for each region. Four homogenized regions are modeled above the assembly upper end-fitting: Upper Plenum Region, CRGT Flange Region, Upper Core Grid Region, and Upper Pad Region. Three homogenized regions are modeled below the assembly lower end-fitting: Lower Pad Region, Lower Core Grid Region, and Region Between the Lower Grid and Vessel Plate. These reactor regions above and below the fuel assembly end-fittings are modeled as uniform geometric cells, each containing the appropriately homogenized material composition. The homogenization of these components will allow MCNP to simulate the average axial leakage from the system.

Description	Thickness (cm)	Outer Dimension (cm)
Core Center		0.00000
Half of FA-1	10.84072	10.84072
Water	0.12954	10.97026
FA-2	21.68144	. 32.65170
Water	0.12954	32.78124
FA-3	21.68144	54.46268
Water	0.12954	54.59222
FA-4	21.68144	76.27366
Water	0.12954	76.40320
FA-5	21.68144	98.08464
Water	0.12954	98.21418
FA-6	21.68144	119.89562
Water	0.12954	120.02516
FA-7	21.68144	141.70660
Water	0.12954	141.83614
FA-8	21.68144	163.51758
Water	0.27442	163.79200
Core Liner	1.905	165.697
Water	13.373	179.070
Core Barrel	5.080	184.150
Water	2.540	186.690
Thermal Shield	5.080	191.770
Water	24.925	216.695
Pressure Vessel Clad	0.478	217.173
Pressure Vessel	21.433	238.606

Table 5.2.1-1. Dimensions from Core Center to Outside Surface of Pressure Vessel

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 8 of 76

Figure 5.2.1-1. Radial View of the Three Mile Island Unit 1 Reactor Internals as Modeled in MCNP (p. 4, Ref. 7.11)

Engineering Calculation

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 9 of 76

All dimensions are presented in centimeters.

Figure 5.2.1-2. Axial View of the Three Mile Island Unit 1 Reactor Internals as Modeled in MCNP (Radial Dimensions: p. 3, Ref. 7.11) (Axial Dimensions: p. 7, Ref. 7.11)

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 10 of 76

5.2.2. Three Mile Island Unit 1 Fuel Assembly Geometric Descriptions

The Three Mile Island Unit 1 CRC configurations contained fuel assemblies from seven different fuel batches. Fuel assemblies from the various fuel batches were inserted into the reactor core in different combinations for each cycle. Three different fuel assembly designs are represented in the various fuel batches: Framatome Cogema Fuels Mark-B2, Framatome Cogema Fuels Mark-B3, and Framatome Cogema Fuels Mark-B4. All three of the fuel assembly designs utilize 15x15 pin cell lattices. The pin cell lattice pitch is 1.44272 cm (p. 5, Ref. 7.11) in each assembly design. The specifications for each design are summarized in Table 5.2.2-1.

Fresh Batch Cycle	Fuel Batch	FA ¹ Type	wt% U-235	kg U per FA	FP ² Pellet OD ³ (cm)	FP Clad OD (cm)	FP Clad ID ⁴ (cm)	FA Grid Material
1	1	Mark-B2	2.06	463.63	0.93980	1.09220	0.95758	Inconel
1	2	Mark-B3	2.75	463.63	0.93980	1.09220	0.95758	Inconel
1	3	Mark-B3	3.05	463.63	0.93980	1.09220	0.95758	Inconel
2	4	Mark-B4	2.64	463.63	0.93980	1.09220	0.95758	Inconel
3	5	Mark-B4	2.85	463.63	0.93853	1.09220	0.95758	Inconel
4	6	Mark-B4	2.85	463.63	0.93853	1.09220	0.95758	Inconel
5	7	Mark-B4	2.85	463.63	0.93853	1.09220	0.95758	Inconel

Table 5.2.2-1. Fuel Assembly Specification Summary (p. 22, Ref. 7.11)

¹ FA = Fuel Assembly, ² FP = Fuel Pin, ³ OD = Outer Diameter, ⁴ ID = Inner Diameter

All fuel assembly designs contain one instrument tube and sixteen guide tubes (p. 5, Ref. 7.11). The instrument tube and guide tube dimensions are the same for each of the three fuel assembly types. Table 5.2.2-2 summarizes the instrument tube and guide tube specifications. The fuel pin, guide tube, and instrument tube positions for all assembly designs are shown in Figure 5.2.2-1.

Table 5.2.2-2. Instrument and Guide Tube Specification Summary (D. 22, Kel. 7.	ble 5.2.2-2. Instrument and Guide Tr	e Specification Summar	v (p. 22, Ref. 7.1)
--	--------------------------------------	------------------------	---------------------

Description	Material	OD (cm)	ID (cm)
Instrument Tube	zircaloy	1.38193	1.12014
Guide Tube	zircaloy	1.34620	1.26492

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 11 of 76

Т		<u> </u>				- 1.4427		Т
╋			1					╈
T			Gī		GT			╈
		GT				GT		
1								
1			GT		GT		GT	\downarrow
-	+							_
╀╴	++			 凹				+
	GT		GT		GT		GT	
						GT		
			GT		GT			+

This sketch is not to scale.

v

Engineering Calculation

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 12 of 76

All of the fuel assembly designs have six intermediate spacer grids and one upper end spacer grid (p. 7, Ref. 7.11). The intermediate and upper end spacer grids are made of Inconel (pp. 5, 7, Ref. 7.11). According to the reference, the upper end spacer grid homogenized region also contains a zircaloy volume fraction of 0.0069 (p. 8, Ref. 7.11). Since MACE does not allow a spacer grid homogenized combination of Inconel, zircaloy, and water, the zircaloy volume fraction was neglected in the modeling of the upper end spacer grids. The approximation of excluding the small zircaloy constituent in the upper spacer grid has no effect on the system reactivity. The intermediate spacer grid height and volume for the assembly designs are summarized in Table 5.2.2-3. The referenced upper end spacer grid height is 8.573 cm for each assembly design (p. 7, Ref. 7.11). Each spacer grid material volume was homogenized with the corresponding borated moderator volume and placed uniformly between the assembly rods and within the assembly pitch boundaries in each spacer grid location. The axial locations of the spacer grids are shown in Figure 5.2.2-2. The lower end-fitting of each fuel assembly design is modeled as a homogenized region, 16.723 cm in height (p. 7, Ref. 7.11), distributed uniformly between and below the fuel rods, guide tubes, and instrument tubes. The upper end-fitting of each fuel assembly design is modeled as a homogenized region, 8.731 cm in height (p. 7, Ref. 7.11), distributed uniformly between and above the fuel rods, guide tubes, instrument tubes, BPRAs, RCCAs, and APSRAs.

	(FF - , , , , , , , , , , , , , , , , , ,
Material	Inconel
Height (cm)	3.81
Volume (cm ³)	88.676

Table 5.2.2-3. Intermediate Spacer Grid Height and Volume (pp. 7, 8, Ref. 7.11)

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 13 of 76

Waste Package Operations	Engineering Calculation
Title: CRC Reactivity Calculations for Three Mile Island Unit 1	

Document Identifier: B0000000-01717-0210-00008 REV 00

Page 14 of 76

5.2.3. Fuel Pin Geometric Description

We at a De alles and O and Alles

The cross-sectional view along the length of a fuel pin is shown in Figure 5.2.3-1, to present the modeled axial dimensions. The radial dimensions of the fuel pins for each fuel batch are presented in Table 5.2.2-1. The fuel pins in each assembly design are modeled with eighteen axial fuel nodes, each representing a unique fuel composition corresponding to the fuel node depletion. The height of the top and bottom fuel nodes is 20.0660 cm. The height of the other sixteen fuel nodes is 20.0025 cm (p. 39, Ref. 7.11). The fuel pin upper end cap and upper plenum materials are homogenized and distributed uniformly throughout the plenum and end cap region. The fuel pin lower end cap and lower plenum materials are also homogenized and distributed uniformly throughout the plenum and end cap region.

Figure 5.2.3-1. Fuel Pin Geometry Model in MCNP (Axial Dimensions: p. 11, Ref. 7.11) (Radial Dimensions: p. 22, Ref. 7.11)

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00 **Engineering Calculation**

Page 15 of 76

5.2.4. Guide Tube Geometric Description

The cross-sectional view along the length of a guide tube is presented in Figure 5.2.4-1. The MCNP model dimensions and reference dimensions are shown in Figure 5.2.4-1. The guide tubes are modeled explicitly into the upper and lower end-fittings of the fuel assembly. The 0.0 cm reference point in Figure 5.2.4-1 is located at the bottom of the lower end-fitting.

This sketch is not to scale.

Figure 5.2.4-1. Guide Tube Geometry Model in MCNP (Radial Dimensions: p. 22, Ref. 7.11) (Axial Dimensions: p. 9, Ref. 7.11)

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 16 of 76

Engineering Calculation

5.2.5. Instrument Tube Geometric Description

The cross-sectional view along the length of an instrument tube is presented in Figure 5.2.5-1. The MCNP model dimensions and reference dimensions are shown in Figure 5.2.5-1. The instrument tubes are modeled explicitly up to the bottom of the upper end-fitting and into the lower end-fitting of the fuel assembly. Truncating the instrument tube at the bottom of the upper end-fitting of the assembly has a negligible effect on the reactor core k_{eff} . The 0.0 cm reference point in Figure 5.2.5-1 is located at the bottom of the lower end-fitting.

Figure 5.2.5-1. Instrument Tube Geometry Model in MCNP (Radial Dimensions: p. 22, Ref. 7.11) (Axial Dimensions: p. 10, Ref. 7.11) Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00 **Engineering Calculation**

Page 17 of 76

5.2.6. BPRA Geometric Description

Through Cycle 5 of Three Mile Island Unit 1 operation, Cycle 1 was the only cycle in which BPRAs were present in the core. The BPRAs of Cycle 1 used $B_4C-Al_2O_3$ as the absorber material (p. 22, Ref. 7.11). The specifications for the BPRs are summarized in Table 5.2.6-1. Each of the BPRAs contained sixteen burnable poison rods (BPRs), each being inserted into a guide tube. Since there are no assemblies from Cycle 1 present in the Cycle 5 CRC statepoint evaluations, depleted BP compositions are not required in any of the MCNP models. The BPRAs present in the Cycle 1, 0.0 EFPD statepoint evaluation contain non-depleted burnable poison (BP). The cross-sectional view along the length of a modeled BPR is shown in Figure 5.2.6-2. The 0.0 cm reference point in Figure 5.2.6-2 is located at the bottom of the lower end-fitting.

Table 5.2.0-1. Di K Specification Summary (p. 22, Kei. 7.11)						
BP Material	B ₄ C-Al ₂ O ₃					
BP Density (g/cm ³)	3.7					
BP Diameter (cm)	0.8636					
BPR Clad Material	zircaloy					
BPR OD (cm)	1.0922					
BPR ID (cm)	0.9144					

Fable 5.2.6-1 .	BPR S	pecification	Summary	(p. 2	22, Ref. '	7.11)
------------------------	-------	--------------	---------	-------	------------	-------

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 18 of 76

Figure 5.2.6-2. Cross-Sectional View Along Length of a BPR (Axial Dimensions: p. 19, Ref. 7.11) (Radial Dimensions: p. 22, Ref. 7.11)

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 19 of 76

Engineering Calculation

5.2.7. RCCA Geometric Description

A RCCA is composed of sixteen control rods (CRs) distributed such that each guide tube has an inserted CR and all CRs are at the same height in the assembly. The CR specifications are summarized in Table 5.2.7-1. The Three Mile Island Unit 1 reactor contains RCCA banks that may be inserted into the core during startup and operation. Each RCCA in a given bank is moved up or down simultaneously. Each of the three RCCA banks modeled in MCNP are at a specified axial location in each CRC statepoint reactivity calculation. Table 5.2.7-2 shows the RCCA bank positions in the core for each of the CRC statepoint reactivity calculations. The absorber material of the CRs was modeled with a maximum height of 340.361 cm depending on the depth of the RCCA bank insertion (p. 13, Ref. 7.11). The CRs were always explicitly modeled to the top of the fuel assembly upper end-fitting. The truncation of the RCCA at the top of the assembly upper end-fittings is acceptable due to the decreasing reactivity worth of regions extending beyond the length of the active fuel. If the RCCA bank was partially inserted, the absorber material in the CRs was modeled explicitly from the top of the upper end-fitting to the depth of insertion. The CR lower end-plug was modeled inside the CR cladding directly below the absorber material. A cross-sectional view along the length of the CR is shown in Figure 5.2.7-1. The 0.0 cm reference point in Figure 5.2.7-1 is located at the bottom of the lower end-fitting.

Pellet Material	Ag-In-Cd
Fraction of Pellet Materials	Ag (80 wt%), In (15 wt%), Cd (5 wt%)
Pellet Density	10.17 g/cm^3
Pellet Outer Diameter	0.99568 cm
Clad Material	Stainless Steel (Type 304)
Clad Outer Diameter	1.11760 cm
Clad Inner Diameter	1.01092 cm

Table 5.2.7-1. RCCA Control Rod Geometric Specification Summary (p. 22, Ref. 7.11)

Table 5.2.7-2. RCCA Bank Insertion Heights for the Three Mile Island Unit 1 CRC Statepoints¹ (p. 66, Ref. 7.11)

		e onor ono ban	oponine (proof, Ateri its	
Cycle	Statepoint EFPD	Bank 5	Bank 6	Bank 7
1	0.0	WD ²	WD	279
5	0.0	WD	WD	338
5	114.4	WD	324	62

¹ The RCCA bank insertion heights are presented as the distance in centimeters between the bottom of the CR absorber material and the bottom of the active fuel.

² WD means that the RCCA bank is 100% withdrawn. This corresponds to a height of 366.204 cm in the table.

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 20 of 76

This sketch is not to scale.

Note: Due to the axial position of the RCCA banks in the CRC configurations, modeling of the CR upper plenum was not required in any of the MCNP calculations for Three Mile Island Unit 1.

Figure 5.2.7-1. Cross-Sectional View Along the Length of a Control Rod (Axial Dimensions: p. 13, Ref. 7.11) (Radial Dimensions: p. 22, Ref. 7.11)

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 21 of 76

5.2.8. APSRA Geometric Description

Black APSRAs were used in Cycles 1 though 5 of Three Mile Island Unit 1 operation. The black axial power shaping rod (APSR) modeling description is shown in Figure 5.2.8-1. The 0.0 cm reference point in Figure 5.2.8-1 is located at the bottom of the lower end-fitting. The APSRA consists of 16 APSRs of uniform composition that are inserted uniformly down through the guide tubes of the fuel assembly to a specified height. The Three Mile Island Unit 1 reactor contains one APSRA bank (Bank 8). The insertion heights of the APSR bank in each CRC statepoint reactivity calculation are shown in Table 5.2.8-1. The black APSR cladding was modeled with outer and inner diameters of 1.11760 cm and 1.01092 cm, respectively (p. 22, Ref. 7.11). The black APSRA absorber material is Ag-In-Cd (p. 22, Ref. 7.11). The absorber material diameter of the black APSR is 0.99568 cm (p. 22, Ref. 7.11). The absorber height of the black APSR is 91.44 cm (p. 17, Ref. 7.11). The black APSR contains a lower, annular, zircaloy spacer with a volume of 0.3819 cm³ (p. 18, Ref. 7.11). In the MCNP model, this spacer is smeared throughout the spacer region inside of the cladding. The black APSR contains a stainless steel lower end-plug with a height of 1.924 cm positioned directly below the lower spacer (p. 17, Ref. 7.11). The black APSR contains a gap (void) region 4.953 cm in height, positioned above the absorber material (p. 17, Ref. 7.11). Above this gap region is an intermediate plug. The intermediate plug is stainless steel with a height of 1.27 cm (p. 17, Ref. 7.11) and a volume of 1.0094 cm³ (p. 18, Ref. 7.11). The region above the intermediate plug in the black APSRs contains moderator.

Cycle Statepoint EFPD Bank 8 (Black APSF							
1	0.0	WD ²					
5	0.0	140					
5	114.4	103					

Table 5.2.8-1. RCCA Bank Insertion Heights for the Three Mile Island Unit 1 CRC Statepoints¹ (p. 66, Ref. 7.11)

¹ The APSRA bank insertion heights are presented as the distance in centimeters between the bottom of the CR absorber material and the bottom of the active fuel.

² WD means that the APSRA bank is 100% withdrawn. This corresponds to a height of 366.204 cm in the table.

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Engineering Calculation

Page 22 of 76

This sketch is not to scale.

Figure 5.2.8-1. Cross-Sectional View Along the Length of a Black APSR (Axial Dimensions: p. 17, Ref. 7.11) (Radial Dimensions: p. 22, Ref. 7.11)

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 23 of 76

5.3. Three Mile Island Unit 1 MCNP Material Descriptions

The material descriptions used in the MCNP CRC reactivity calculations correspond to the actual reactor component materials. Components with detailed geometric features were homogenized where appropriate. The homogenization of these materials preserves the average neutron interaction rate such that the reactivity worth of these materials in the system is approximated. All homogenizations are based on the explicit volumes of the various component materials in the regions of interest. The depleted fuel and depleted burnable poison materials utilized in the MCNP reactivity calculations are obtained from depletion calculations performed using the SAS2H code in the SCALE 4.3 Modular Code System (Ref. 7.2). Detailed descriptions of the fuel and burnable poison depletion calculations are documented throughout Reference 7.3.

