CRWMS/M&O

Calculation Cover Sheet

Complete only applicable items.

1. QA: L Page: 1 Of: 54

2. Calculation Title					
CRC Reactivity Cal	culations for Quad Cities Unit 2				
3. Document Identifier (including Revision Number)			4. Total Pages		
B0000000-01717-0210-00010 REV 01			54		
5. Total Attachments6. Attachment Numbers - Number of pages in each20See "Remarks" Block for listing					
	Print Name	Signature	Date		
7. Originator	D.A. Salmon	Nosh	10/27/99		
8. Checker	J.M. Scaglione	John M. Scafline	e 10/27/99		
9. Lead	D.A. Thomas	Daukoms	10/28/1999		
10. Remarks					
List of Attachments XV-57, XVI-14, X	: I-4, II-12, III-42, IV-15, V-11, VI-40, VII-11, VI VII-13, XVIII-27, XIX-20, XX-180	II-36, IX-13, X-15, XI-13, XII-8, X	III-76, XIV-241,		
The number of page	s shown for Attachment I refers to the number of p	ages in the listing of the contents of	the CDs		
Í					
		tory			
11 Revision No		ascription of Revision	<u>, , , ,</u>		
00	Initial Issuance		<u> </u>		
01	A complete revision to recalculate the results using	ng new input depletion data.			
,					
ſ					

CONTENTS

P	a	g	e
-		-	-

1.	PURPOSE	6
2.	METHOD	6
3.	ASSUMPTIONS	6
4.	USE OF COMPUTER SOFTWARE AND MODELS	9
4 4	 .1 SOFTWARE APPROVED FOR QA WORK	9 9
5.	CALCULATION	10
5 5 5 5 5 5 5 5 5 5	 AUTOMATION OF MCNP INPUT DECK CREATION ACQUISITION PROCESS FRAMEWORK AUTOMATION CREATION CONVENTIONS FOR SURFACE, CELL, AND MATERIALS NUMBERING DEVELOPMENT OF MCNP INPUT FOR QUAD CITIES UNIT 1, BOL, CRITICALITY CALCULATIONS DEVELOPMENT OF MCNP INPUT FOR QUAD CITIES UNIT 2, CYCLE 13, CRITICALITY CALCULATIONS DEVELOPMENT OF MCNP INPUT FOR QUAD CITIES UNIT 2, CYCLE 14, CRITICALITY CALCULATIONS 	10 13 29 32 42 42 42 42 42
6.	RESULTS	44
6 6	 TREATMENT OF GADOLINIA	45 51
7.	REFERENCES	52
8.	ATTACHMENTS	54

Page 2 of 54

TABLES

Page

5-1. Task List for Prototype Implementation	
5-2. Task List for Production Software Routine Creation	
5-3. Library Identifiers for Nuclides Used in Evaluations	
5-4. List of Nuclides in "Principal Isotope" Set	
5-5. List of Nuclides in "Principal Actinide" Set	
5-6. List of Nuclides in "Actinide-only" Set	
5-7. Input Requirements for IDSGEN	
5-8. Input Requirements for BLINK	
5-9. Location of Data for Core Structures	
5-10. Order of Indices	
5-11. Critical Experiments Performed in Cycle 13, in Quad Cities Unit 2	
5-12. Critical Experiments Performed in Cycle 14, in Quad Cities Unit 2	
6-1. Results for CRC Reactivity Calculations	44
6-2. Gadolinium Inventory for Node 3	47
6-3. Gadolinium Inventory for Node 7	48
8-1. List of Attachments	55

Calculation

Page 3 of 54

CARL REPORT AND COMPANY AND ADDRESS

~

FIGURES

Page

5.1. Commentation MCND Medal for DWD Corre (Disport Slice)	15
5-1. Components in MCNP Model for B w R Core (Planar Slice)	• • •
5-2. Components in MCNP Model for BWR Core (Axial Slice)	. 16
5-3. 7x7 BWR Fuel Assembly (Planar Section)	. 17
5-4. BWR Fuel Assembly (Axial Section)	. 18
5-5. Control Blade Model	. 19
5-6. Origin for MCNP Model	. 33
5-7. Fuel Assembly Model	. 33
5-8. Control Blade Model	. 34
5-9. Control Cell Layout Illustration	. 35
5-10. Core Arrangement	. 36
5-11. Top Level Flowchart for Automation Software Routine	. 38
6-1. Results for CRC Reactivity Calculations	. 45
6-2. Gadolinia Inventory for Node 3	. 49
6-3. Gadolinia Inventory for Node 7	. 50
6-4. Comparison of Loss in Gadolinia Effectiveness	. 51