5.3.1. MCNP Cross Section Libraries

The MCNP cross section libraries utilized in the reactivity calculations are one of the primary components of the calculation that determines whether or not the neutronic behavior of the system is simulated correctly. Table 5.3.1-1 lists all of the MCNP cross section library identifiers (ZAID's) utilized in the CRC reactivity calculations documented in this calculation file. The MCNP ZAID's are used to identify the cross section library designation suffix. The first one or two integers in the ZAID refer to the atomic number of the corresponding element. The three integers preceding the decimal always refer to the isotopic mass number. The ZAID suffixes presented in Table 5.3.1-1, correspond to libraries compiled from either ENDF/B-V, ENDF/B-VI, LANL/T-2, or LLNL evaluated cross section data sets. The atom percent in nature of the various isotopes presented in Table 5.3.1-1 are obtained from Reference 7.5. The atomic weight ratios, temperatures, library names, and data sources are obtained from Attachment I of Reference 7.12.

The cross section libraries used for the various isotopes and elements do not correspond to the temperature at which these isotopes and elements exist in the critical configurations. The U-235 and U-238 cross section libraries were processed at 587.0 K. The effects of temperature on the U-238 cross sections dominate with respect to the effects of temperature on the other isotopic and elemental cross sections. The majority of the other cross section libraries utilized in the MCNP calculations were processed at 294.0 K. Some less significant isotopic and elemental cross section libraries were processed at 0 K.

The isotopes used in the fuel of the MCNP calculations represent the majority of the isotopes present in the actual material. However, cross section libraries for some of the less significant isotopes were not available in the standard cross section package that accompanies the MCNP software distribution. The isotopes not modeled in the fuel of the MCNP calculations have a relatively low reactivity worth due to a combination of their microscopic cross sections and low abundance.

Element /	MCNP	Atom % in	Atomic Wt.	Temp. (K)	Library	
Isotope	ZAID	Nature	Ratio ¹		Name	Data Source
H-1	1001.50c	99.985	0.999167	294.0	rmccs	ENDF/B-V.0

Table 5.3.1-1. MCNP Cross Section Libraries Used in the CRC Reactivity Calculations

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 24 of 76

Table 5.	Table 5.3.1-1. MCNP Cross Section Libraries Used in the CRC Reactivity Calculations						
Element / Isotope	MCNP ZAID	PAtom % in NatureAtomic Wt. Ratio 1Temp. (K)		Library Name	Data Source		
H-3	1003.50c	0.0	2.990140	294.0	rmccs	ENDF/B-V.0	
He-4	2004.50c	99.999	3.968219	294.0	rmccs	ENDF/B-V.0	
Li-6	3006.50c	7.5	5.963450	294.0	rmccs	ENDF/B-V.0	
Li-7	3007.55c	92.5	6.955733	294.0	rmccs	ENDF/B-V.2	
Be-9	4009.50c	100.0	8.934763	294.0	rmccs	ENDF/B-V.0	
B-10	5010.50c	19.400 ²	9.926922	294.0	rmccs	ENDF/B-V.0	
B-11	5011.56c	80.600 ²	10.914730	294.0	newxs	LANL/T-2	
C-nat	6000.50c	100.0	11.907856	294.0	rmccs	ENDF/B-V.0	
N-14	7014.50c	99.630	13.882780	294.0	rmccs	ENDF/B-V.0	
O-16	8016.50c	99.760	15.857510	294.0	rmccs	ENDF/B-V.0	
Al-27	13027.50c	100.0	26.749756	294.0	rmccs	ENDF/B-V.0	
Si-nat	14000.50c	100.0	27.844241	294.0	endf5p	ENDF/B-V.0	
P-31	15031.50c	100.0	30.707682	294.0	endf5u	ENDF/B-V.0	
S-32	16032.50c	95.02	31.788939 ³	294.0	endf5u	ENDF/B-V.0	
Ti-nat	22000.50c	100.0	47.467124	294.0	endf5u	ENDF/B-V.0	
Cr-50	24050.60c	4.345	49.516983	294.0	endf60	ENDF/B-VI.1	
Cr-52	24052.60c	83.790	51.494313	294.0	endf60	ENDF/B-VI.1	
Cr-53	24053.60c	9.500	52.485863	294.0	endf60	ENDF/B-VI.1	
Cr-54	24054.60c	2.365	53.475519	294.0	endf60	ENDF/B-VI.1	
Mn-55	25055.50c	100.0	54.466099	294.0	endf5u	ENDF/B-V.0	
Fe-54	26054.60c	5.900	53.476242	294.0	endf60	ENDF/B-VI.1	
Fe-56	26056.60c	91.720	55.454429	294.0	endf60	ENDF/B-VI.1	
Fe-57	26057.60c	2.100	56.446290	294.0	endf60	ENDF/B-VI.1	
Fe-58	26058.60c	0.280	57.435600	294.0	endf60	ENDF/B-VI.1	
Co-59	27059.50c	100.0	58.426930	294.0	endf5u	ENDF/B-V.0	
Ni-58	28058.60c	68.270	57.437652	294.0	endf60	ENDF/B-VI.1	
Ni-60	28060.60c	26.100	59.415952	294.0	endf60	ENDF/B-VI.1	
Ni-61	28061.60c	1.130	60.407628	294.0	endf60	ENDF/B-VI.1	
Ni-62	28062.60c	3.590	61.396349	294.0	endf60	ENDF/B-VI.1	
Ni-64	28064.60c	0.910	63.378793	294.0	endf60	ENDF/B-VI.1	
Cu-63	29063.60c	69.170	62.389001	294.0	endf60	ENDF/B-VI.2	

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 25 of 76

Table 5.3.1-1. MCNP Cross Section Libraries Used in the CRC Reactivity Calculations						
Element / Isotope	MCNP ZAID	Atom % in Nature	Atomic Wt. Ratio ¹	Temp. (K)	Library Name	Data Source
Cu-65	29065.60c	30.830	64.370028	294.0	endf60	ENDF/B-VI.2
As-75	33075.35c	100.0	74.277979	0.0	rmccsa	ENDF/B-V.0
Kr-80	36080.50c	2.25	79.229851	294.0	rmccsa	ENDF/B-V.0
Kr-82	36082.50c	11.6	81.209803	294.0	rmccsa	ENDF/B-V.0
Kr-83	36083.50c	11.5	82.201858	294.0	rmccsa	ENDF/B-V.0
Kr-84	36084.50c	57.0	83.190662	294.0	rmccsa	ENDF/B-V.0
Kr-86	36086.50c	17.3	85.172596	294.0	rmccsa	ENDF/B-V.0
Y-89	39089.50c	100.0	88.142108	294.0	endf5u	ENDF/B-V.0
Zr-nat	40000.60c	100.0	90.439990	294.0	endf60	ENDF/B-VI.1
Zr-93	40093.50c	0.0	92.108361	294.0	kidman	ENDF/B-V.0
Nb-93	41093.50c	100.0	92.108263	294.0	endf5p	ENDF/B-V.0
Mo-nat	42000.50c	100.0	95.107188	294.0	endf5u	ENDF/B-V.0
Mo-95	42095.50c	15.92	94.090546	294.0	kidman	ENDF/B-V.0
Tc-99	43099.50c	0.0	98.056595	294.0	kidman	ENDF/B-V.0
Ru-101	44101.50c	17.1	100.038748	294.0	kidman	ENDF/B-V.0
Ru-103	44103.50c	0.0	102.022	294.0	kidman	ENDF/B-V.0
Rh-103	45103.50c	100.0	102.021490	294.0	rmccsa	ENDF/B-V.0
Rh-105	45105.50c	0.0	104.005	294.0	kidman	ENDF/B-V.0
Pd-105	46105.50c	22.33	104.003885	294.0	kidman	ENDF/B-V.0
Pd-108	46108.50c	26.46	106.976942	294.0	kidman	ENDF/B-V.0
Ag-107	47107.60c	51.839	105.986724	294.0	endf60	ENDF/B-VI.0
Ag-109	47109.60c	48.161	107.969204	294.0	endf60	ENDF/B-VI.0
Cd-nat	48000.50c	100.0	111.445880	294.0	endf5u	ENDF/B-V.0
In-nat	49000.60c	100.0	113.831536	294.0	endf60	ENDF/B-VI.0
Sn-nat	50000.35c	100.0	117.690428	0.0	endl85	LLNL
Xe-131	54131.50c	21.2	129.780532	294.0	kidman	ENDF/B-V.0
Xe-134	54134.35c	10.4	132.755077	0.0	endl85	LLNL
Xe-135	54135.53c	0.0	133.748208	587.0	eprixs	ENDF/B-V
Cs-133	55133.50c	100.0	131.763705	294.0	kidman	ENDF/B-V.0
Cs-135	55135.50c	0.0	133.746975	294.0	kidman	ENDF/B-V.0
Ba-138	56138.50c	71.70	136.720557	294.0	rmccs	ENDF/B-V.0

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 26 of 76

Table 5.	Table 5.3.1-1. MCNP Cross Section Libraries Used in the CRC Reactivity Calculations						
Element / Isotope	MCNP ZAID	Atom % in Nature	Atomic Wt. Ratio ¹	omic Wt. Ratio ¹ Temp. (K) Libr Nar		Data Source	
Pr-141	59141.50c	100.0	139.697185	294.0	kidman	ENDF/B-V.0	
Nd-143	60143.50c	12.18	141.682152	294.0	kidman	ENDF/B-V.0	
Nd-145	60145.50c	8.30	143.667706	294.0	kidman	ENDF/B-V.0	
Nd-147	60147.50c	0.0	145.654	294.0	kidman	ENDF/B-V.0	
Nd-148	60148.50c	5.76	146.646216	294.0	kidman	ENDF/B-V.0	
Pm-147	61147.50c	0.0	145.653	294.0	kidman	ENDF/B-V.0	
Pm-148	61148.50c	0.0	146.647	294.0	kidman	ENDF/B-V.0	
Pm-149	61149.50c	0.0	147.639	294.0	kidman	ENDF/B-V.0	
Sm-147	62147.50c	15.0	145.652830	294.0	kidman	ENDF/B-V.0	
Sm-149	62149.50c	13.8	147.637915	294.0	endf5u	ENDF/B-V.0	
Sm-150	62150.50c	7.4	148.629416	294.0	kidman	ENDF/B-V.0	
Sm-151	62151.50c	0.0	149.623	294.0	kidman	ENDF/B-V.0	
Sm-152	62152.50c	26.7	150.614670	294.0	kidman	ENDF/B-V.0	
Eu-151	63151.55c	47.8	149.623378	294.0	newxs	LANL/T-2	
Eu-152	63152.50c	0.0	150.616668	294.0	endf5u	ENDF/B-V.0	
Eu-153	63153.55c	52.2	151.607568	294.0	newxs	LANL/T-2	
Eu-154	63154.50c	0.0	152.600719	294.0	endf5u	ENDF/B-V.0	
Eu-155	63155.50c	0.0	153.592	294.0	kidman	ENDF/B-V.0	
Gd-152	64152.50c	0.20	150.614731	294.0	endf5u	ENDF/B-V.0	
Gd-154	64154.50c	2.18	152.598614	294.0	endf5u	ENDF/B-V.0	
Gd-155	64155.50c	14.80	153.591761	294.0	endf5u	ENDF/B-V.0	
Gd-156	64156.50c	20.47	154.582676	294.0	endf5u	ENDF/B-V.0	
Gd-157	64157.50c	15.65	155.575907	294.0	endf5u	ENDF/B-V.0	
Gd-158	64158.50c	24.84	156.567459	294.0	endf5u	ENDF/B-V.0	
Gd-160	64160.50c	21.86	158.553203	294.0	endf5u	ENDF/B-V.0	
Ho-165	67165.55c	100.0	163.513493	294.0	newxs	LANL/T-2	
Ta-181	73181.50c	99.988	179.393575	294.0	endf5u	ENDF/B-V.0	
Th-232	90232.50c	100.0	230.044724	294.0	endf5u	ENDF/B-V.0	
Pa-233	91233.50c	0.0	231.038304	294.0	endf5u	ENDF/B-V.0	
U-233	92233.50c	0.0	231.037695	294.0	rmccs	ENDF/B-V.0	
U-234	92234.50c	0.0055	232.030412	294.0	endf5p	ENDF/B-V.0	

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 27 of 76

Table 5.5.1-1. MCMI Closs Section Endances Osci in the CAC Reactivity Calculations						
Element / Isotope	MCNP ZAID	Atom % in Nature	Atomic Wt. Ratio ¹	Temp. (K)	Library Name	Data Source
U-235	92235.53c	0.7200	233.024773	587.0	eprixs	ENDF/B-V.0
U-236	92236.50c	0.0	234.017806	294.0	endf5p	ENDF/B-V.0
U-237	92237.50c	0.0	235.012352	294.0	endf5p	ENDF/B-V.0
U-238	92238.53c	99.2745	236.005803	587.0	eprixs	ENDF/B-V.0
Np-235	93235.35c	0.0	233.024904	0.0	endl85	LLNL
Np-236	93236.35c	0.0	234.018854	0.0	endl85	LLNL
Np-237	93237.50c	0.0	235.011799	294.0	endf5p	ENDF/B-V.0
Np-238	93238.35c	0.0	236.005958	0.0	endl85	LLNL
Pu-237	94237.35c	0.0	235.012031	0.0	endl85	LLNL
Pu-238	94238.50c	0.0	236.004583	294.0	endf5p	ENDF/B-V.0
Pu-239	94239.55c	0.0	236.998573	294.0	rmccs	ENDF/B-V.2
Pu-240	94240.50c	0.0	237.991619	294.0	rmccs	ENDF/B-V.0
Pu-241	94241.50c	0.0	238.986041	294.0	endf5p	ENDF/B-V.0
Pu-242	94242.50c	0.0	239.979326	294.0	endf5p	ENDF/B-V.0
Am-241	95241.50c	0.0	238.986019	294.0	endf5u	ENDF/B-V.0
Am-242m	95242.50c	0.0	239.980121	294.0	endf5u	ENDF/B-V.0
Am-243	95243.50c	0.0	240.973348	294.0	endf5u	ENDF/B-V.0
Cm-242	96242.50c	0.0	239.979418	294.0	endf5u	ENDF/B-V.0
Cm-243	96243.35c	0.0	240.973356	0.0	endl85	LLNL
Cm-244	96244.50c	0.0	241.966119	294.0	endf5u	ENDF/B-V.0
Cm-245	96245.35c	0.0	242.960245	0.0	endl85	LLNL
Cm-246	96246.35c	0.0	243.953373	0.0	endl85	LLNL
Cm-247	96247.35c	0.0	244.947884	0.0	end185	LLNL
Cm-248	96248.35c	0.0	245.941272	0.0	endl85	LLNL

Table 5.3.1-1. MCNP Cross Section Libraries Used in the CRC Reactivity Calculations

¹ The atomic weight ratio presented for each isotope/element is the ratio of the isotope/element mass to the mass of a neutron. The mass of a neutron is 1.008664904 amu (p. 57, Ref. 7.5). The atomic weight ratio values are obtained from the "xsdir" file for MCNP as identified on page III-2 of Reference 7.4.

² The atom percent in nature of B-10 and B-11 varies significantly between different geographical regions of the world. The atom percents in nature that are listed in Table 5.3.1-1 for B-10 and B-11 were obtained from page 232 of Reference 7.6.

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00 **Engineering Calculation**

Page 28 of 76

 3 The atomic weight ratio for natural sulfur is utilized in conjunction with the S-32 cross section library in the determination of the sulfur content in the various materials modeled in the MCNP calculations documented herein.

5.3.2. Reactor Materials

The tables presenting calculated material compositions in this section show excessive significant figures. The number of significant figures in the composition values are a result of the composition calculation and should not be interpreted as reflecting an excessively high level of accuracy.

The reactor components modeled in the MCNP CRC reactivity calculations include the following: core liner, core barrel, thermal shield, pressure vessel cladding, pressure vessel, borated moderator, upper plenum region, CRGT flange region, upper core grid region, upper pad region, lower pad region, lower core grid region, and region between the lower core grid and the vessel plate. The material compositions are described in terms of elemental or isotopic weight percents with an overall material density.

The core liner, core barrel, thermal shield, and pressure vessel cladding are composed of Stainless Steel 304 (SS304) (p. 3, Ref. 7.11). The SS304 composition is shown in Table 5.3.2-1. The pressure vessel is composed of carbon steel (p. 3, Ref. 7.11). The carbon steel composition is shown in Table 5.3.2-2.

The borated moderator is composed of a homogeneous mixture of boron and water. The boron concentration in water is provided in terms of parts-per-million (ppm) by mass. Since the moderator in each CRC statepoint configuration has a different boron concentration and temperature, the overall borated moderator composition and density is different in each configuration.

The composition of the borated moderator and the borated moderator constituents in the homogenized spacer grid compositions as defined in the MCNP input decks are calculated by MACE. MACE uses linear interpolation in a steam table to obtain the borated moderator density value as described in Attachment I of Reference 7.14. Other materials in the MCNP input deck that contain borated moderator as a constituent are not calculated by MACE. These other material compositions are calculated in an EXCEL spreadsheet and are provided to MACE as input to be placed in the MCNP input decks. The density of the borated moderator that is used in the spreadsheet calculation of the material compositions is the same as that calculated by MACE. Table 5.3.2-3 presents the borated moderator composition, temperature, and density for each CRC statepoint reactivity calculation. The borated moderator is used throughout the core configuration and between the various reactor components.

The following set of equations are used to calculate the borated moderator compositions shown in Table 5.3.2-3. The atomic weight ratio values for hydrogen, oxygen, boron-10, and boron-11 are obtained from Table 5.3.1-1. The atomic weight ratio for natural boron is 10.718156 (Ref. 7.12).

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Equation 5.3.2-1. Boron Weight Percent in Borated Moderator

Boron wt % = $\frac{(Boron ppm)(1.0E - 4)}{1 + (Boron ppm)(1.0E - 6)}$

Equation 5.3.2-2. Boron-10 (B-10) Weight Percent in Borated Moderator

 $B - 10 wt\% = \frac{(B - 10 atom\% in B)(B - 10 Atomic Wt. Ratio)}{(B Atomic Wt. Ratio)(100.0)} (B wt\%)$

where B is natural boron.

Equation 5.3.2-3. Boron-11 (B-11) Weight Percent in Borated Moderator

$$B - 11 wt\% = \frac{(B - 11 atom\% in B)(B - 11 Atomic Wt. Ratio)}{(B Atomic Wt. Ratio)(100.0)} (B wt\%)$$

Equation 5.3.2-4. Hydrogen Weight Percent in Borated Moderator

 $Hydrogen wt\% = \frac{(H \ Atomic \ Wt. \ Ratio)(2)(100.0 - B \ wt\%)}{[(H \ Atomic \ Wt. \ Ratio)(2) + (O \ Atomic \ Wt. \ Ratio)]}$

where H is hydrogen, B is natural boron, and O is oxygen.

Equation 5.3.2-5. Oxygen Weight Percent in Borated Moderator

$$Oxygen wt\% = \frac{(O \ Atomic \ Wt. \ Ratio)(100.0 - B \ wt\%)}{[(H \ Atomic \ Wt. \ Ratio)(2) + (O \ Atomic \ Wt. \ Ratio)]}$$

where H is hydrogen, B is natural boron, and O is oxygen.

A large number of homogenized material compositions are provided to MACE as input. These homogenized material compositions are made up of various base components such as SS304, Inconel, zircaloy, and borated moderator that are present in certain volume fractions. The homogenization of the base components into a single homogenized material compositions is performed using Equations 5.3.2-6 through 5.3.2-8. Once the calculations in Equations 5.3.2-6 through 5.3.2-8 are performed, the homogenized material composition is provided as input to MACE in terms of the homogenized material composition density and various isotopic and/or elemental weight percents.

Equation 5.3.2-6. Homogenized Material Density Calculation

Homogenized Material Density = $\sum_{m}^{M} [(\rho)_{m} (Volume \ Fraction \ in \ Homogenized \ Material)_{m}]$

Engineering Calculation

Page 29 of 76

Engineering Calculation

Page 30 of 76

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

where, m=a single base component material of the homogenized material, M=the total number of base component materials in the homogenized material, p=the mass density of the base component material.

Equation 5.3.2-7. Calculation of Mass Fraction of Base Component Material in Homogenized Material

 $\binom{Mass Fraction of Base Component}{Material in Homogenized Material} = \left[\frac{(\rho)_m (Volume Fraction in Homogenized Material)_m}{Homogenized Material Density}\right]$

Equation 5.3.2-8. Calculation of Weight Percent of Base Component Material Constituent in Homogenized Material

(Weight Percent of Base)		(Mass Fraction of Base)	(Weight Percent of Base	١
Component Material	_	Component Material in	Component Material Constituent	
Constituent in	[Homogenized Material	in Base Component Material	
Homogenized Material	ļ	(110mogenized Maieriai)	In Dase Component Material)

The upper plenum region of the reactor contains borated moderator and hardware composed of SS304 (pp. 8, 14, 18, 20, Ref. 7.11). This region is modeled with a homogenized material composition in the MCNP CRC reactivity calculations. The upper plenum region is modeled as a number of rectangular sub-regions each placed directly above a fuel assembly. The material volume fractions in each of the rectangular upper plenum sub-regions depend on whether or not the fuel assembly below the sub-region is empty or has either a BPRA, RCCA, or APSRA inserted at the critical statepoint. Table 5.3.2-4 contains the material volume fractions for the upper plenum sub-region positioned above a fuel assembly containing no insertion assembly, a BPRA, a RCCA, and an APSRA. The SS304 material composition is presented in Table 5.3.2-1. The borated moderator compositions are presented in Table 5.3.2-3. The component material compositions are used in conjunction with their volume fractions in each of the upper plenum sub-regions to obtain a homogenized material composition and density that can be specified in the MCNP input decks. The calculated homogenized material compositions for the upper plenum sub-regions positioned above a fuel assembly containing no insertion assembly, a BPRA, a RCCA, and an APSRA are presented in Tables 5.3.2-5 through 5.3.2-8, respectively. Due to the difference in moderator specifications between the statepoints, the homogenized material compositions for each of the upper plenum sub-regions are different between CRC statepoints, as shown in Tables 5.3.2-5 through 5.3.2-8.

The CRGT flange region of the reactor contains borated moderator and hardware composed of SS304 (pp. 8, 14, 18, 20, Ref. 7.11). This region is modeled with a homogenized material composition in the MCNP CRC reactivity calculations. The CRGT flange region is modeled as a number of rectangular sub-regions each placed directly above a fuel assembly. The material volume fractions in each of the rectangular CRGT flange sub-regions depend on whether or not the fuel assembly below the sub-region is empty or has either a BPRA, RCCA, or APSRA inserted at the critical statepoint. Table 5.3.2-9 contains the material volume fractions for the CRGT flange sub-region positioned above a fuel assembly containing no insertion assembly, a BPRA, a RCCA, and an APSRA. The SS304 material composition is presented in Table 5.3.2-1. The borated moderator compositions are presented in Table 5.3.2-3. The component material compositions are used in conjunction with their volume fractions in each of the CRGT flange sub-regions to obtain a homogenized material composition and density that can be

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

specified in the MCNP input decks. The calculated homogenized material compositions for the CRGT flange sub-regions positioned above a fuel assembly containing no insertion assembly, a BPRA, a RCCA, and an APSRA are presented in Tables 5.3.2-10 through 5.3.2-13, respectively. Due to the difference in moderator specifications between the statepoints, the homogenized material compositions for each of the CRGT flange sub-regions are different between CRC statepoints, as shown in Tables 5.3.2-10 through 5.3.2-13.

The upper core grid region of the reactor contains borated moderator and hardware composed of SS304 and zircaloy (pp. 8, 14, 18, 20, Ref. 7.11). This region is modeled with a homogenized material composition in the MCNP CRC reactivity calculations. The upper core grid region is modeled as a number of rectangular sub-regions each placed directly above a fuel assembly. The material volume fractions in each of the rectangular upper core grid sub-regions depend on whether or not the fuel assembly below the sub-region is empty or has either a BPRA, RCCA, or APSRA inserted at the critical statepoint. Table 5.3.2-14 contains the material volume fractions for the upper core grid sub-region positioned above a fuel assembly containing no insertion assembly, a BPRA, a RCCA, and an APSRA. The SS304 material composition is presented in Table 5.3.2-1. The zircaloy material composition is presented in Table 5.3.2-15. The borated moderator compositions are presented in Table 5.3.2-3. The component material compositions are used in conjunction with their volume fractions in each of the upper core grid sub-regions to obtain a homogenized material composition and density that can be specified in the MCNP input decks. The calculated homogenized material compositions for the upper core grid sub-regions positioned above a fuel assembly containing no insertion assembly, a BPRA, a RCCA, and an APSRA are presented in Tables 5.3.2-16 through 5.3.2-19, respectively. Due to the difference in moderator specifications between the statepoints, the homogenized material compositions for each of the upper core grid sub-regions are different between CRC statepoints, as shown in Tables 5.3.2-16 through 5.3.2-19.

The upper pad region of the reactor contains borated moderator and hardware composed of SS304 and zircaloy (pp. 8, 14, 18, 20, Ref. 7.11). This region is modeled with a homogenized material composition in the MCNP CRC reactivity calculations. The upper pad region is modeled as a number of rectangular sub-regions each placed directly above a fuel assembly. The material volume fractions in each of the rectangular upper pad sub-regions depend on whether or not the fuel assembly below the sub-region is empty or has either a BPRA, RCCA, or APSRA inserted at the critical statepoint. Table 5.3.2-20 contains the material volume fractions for the upper pad sub-region positioned above a fuel assembly containing no insertion assembly, a BPRA, a RCCA, and an APSRA. The SS304 material composition is presented in Table 5.3.2-1. The zircaloy material composition is presented in Table 5.3.2-15. The borated moderator compositions are presented in Table 5.3.2-3. The component material compositions are used in conjunction with their volume fractions in each of the upper pad sub-regions to obtain a homogenized material composition and density that can be specified in the MCNP input decks. The calculated homogenized material compositions for the upper pad sub-regions positioned above a fuel assembly containing no insertion assembly, a BPRA, a RCCA, and an APSRA are presented in Tables 5.3.2-21 through 5.3.2-24, respectively. Due to the difference in moderator specifications between the statepoints, the homogenized material compositions for each of the upper pad sub-regions are different between CRC statepoints, as shown in Tables 5.3.2-21 through 5.3.2-24.

The lower core pad region contains SS304 hardware and borated moderator. The volume fractions of SS304 and borated moderator in the lower core pad region is presented in Table 5.3.2-25. The SS304 and borated moderator compositions are presented in Tables 5.3.2-1 and 5.3.2-3, respectively. The

Page 31 of 76

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 32 of 76

calculated homogenized material compositions for the lower core pad region are presented in Table 5.3.2-26. The homogenized material composition for the lower core pad region is different between CRC statepoints, as shown in Table 5.3.2-26, due to the difference in moderator specifications between the statepoints.

The lower core grid region contains SS304 hardware and borated moderator. The volume fractions of SS304 and borated moderator in the lower core grid region is presented in Table 5.3.2-27. The SS304 and borated moderator compositions are presented in Tables 5.3.2-1 and 5.3.2-3, respectively. The calculated homogenized material compositions for the lower core grid region are presented in Table 5.3.2-28. The homogenized material composition for the lower core grid region is different between CRC statepoints, as shown in Table 5.3.2-28, due to the difference in moderator specifications between the statepoints.

The region between the lower core grid and vessel plate contains SS304 hardware and borated moderator. The volume fractions of SS304 and borated moderator in this region is presented in Table 5.3.2-29. The SS304 and borated moderator compositions are presented in Tables 5.3.2-1 and 5.3.2-3, respectively. The calculated homogenized material compositions for the region between the lower core grid and vessel plate are presented in Table 5.3.2-30. The homogenized material composition for this region is different between CRC statepoints, as shown in Table 5.3.2-30, due to the difference in moderator specifications between the statepoints.

The homogenizations of the upper and lower reactor internals regions are expected to have a minimal effect on the core reactivity due to their limited reactivity worth and proximity to the active fuel. The primary objective in modeling the upper and lower reactor internals regions is to obtain a reasonable approximation of the axial leakage from the reactor core.

Element / Isotope	MCNP ZAID	Wt. %	Element / Isotope	MCNP ZAID	Wt. %	
C-nat	6000.50c	0.080	Fe-54	26054.60c	3.918	
N-14	7014.50c	0.100	Fe-56	26056.60c	63.156	
Si-nat	14000.50c	0.750	Fe-57	26057.60c	1.472	
P-31	15031.50c	0.045	Fe-58	26058.60c	0.200	
S-nat	16032.50c	0.030	Ni-58	28058.60c	6.234	
Cr-50	24050.60c	0.793	Ni-60	28060.60c	2.465	
Cr-52	24052.60c	15.903	Ni-61	28061.60c	0.109	
Cr-53	24053.60c	1.838	Ni-62	28062.60c	0.350	
Cr-54	24054.60c	0.466	Ni-64	28064.60c	0.092	
Mn-55	25055.50c	2.000	Density = 7.9 g/cm^3			

Table 5.3.2-1. Type 304 Stainless Steel Composition (p. 12, Ref. 7.7)

Engineering Calculation

Waste Package Operations

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 33 of 76

Element / Isotope	MCNP ZAID	Wt. %	Element / Isotope	MCNP ZAID	Wt. %
C-nat	6000.50c	0.220	Fe-54	26054.60c	5.615
Si-nat	14000.50c	0.275	Fe-56	26056.60c	90.524
P-31	15031.50c	0.035	Fe-57	26057.60c	2.110
S-nat	16032.50c	0.035	Fe-58	26058.60c	0.286
Mn-55	25055.50c	0.900	Density = 7.832 g/cm^3		

Table 5.3.2-2	Grade 55 A	516 Carbon Steel	Composition	(p. 5, Ref. 7.7) ¹
---------------	------------	------------------	-------------	-------------------------------

¹ The pressure vessel was actually made of CS508 carbon steel (p. 3, Ref. 7.11). Grade 55 A 516 was substituted for CS508. The pressure vessel has no neutronic importance with respect to the k_{eff} of the reactor core. Therefore, this substitution is acceptable.

Table 5.3.2-3. Borated Moderator Composition for Each CRC Statepoint Calculation

Cycle / EFPD	Temp. (F)	Boron (ppm)	Density (g/cm ³)	H wt%	O wt%	B-10 wt%	B-11 wt%
1/0.0	532.0	1609	0.76815	11.17351	88.66586	0.02885	0.13179
5/0.0	532.0	1178	0.76815	11.17832	88.70403	0.02113	0.09653
5/114.4	532.0	777	0.76815	11.18280	88.73957	0.01394	0.06370

Table 5.3.2-4. Upper Plenum Sub-Region Material Volume Fractions

Treastion According	Material Volume Fractions			
Insertion Assembly	SS304	Borated Water		
None (p. 8, Ref. 7.11)	0.0578	0.9422		
BPRA (p. 20, Ref. 7.11)	0.0699	0.9301		
RCCA (p. 14, Ref. 7.11)	0.0934	0.9066		
APSRA (p. 18, Ref. 7.11)	0.1096	0.8904		

Table 5.3.2-5. Homogenized Composition for Upper Plenum Sub-Region Above a Fuel Assembly Containing No Insertion Assembly

MCNP	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.030948	0.030948	0.030948		
7014.50c	0.038684	0.038684	0.038684		
14000.50c	0.290133	0.290133	0.290133		
15031.50c	0.017408	0.017408	0.017408		
16032.50c	0.011605	0.011605	0.011605		
24050.60c	0.306769	0.306769	0.306769		

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 34 of 76

Sub-Region Above a Fuel Assembly Containing No Insertion Assembly					
	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
24052.60c	6.152030	6.152030	6.152030		
24053.60c	0.710940	0.710940	0.710940		
24054.60c	0.180324	0.180324	0.180324		
25055.50c	0.773688	0.773688	0.773688		
26054.60c	1.515476	· 1.515476	1.515476		
26056.60c	24.431495	24.431495	24.431495		
26057.60c	0.569365	0.569365	0.569365		
26058.60c	0.077246	0.077246	0.077246		
28058.60c	2.411585	2.411585	2.411585		
28060.60c	0.953717	0.953717	0.953717		
28061.60c	0.041980	0.041980	0.041980		
28062.60c	0.135554	0.135554	0.135554		
28064.60c	0.035470	0.035470	0.035470		
1001.50c	6.851086	6.854044	6.856795		
5010.50c	0.017727	0.012978	0.008560		
5011.56c	0.080976	0.059285	0.039104		
8016.50c	54.365869	54.389339	54.411174		
Density (g/cm ³)	1.180373	1.180373	1.180373		

Table 5.3.2.5 Homogenized Composition for Upper Plenum

 Table 5.3.2-6. Homogenized Composition for Upper Plenum
 Sub-Region Above a Fuel Assembly Containing a BPRA

MCNP ZAID	Wt. % of Element/Isotope in Material Composition				
	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.034876	0.034876	0.034876		
7014.50c	0.043595	0.043595	0.043595		
14000.50c	0.326966	0.326966	0.326966		
15031.50c	0.019618	0.019618	0.019618		
16032.50c	0.013079	0.013079	0.013079		
24050.60c	0.345714	0.345714	0.345714		
24052.60c	6.933046	6.933046	6.933046		
24053.60c	0.801196	0.801196	0.801196		
24054.60c	0.203216	0.203216	0.203216		
25055.50c	0.871909	0.871909	0.871909		

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 35 of 76

Table 5.3.2-6. Homogenized Composition for Upper Plenum Sub-Region Above a Fuel Assembly Containing a BPRA					
MOND	Wt. % of 1	Element/Isotope in Material	Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
26054.60c	1.707870	1.707870	1.707870		
26056.60c	27.533139	27.533139	27.533139		
26057.60c	0.641648	0.641648	0.641648		
26058.60c	0.087052	0.087052	0.087052		
28058.60c	2.717742	2.717742	2.717742		
28060.60c	1.074794	1.074794	1.074794		
28061.60c	0.047310	0.047310	0.047310		
28062.60c	0.152763	0.152763	0.152763		
28064.60c	0.039973	0.039973	0.039973		
1001.50c	6.302347	6.305068	6.307599		
5010.50c	0.016307	0.011939	0.007875		
5011.56c	0.074490	0.054536	0.035972		
8016.50c	50.011424	50.033014	50.053100		
Density (g/cm ³)	1.266668	1.266668	1.266668		

Table 5.3.2-7. Homogenized Composition for Upper Plenum Sub-Region Above a Fuel Assembly Containing a RCCA

MCND	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
· 6000.50c	0.041156	0.041156	0.041156		
7014.50c	0.051445	0.051445	0.051445		
14000.50c	0.385838	0.385838	0.385838		
15031.50c	0.023150	0.023150	0.023150		
16032.50c	0.015434	0.015434	0.015434		
24050.60c	0.407962	0.407962	0.407962		
24052.60c	8.181384	8.181384	8.181384		
24053.60c	0.945456	0.945456	0.945456		
24054.60c	0.239807	0.239807	0.239807		
25055.50c	1.028902	1.028902	1.028902		
26054.60c	2.015383	2.015383	2.015383		
26056.60c	32.490650	32.490650	32.490650		
26057.60c	0.757180	0.757180	0.757180		
26058.60c	0.102727	0.102727	0.102727		