Calculation

Page 4 of 54

Page 5 of 54

WORKSHEETS

Page

5-1.	Core Data Requirements	20
5-2.	Lattice Data Requirements	22
5-3.	Control Blade Data Requirements	22

1. PURPOSE

In the development of a methodology to account for exposure effects on the reactivity of spent Boiling Water Reactor (BWR) fuel in the proposed Monitored Geologic Repository (MGR) at Yucca Mountain, the accuracy of the methods used to predict the inventories of fissile and fissionable nuclides as well as neutron poisons present in the spent fuel must be established. One aspect of this confirmatory effort is accomplished by performing benchmark problems for known in-reactor critical configurations - Commercial Reactor Criticals (CRCs). These critical demonstrations are performed during each startup of a core and provide a test of the ability of the Waste Package Operations (WPO) methods to properly predict neutron multiplication for a fuel mass that includes actinides and fission products created during power operation. Specifically, this engineering calculation, performed under Quality Administrative Procedure (QAP)-3-15 documents the calculations for six CRCs which occurred during Cycles 13 and 14 of the Quad Cities Unit 2 reactor.

2. METHOD

The analytical model employed in this analysis consisted of using the MCNP computer program (References 7.1 and 7.2, the MCNP 4A and 4B User's Manuals) to determine the effective neutron multiplication factor (keff) for CRCs. The results reported for the MCNP calculations are the combined average values of k_{eff} from the three estimates (collision, absorption, and track length) listed in the final generation summary in the MCNP output. The calculation of acceptable bias values and subcritical margins are based on the results of numerous evaluations performed using the MCNP code system. The CRCs documented in this analysis may be used to help determine appropriate bias values for use in subsequent criticality evaluations performed with MCNP.

The input instructions to MCNP are constructed from two sources. For the definition of core and peripheral components and thermodynamic values, reference is made to applicable references. For the constituents of exposed fuel, reference to values from companion calculations performed with the SAS2H sequence of the SCALE computer code package (Reference 7.3) is made.

3. ASSUMPTIONS

The following assumptions were made in preparing this calculation. Note that assumptions used in the generation of the nuclide inventories of the spent fuel are not included. For those assumptions, see the OAP-3-15 calculation that documents their generation (Reference 7.4, hereafter cited as the "QC2 Depletion Calculations").

It is assumed that quarter-core symmetry adequately approximates the fuel loading of the 3.1 core. The basis for this assumption is that nuclear fuel vendors and the operating utilities use symmetry (and often a more restrictive assumption of one-eighth core symmetry) in developing fuel loading patterns and selecting control blade positions. An acceptably

Page 6 of 54

Waste Package Operations	Calculation
Title: CRC Reactivity Calculations for Quad Cities Unit 2	
Document Identifier: B0000000-01717-0210-00010 REV 01	Page 7 of 54

small error is introduced by performing calculations with this assumption. This assumption is used throughout this calculation.