Engineering Calculation

Waste Package Operations

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 36 of 76

	Sub-Region Above a Fuel Assembly Containing a RCCA					
MOND	Wt. % of J	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD			
28058.60c	3.207088	3.207088	3.207088			
28060.60c	1.268317	1.268317	1.268317			
28061.60c	0.055828	0.055828	0.055828			
28062.60c	0.180269	0.180269	0.180269			
28064.60c	0.047170	0.047170	0.047170			
1001.50c	5.425270	5.427612	5.429791			
5010.50c	0.014037	0.010277	0.006779			
5011.56c	0.064123	0.046947	0.030966			
8016.50c	43.051498	43.070083	43.087374			
Density (g/cm ³)	1.434267	1.434267	1.434267			

Table 5.3.2-7. Homogenized Composition for Upper Plenum Sub-Region Above a Fuel Assembly Containing a RCCA

 Table 5.3.2-8. Homogenized Composition for Upper Plenum

 Sub-Region Above a Fuel Assembly Containing an APSRA

MCNP ZAID	Wt. % of Element/Isotope in Material Composition				
	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.044694	0.044694	0.044694		
7014.50c	0.055868	0.055868	0.055868		
14000.50c	0.419008	0.419008	0.419008		
15031.50c	0.025140	0.025140	0.025140		
16032.50c	0.016760	0.016760	0.016760		
24050.60c	0.443033	0.443033	0.443033		
24052.60c	8.884724	8.884724	8.884724		
24053.60c	1.026735	1.026735	1.026735		
24054.60c	0.260423	0.260423	0.260423		
25055.50c	1.117355	1.117355	1.117355		
26054.60c	2.188642	2.188642	2.188642		
26056.60c	35.283819	35.283819	35.283819		
26057.60c	0.822274	0.822274	0.822274		
26058.60c	0.111558	0.111558	0.111558		
28058.60c	3.482796	3.482796	3.482796		
28060.60c	1.377352	1.377352	1.377352		
28061.60c	0.060628	0.060628	0.060628		
28062.60c	0.195767	0.195767	0.195767		
Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 37 of 76

	Sub-Region Above a	Fuel Assembly Containing a	in APSRA
MCNP ZAID	Wt. % of]	Element/Isotope in Material	Composition
	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD
28064.60c	0.051226	0.051226	0.051226
1001.50c	4.931106	4.933234	4.935215
5010.50c	0.012759	0.009341	0.006161
5011.56c	0.058283	0.042671	0.028145
8016.50c	39.130123	39.147016	39.162732
Density (g/cm ³)	1.549803	1.549803	1.549803

Table 5.3.2-8. Homogenized Composition for Upper Plenum

Table 5.3.2-9. CRGT Flange Sub-Region Material Volume Fractions

	Material Volume Fractions		
Insertion Assembly	SS304	Borated Water	
None (p. 8, Ref. 7.11)	0.1381	0.8619	
BPRA (p. 20, Ref. 7.11)	0.1827	0.8173	
RCCA (p. 14, Ref. 7.11)	0.1945	0.8055	
APSRA (p. 18, Ref. 7.11)	0.2212	0.7788	

Table 5.3.2-10. Homogenized Composition for CRGT Flange Sub-Region Above a Fuel Assembly Containing No Insertion Assembly

MOND	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.049787	0.049787	0.049787		
7014.50c	0.062233	0.062233	0.062233		
14000.50c	0.466751	0.466751	0.466751		
15031.50c	0.028005	0.028005	0.028005		
16032.50c	0.018670	0.018670	0.018670		
24050.60c	0.493514	0.493514	0.493514		
24052.60c	9.897070	9.897070	9.897070		
24053.60c	1.143724	1.143724	1.143724		
24054.60c	0.290096	0.290096	0.290096		
25055.50c	1.244669	1.244669	1.244669		
26054.60c	2.438021	2.438021	2.438021		
26056.60c	39.304136	39.304136	39.304136		
26057.60c	0.915966	0.915966	0.915966		
26058.60c	0.124269	0.124269	0.124269		

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 38 of 76

Sul	Sub-Region Above a Fuel Assembly Containing No Insertion Assembly				
MOND	Wt. % of I	Element/Isotope in Material	Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
28058.60c	3.879633	3.879633	3.879633		
28060.60c	1.534291	1.534291	1.534291		
28061.60c	0.067536	0.067536	0.067536		
28062.60c	0.218073	0.218073	0.218073		
28064.60c	0.057062	0.057062	0.057062		
1001.50c	4.219836	4.221658	4.223352		
5010.50c	0.010918	0.007994	0.005273		
5011.56c	0.049876	0.036516	0.024086		
8016.50c	33.485939	33.500395	33.513844		
Density (g/cm ³)	1.753060	1.753060	1.753060		

Table 5.3.2-10. Homogenized Composition for CRGT Flange

 Table 5.3.2-11. Homogenized Composition for CRGT Flange
 Sub-Region Above a Fuel Assembly Containing a BPRA

MCND	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.055750	0.055750	0.055750		
7014.50c	0.069688	0.069688	0.069688		
14000.50c	0.522658	0.522658	0.522658		
15031.50c	0.031359	0.031359	0.031359		
16032.50c	0.020906	0.020906	0.020906		
24050.60c	0.552626	0.552626	0.552626		
24052.60c	11.082525	11.082525	11.082525		
24053.60c	1.280717	1.280717	1.280717		
24054.60c	0.324843	0.324843	0.324843		
25055.50c	1.393754	1.393754	1.393754		
26054.60c	2.730043	2.730043	2.730043		
26056.60c	44.011925	44.011925	44.011925		
26057.60c	1.025679	1.025679	1.025679		
26058.60c	0.139154	0.139154	0.139154		
28058.60c	4.344330	4.344330	4.344330		
28060.60c	1.718066	1.718066	1.718066		
28061.60c	0.075625	0.075625	0.075625		
28062.60c	0.244193	0.244193	0.244193		

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 39 of 76

	Sub-Region Above a	Fuel Assembly Containing	a BPRA
MCND	Wt. % of I	Element/Isotope in Material	Composition
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD
28064.60c	0.063897	0.063897	0.063897
1001.50c	3.386939	3.388402	3.389762
5010.50c	0.008763	0.006416	0.004232
5011.56c	0.040032	0.029308	0.019332
8016.50c	26.876601	26.888204	26.898998
Density (g/cm ³)	2.071141	2.071141	2.071141

Table 5.3.2-11. Homogenized Composition for CRGT Flange Sub-Region Above a Fuel Assembly Containing a BPRA

Table 5.3.2-12. Homogenized Composition for CRGT Flange Sub-Region Above a Fuel Assembly Containing a RCCA

MCNP	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1	Cycle 5	Cycle 5 114 4 EEPD	
6000.50c	0.057033	0.057033	0.057033	
7014.50c	0.071292	0.071292	0.071292	
14000.50c	0.534689	0.534689	0.534689	
15031.50c	0.032081	0.032081	0.032081	
16032.50c	0.021388	0.021388	0.021388	
24050.60c	0.565347	0.565347	0.565347	
24052.60c	11.337632	11.337632	11.337632	
24053.60c	1.310198	1.310198	1.310198	
24054.60c	0.332320	0.332320	0.332320	
25055.50c	1.425836	1.425836	1.425836	
26054.60c	2.792885	2.792885	2.792885	
26056.60c	45.025029	45.025029	45.025029	
26057.60c	1.049288	1.049288	1.049288	
26058.60c	0.142357	0.142357	0.142357	
28058.60c	4.444331	4.444331	4.444331	
28060.60c	1.757614	1.757614	1.757614	
28061.60c	0.077366	0.077366	0.077366	
28062.60c	0.249814	0.249814	0.249814	
28064.60c	0.065368	0.065368	0.065368	
1001.50c	3.207702	3.209087	3.210375	
5010.50c	0.008300	0.006076	0.004008	
5011.56c	0.037913	0.027757	0.018309	

Engineering Calculation

Waste Package Operations

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 40 of 76

Table 5.3.2-12. Homogenized Composition for CRGT Flange Sub-Region Above a Fuel Assembly Containing a RCCA					
MOND	Wt. % of I	Element/Isotope in Material	Composition		
MCNP ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
8016.50c	25.454289	25.465277	25.475501		
Density (g/cm ³)	2.155296	2.155296	2.155296		

 Table 5.3.2-13. Homogenized Composition for CRGT Flange

 Sub-Region Above a Fuel Assembly Containing an APSRA

MCNIP	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1	Cycle 5	Cycle 5		
6000 500	0.050507	0.050507	0.059597		
<u> </u>	0.039397	0.039397	0.039397		
14000 50-	0.074497	0.074497	0.559725		
14000.50c	0.558725	0.558725	0.558725		
15031.50c	0.033523	0.033523	0.033523		
16032.50c	0.022349	0.022349	0.022349		
24050.60c	0.590761	0.590761	0.590761		
24052.60c	11.847298	11.847298	11.847298		
24053.60c	1.369096	1.369096	1.369096		
24054.60c	0.347259	0.347259	0.347259		
25055.50c	1.489933	1.489933	1.489933		
26054.60c	2.918435	2.918435	2.918435		
26056.60c	47.049060	47.049060	47.049060		
26057.60c	1.096458	1.096458	1.096458		
26058.60c	0.148757	0.148757	0.148757		
28058.60c	4.644120	4.644120	4.644120		
28060.60c	1.836625	1.836625	1.836625		
28061.60c	0.080844	0.080844	0.080844		
28062.60c	0.261044	0.261044	0.261044		
28064.60c	0.068307	0.068307	0.068307		
1001.50c	2.849613	2.850843	2.851988		
5010.50c	0.007373	0.005398	0.003561		
5011.56c	0.033681	0.024659	0.016265		
8016.50c	22.612720	22.622482	22.631564		
Density (g/cm ³)	2.345717	2.345717	2.345717		

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 41 of 76

Table 5.5.2-14. Upper Core Grid Sub-Region Material volume Fractic	Table 5.3.2-14.	Upper Core	Grid Sub-Region	Material Volume	Fractions
--	-----------------	-------------------	------------------------	-----------------	-----------

To continue A complete	Material Volume Fractions				
Insertion Assembly	SS304	zircaloy	Borated Water		
None (p. 8, Ref. 7.11)	0.2491	0.0000	0.7509		
BPRA (p. 20, Ref. 7.11)	0.2937	0.0069	0.6994		
RCCA (p. 14, Ref. 7.11)	0.3481	0.0000	0.6519		
APSRA (p. 18, Ref. 7.11)	0.2828	0.0000	0.7172		

Table 5.3.2-15. Zircaloy-4 Composition (p. 21, Ref. 7.7)

Element / Isotope	MCNP ZAID	Wt. %	Element / Isotope	MCNP ZAID	Wt. %
Cr-50	24050.60c	0.004	Fe-57	26057.60c	0.004
Cr-52	24052.60c	0.084	Fe-58	26058.60c	0.001
Cr-53	24053.60c	0.010	O-16	8016.50c	0.120
Cr-54	24054.60c	0.002	Zr-nat	40000.60c	98.180
Fe-54	26054.60c	0.011	Sn-nat	50000.35c	1.400
Fe-56	26056.60c	0.184	Density = 6.56 g/cm^3		

 Table 5.3.2-16. Homogenized Composition for Upper Core Grid

 Sub-Region Above a Fuel Assembly Containing No Insertion Assembly

MCND	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
6000.50c	0.061866	0.061866	0.061866	
7014.50c	0.077333	0.077333	0.077333	
14000.50c	0.579998	0.579998	0.579998	
15031.50c	0.034800	0.034800	0.034800	
16032.50c	0.023200	0.023200	0.023200	
24050.60c	0.613254	0.613254	0.613254	
24052.60c	12.298374	12.298374	12.298374	
24053.60c	1.421223	1.421223	1.421223	
24054.60c	0.360481	0.360481	0.360481	
25055.50c	1.546661	1.546661	1.546661	
26054.60c	3.029552	3.029552	3.029552	
26056.60c	48.840414	48.840414	48.840414	
26057.60c	1.138204	1.138204	1.138204	
26058.60c	0.154420	0.154420	0.154420	
28058.60c	· 4.820941	4.820941	4.820941	

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 42 of 76

Sub-Region Above a Fuel Assembly Containing No Insertion Assembly				
MCND	Wt. % of I	Element/Isotope in Material	Composition	
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
28060.60c	1.906552	1.906552	1.906552	
28061.60c	0.083922	0.083922	0.083922	
28062.60c	0.270983	0.270983	0.270983	
28064.60c	0.070907	0.070907	0.070907	
1001.50c	2.532689	2.533782	2.534799	
5010.50c	0.006553	0.004798	0.003165	
5011.56c	0.029935	0.021916	0.014456	
8016.50c	20.097810	20.106486	20.114559	
Density (g/cm ³)	2.544695	2.544695	2.544695	

Table 5.3.2-16. Homogenized Composition for Upper Core Grid b-Region Above a Fuel Assembly Containing No Insertion Assembly

Table 5.3.2-17. Homogenized Composition for Upper Core Grid Sub-Region Above a Fuel Assembly Containing a BPRA

MOND	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.063946	0.063946	0.063946		
7014.50c	0.079932	0.079932	0.079932		
14000.50c	0.599493	0.599493	0.599493		
15031.50c	0.035970	0.035970	0.035970		
16032.50c	0.023980	0.023980	0.023980		
24050.60c	0.633932	0.633932	0.633932		
24052.60c	12.713064	12.713064	12.713064		
24053.60c	1.469145	1.469145	1.469145		
24054.60c	0.372636	0.372636	0.372636		
25055.50c	1.598648	1.598648	1.598648		
26054.60c	3.131562	3.131562	3.131562		
26056.60c	50.484951	50.484951	50.484951		
26057.60c	1.176530	1.176530	1.176530		
26058.60c	0.159620	0.159620	0.159620		
28058.60c	4.982987	4.982987	4.982987		
28060.60c	1.970637	1.970637	1.970637		
28061.60c	0.086743	0.086743	0.086743		
28062.60c	0.280092	0.280092	0.280092		
28064.60c	0.073291	0.073291	0.073291		

Engineering Calculation

Waste Package Operations

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 43 of 76

Sub-Region Above a Fuel Assembly Containing a BPRA				
MONT	Wt. % of I	Element/Isotope in Material	Composition	
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
1001.50c	2.068012	2.068905	2.069735	
5010.50c	0.005351	0.003917	0.002584	
5011.56c	0.024443	0.017895	0.011804	
8016.50c	16.412303	16.419387	16.425978	
40000.60c	1.530974	1.530974	1.530974	
50000.35c	0.021831	0.021831	0.021831	
Density (g/cm ³)	2.902740	2.902740	2.902740	

Table 5.3.2-17. Homogenized Composition for Upper Core Grid

Table 5.3.2-18. Homogenized Composition for Upper Core Grid Sub-Region Above a Fuel Assembly Containing a RCCA

MCND	Wt. % of Element/Isotope in Material Composition			
	Cycle 1	Cycle 5	Cycle 5	
	0.0 EFPD	0.0 EFPD	114.4 EFPD	
6000.50c	0.067676	0.067676	0.067676	
7014.50c	0.084596	0.084596	0.084596	
14000.50c	0.634467	0.634467	0.634467	
15031.50c	0.038068	0.038068	0.038068	
16032.50c	0.025379	0.025379	0.025379	
24050.60c	0.670846	0.670846	0.670846	
24052.60c	13.453350	13.453350	13.453350	
24053.60c	1.554694	1.554694	1.554694	
24054.60c	0.394335	0.394335	0.394335	
25055.50c	1.691912	1.691912	1.691912	
26054.60c	3.314066	3.314066	3.314066	
26056.60c	53.427160	53.427160	53.427160	
26057.60c	1.245096	1.245096	1.245096	
26058.60c	0.168922	0.168922	0.168922	
28058.60c	5.273689	5.273689	5.273689	
28060.60c	2.085602	2.085602	2.085602	
28061.60c	0.091803	0.091803	0.091803	
28062.60c	0.296432	0.296432	0.296432	
28064.60c	0.077566	0.077566	0.077566	
1001.50c	1.721207	1.721950	1.722642	
5010.50c	0.004453	0.003261	0.002151	

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 44 of 76

	Table 5.3.2-18. Homoger Sub-Region Above a	nized Composition for Uppe Fuel Assembly Containing	er Core Grid a RCCA
MOND	Wt. % of Element/Isotope in Material Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD
5011.56c	0.020344	0.014894	0.009824
8016.50c	13.658408	13.664304	13.669790
Density (g/cm ³)	3.250748	3.250748	3.250748

Table 5.3.2-19. Homogenized Composition for Upper Core Grid Sub-Region Above a Fuel Assembly Containing an APSRA

MOND	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
6000.50c	0.064175	0.064175	0.064175	
7014.50c	0.080219	0.080219	0.080219	
14000.50c	0.601640	0.601640	0.601640	
15031.50c	0.036098	0.036098	0.036098	
16032.50c	0.024066	0.024066	0.024066	
24050.60c	0.636137	0.636137	0.636137	
24052.60c	12.757276	12.757276	12.757276	
24053.60c	1.474254	1.474254	1.474254	
24054.60c	0.373932	0.373932	0.373932	
25055.50c	1.604373	1.604373	1.604373	
26054.60c	3.142597	3.142597	3.142597	
26056.60c	50.662847	50.662847	50.662847	
26057.60c	1.180675	1.180675	1.180675	
26058.60c	0.160182	0.160182	0.160182	
28058.60c	5.000829	5.000829	5.000829	
28060.60c	1.977694	1.977694	1.977694	
28061.60c	0.087053	0.087053	0.087053	
28062.60c	0.281095	0.281095	0.281095	
28064.60c	0.073553	0.073553	0.073553	
1001.50c	2.210266	2.211220	2.212108	
5010.50c	0.005719	0.004187	0.002762	
5011.56c	0.026124	0.019126	0.012616	
8016.50c	17.539269	17.546841	17.553885	
Density (g/cm ³)	2.785039	2.785039	2.785039	