- 3.2 It is assumed that the water density throughout the core is the same; however, this is not exact since the exposed fuel is thermally hot and creates local temperature and hence density gradients due to convection. Further, there is a small increase in the density from the top of the core to the bottom of the core due to the weight of water above the particular axial location. The basis of this assumption is that both the isothermal and isobaric compressibility for sub-cooled water and saturated liquid water are small, and the variation in density at the conditions of the problem a BWR cold critical demonstration is small. This assumption is used throughout this calculation.
- 3.3 The presence of stainless steel components between the core shroud and the inner surface of the pressure vessel, including the jet pumps, is neglected. The basis of this assumption is the importance of neutrons in this region of the problem is vanishingly small. The stainless steel liner on the inside surface of the pressure vessel is omitted for the same reason. This assumption is used in §5.1.3.
- 3.4 The structural components above and below the active fuel, including the upper and lower tie plates, core grid, and core plate are homogenized with the moderator to represent these regions neutron transport characteristics. These regions of the problem are sufficiently far from the region of interest for criticality and their impact on the computed neutron multiplication is through the reflection of neutrons that have escaped from the active core. The basis of this assumption is that the estimation of the hydrogen density is most important to determining this reflection, thus homogenization of these regions is acceptable. Since there is little variation in moderator density from startup test to startup test, the same homogenized composition is also used for all the exposed-core calculations. This assumption is used in Attachments III, XII, XVIII, and XIX.
- 3.5 For the exposed-core calculations, the fuel assembly grid spacers were omitted. For these cases the nodes were very large and the spacer grid volume fraction was very low. The basis for this assumption is that the spacer grids are composed of zircaloy, which is virtually transparent to neutrons and will have a negligible impact on the criticality calculation. This assumption is used in Attachments XVIII, and XIX.
- 3.6 In the computation of the oxygen inventory for gadolinia-bearing fuel lattices, the computation of the oxygen inventory of the UO_2 is not decreased by the fraction of UO_2 displaced by the gadolinia. The basis for this assumption is that the lattice-averaged gadolinia concentration is generally less than 1% and oxygen has a relatively low atomic weight. This assumption is used in Attachment VIII.
- 3.7 The isotopic inventories for exposed fuel are uniformly distributed through all the fuel rods in a given lattice. This is necessary since the depletion calculations are performed on a lattice-averaged basis and no information is provided to redistribute the fuel materials. This is also true for the gadolinia in fuel lattices with integral burnable absorber. The basis

Waste	Package	Operations
-------	---------	-------------------

Calculation

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

for this assumption is that no specific lattice information is available, and the validity of this assumption will be based on the resulting calculations of this analysis. Quantifying this approximation will require sensitivity studies using specific lattice information. The subsequent calculations are to be performed and documented elsewhere. This assumption is used in Attachments VI, XVIII, and XIX.

- 3.8 For exposed gadolinia-bearing fuel, the ¹⁵⁵Gd due to fission is not processed from the depletion calculations. There is already ¹⁵⁵Gd in the fuel in the form of "tails" from the gadolinia added as an integral burnable absorber and the incremental effect of the fission product ¹⁵⁵Gd is probably small. The basis for this assumption is that it will increase the neutron multiplication, and thus is conservative. This assumption is used in Attachments VI, XVII, and XIX.
- 3.9 For startup criticality tests that do not have quarter-core symmetric critical control blade patterns, the symmetry locations in the four quadrants are averaged together. The basis for this assumption is that the incremental reactivity effect of the position of a small number of control blades is approximately represented by the depth of insertion into the core. This is particularly true if the blades are withdrawn beyond the strong axial flux peak near the top of the core. This assumption is used in Attachments VI, XVII, and XIX.
- 3.10 For the criticality tests evaluated for Cycle 13, the isotopics for two bundle locations (13,3) and (14,3) were represented by bundles with identifiers F4, and F7, as opposed to bundles with identifiers F7, and G3, respectively. The basis for this assumption is that the impact on the results will be small. The bundles with F4 and F7 identifiers are in their third cycle of operation, have relatively low reactivity worths and have very similar isotopic concentrations. The location represented by bundle with identifier F7 opposed to G3 is near the core periphery and the differences in isotopic compositions between these two bundles, for a single quarter core location will only have a small impact on the results. This assumption is used in section XVIII.
- 3.11 For the criticality tests evaluated for Cycle 14, the isotopics for bundle with identifier G8 was represented by the isotopics for bundle with identifier G9. The basis for this assumption is that there will be a negligible impact on the results since both of these bundles are of the same type and of low reactivity worth as they are in their third cycle of operation in Cycle 14. This assumption is used in Attachment XIX.
- 3.12 In the process for the creation of the MCNP input decks, parameters representing very slight offsets to MCNP defined geometric structures were utilized when defining the instrument tube and control blade. The basis for this assumption is this simplified execution of the case and these very slight dimensionality differences will negligibly impact the results. This assumption is used in Attachment VI.

4. USE OF COMPUTER SOFTWARE AND MODELS

4.1 SOFTWARE APPROVED FOR QA WORK

Calculations were performed with two versions of the MCNP computer code:

Program Name: MCNP

Version/Revision number: MCNP 4A HP 9000 Version CSCI Number: 30006 VER 4A (Ref. 7.5) Computer Type: Hewlett Packard 9000 Series Computer Processing Unit Names and CRWMS-M&O Tag Numbers: 'Bloom' (CRWMS-M&O Tag 700887).

Version/Revision number: MCNP 4B2 HP 9000 Version CSCI Number: 30033 VER 4B2LV (Ref. 7.6) Computer Type: Hewlett Packard 9000 Series Computer Processing Unit Names and CRWMS-M&O Tag Numbers: 'Bloom' (CRWMS-M&O Tag 700887).

Access to and use of the MCNP software for this calculation was granted by Software Configuration Management and performed in accordance with the appropriate procedures. The MCNP 4A and 4B2 computer codes are appropriate tools to determine the effective neutron multiplication factor, k_{eff} , of fresh and spent lattices of light water reactor fuel assemblies. This software has been validated over the range it was used. The neutron interaction libraries used in this analysis are those documented in the Software Qualification Report (Ref.'s 7.5 and 7.6). Both the ENDF/B-V and ENDF/B-VI libraries were qualified for use in the MCNP 4A and 4B2 SQRs. Note that MCNP version 4A was officially retired as of February 4, 1999 (see Ref 7.21); however, all calculations performed by this version were completed when this version was active and fully qualified. To demonstrate consistency, those cases were rerun using the 4B2 version. This is shown in Attachment VI.

The input files used are reiterated in the output files and those output files are contained on compact disk (CD). A listing of the contents of these CDs are given in Attachment I, with the CDs being provided in Reference 7.13.

4.2 SOFTWARE ROUTINES

Two software routines were created to support the work documented in herein.

4.2.1 BLINK

BLINK (BWR Linkage) is a software routine that creates an MCNP model of a BWR core as card image representations in an ASCII-format file. This routine takes information from various files (datasets) describing the model dimensions, materials, and files created by the IDSGEN routine described below and creates a MCNP input deck. This routine is described in detail in Attachments VI, XIV, XVII, and XX.

4.2.2 IDSGEN

IDSGEN (Intermediate Dataset Generator) creates ASCII-format files containing information defining the fresh and exposed fuel materials for the fuel assemblies that populate a given BWR core. Primarily this routine processes isotopic masses from the depletion calculations of Ref. 7.4 into a usable input structure for MCNP. It also processes fresh fuel isotopics from input files which provide a general description of the fuel. This routine is described in detail in Attachments VIII and XV (Note that Ref.'s 7.18, 7.19, and 7.20 are used in Attachment VIII).

5. CALCULATION

The subject calculations for this document are for Cycles 13 and 14 of the Quad Cities Unit 2 BWR. However, the software routines developed to support this work are substantial, so an initial calculation was performed to model the initial core criticality of the Quad Cities Unit 1 core. Specific testing of the model produced by the automation is demonstrated for the model of the Quad Cities Unit 1 initial core, while integration testing of the linkage is obtained from the evaluation of that core. This calculation mimicked the previous analysis of that core with a specifically prepared ("hand crafted") MCNP model (Reference 7.7, hereafter cited as the "Previous Analysis") and good agreement between that analysis and an analysis with the software routine automation provides confidence in the models generated by that automation.

Subsequent to this reiteration of the Quad Cities Unit 1 CRC, the analysis of the CRCs from Quad Cities Unit 2 are documented.

5.1 AUTOMATION OF MCNP INPUT DECK CREATION

This section documents the creation of a process to create MCNP input representations suitable for modeling BWR CRCs and calculations that support the validity of that process. This process includes the following components:

- reference ASCII-format datasets containing information common to modeling for specific types of BWRs and the components thereof;
- input instructions for the specific analysis; and
- problem-specific datasets containing number densities for exposed fuel from SAS2H.