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 45 of 76

Auste cloir 201 opper 1 du bub Acgion Francestal Columno 21 de trais				
	Material Volume Fractions			
Insertion Assembly	SS304	zircaloy	Borated Water	
None (p. 8, Ref. 7.11)	0.3418	0.0000	0.6582	
BPRA (p. 20, Ref. 7.11)	0.3890	0.0120	0.5990	
RCCA (p. 14, Ref. 7.11)	0.3748	0.0000	0.6252	
APSRA (p. 18, Ref. 7.11)	0.3748	0.0000	0.6252	

	Table 5.3.2-20.	Upper Pa	d Sub-Region	Material Vo	olume Fractions
--	-----------------	-----------------	--------------	-------------	-----------------

Table 5.3.2-21. Homogenized Composition for Upper Pad Sub-Region Above a Fuel Assembly Containing No Insertion Assembly

MCMD	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1	Cycle 5	Cycle 5	
·	0.0 EFPD	0.0 EFPD	114.4 EFPD	
6000.50c	0.067383	0.067383	0.067383	
7014.50c	0.084229	0.084229	0.084229	
14000.50c	0.631716	0.631716	0.631716	
15031.50c	0.037903	0.037903	0.037903	
16032.50c	0.025269	0.025269	0.025269	
24050.60c	0.667937	0.667937	0.667937	
24052.60c	13.395009	13.395009	13.395009	
24053.60c	1.547952	1.547952	1.547952	
24054.60c	0.392625	0.392625	0.392625	
25055.50c	1.684575	1.684575	1.684575	
26054.60c	3.299695	3.299695	3.299695	
26056.60c	53.195470	53.195470	53.195470	
26057.60c	1.239697	1.239697	1.239697	
26058.60c	0.168190	0.168190	0.168190	
28058.60c	5.250819	5.250819	5.250819	
28060.60c	2.076558	2.076558	2.076558	
28061.60c	0.091405	0.091405	0.091405	
28062.60c	0.295146	0.295146	0.295146	
28064.60c	0.077230	0.077230	0.077230	
1001.50c	1.762197	1.762958	1.763666	
5010.50c	0.004560	0.003338	0.002202	
5011.56c	0.020828	0.015249	0.010058	
8016.50c	13.983681	13.989717	13.995334	
Density (g/cm ³)	3.205818	3.205818	3.205818	

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 46 of 76

Table 5.3.2-22. Homogenized Composition for Upper Pad Sub-Region Above a Fuel Assembly Containing a BPRA			
MOND	Wt. % of 1	Element/Isotope in Material	Composition
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD
6000.50c	0.068065	0.068065	0.068065
7014.50c	0.085082	0.085082	0.085082
14000.50c	0.638112	0.638112	0.638112
15031.50c	0.038287	0.038287	0.038287
16032.50c	0.025524	0.025524	0.025524
24050.60c	0.674791	0.674791	0.674791
24052.60c	13.532469	13.532469	13.532469
24053.60c	1.563837	1.563837	1.563837
24054.60c	0.396654	0.396654	0.396654
25055.50c	1.701633	1.701633	1.701633
26054.60c	3.333355	3.333355	3.333355
26056.60c	53.738121	53.738121	53.738121
26057.60c	1.252343	1.252343	1.252343
26058.60c	0.169906	0.169906	0.169906
28058.60c	5.303988	5.303988	5.303988
28060.60c	2.097585	2.097585	2.097585
28061.60c	0.092331	0.092331	0.092331
28062.60c	0.298135	0.298135	0.298135
28064.60c	0.078012	0.078012	0.078012
1001.50c	1.423382	1.423996	1.424568
5010.50c	0.003683	0.002696	0.001778
5011.56c	0.016824	0.012317	0.008124
8016.50c	11.297671	11.302547	11.307083
40000.60c	2.139771	2.139771	2.139771
50000.35c	0.030512	0.030512	0.030512
Density (g/cm ³)	3.611943	3.611943	3.611943

Table 5.3.2-23. Homogenized Composition for Upper Pad Sub-Region Above a Fuel Assembly Containing a RCCA

MCND	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.068835	0.068835	0.068835		
7014.50c	0.086044	0.086044	0.086044		

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 47 of 76

Sub-Region Above a Fuel Assembly Containing a RCCA			
MOND	Wt. % of Element/Isotope in Material Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD
14000.50c	0.645330	0.645330	0.645330
15031.50c	0.038720	0.038720	0.038720
16032.50c	0.025813	0.025813	0.025813
24050.60c	0.682332	0.682332	0.682332
24052.60c	13.683696	13.683696	13.683696
24053.60c	1.581313	1.581313	1.581313
24054.60c	0.401087	0.401087	0.401087
25055.50c	1.720881	1.720881	1.720881
26054.60c	3.370809	3.370809	3.370809
26056.60c	54.341927	54.341927	54.341927
26057.60c	1.266415	1.266415	1.266415
26058.60c	0.171815	0.171815	0.171815
28058.60c	5.363984	5.363984	5.363984
28060.60c	2.121312	2.121312	2.121312
28061.60c	0.093375	0.093375	0.093375
28062.60c	0.301507	0.301507	0.301507
28064.60c	0.078894	0.078894	0.078894
1001.50c	1.559368	1.560041	1.560667
5010.50c	0.004035	0.002954	0.001948
5011.56c	0.018431	0.013494	0.008900
8016.50c	12.374152	12.379494	12.384464
Density (g/cm ³)	3.441169	3.441169	3.441169

Table 5.3.2-23. Homogenized Composition for Upper Pad Sub-Region Above a Fuel Assembly Containing a RCCA

 Table 5.3.2-24. Homogenized Composition for Upper Pad

 Sub-Region Above a Fuel Assembly Containing an APSRA

MCND	Wt. % of Element/Isotope in Material Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD
6000.50c	0.068835	0.068835	0.068835
7014.50c	0.086044	0.086044	0.086044
14000.50c	0.645330	0.645330	0.645330
15031.50c	0.038720	0.038720	0.038720
16032.50c	0.025813	0.025813	0.025813
24050.60c	0.682332	0.682332	0.682332

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 48 of 76

Table 5.3.2-24. Homogenized Composition for Upper Pad Sub-Region Above a Fuel Assembly Containing an APSRA				
MOND	Wt. % of I	Element/Isotope in Material	Composition	
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
24052.60c	13.683696	13.683696	13.683696	
24053.60c	1.581313	1.581313	1.581313	
24054.60c	0.401087	0.401087	0.401087	
25055.50c	1.720881	1.720881	1.720881	
26054.60c	3.370809	3.370809	3.370809	
26056.60c	54.341927	54.341927	54.341927	
26057.60c	1.266415	1.266415	1.266415	
26058.60c	0.171815	0.171815	0.171815	
28058.60c	5.363984	5.363984	5.363984	
28060.60c	2.121312	2.121312	2.121312	
28061.60c	0.093375	0.093375	0.093375	
28062.60c	0.301507	0.301507	0.301507	
28064.60c	0.078894	0.078894	0.078894	
1001.50c	1.559368	1.560041	1.560667	
5010.50c	0.004035	0.002954	0.001948	
5011.56c	0.018431	0.013494	0.008900	
8016.50c	12.374152	12.379494	12.384464	
Density (g/cm^3)	3.441169	3.441169	3.441169	

Table 5.3.2-25.Lower Core Pad RegionMaterial Volume Fractions (p. 8, Ref. 7.11)

SS304	Borated Water
0.2848	0.7152

Table 5.3.2-26. Homogenized Composition for Lower Core Pad Region

MCNP	Wt. % of Element/Isotope in Material Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD
6000.50c	0.064299	0.064299	0.064299
7014.50c	0.080374	0.080374	0.080374
14000.50c	0.602807	0.602807	0.602807
15031.50c	0.036168	0.036168	0.036168
16032.50c	0.024112	0.024112	0.024112
24050.60c	0.637371	0.637371	0.637371

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 49 of 76

Table 5.5.2-20. Homogenized Composition for Lower Core Fau Region				
MOND	Wt. % of]	Wt. % of Element/Isotope in Material Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
24052.60c	12.782034	12.782034	12.782034	
24053.60c	1.477115	1.477115	1.477115	
24054.60c	0.374658	0.374658	0.374658	
25055.50c	1.607486	1.607486	1.607486	
26054.60c	3.148696	3.148696	3.148696	
26056.60c	50.761166	50.761166	50.761166	
26057.60c	1.182967	1.182967	1.182967	
26058.60c	0.160493	0.160493	0.160493	
28058.60c	5.010534	5.010534	5.010534	
28060.60c	1.981532	1.981532	1.981532	
28061.60c	0.087222	0.087222	0.087222	
28062.60c	0.281640	0.281640	0.281640	
28064.60c	0.073696	0.073696	0.073696	
1001.50c	2.192872	2.193818	2.194699	
5010.50c	0.005674	0.004154	0.002740	
5011.56c	0.025918	0.018976	0.012516	
8016.50c	17.401238	17.408750	17.415739	
Density (g/cm ³)	2.799302	2.799302	2.799302	

Table 5.3.2-26. Homogenized Composition for Lower Core Pad Region

 Table 5.3.2-27.
 Lower Core Grid Region

Material Volume Fractions (p	b. 8, Ref. 7.11)
------------------------------	--------------------------

SS304	Borated Water
0.2400	0.7600

|--|

MCNP	Wt. % of Element/Isotope in Material Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD
6000.50c	0.061166	0.061166	0.061166
7014.50c	0.076458	0.076458	0.076458
14000.50c	0.573434	0.573434	0.573434
15031.50c	0.034406	0.034406	0.034406
16032.50c	0.022937	0.022937	0.022937
24050.60c	0.606314	0.606314	0.606314
24052.60c	12.159204	12.159204	12.159204

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 50 of 76

MCNP	Wt. % of	Wt. % of Element/Isotope in Material Composition		
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
24053.60c	1.405140	1.405140	1.405140	
24054.60c	0.356402	0.356402	0.356402	
25055.50c	1.529158	1.529158	1.529158	
26054.60c	2.995269	2.995269	2.995269	
26056.60c	48.287728	48.287728	48.287728	
26057.60c	1.125324	1.125324	1.125324	
26058.60c	0.152673	0.152673	0.152673	
28058.60c	4.766386	4.766386	4.766386	
28060.60c	1.884978	1.884978	1.884978	
28061.60c	0.082972	0.082972	0.082972	
28062.60c	0.267917	0.267917	0.267917	
28064.60c	0.070105	0.070105	0.070105	
1001.50c	2.630469	2.631605	2.632661	
5010.50c	0.006806	0.004983	0.003287	
5011.56c	0.031091	0.022762	0.015014	
8016.50c	20.873734	20.882746	20.891129	
Density (g/cm ³)	2.479796	2.479796	2.479796	

Table 5.3.2-28. Homogenized Composition for Lower Core Grid Region

Table 5.3.2-29. Region Between Lower Core Grid and Vessel Plate Material Volume Fractions (p. 8, Ref. 7.11)

SS304E	Borated Water
0.0300	0.9700

 Table 5.3.2-30. Homogenized Composition for

 Region Between Lower Core Grid and Vessel Plate

MCNP ZAID	Wt. % of Element/Isotope in Material Composition				
	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.019305	0.019305	0.019305		
7014.50c	0.024132	0.024132	0.024132		
14000.50c	0.180988	0.180988	0.180988		
15031.50c	0.010859	0.010859	0.010859		
16032.50c	0.007240	0.007240	0.007240		
24050.60c	0.191366	0.191366	0.191366		
24052.60c	3.837709	3.837709	3.837709		

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 51 of 76

	Table 5.3.2-30 Region Between	Lower Core Grid and Vessel	lor Plate			
MOND	Wt. % of	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD			
24053.60c	0.443493	0.443493	0.443493			
24054.60c	0.112488	0.112488	0.112488			
25055.50c	0.482636	0.482636	0.482636			
26054.60c	0.945372	0.945372	0.945372			
26056.60c	15.240656	15.240656	15.240656			
26057.60c	0.355177	0.355177	0.355177			
26058.60c	0.048187	0.048187	0.048187			
28058.60c	1.504375	1.504375	1.504375			
28060.60c	0.594940	0.594940	0.594940			
28061.60c	0.026188	0.026188	0.026188			
28062.60c	0.084560	0.084560	0.084560			
28064.60c	0.022127	0.022127	0.022127			
1001.50c	8.477118	8.480778	8.484183			
5010.50c	0.021934	0.016058	0.010592			
5011.56c	0.100195	0.073356	0.048385			
8016.50c	67.269030	67.298070	67.325088			
Density (g/cm ³)	0.982107	0.982107	0.982107			

5.3.3. Fuel Assembly Materials

The fuel assembly materials listed in this section refer to the upper and lower end-fitting materials and the spacer grid materials. The upper end-fitting material compositions vary within a given fuel assembly design depending upon whether the assembly contains no insertion assembly, a BPRA, a RCCA, or an APSRA at the critical statepoint. Both the upper and lower end-fitting homogenized material compositions vary between critical statepoint configurations due to the different moderator conditions. The primary material components in the upper and lower end-fitting regions are SS304, Inconel, zircaloy, and borated moderator. Both the upper and lower end-fitting regions are modeled with material compositions that represent the homogenization of all of the components in the regions. Table 5.3.2-1 presents the material composition of SS304. Table 5.3.2-3 presents the material compositions for the borated moderator in CRC statepoint configuration. Table 5.3.3.1 presents the material composition of Inconel. Table 5.3.2-15 presents the material composition of zircaloy. Table 5.3.3-2 presents the component material volume fractions for the upper end-fitting region for each assembly design. Table 5.3.3-3 presents the component material volume fractions for the lower end-fitting region for each assembly design. Tables 5.3.3-4 through 5.3.3-7 present the upper end-fitting homogenized material compositions for each CRC statepoint configuration for the assemblies containing no insertion assembly, a BPRA, a RCCA, and an APSRA, respectively. Table 5.3.3-8 presents the lower end-fitting

Engineering Calculation

Page 52 of 76

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

homogenized material compositions for each CRC statepoint configuration for the assemblies regardless of their insertion assembly condition. The homogenized material compositions presented in this section were calculated using the method described in Section 5.3.2.

The upper end spacer grid region is composed of Inconel, zircaloy, and borated moderator (p. 8, Ref. 7.11). The upper end spacer grid region is located directly below the upper end-fitting, and covers a height of 8.573 cm along the length of the fuel assembly (p. 7, Ref. 7.11). The materials of the upper end spacer grid are homogenized and modeled in the region between the fuel rods, guide tubes, and instrument tube. The volume fractions of Inconel, zircaloy, and borated moderator in the upper end spacer grid composition are 0.0457, 0.0069, and 0.9474, respectively (p. 8, Ref. 7.11). MACE Version 3 does not allow the specification of an Inconel/zircaloy spacer grid material combination. Therefore, the zircaloy volume fraction was neglected in the homogenized composition. The borated moderator volume fraction was increased by 0.0069. This modeling approximation has a vanishingly small effect on the system reactivity. The homogenized material composition for each upper spacer grid for a given fuel assembly design will be different between the CRC statepoint configurations due to the different moderator conditions. Table 5.3.3.9 presents the homogenized material compositions for the upper end spacer grid of the assemblies in each CRC statepoint configuration.

The six spacer grids below the upper end spacer grid are called the intermediate spacer grids. These intermediate spacer grids are composed of Inconel (p. 5, Ref. 7.11). The intermediate spacer grid height is 3.81 cm (p. 5, Ref. 7.11). The individual intermediate spacer grid volume is 88.676 cm^3 (p. 5, Ref. 7.11). The volume between the fuel rods, guide tubes, and instrument tube that is occupied by an explicit intermediate spacer grid and borated moderator is 977.531 cm^3 (p. 5, Ref. 7.11). Therefore, the volume fraction of Inconel in the intermediate spacer grid homogenized region is 0.0907. The intermediate spacer grid materials and borated moderator are homogenized and modeled in the region between the fuel rods, guide tubes, and instrument tube over the explicit height of each spacer grid. The homogenized material composition for the intermediate spacer grid of each fuel assembly design will be different between the CRC statepoint configurations due to the different moderator conditions. Table 5.3.3.10 presents the homogenized material compositions for the intermediate spacer grid of the assemblies in each CRC statepoint configuration.