5.1.1 Process Abstract

The analysis tools currently used for performing CRC computations are the SAS2H sequence of the SCALE code system to generate fuel nuclide inventories with depletion and decay, and the MCNP code to compute the steady state neutron transport and multiplication in the reactor core. Therefore, a process must be structured whereby isotopic inventories are transferred, with appropriate manipulation, from the output of the SAS2H sequence computations to the MCNP input representations.

Calculation

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Page 11 of 54

In order to achieve an efficient and error-resistant process, suitable automation must be developed to perform this linkage. This linkage prepares the MCNP representation of the fuel assemblies, core structure, and components and regions adjacent to the active fuel. Adequate testing must be performed to verify its performance.

5.1.2 Computational Platform and Software

The linkage that creates the MCNP input representations (i.e., BLINK) was created on an HP 9000 Workstation and was written to be compliant with either FORTRAN-77 or C-89 as appropriate. The automation to directly process SAS2H output files and create intermediate fuel datasets for use by BLINK (i.e., IDSGEN) was written to be compliant with FORTRAN-77.

5.1.3 Specific Data Requirements

The information necessary to create an MCNP input of a particular BWR core at a specific point in time are:

- core arrangement, including design of fuel assemblies at each location in the core and locations of control blades and in-core instrumentation dry tubes;
- geometrical design of fuel assemblies;
- location, dimensions and composition of fuel spacer grids;
- material composition of fuel in fuel assemblies;
- geometrical design and material compositions of control blades;
- location and thickness of core shroud;
- location and thickness of reactor pressure vessel; and
- configuration and composition of axial reactor internal components above and below the active core.

The isotopic inventories from SAS2H are applicable to distinct lattice designs at specific combinations of exposure and moderator density history (or the corollary void history). Thus for an exposed core, unique inventories must be provided for each distinct node in the core tracking supplied by the plant process computer in the portion of the core modeled (generally a quarter of the core). At a maximum, every fuel assembly must be modeled, and each assembly will be divided into multiple axial nodes. The core tracking data is generally performed in 24 or 25 axial nodes, so this is as fine a division as may be used.

The execution of the SAS2H code set has been automated for the purposes of these analyses with CRAFT Version 4B and its attendant executive, SPACE Version 00 (Attachments I and II of the QC2 Depletion Calculations, respectively). The results from SAS2H are compiled in databases for each fuel assembly type in the particular CRC "experiment."

Additional databases are created based on the BWR size and layout and the varieties of fuel assembly designs, as well as common materials used in the construction of the BWR internals and the fuel assemblies.

Page 12 of 54

Calculation

5.1.4 Tasks

In order to implement the automated process whereby an MCNP representation of a BWR can be created, the tasks shown in Tables 5-1 and 5-2 must be accomplished.

Index	Task	Sub-task	Description	Predecessors
1.0	Data			
	Acquisition			
1.1		Determine Required	Data to Describe Core and Fuel	
4.0		Data	Assemblies	
1.2		Data Sources	Identify Sources of Data	1.1
2.0	Process Framework			
2.1		Data Structures	Define Data Structures within Context of Automation (file contents and directory structure)	1.1
2.2		Populate Structures	Load Data into Data Structures	1.2, 2.1
3.0	Automation Creation			
3.1		MCNP Model Layout	Create Overall Framework for BWR Core Model	
3.2		Link to Data Structures	Correlate Data with Regions in Layout	2.2
3.3		Program Flow	Top Level Program Flowchart	2.1, 3.1
3.4		Functional Description	Create Functional Description of Major Modules	3.3
3.5		Encode Logic		3.2, 3.3
4.0	Testing			3.0
4.1		Dummy Datasets Creation	SAS2H Dataset Representing Initial Core	2.1
4.2		MCNP Input Representation Creation		3.0
4.3		Result Comparison	Compare Results from Automation to Previous Analysis	4.2
5.0	Depleted-core Analysis			4.0
5.1	-	Dataset Update	Create Models for New Lattice Types	2.1
5.2		SAS2H Datasets	Process SAS2H Datasets for Depleted Configuration	
5.3		MCNP Input Representation Creation	Input Representations for Depleted BWR Core	5.1, 5.2
5.4		Generate Results		5.3

Table 5-1. Task List for Prototype Implementation

Page 13 of 54

Index	Task	Sub-task	Description	Predecessors
1.0	Upgrade to Full Scope			
1.1		Core Models	Introduce Datasets for other Core Sizes and Layouts	
1.2		Lattice Models	Introduce Datasets for other Lattices	

The balance of this document describes the fulfillment of these tasks.

5.2 ACQUISITION

5.2.1 Required Technical Information

The required technical information for automating the creation of MCNP input representations for BWR cores is informed by the analysis for the initial core of the Quad Cities-1 BWR (the Previous Analysis). The MCNP model represents a BWR core and adjacent core internals and is either a full-core representation or a symmetrical subset of the full core (i.e., a quarter of the core). This representation contains the following components:

- fuel assemblies, including fuel rods, water rods (where applicable), channels, and water among channels (inter-assembly bypass flow);
- control rods;
- instrument dry tubes;
- core shroud and bypass region between fuel region and shroud (extra-assembly bypass flow);
- water in downcomer, outside of the shroud; and
- axial ends comprised of mixtures of light water and stainless steel to approximate the core internals below and above the fuel.

These components and their relative locations are illustrated in Figure 5-1, which shows a planar section of the core model. An axial section of the reactor is shown in Figure 5-2. A detailed planar section illustration of a typical 7x7 off-set BWR fuel assembly design is shown in Figure 5-3 (this design does not incorporate water rods) and an axial schematic is shown in Figure 5-4. In the axial schematic, contemporary axial zoning of the lattice designs is shown with General Electric (GE) terminology. While not all fuel assemblies will have these specific zones, the schematic does illustrate the range of different lattice nuclear designs realizable with a single fuel assembly. An illustration of a typical control blade for the same lattice geometry is shown in Figure 5-5.

Since BWR cores come in a variety of sizes, templates are developed to represent the particular core designs modeled. Further, BWR lattice designs and control blade designs vary and specific

models are provided as appropriate.

The data to describe the entire core may be correlated with the illustrations in this section. The necessary data for the core and core structure are shown in Worksheet 5-1. Information required for modeling of a 7x7 fuel assembly is shown in Worksheet 5-2, while data for modeling a control blade used in this type core is provided in Worksheet 5-3.

Calculation

Page 15 of 54

Figure 5-1. Components in MCNP Model for BWR Core (Planar Slice)

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Upper Plenum Region	
Core Grid Region	
Upper Tie Plate Region	
Core Region	
	Bypass Region
	Not to Scale
Lower Fuel Tie Plate Region	
Fuel Support/Core Plate Region	Pressure Vessel
Lower Plenum Region	Jet Pump Region —
	Core Shroud

Figure 5-2. Components in MCNP Model for BWR Core (Axial Slice)

Figure 5-3. 7x7 BWR Fuel Assembly (Planar Section)