Element / Isotope	MCNP ZAID	Wt. %	Element / Isotope	MCNP ZAID	Wt. %
C-nat	6000.50c	0.080	Ni-60	28060.60c	13.993
Si-nat	14000.50c	0.350	Ni-61	28061.60c	0.616
P-31	15031.50c	0.015	Ni-62	28062.60c	1.989
S-nat	16032.50c	0.015	Ni-64	28064.60c	0.520
Cr-50	24050.60c	0.793	B-10	5010.50c	1.078E-03
Cr-52	24052.60c	15.903	B-11	5011.56c	4.925E-03
Cr-53	24053.60c	1.838	Ti-nat	22000.50c	0.900
Cr-54	24054.60c	0.466	· Al-27	13027.50c	0.500
Mn-55	25055.50c	0.350	Co-59	27059.50c	1.000

Table 5.3.3-1. Inconel 718 Composition (Ref. 7.8)

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 53 of 76

Element / Isotope	MCNP ZAID	Wt. %	Element / Isotope	MCNP ZAID	Wt. %
Fe-54	26054.60c	0.958	Cu-63	29063.60c	0.205
Fe-56	26056.60c	15.442	Cu-65	29065.60c	0.095
Fe-57	26057.60c	0.360	Nb-93	41093.50c	2.563
Fe-58	26058.60c	0.049	Mo-nat	42000.50c	3.050
Ni-58	28058.60c	35.382	Ta-181	73181.50c	2.563
		Density =	: 8.19 g/cm ³		· · · · · · · · · · · · · · · · · · ·

Table 5.3.3-2.Upper End-Fitting ComponentMaterial Volume Fractions for Each Assembly Design

Incortion Accombly	Volume Fractions in Upper End-Fitting Region				
Specification	SS304	Inconel	zircaloy	Borated Moderator	
No Insertion Assembly (p. 8, Ref. 7.11)	0.2756	0.0441	0.0081	0.6722	
BPRA Inserted (p. 20, Ref. 7.11)	0.2874	0.0450	0.0083	0.6593	
RCCA Inserted (p. 14, Ref. 7.11)	0.2981	0.0441	0.0081	0.6497	
APSRA Inserted (p. 18, Ref. 7.11)	0.2960	0.0441	0.0081	0.6518	

 Table 5.3.3-3.
 Lower End-Fitting Component

 Material Volume Fractions for Each Assembly Design

SS304	Inconel	zircaloy	Borated Moderator		
0.1656	0.0306	0.0125	0.7913		

 Table 5.3.3-4. Homogenized Composition for the Upper

 End-Fitting of the Fuel Assemblies Containing No Insertion Assembly

MCNP	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.065341	0.065341	0.065341		
7014.50c	0.070055	0.070055	0.070055		
14000.50c	0.566086	0.566086	0.566086		
15031.50c	0.033268	0.033268	0.033268		
16032.50c	0.022760	0.022760	0.022760		
24050.60c	0.647766	0.647766	0.647766		

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 54 of 76

•	End-Fitting of the Fuel As	semblies Containing No Inse	ertion Assembly		
MOND	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
24052.60c	12.990500	12.990500	12.990500		
24053.60c	1.501206	1.501206	1.501206		
24054.60c	0.380768	0.380768	0.380768		
25055.50c	1.441772	1.441772	1.441772		
26054.60c	2.855941	2.855941	2.855941		
26056.60c	46.041571	46.041571	46.041571		
26057.60c	1.072979	1.072979	1.072979		
26058.60c	0.145571	0.145571	0.145571		
28058.60c	8.479085	8.479085	8.479085		
28060.60c	3.353250	3.353250	3.353250		
28061.60c	0.147602	0.147602	0.147602		
28062.60c	0.476606	0.476606	0.476606		
28064.60c	0.124712	0.124712	0.124712		
1001.50c	1.856376	1.857178	1.857923		
5010.50c	0.004928	0.003642	0.002445		
5011.56c	0.022514	0.016636	0.011168		
8016.50c	14.733076	14.739436	14.745352		
13027.50c	0.058106	0.058106	0.058106		
22000.50c	0.104592	0.104592	0.104592		
27059.50c	0.116213	0.116213	0.116213		
29063.60c	0.023882	0.023882	0.023882		
29065.60c	0.010982	0.010982	0.010982		
41093.50c	0.297796	0.297796	0.297796		
42000.50c	0.354449	0.354449	0.354449		
73181.50c	0.297796	0.297796	0.297796		
40000.60c	1.678587	1.678587	1.678587		
50000.35c	0.023936	0.023936	0.023936		
Density (g/cm ³)	3.107907	3.107907	3.107907		

aganized Composition for the Upper T-LI- 5224

Table 5.3.3-5. Homogenized Composition for the Upper End-Fitting of the Fuel Assemblies Containing a BPRA

MCNP ZAID	Wt. % of Element/Isotope in Material Composition			
	Cycle 1	Cycle 5	Cycle 5	
	0.0 EFPD	0.0 EFPD	114.4 EFPD	

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 55 of 76

End-Fitting of the Fuel Assemblies Containing a BPRA					
MCND	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
6000.50c	0.065977	0.065977	0.065977		
7014.50c	0.070954	0.070954	0.070954		
14000.50c	0.572467	0.572467	0.572467		
15031.50c	0.033657	0.033657	0.033657		
16032.50c	0.023014	0.023014	0.023014		
24050.60c	0.654074	0.654074	0.654074		
24052.60c	13.116996	13.116996	13.116996		
24053.60c	1.515824	1.515824	1.515824		
24054.60c	0.384476	0.384476	0.384476		
25055.50c	1.459393	1.459393	1.459393		
26054.60c	2.890173	2.890173	2.890173		
26056.60c	46.593440	46.593440	46.593440		
26057.60c	1.085840	1.085840	1.085840		
26058.60c	0.147316	0.147316	0.147316		
28058.60c	8.498433	8.498433	8.498433		
28060.60c	3.360902	3.360902	3.360902		
28061.60c	0.147939	0.147939	0.147939		
28062.60c	0.477693	0.477693	0.477693		
28064.60c	0.124996	0.124996	0.124996		
1001.50c	1.768407	1.769170	1.769880		
5010.50c	0.004700	0.003474	0.002334		
5011.56c	0.021469	0.015870	0.010661		
8016.50c	14.034993	14.041051	14.046687		
13027.50c	0.057588	0.057588	0.057588		
22000.50c	0.103658	0.103658	0.103658		
27059.50c	0.115175	0.115175	0.115175		
29063.60c	0.023668	0.023668	0.023668		
29065.60c	0.010884	0.010884	0.010884		
41093.50c	0.295137	0.295137	0.295137		
42000.50c	0.351285	0.351285	0.351285		
73181.50c	0.295137	0.295137	0.295137		
40000.60c	1.670585	1.670585	1.670585		
50000.35c	0.023822	0.023822	0.023822		

Table 5.3.3-5. Homogenized Composition for the Upper

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 56 of 76

	Table 5.3.3-5. HomoEnd-Fitting of the F	genized Composition for the uel Assemblies Containing a	e Upper a BPRA	
MOND	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
Density (g/cm ³)	3.199901	3.199901	3.199901	

 Table 5.3.3-6. Homogenized Composition for the Upper

 End-Fitting of the Fuel Assemblies Containing a RCCA

MOND	Wt. % of Element/Isotope in Material Composition			
	Cycle 1	Cycle 5	Cycle 5	
	0.0 EFPD	0.0 EFPD	114.4 EFPD	
6000.50c	0.066484	0.066484	0.066484	
7014.50c	0.072054	0.072054	0.072054	
14000.50c	0.579082	0.579082	0.579082	
15031.50c	0.034082	0.034082	0.034082	
16032.50c	0.023274	0.023274	0.023274	
24050.60c	0.659090	0.659090	0.659090	
24052.60c	13.217598	13.217598	13.217598	
24053.60c	1.527450	1.527450	1.527450	
24054.60c	0.387425	0.387425	0.387425	
25055.50c	1.479755	1.479755	1.479755	
26054.60c	2.928778	2.928778	2.928778	
26056.60c	47.215806	47.215806	47.215806	
26057.60c	1.100344	1.100344	1.100344	
26058.60c	0.149284	0.149284	0.149284	
28058.60c	8.401824	8.401824	8.401824	
28060.60c	3.322696	3.322696	3.322696	
28061.60c	0.146257	0.146257	0.146257	
28062.60c	0.472263	0.472263	0.472263	
28064.60c	0.123575	0.123575	0.123575	
1001.50c	1.706148	1.706885	1.707570	
5010.50c	0.004534	0.003351	0.002251	
5011.56c	0.020710	0.015308	0.010282	
8016.50c	13.540859	13.546704	13.552142	
13027.50c	0.055254	0.055254	0.055254	
22000.50c	0.099457	0.099457	0.099457	
27059.50c	0.110507	0.110507	0.110507	
29063.60c	0.022709	0.022709	0.022709	

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 57 of 76

	End-Fitting of the F	uel Assemblies Containing	a RCCA	
MOND	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
29065.60c	0.010443	0.010443	0.010443	
41093.50c	0.283175	0.283175	0.283175	
42000.50c	0.337047	0.337047	0.337047	
73181.50c	0.283175	0.283175	0.283175	
40000.60c	1.596174	1.596174	1.596174	
50000.35c	0.022761	0.022761	0.022761	
Density (g/cm ³)	3.268373	3.268373	3.268373	

Table 5.3.3-6. Homogenized Composition for the Upper End-Fitting of the Fuel Assemblies Containing a RCCA

Table 5.3.3-7. Homogenized Composition for the Upper End-Fitting of the Fuel Assemblies Containing an APSRA

MCND	Wt. % of Element/Isotope in Material Composition			
	Cycle 1	Cycle 5	Cycle 5	
	0.0 EFPD	0.0 EFPD	<u>114.4 EFPD</u>	
6000.50c	0.066382	0.066382	0.066382	
7014.50c	0.071876	0.071876	0.071876	
14000.50c	0.577923	0.577923	0.577923	
15031.50c	0.034009	0.034009	0.034009	
16032.50c	0.023228	0.023228	0.023228	
24050.60c	0.658081	0.658081	0.658081	
24052.60c	13.197350	13.197350	13.197350	
24053.60c	1.525110	1.525110	1.525110	
24054.60c	0.386831	0.386831	0.386831	
25055.50c	1.476369	1.476369	1.476369	
26054.60c	2.922284	2.922284	2.922284	
26056.60c	47.111112	47.111112	47.111112	
26057.60c	1.097904	1.097904	1.097904	
26058.60c	0.148953	0.148953	0.148953	
28058.60c	8.408713	8.408713	8.408713	
28060.60c	3.325420	3.325420	3.325420	
28061.60c	0.146377	0.146377	0.146377	
28062.60c	0.472650	0.472650	0.472650	
28064.60c	0.123677	0.123677	0.123677	
1001.50c	1.719542	1.720285	1.720975	
5010.50c	0.004569	0.003377	0.002268	

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 58 of 76

	End-Fitting of the Fuel Assemblies Containing an APSRA					
MOND	Wt. % of 1	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD			
5011.56c	0.020871	0.015427	0.010361			
8016.50c	13.647157	13.653047	13.658528			
13027.50c	0.055508	0.055508	0.055508			
22000.50c	0.099914	0.099914	0.099914			
27059.50c	0.111016	0.111016	0.111016			
29063.60c	0.022814	0.022814	0.022814			
29065.60c	0.010491	0.010491	0.010491			
41093.50c	0.284478	0.284478	0.284478			
42000.50c	0.338599	0.338599	0.338599			
73181.50c	0.284478	0.284478	0.284478			
40000.60c	1.603522	1.603522	1.603522			
50000.35c	0.022865	0.022865	0.022865			
Density (g/cm ³)	3.253396	3.253396	3.253396			

Table 5.3.3-7. Homogenized Composition for the Upper

Table 5.3.3-8. Homogenized Composition for the Lower End-Fitting of the Fuel Assemblies

MOND	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
6000.50c	0.055458	0.055458	0.055458	
7014.50c	0.058178	0.058178	0.058178	
14000.50c	0.475341	0.475341	0.475341	
15031.50c	0.027852	0.027852	0.027852	
16032.50c	0.019125	0.019125	0.019125	
24050.60c	0.549884	0.549884	0.549884	
24052.60c	11.027530	11.027530	11.027530	
24053.60c	1.274362	1.274362	1.274362	
24054.60c	0.323231	0.323231	0.323231	
25055.50c	1.202563	1.202563	1.202563	
26054.60c	2.386309	2.386309	2.386309	
26056.60c	38.470485	38.470485	38.470485	
26057.60c	0.896538	0.896538	0.896538	
26058.60c	0.121633	0.121633	0.121633	
28058.60c	7.570101	7.570101	7.570101	
28060.60c	2.993772	2.993772	2.993772	

27059.50c

29063.60c

29065.60c

41093.50c

42000.50c

73181.50c

40000.60c

50000.35c

Density

 (g/cm^3)

Engineering Calculation

0.111449 0.022903

0.010532

0.285587

0.339919

0.285587

3.580196

0.051052

2.248693

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

0.111449

0.022903

0.010532

0.285587

0.339919

0.285587

3.580196

0.051052

2.248693

Page 59 of 76

Table 5.3.3-8	. Homogenized Composi	tion for the Lower End-Fitti	ing of the Fuel Assemblies		
	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
28061.60c	0.131779	0.131779	0.131779		
28062.60c	0.425512	0.425512	0.425512		
28064.60c	0.111342	0.111342	0.111342		
1001.50c	3.020276	3.021579	3.022793		
5010.50c	0.007935	0.005842	0.003894		
5011.56c	0.036247	0.026684	0.017788		
8016.50c	23.971366	23.981712	23.991339		
13027.50c	0.055724	0.055724	0.055724		
22000.50c	0.100304	0.100304	0.100304		

0.111449

0.022903

0.010532

0.285587

0.339919

0.285587

3.580196

0.051052

2.248693

Table 5.3.3-9. Homogenized Composition for the Upper End Spacer Grid of the Fuel Assemblies

MOND	Wt. % of Element/Isotope in Material Composition				
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD		
1001.50c	7.396822	7.400007	7.402972		
8016.50c	58.696480	58.721748	58.745277		
5010.50c	0.019463	0.014353	0.009595		
5011.56c	0.088909	0.065566	0.043830		
6000.50c	0.027040	0.027040	0.027040		
14000.50c	0.118301	0.118301	0.118301		
15031.50c	0.005070	0.005070	0.005070		
16032.50c	0.005070	0.005070	0.005070		
24050.60c	0.268037	0.268037	0.268037		
24052.60c	5.375271	5.375271	5.375271		
24053.60c	0.621251	0.621251	0.621251		

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 60 of 76

	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
24054.60c	0.157510	0.157510	0.157510	
25055.50c	0.118301	0.118301	0.118301	
26054.60c	0.323807	0.323807	0.323807	
26056.60c	5.219512	5.219512	5.219512	
26057.60c	0.121655	0.121655	0.121655	
26058.60c	0.016529	0.016529	0.016529	
28058.60c	11.959299	11.959299	11.959299	
28060.60c	4.728853	4.728853	4.728853	
28061.60c	0.209105	0.209105	0.209105	
28062.60c	0.671440	0.671440	0.671440	
28064.60c	0.176493	0.176493	0.176493	
13027.50c	0.169002	0.169002	0.169002	
22000.50c	0.304203	0.304203	0.304203	
27059.50c	0.338004	0.338004	0.338004	
29063.60c	0.069257	0.069257	0.069257	
29065.60c	0.032144	0.032144	0.032144	
41093.50c	0.866134	0.866134	0.866134	
42000.50c	1.030911	1.030911	1.030911	
73181.50c	0.866134	0.866134	0.866134	
Density (g/cm ³)	1.107329	1.107329	1.107329	

Table 5.3.3-9. Homogenized Composition for the Upper End Spacer Grid of the Fuel Assemblies

 Table 5.3.3-10. Homogenized Composition for the

 Intermediate Spacer Grid of the Fuel Assemblies

MCND	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
1001.50c	5.414355	5.416686	5.418856	
8016.50c	42.964878	42.983372	43.000595	
5010.50c	0.014536	0.010795	0.007312	
5011.56c	0.066399	0.049313	0.033402	
6000.50c	0.041234	0.041234	0.041234	
14000.50c	0.180400	0.180400	0.180400	
15031.50c	0.007731	0.007731	0.007731	
16032.50c	0.007731	0.007731	0.007731	

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

M.L.L. 6 4 4 40 YY

Page 61 of 76

Intermediate Spacer Grid of the Fuel Assemblies				
MCNP	Wt. % of Element/Isotope in Material Composition			
ZAID	Cycle 1 0.0 EFPD	Cycle 5 0.0 EFPD	Cycle 5 114.4 EFPD	
24050.60c	0.408735	0.408735	0.408735	
24052.60c	8.196872	8.196872	8.196872	
24053.60c	0.947359	0.947359	0.947359	
24054.60c	0.240190	0.240190	0.240190	
25055.50c	0.180400	0.180400	0.180400	
26054.60c	0.493781	0.493781	0.493781	
26056.60c	7.959350	7.959350	7.959350	
26057.60c	0.185514	0.185514	0.185514	
26058.60c	0.025206	0.025206	0.025206	
28058.60c	18.237001	18.237001	18.237001	
28060.60c	7.211134	7.211134	7.211134	
28061.60c	0.318870	0.318870	0.318870	
28062.60c	1.023893	1.023893	1.023893	
28064.60c	0.269138	0.269138	0.269138	
13027.50c	0.257715	0.257715	0.257715	
22000.50c	0.463886	0.463886	0.463886	
27059.50c	0.515429	0.515429	0.515429	
29063.60c	0.105611	0.105611	0.105611	
29065.60c	0.049017	0.049017	0.049017	
41093.50c	1.320787	1.320787	1.320787	
42000.50c	1.572059	1.572059	1.572059	
73181.50c	1.320787	1.320787	1.320787	
Density (g/cm ³)	1.441420	1.441420	1.441420	

5.3.4. Fuel Rod Materials

The fuel rod components include the fuel rod cladding, the upper and lower fuel rod plenums (including end-caps), and the fuel. The fuel rod cladding is modeled as zircaloy as presented in Table 5.3.2-15. The upper and lower fuel rod plenum regions contain SS304 springs. The zircaloy end-caps are also homogenized in the upper and lower fuel rod plenum. Fission gases present in the upper and lower fuel rod plenum regions. Table 5.3.4-1 contains the component material volume fractions for the fuel rod plenum regions (with end-caps included). These component material volume fractions were calculated as follows:

1. The fuel rod upper plenum region includes a homogenization of regions 6 and 7 as presented on page 12 of Reference 7.11. The cladding is not included in the homogenization volume.

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 62 of 76

2. The volume fraction data as presented on page 12 of Reference 7.11 is as follows:

<u>Region</u>	<u>SS304</u>	<u>zircaloy</u>	<u>Cladding</u>	Gas
6	0.0	0.3344	0.1940	0.4716
7	0.0810	0.0439	0.2313	0.6438
9	0.1230	0.1926	0.2163	0.4681

This data was renormalized to exclude the cladding volume fractions as follows:

<u>Region</u>	<u>SS304</u>	<u>zircaloy</u>	<u>Cladding</u>	Gas
6	0.0	0.4149	0.0	0.5851 (balance)
7	0.1054	0.0571	0.0	0.8375 (balance)
9	0.1569	0.2458	0.0	0.5973 (balance)

- 3. According to the data provided on pages 11 and 22 of Reference 7.11, the volume fraction of region 6 to the combination of regions 6 and 7 is equal to 4.42/19.161 which equals 0.2307.
- 4. The volume fraction of 0.2307 for region 6 was used to calculate the following volume fractions for the combination of regions 6 and 7: SS304=0.0811, zircaloy=0.1396, Cladding=0.0, Gas=0.7793 (balance).
- 5. The reference lower fuel rod plenum volume fractions were renormalized to exclude the cladding as shown in step 2.

Table 5.3.4-2 contains the homogenized material compositions for the upper and lower fuel rod plenum regions. The helium-filled gap between the fuel rod cladding and the fuel is modeled as void. The fresh fuel composition is uniform along the axial length of the fuel rod. The weight percent (wt%) enrichment of U-235 in the uranium of the fabricated UO_2 is presented in Table 5.3.4-3 for each fuel batch. The mass loading of uranium in the entire fuel assembly is also presented in Table 5.3.4-3. The compositions of the fresh fuel are presented in Table 5.3.4-4. The isotopic weight percentages in the fresh fuel composition are calculated using the following equations.

Equation 5.3.4-1. Uranium Isotope Weight Percents in Fabricated UO₂ (p. 20, Ref. 7.10)

 $U^{234} wt\% = (0.007731)* (U^{235} wt\%)^{1.0837}$

 $U^{236} wt\% = (0.0046)*(U^{235} wt\%)$

 $U^{238} wt\% = 100 - U^{234} wt\% - U^{235} wt\% - U^{236} wt\%$

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Equation 5.3.4-2. Uranium Mass per mol of UO₂

$$\frac{U Mass}{mol UO_2} = (1.008664904) \left[(232.030) (U^{234} wt\%) + (233.025) (U^{235} wt\%) + (234.018) (U^{236} wt\%) + (236.006) (U^{238} wt\%) + (236.006) (U^{238} wt\%) \right] (0.01)$$

where the weight percentages of the uranium isotopes $(U^{234}, U^{235}, U^{236}, and U^{238})$ in uranium are calculated using Equation 5.3.4-1.

Equation 5.3.4-3. Oxygen Mass per mol of UO₂

$$\frac{O Mass}{mol UO_2} = (2)(1.008664904)(15.858)$$

Equation 5.3.4-4. Oxygen Mass in UO₂

$$O \text{ Mass in } UO_2 = \begin{pmatrix} O \text{ Mass} / mol UO_2 \\ \hline U \text{ Mass} / mol UO_2 \\ \hline Mol UO_2 \end{pmatrix} (U \text{ Mass in } UO_2)$$

The wt% of each uranium isotope in the fresh UO_2 composition is determined by multiplying the wt% of each uranium isotope in the enriched uranium by the weight fraction of uranium in the UO_2 . The wt% of oxygen in the UO_2 is the weight fraction of oxygen in UO_2 multiplied by 100.

The burned fuel is delineated into eighteen axial regions each having a unique material composition. The height of top and bottom axial nodes is 20.0660 cm. The height of the other axial nodes is 20.0025 cm. These nodal heights correspond directly to the nodal heights utilized in the fuel depletion calculations. Each nodal depleted fuel composition is obtained from SAS2H depletion calculations documented throughout Reference 7.3. The depleted fuel compositions for the best-estimate reactivity calculations may contain up to 85 isotopes from the list presented in Table 5.3.4-5. The depleted fuel compositions for the principal isotope reactivity calculations may contain up to 30 isotopes from the list presented in Table 5.3.4-6. The depleted fuel compositions for the principal actinide reactivity calculations may contain up to 15 isotopes from the list presented in Table 5.3.4-7. The depleted fuel compositions for the principal actinide reactivity calculations may contain up to 11 isotopes from the list presented in Table 5.3.4-8. Each depleted fuel composition is modeled in terms of isotopic weight percents and an overall nodal fuel density. The weight percent of each isotope in the nodal depleted fuel composition is calculated based on the total mass of all isotopes in the nodal composition. The mass of oxygen in each nodal depleted fuel composition is calculated based on the fresh fuel characteristics as described in Equations 5.3.4-1 through 5.3.4-4. This mass of oxygen is combined with the total isotopic fuel mass obtained from the depletion calculations to determine an overall total depleted fuel mass upon which the various isotopic weight percents are based. The MCNP output files for each CRC reactivity calculation are contained in Attachment III (this attachment has been moved to Reference 7.15). These output files contain an echo of the MCNP input decks for each CRC statepoint reactivity calculation. The nodal fuel isotopic compositions are listed in the input decks in terms of ZAID's, weight percents, and density (g/cm³). Each nodal fuel composition is identified by assembly and node in the material

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 64 of 76

specification section of the input decks. The nodal fuel densities are shown on the geometric cell specifications for each fuel node. The nodal fuel densities are based on the fuel mass and fuel volume in each nodal region. The fuel volume is calculated using the number of fuel rods, nodal height, and pellet diameter. Therefore, dishing and chamfering of the fresh fuel pellets are accounted for on a mass basis by a slightly adjusted fuel density. However, the geometrical features of the fresh fuel pellet dishing and chamfering is to enhance fuel performance. These geometrical features have no significant impact on system reactivity. The most important concern in determining system reactivity is to assure that fuel mass preservation is maintained. The fuel densities used in the MCNP models ensure preservation of mass.

Table 5.3.4-1. Fuel Rod Plenum Material Volume Fractions

Plenum Location	Type 304 Stainless Steel	Gas (modeled as void)	zircaloy
Upper	0.0811	0.7793	0.1396
Lower	0.1569	0.5973	0.2458

Wt. % of Element/Isotope in Material Composition MCNP ZAID **Upper Fuel Rod Plenum** Lower Fuel Rod Plenum 0.032930 0.034769 6000.50c 7014.50c 0.041163 0.043462 0.308723 0.325963 14000.50c 0.019558 0.018523 15031.50c 16032.50c 0.012349 0.013039 0.347013 24050.60c 0.328881 24052.60c 6.595473 6.959098 0.762185 0.804206 24053.60c 0.193322 0.203980 24054.60c 25055.50c 0.823262 0.869234 26054.60c 1.619288 1.709074 26.105070 27.552548 26056.60c 26057.60c 0.608367 0.642100 26058.60c 0.082537 0.087114 28058.60c 2.566109 2.709403 28060.60c 1.071496 1.014827 28061.60c 0.047165 0.044670 28062.60c 0.144240 0.152294 28064.60c 0.037743 0.039850 8016.50c 0.070604 0.067846 40000.60c 57.766047 55.509283

Table 5.3.4-2. Fuel Rod Plenum Homogenized Material Compositions

Engineering Calculation

...

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 65 of 76

Table 5.3.4-2. Fuel Rod Plenum Homogenized Material Compositions					
	Wt. % of Element/Isotope in Material Composition				
MCNP ZAID	Upper Fuel Rod Plenum	Lower Fuel Rod Plenum			
50000.35c	0.823716	0.791536			
Density (g/cm ³)	1.556466	2.851958			

Table 5.3.4-3. Fuel Batch Enrichment and Uranium Mass Loading (p. 22, Ref. 7.11)

Fuel Batch Identifier	U-235 wt. % in Uranium	Mass of Uranium per Fuel Assembly (kg)
1	2.06	463.63
2	2.75	463.63
3	3.05	463.63
4	2.64	463.63
5	2.85	463.63
6	2.85	463.63
7	2.85	463.63

Table 5.3.4-4. Fresh Fuel Material Composition for Each Fuel Batch

Evel Botch	Wt. % of Element/Isotope in Material Composition							
Identifier	U-234	U-235	U-236	U-238	Oxygen	Density (g/cm ³) ¹		
1	0.01491	1.81590	0.00835	86.31146	11.84938	10.1207		
2	0.02040	2.42412	0.01115	85.69404	11.85030	10.1208		
3	0.02282	2.68855	0.01237	85.42555	11.85070	10.1209		
4	Not Used ²	Not Used	Not Used	Not Used	Not Used	Not Used		
5	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used		
6	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used		
7	0.02120	2.51226	0.01156	85.60455	11.85043	10.1480		

¹ This density is the fresh fuel density based on preservation of mass using the mass loading of uranium in the assembly, the initial enrichment, and the pellet stack height dimensions.

² The fresh fuel compositions for fuel batches 4, 5, and 6 did not have to be specified in any of the MCNP input decks for the Three Mile Island Unit 1 CRC evaluations. However, depleted fuel compositions were specified for these fuel batches.

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 66 of 76

Table 5.3.4-5. Isotope Set from which Best-EstimateMCNP Depleted Fuel Compositions are Developed								
Isotope	MCNP ZAID	Isotope	MCNP ZAID	Isotope	MCNP ZAID			
H-3	1003.50c	Cs-135	55135.50c	Pa-233	91233.50c			
He-4	2004.50c	Ba-138	56138.50c	U-233	92233.50c			
Li-6	3006.50c	Pr-141	59141.50c	U-234	92234.50c			
Li-7	3007.55c	Nd-143	60143.50c	U-235	92235.53c			
Be-9	4009.50c	Nd-145	60145.50c	U-236	92236.50c			
O-16	8016.50c	Nd-147	60147.50c	U-237	92237.50c			
As-75	33075.35c	Nd-148	60148.50c	U-238	92238.53c			
Kr-80	36080.50c	Pm-147	61147.50c	Np-235	93235.35c			
Kr-82	36082.50c	Pm-148	61148.50c	Np-236	93236.35c			
Kr-83	36083.50c	Pm-149	61149.50c	Np-237	93237.50c			
Kr-84	36084.50c	Sm-147	62147.50c	Np-238	93238.35c			
Kr-86	36086.50c	Sm-149	62149.50c	Pu-237	94237.35c			
Y-89	39089.50c	Sm-150	62150.50c	Pu-238	94238.50c			
Zr-93	40093.50c	Sm-151	62151.50c	Pu-239	94239.55c			
Nb-93	41093.50c	Sm-152	62152.50c	Pu-240	94240.50c			
Mo-95	42095.50c	Eu-151	63151.55c	Pu-241	94241.50c			
Tc-99	43099.50c	Eu-152	63152.50c	Pu-242	94242.50c			
Ru-101	44101.50c	Eu-153	63153.55c	Am-241	95241.50c			
Ru-103	44103.50c	Eu-154	63154.50c	Am-242	95242.50c			
Rh-103	45103.50c	Eu-155	63155.50c	Am-243	95243.50c			
Rh-105	45105.50c	Gd-152	64152.50c	Cm-242	96242.50c			
Pd-105	46105.50c	Gd-154	64154.50c	Cm-243	96243.35c			
Pd-108	46108.50c	Gd-155	64155.50c	Cm-244	96244.50c			
Ag-107	47107.50c	Gd-156	64156.50c	Cm-245	96245.35c			
Ag-109	47109.50c	Gd-157	64157.50c	Cm-246	96246.35c			
Xe-131	54131.50c	Gd-158	64158.50c	Cm-247	96247.35c			
Xe-134	54134.35c	Gd-160	64160.50c	Cm-248	96248.35c			
Xe-135	54135.53c	Ho-165	67165.55c		<u></u>			
Cs-133	55133.50c	Th-232	90232.50c					

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Page 67 of 76 Document Identifier: B0000000-01717-0210-00008 REV 00

	MCNP Depleted Fuel Compositions are Developed							
Isotope	MCNP ZAID	Isotope	MCNP ZAID	/ Isotope	MCNP ZAID			
O-16	8016.50c	Sm-150	62150.50c	U-238	92238.53c			
Mo-95	42095.50c	Sm-151	62151.50c	Np-237	93237.50c			
Tc-99	43099.50c	Sm-152	62152.50c	Pu-238	94238.50c			
Ru-101	44101.50c	Eu-151	63151.55c	Pu-239	94239.55c			
Rh-103	45103.50c	Eu-153	63153.55c	Pu-240	94240.50c			
Ag-109	47109.50c	Gd-155	64155.50c	Pu-241	94241.50c			
Nd-143	60143.50c	U-233	92233.50c	Pu-242	94242.50c			
Nd-145	60145.50c	U-234	92234.50c	Am-241	95241.50c			
Sm-147	62147.50c	U-235	92235.53c	Am-242	95242.50c			
Sm-149	62149.50c	U-236	92236.50c	Am-243	95243.50c			

Table 5.3.4-6. Isotope Set from which Principal Isotope

 Table 5.3.4-7.
 Isotope Set from which Principal Actinide
 MCNP Depleted Fuel Compositions are Developed

Isotope	MCNP ZAID	Isotope	MCNP ZAID	Isotope	MCNP ZAID
O-16	8016.50c	U-238	92238.53c	Pu-241	94241.50c
U-233	92233.50c	Np-237	93237.50c	Pu-242	94242.50c
U-234	92234.50c	Pu-238	94238.50c	Am-241	95241.50c
U-235	92235.53c	Pu-239	94239.55c	Am-242	95242.50c
U-236	92236.50c	Pu-240	94240.50c	Am-243	95243.50c

Table 5.3.4-8. Isotope Set from which Actinide-Only MCNP Depleted Fuel Compositions are Developed

Isotope	MCNP ZAID	Isotope	MCNP ZAID	Isotope	MCNP ZAID
O-16	8016.50c	U-238	92238.53c	 Pu-241	94241.50c
U-234	92234.50c	Pu-238	94238.50c	Pu-242	94242.50c
U-235	92235.53c	Pu-239	94239.55c	Am-241	95241.50c
U-236	92236.50c	Pu-240	94240.50c	<u> </u>	

5.3.5. Guide Tube and Instrument Tube Materials

The guide tubes and instrument tubes are composed of zircaloy (p. 22, Ref. 7.11). The zircaloy material composition is presented in Table 5.3.2-15. The guide tubes and instrument tubes contain borated moderator as presented in Table 5.3.2-3.

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

5.3.6. BPRA Materials

Each BPRA contains sixteen BPRs (one BPR per guide tube). The BPR components include cladding, upper plenum, and lower end-plug, and burnable poison (BP). The cladding of the BPRs is zircaloy as presented in Table 5.3.2-15 (p. 22, Ref. 7.11). The upper plenum region is modeled as SS304 with a volume fraction of 0.2090 inside of the cladding (p. 20, Ref. 7.11). The SS304 composition is presented in Table 5.3.2-1. The lower end-plug region is modeled as zircaloy inside of the cladding (p. 20, Ref. 7.11).

The fresh BP is uniform along the axial length of the BPR. The BP material is Al_2O_3 -B₄C with an initial density of 3.7 g/cm³ (p. 22, Ref. 7.11). The weight percent of B₄C in the Al_2O_3 -B₄C is either 1.09, 1.26, or 1.43 (p. 25, Ref. 7.11). Table 5.3.6-1 presents the fresh BP compositions. The placement of the various BPRAs in the reactor core in the Cycle 1, 0.0 EFPD, statepoint configuration is presented in Section 5.4. Modeling of depleted BP compositions was not required in any of the Three Mile Island Unit 1 CRC reactivity calculations.

	Wt. % of Elen	Wt. % of Element/Isotope in Material Composition					
MCNP ZAID	1.09 wt% B ₄ C	1.26 wt% B ₄ C	1.43 wt% B ₄ C				
5010.50c	0.15325	0.17715	0.20106				
5011.56c	0.70007	0.80925	0.91843				
6000.50c	0.23668	0.27360	0.31051				
8016.50c	46.55544	46.47542	46.39541				
13027.50c	52.35457	52.26458	52.17460				

 Table 5.3.6-1. Fresh Burnable Poison Material Composition

5.3.7. RCCA Materials

Each RCCA contains sixteen identical control rods (CRs). The CR components include cladding, upper plenum, lower end-plug, and absorber material. The CR cladding is modeled as SS304 as presented in Table 5.3.2-1 (p. 22, Ref. 7.11). The CR upper plenum is not modeled in any of the CRC statepoint configurations due to the partial insertion of the RCCAs. The CR lower end-plug is modeled as SS304 as presented in Table 5.3.2-1 (p. 14, Ref. 7.11). The CR absorber material is Ag-In-Cd with a density of 10.17 g/cm³ (p. 22, Ref. 7.11). Table 5.3.7-1 presents the Ag-In-Cd material composition.

Element / Isotope	MCNP ZAID	Wt. %
Ag-107	47107.60c	41.101
Ag-109	47109.60c	38.899
Cd	48000.50c	5.000
In	49000.60c	15.000

Table 5.3.7-1. Ag-In-Cd Material Composition ¹

¹ Page 22 of Reference 7.11 shows Ag with a weight percentage of 79.8, and the Ag-In-Cd material with a total weight percentage of 99.8. The missing 0.2 weight percent was given to Ag in the modeled Ag-In-Cd material composition.