Page 18 of 54

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

χ Υ $\chi\chi)$ Not to Scale

Figure 5-5. Control Blade Model

Page 19 of 54

Calculation

Page 20 of 54

Component	Parameter	Purpose
Vessel	Outer Diameter	Defines Outer Lateral Edge of Problem Domain
	Thickness	Defines Inner Radius of Vessel Component and helps to Define the Jet Pump Region
	Material Composition	Needed to Select Appropriate Nuclear Data Constants
Core Shroud	Outer Diameter	Defines Outer Radius of Shroud Component and helps to Define Jet Pump Region
	Inner Diameter	Defines Inner Radius of Shroud Component and helps to Define Region between Shroud and Peripheral Fuel Assemblies
	Material Composition	Needed to Select Appropriate Nuclear Data Constants
Core	Number of Columns in Fuel Assembly Map	Defines Size of Problem
	Number of Rows in Fuel Assembly Map	Defines Size of Problem
	Valid Fuel Assembly Locations	Gives Locations of Fuel Assemblies
	Valid Control Blade Locations	Gives Locations of Control Blades
	Instrumentation Tube Layout	Gives Location of In-core Instrumentation Dry Tubes
	Guide Tube Outer Diameter	Defines Size of Guide Tube
	Guide Tube Inner Diameter	Defines Size of Guide Tube
	Material Composition of In- core Guide Tube	Needed to Select Appropriate Nuclear Data Constants
	Fuel Assembly Pitch	Provides Sizing for Problem and Separation between Fuel Assemblies and Control Blades
	Top of Upper Tie Plate Region	Helps Define Upper Tie Plate Region
	Top of Core Grid Region	Helps Define Core Grid Region
	Material Composition of Top Grid Region	Needed to Select Appropriate Nuclear Data Constants (N.B., Homogenized with the Moderator in that Region)
	Axial Top of Problem	Non-reentrant Surface to Delimit Problem Domain (fixed to be 30 cm above the Top of Core Grid Region)
	Bottom of Lower Tie Plate Region	Helps Define Lower Tie Plate Cell

Worksheet 5-1. Core Data Requirements

Page 21 of 54

Worksheet 5-1 (cont'd)

Component	Purpose	
	Bottom of Fuel Support/Core Plate Region	Helps Define Fuel Support/Core Plate Region
	Material Composition of Fuel Support/Core Plate Region	Needed to Select Appropriate Nuclear Data Constants (N.B., Homogenized with the Moderator in that Region)
	Bottom of Lower Plenum Region	Non-reentrant Surface to Delimit Problem Domain (fixed to be 30 cm below the Bottom of Fuel Support/Core Plate Region)

Instrument Tube

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Fuel Rod Pitch

Cladding Outer Diameter

Cladding Thickness

Pellet Diameter

Dry Tube Outer Diameter

Dry Tube Inner Diameter

Component	Parameter	Purpose
Channel	Inner Span	Provide "Window" for Fuel Rod Array and helps to Define Channel Inner Surface
	Wide Gap Thickness	Give Offset from Control Blade and helps to Define Channel Outer Surface in Wide Gaps
	Narrow Gap Thickness	Give Offset from Instrument Tube and helps to Define Channel Thickness in Narrow Gaps
	Thickness	Helps to Define Channel Inner Surfaces
	Corner Inner Radius	Defines Inner and Outer Channel Surfaces at Corners
Fuel Rods	Clad to Clad Separation	Helps to Situate Fuel Rods with respect to One Another
	Channel to Clad Separation	Situates Fuel Rods with respect to Channel Inner Surface

Helps to Situate Fuel Rods with respect to One Another

Defines Outer Surface of Fuel Rod Cladding Cell

Defines Inner Surface of Fuel Rod Cladding Cell and help to Define Fuel-to-cladding Gap Defines Outer Surface of Fuel Pellet and helps to

Defines Outer Surface of Dry Tube

Defines Inner Surface of Dry Tube and also Defines Detector Location for In-core Instrumentation

Define Fuel-to-cladding Gap

Worksheet 5-2. Lattice Data Requirements

Worksheet 5-3. Control Blade Data Requirements

Component	Parameter	Purpose
Absorber Tubes	Inner Diameter	Defines B₄C Poison Cell and Helps to Define Absorber Tube Cell
	Outer Diameter	Helps to Define Absorber Tube Cell and Internal Flow Area
	Placement	Locates Absorber Tubes within Internal Sheath Volume
Tie Rod	Span	Helps to Define Tie Rod Cell and Placement of Sheath and Absorber Tubes
	Thickness	Helps to Define Tie Rod Cell and Placement of Sheath
	Length	Defines Length of Control Blade Model
Sheath	Thickness	Helps to Define Sheath Cell

Page 22 of 54

For the prototype development, the data necessary to construct the MCNP model for the initial core model will come from the Quad Cities-1 analysis already noted. Additional supporting information will come from the EPRI report documenting the startup testing and cycle tracking (Reference 7.8). For the first exposed core CRC, data is obtained from utility data and compiled in a technical document (Reference 7.9, hereafter cited as the "Quad Cities Unit 2 CRC Data Report").