Page 68 of 76

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 69 of 76

5.3.8. Black APSRA Materials

Each APSRA contains 16 identical APSR's. The Three Mile Island Unit 1 reactor cycles containing CRC statepoints (Cycles 1 and 5) used only black APSRAs. The black APSR contains Ag-In-Cd as the absorber material. The components of the black APSR include cladding, intermediate-plug, upper plenum, lower end-plug, absorber material, and lower spacer. Refer to Figure 5.2.8-1 for the black APSR geometrical modeling specifications. The APSR cladding is modeled as SS304 as presented in Table 5.3.2-1. From the information provided on page 18 of Reference 7.11, the intermediate plug volume is 16.15 cm³/16 which equals 1.0094 cm³. According to the dimensions on page 17 of Reference 7.11, the volume occupied by the intermediate plug is 1.0194 cm³. This results in an intermediate plug volume fraction of $1.0094 \text{ cm}^3/1.0194 \text{ cm}^3$ which equals 0.9902. The upper plenum region is modeled as a gap filled with helium at an arbitrary density of 0.00001 g/cm³. The black APSR type contains a lower zircaloy spacer and a lower SS304 end-plug. The lower spacer and lower endplug are homogenized together to define the material of the lower plenum region in the MCNP model of the APSR. According to page 18 of Reference 7.11, the lower spacer has a volume of 6.11 cm³/16 which equals 0.3819 cm³. According to the dimensions on page 17 and 22 of Reference 7.11, the volumes of the lower spacer region and lower end-plug region are 0.6116 cm³ and 1.8874 cm³, respectively. The total volume of the lower plenum in the MCNP model is then $0.6116 \text{ cm}^3 + 1.8874$ cm³ which equals 2.4990 cm³. The total volume of zircaloy in the modeled lower plenum is 0.3819 cm³. The total volume of SS304 in the modeled lower plenum is 1.8874 cm³. The volume fraction of zircaloy in the modeled lower plenum region is $0.3819 \text{ cm}^3/2.4990 \text{ cm}^3$ which equals 0.1528. The volume fraction of SS304 in the modeled lower plenum region is 1.8874 cm³/2.4990 cm³ which equals 0.7553. The remaining volume fraction in the modeled lower plenum region of 0.0919 is modeled as void. The composition of the Ag-In-Cd absorber material in the black APSR is presented in Table 5.3.7-1.

5.4. Core Loading Descriptions

The core loading description for each CRC statepoint reactivity calculation includes the specification of the various fuel assembly locations, BPRA locations, RCCA locations, and APSRA locations. A core loading description is provided for a particular cycle. All CRC statepoint reactivity calculations in the same reactor cycle use the same core loading description. Figures 5.4-1 and 5.4-2 present the core loading descriptions for cycles 1 and 5 of Three Mile Island Unit 1, respectively. Each fuel assembly has a unique identifier corresponding to the identifiers used in the SAS2H depletion analyses. The fuel assembly placements in each core loading description are presented in Figures 5.4-3 and 5.4-4. The fuel assembly identifiers used in the depletion analyses documented throughout Reference 7.3.

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1	
Document Identifier: B0000000-01717-0210-00008 REV 00	

Page 70 of 76

	08	09	10	11	12	13	14	15
н	F (1) 2	F (1) 2	F (1) 1	F (1) 2	F(1) 1	F (1) 2	F (1) 3	F (1) 3
к		F (1) 1	F (1) 2	F (1) 1	F (1) 2	F (1) 1	F (1) 2	F (1) 3
L			F (1) 1	F (1) 2	F (1) 1	F (1) 2	F (1) 3	F (1) 3
М				F (1) 1	F (1) 2	F (1) 1	F (1) 3	
N					F (1) 1	F (1) 3	F (1) 3	
0						F (1) 3		

RC= Previous Fuel Assembly Position, Row (R), Column (C), {normalized to 1/8 core}F(c)= Cycle (c) in which the Fuel Assembly was Fresh (F)B= Fuel Batch Identifier (B)

Wt. % U-235 Enrichments						
Fresh Cycle Batch Wt. %						
1	1	2.06				
	2	2.75				
	3	3.05				

Burnable Poison Rod Assembly (BPRA) Locations				
Wt. % B ₄ C in BPRA 1/8 Core Row & Column				
1.09	L11, M12			
1.26	H11, H13, K12, L13, N13			
1.43	H09, K10, K14			

Rod Cluster Control Assembly (RCCA) Locations						
RCCA Bank Identifier 1/8 Core Row & Column RCCA Bank Identifier 1/8 Core Row & Column						
Bank 5 K09, M13		Bank 7	H08, L14			
Bank 6	H12, M11	Bank 8 (Black Axial Power Shaping Rod)	L12			

Figure 5.4-1. Core Loading Description for Cycle 1 of Three Mile Island Unit 1 (p. 25, Ref. 7.11)

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 71 of 76

	08	09	10	11	12	13	14	15
н	N12 F (2) 4	H10 F (3) 5	H15 F (4) 6	H14 F (2) 4	L14 F (4) 6	H12 F (3) 5	L14 F (4) 6	F (5) 7
К		M14 F (4) 6	K11 F (3) 5	N14 F (4) 6	M12 F (3) 5	K15 F (4) 6	K12 F (2) 4	F (5) 7
L	•		M14 F (4) 6	L12 F (3) 5	L15 F (4) 6	L11 F (2) 4	F (5) 7	F (5) 7
М				K9 F (3) 5	K13 F (3) 5	N13 F (4) 6	F (5) 7	
N					O13 F (2) 4	F (5) 7	F (5) 7	
0						L10 F (3) 5		

RC	= Previous Fuel Assembly Position, Row (R), Column (C), {normalized to 1/8 core}
F(c)	= Cycle (c) in which the Fuel Assembly was Fresh (F)
В	= Fuel Batch Identifier (B)

Wt. % U-235 Enrichments							
Fresh Cycle Batch Wt. %							
5	4	2.64					
	5	2.85					
	6	2.85					
	7	2.85					

Rod Cluster Control Assembly (RCCA) Locations						
RCCA Bank Identifier 1/8 Core Row & Column RCCA Bank Identifier 1/8 Core Row & Column						
Bank 5	H10, H12, M11	Bank 7	H14, L10, N12			
Bank 6	K13	Bank 8 (Black Axial Power Shaping Rod)	L12			

Figure 5.4-2. Core Loading Description for Cycle 5 of Three Mile Island Unit 1 (p. 29, Ref. 7.11)

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 72 of 76

	08	09	10	11	12	13	14	15
н	A01	A02	A03	A04	A05	A06	A07	A08
к		A09	A10	A11	A12	A13	A14	A15
L			A16	A17	A18	A19	A20	A2 1
м				A22	A23	A24	A25	
N					A26	A27	A28	
0						A29		
	XXX = Fuel Assembly Identifier							

Figure 5.4-3. Fuel Assembly Placement in Cycle 1 of Three Mile Island Unit 1 (p. 30, Ref. 7.11)
Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 73 of 76

Figure 5.4-4. Fuel Assembly Placements in Cycle 5 of Three Mile Island Unit 1 (p. 34, Ref. 7.11)

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 74 of 76

6. Results

This calculation file documents the CRC reactivity evaluations that were performed for three statepoints from Three Mile Island Unit 1. Four reactivity calculations were performed for each of the statepoints other than the beginning-of-life of the reactor (Cycle 1, 0.0 EFPD). Each of these four calculations for each statepoint used a different depleted fuel composition. The four sets of depleted fuel isotopes shown in Tables 5.3.4-5 through 5.3.4-8 were used for the "Best-Estimate", "Principal Isotope", "Principal Actinide", and "Actinide-Only" calculations. Table 6-1 presents the k_{eff} results for each of the Three Mile Island Unit 1 CRC evaluations. The k_{eff} results represent the average combined collision, absorption, and track-length estimator from the MCNP calculations. The standard deviation represents the standard deviation of k_{eff} about the average combined collision, absorption, and track-length estimate due to the Monte Carlo calculation statistics.

Fuel Isotope Set	Three Mile Island Unit 1 CRC Statepoint (keff / standard deviation)			
	Cycle 1, 0.0 EFPD	Cycle 5, 0.0 EFPD	Cycle 5, 114.4 EFPD	
Best-Estimate	1.00141 / 0.00042	0.99088 / 0.00046	0.99162 / 0.00048	
Principal Isotope	Not Applicable	1.00048 / 0.00046	1.00443 / 0.00047	
Principal Actinide	Not Applicable	1.04072 / 0.00045	1.05157 / 0.00048	
Actinide-Only	Not Applicable	1.04243 / 0.00046	1.05363 / 0.00044	

Table 6-1. k_{eff} Results for the Three Mile Island Unit 1 CRC Evaluations

The principal isotope set criticality calculations were originally performed using the Ru-103 cross section library (44103.50c) instead of the Rh-103 cross section library (45103.50c) for Rh-103. The cross section library identifier 44103.50c was manually changed to 45103.50c in the principal isotope set MCNP input decks. The principal isotope set results shown in Table 6-1 are from the corrected calculations.

The corresponding MCNP input and output filenames for the cases shown in Table 6-1, are presented in Table 6-2. The MACE input decks used to generate the MCNP input decks are presented in Attachment I (this attachment has been moved to Reference 7.15). The MACE generated MCNP input decks are presented in Attachment II (this attachment has been moved to Reference 7.15). The MCNP output files are presented in Attachment III (this attachment has been moved to Reference 7.15). The MCNP output files are presented in Attachment III (this attachment has been moved to Reference 7.15). The principal isotope cases contained in Attachments II and III used the incorrect cross section library for Rh-103. Attachment IV (this attachment has been moved to Reference 7.15) contains the corrected principal isotope set MCNP input and output files.

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Page 75 of 76

Tor the Three whic Island Unit I CAC Evaluations				
Fuel Isotope Set	Three Mile Island Unit 1 CRC Statepoint (input filename / output filename)			
	Cycle 1, 0.0 EFPD	Cycle 5, 0.0 EFPD	Cycle 5, 114.4 EFPD	
Best-Estimate	tmiila / tmiila.O	tmii2a / tmii2a.O	tmii3a / tmii3a.O	
Principal Isotope	Not Applicable	tmii2b / tmii2b.O	tmii3b / tmii3b.O	
Principal Actinide	Not Applicable	tmii2c / tmii2c.O	tmii3c / tmii3c.O	
Actinide-Only	Not Applicable	tmii2d / tmii2d.O	tmii3d / tmii3d.O	

Table 6-2. MCNP Input and Output Filenamesfor the Three Mile Island Unit 1 CRC Evaluations

7. References

- 7.1 *MCNP 4B: Monte Carlo N-Particle Transport Code System*. User manual. Los Alamos National Laboratory, Los Alamos, NM. Document Number: LA-12625-M.
- 7.2 SCALE 4.3: Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation. User Manual Volumes 0 through 3, Oak Ridge National Laboratory, Document Number: CCC-545.
- 7.3 CRC Depletion Calculations for Three Mile Island Unit 1. Document Identifier Number (DI#): B0000000-01717-0210-00007 REV 00, Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O).
- 7.4 Software Qualification Report for MCNP Version 4B2, A General Monte Carlo N-Particle Transport Code. DI#: 30033-2003 REV 01, CRWMS M&O.
- 7.5 Nuclide and Isotopes, Chart of the Nuclides, Fourteenth Edition. General Electric Company, 1989.
- 7.6 Radiological Health Handbook, January 1970 Revision. Bureau of Radiological Health; U.S. Department of Health, Education, and Welfare; Public Health Service; Food and Drug Administration.
- 7.7 Material Compositions and Number Densities for Neutronics Calculations. DI#: BBA000000-01717-0200-00002 REV 00, CRWMS M&O.
- 7.8 Huntington Alloys: Inconel Alloy 718, Third Edition, 1978.
- 7.9 This reference is intentionally left blank.
- 7.10 Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3. Document Number: ORNL/TM-12294/V2. Oak Ridge National Laboratory, March 1995.

Engineering Calculation

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Page 76 of 76

- 7.11 Summary Report of Commercial Reactor Criticality Data for Three Mile Island Unit 1. DI#: B0000000-01717-5705-00069 REV 00, CRWMS M&O.
- 7.12 Addendum to Software Qualification Report for MCNP4A Covering Addition of ENDF/B-VI Cross Sections. DI#: 30006-2005 REV 00, CRWMS M&O.
- 7.13 This reference is intentionally left blank.
- 7.14 CRC Reactivity Calculations for Sequoyah Unit 2. DI#: B0000000-01717-0210-00006 REV 00, CRWMS M&O.
- 7.15 CRC Reactivity Calculations for Three Mile Island Unit 1 (DI#: B00000000-01717-0210-00008 REV 00) - Attachments I through IV - 1 Data Cartridge. Batch Number: MOY-980604-07.

8. Attachments

Table 8-1 presents the attachment specifications for this calculation file. Attachments I through IV have been moved to Reference 7.15. Attachments I through IV were written in ASCII format to an attachment tape. This attachment tape was provided with REV 00A of this calculational file. After checking of the attachment tape in REV 00A, the tape was made a reference (Ref. 7.15). Detailed listings of the content of Attachments I through IV on the tape are provided in their corresponding hard-copy attachment locations in this calculation file. The tape containing Attachments I through IV (Ref. 7.15) was written using the HP Colorado Model T1000e External Parallel Port Backup System for personal computers.

Attachment #	# of Pages	Creation Date	Description
	1 (Hard-Copy		MACE Input Decks for the
I	Listing of	04/01/98	Three Mile Island Unit 1 Reactivity Calculations
	Tape Content)	·	(moved to Reference 7.15)
	1 (Hard-Copy		MACE Generated MCNP Input Decks for the
П	Listing of	04/01/98	Three Mile Island Unit 1 Reactivity Calculations
	Tape Content)		(moved to Reference 7.15)
	1 (Hard-Copy		MCNP Output Files for the
Ш	Listing of	04/01/98	Three Mile Island Unit 1 Reactivity Calculations
	Tape Content)		(moved to Reference 7.15)
	1 (Hard-Copy		MCNP Input and Output Files for the Corrected
IV	Listing of	06/03/98	Principal Isotope Set Reactivity Calculations
	Tape Content)		(moved to Reference 7.15)

Table 0-1. Allacinnent Lisung	able 8-1. Att	achment	Listing
-------------------------------	---------------	---------	---------

Engineering Calculation Attachment

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Attachment I, Page 1 of 1

This attachment contains the MACE input decks used to generate the MCNP input decks. These files are contained on an attachment tape of this calculational file (the attachment tape has been moved to Reference 7.15). The filenames indicate the CRC reactivity calculation to which they apply by correspondence with Table 6-2. The file sizes listed in the following table are the file sizes as contained on the attachment tape (Ref. 7.15). The tape containing Attachment I was written using the HP Colorado Model T1000e External Parallel Port Backup System for personal computers.

Filename	File Type	File Size (Bytes)	Date File Copied to Tape
tmii1a.txt	ASCII	74,689	04/01/98
tmii2a.txt	ASCII	59,713	04/01/98
tmii2b.txt	ASCII	59,693	04/01/98
tmii2c.txt	ASCII	59,693	04/01/98
tmii2d.txt	ASCII	59,693	04/01/98
tmii3a.txt	ASCII	59,709	04/01/98
tmii3b.txt	ASCII	59,689	04/01/98
tmii3c.txt	ASCII	59,689	04/01/98
tmii3d.txt	ASCII	59,689	04/01/98

Engineering Calculation Attachment

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Attachment II, Page 1 of 1

This attachment contains the MCNP input decks for the Three Mile Island Unit 1 reactivity calculations. These files are contained on an attachment tape of this calculational file (the attachment tape has been moved to Reference 7.15). The filenames indicate the CRC reactivity calculation to which they apply by correspondence with Table 6-2. The file sizes listed in the following table are the file sizes as contained on the attachment tape (Ref. 7.15). The tape containing Attachment II was written using the HP Colorado Model T1000e External Parallel Port Backup System for personal computers.

Filename	File Type	File Size (Bytes)	Date File Copied to Tape
tmiila	ASCII	602,701	04/01/98
tmii2a	ASCII	1,335,681	04/01/98
tmii2b	ASCII	835,923	04/01/98
tmii2c	ASCII	635,149	04/01/98
tmii2d	ASCII	582,085	04/01/98
tmii3a	ASCII	1,666,344	04/01/98
tmii3b	ASCII	942,079	04/01/98
tmii3c	ASCII	677,481	04/01/98
tmii3d	ASCII	607,839	04/01/98

Engineering Calculation Attachment

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B00000000-01717-0210-00008 REV 00

Attachment III, Page 1 of 1

This attachment contains the MCNP output files for the Three Mile Island Unit 1 reactivity calculations. These files are contained on an attachment tape of this calculational file (the attachment tape has been moved to Reference 7.15). The filenames indicate the CRC reactivity calculation to which they apply by correspondence with Table 6-2. The file sizes listed in the following table are the file sizes as contained on the attachment tape (Ref. 7.15). The tape containing Attachment III was written using the HP Colorado Model T1000e External Parallel Port Backup System for personal computers.

Filename	File Type	File Size (Bytes)	Date File Copied to Tape
tmii1a.O	ASCII	7,309,459	04/01/98
tmii2a.O	ASCII	11,447,330	04/01/98
tmii2b.O	ASCII	8,263,450	04/01/98
tmii2c.O	ASCII	6,974,089	04/01/98
tmii2d.O	ASCII	6,634,822	04/01/98
tmii3a.O	ASCII	13,529,508	04/01/98
tmii3b.O	ASCII	8,914,820	04/01/98
tmii3c.O	ASCII	7,213,121	04/01/98
tmii3d.O	ASCII	6,769,723	04/01/98

Engineering Calculation Attachment

Title: CRC Reactivity Calculations for Three Mile Island Unit 1 Document Identifier: B0000000-01717-0210-00008 REV 00

Attachment IV, Page 1 of 1

This attachment contains the MCNP input and output files for the corrected principal isotope set reactivity calculations. These files are contained on an attachment tape of this calculational file (the attachment tape has been moved to Reference 7.15). The filenames indicate the CRC reactivity calculation to which they apply by correspondence with Table 6-2. The file sizes listed in the following table are the file sizes as contained on the attachment tape (Ref. 7.15). The tape containing Attachment IV was written using the HP Colorado Model T1000e External Parallel Port Backup System for personal computers.

Filename	File Type	File Size (Bytes)	Date File Copied to Tape
tmii2b	ASCII	835,923	06/03/98
tmii2b.O	ASCII	8,262,973	06/03/98
tmii3b	ASCII	942,079	06/03/98
tmii3b.O	ASCII	8,909,789	06/03/98