For both the core structural materials and the exposed fuel materials, cross sections must be selected from those available in the MCNP libraries to represent the nuclear properties of those materials. The libraries used for the isotopes considered in the present analysis are shown in Table 5-3. For "best estimate" evaluations, all of the nuclides shown in Table 5-3 are used. Three other nuclide sets are considered for evaluations, the "principal isotope" set (Reference 7.10, page 3-26), the "principal actinide set" (which is merely the "principal isotope" set less the fission products) and the "actinide-only" set used in the transportation licensing effort (Reference 7.11). The identities of the nuclides in the "principal isotope" set are shown in Table 5-4. The other identifying characteristics for the libraries for these nuclides are identical to those shown in Table 5-3. Nuclides included in the "principal actinide" set are provided in Table 5-5 and those of the "actinide-only" set are shown in Table 5-6.

Element / Isotope	MCNP ZAID	Temperature (K)	Library Name	Data Source
H-1	1001.50c	294.0	rmccs	ENDF/B-V.0
Н-3	1003.50c	294.0	rmccs	ENDF/B-V.0
He-4	2004.50c	294.0	rmccs	ENDF/B-V.0
Li-6	3006.50c	294.0	rmccs	ENDF/B-V.0
Li-7	3007.55c	294.0	rmccs	ENDF/B-V.2
Be-9	4009.50c	294.0	rmccs	ENDF/B-V.0
B-10	5010.50c	294.0	rmccs	ENDF/B-V.0
B-11	5011.56c	294.0	newxs	LANL/T-2
C-nat	6000.50c	294.0	rmccs	ENDF/B-V.0
N-14	7014.50c	294.0	rmccs	ENDF/B-V.0
O-16	8016.50c	294.0	rmccs	ENDF/B-V.0
Al-27	13027.50c	294.0	rmccs	ENDF/B-V.0

Table 5-3. Library identifiers for Nuclides Used in Evaluation
--

Page 24 of 54

Element / Isotope	MCNP ZAID	Temperature (K)	Library Name	Data Source
Si-nat	14000.50c	294.0	endf5p	ENDF/B-V.0
P-31	15031.50c	294.0	endf5u	ENDF/B-V.0
S-32	16032.50c	294.0	endf5u	ENDF/B-V.0
Ti-nat	22000.50c	294.0	endf5u	ENDF/B-V.0
Cr-50	24050.60c	294.0	endf60	ENDF/B-VI.1
Cr-52	24052.60c	294.0	endf60	ENDF/B-VI.1
Cr-53	24053.60c	294.0	endf60	ENDF/B-VI.1
Cr-54	24054.60c	294.0	endf60	ENDF/B-VI.1
Mn-55	25055.50c	294.0	endf5u	ENDF/B-V.0
Fe-54	26054.60c	294.0	endf60	ENDF/B-VI.1
Fe-56	26056.60c	294.0	endf60	ENDF/B-VI.1
Fe-57	26057.60c	294.0	endf60	ENDF/B-VI.1
Fe-58	26058.60c	294.0	endf60	ENDF/B-VI.1
Co-59	27059.50c	294.0	endf5u	ENDF/B-V.0
Ni-58	28058.60c	294.0	endf60	ENDF/B-VI.1
Ni-60	28060.60c	294.0	endf60	ENDF/B-VI.1
Ni-61	28061.60c	294.0	endf60	ENDF/B-VI.1
Ni-62	28062.60c	294.0	endf60	ENDF/B-VI.1
Ni-64	28064.60c	294.0	endf60	ENDF/B-VI.1
Cu-63	29063.60c	294.0	endf60	ENDF/B-VI.2
Cu-65	29065.60c	294.0	endf60	ENDF/B-VI.2
As-75	33075.35c	0.0	rmccsa	ENDF/B-V.0
Kr-80	36080.50c	294.0	rmccsa	ENDF/B-V.0
Kr-82	36082.50c	294.0	rmccsa	ENDF/B-V.0

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B0000000-01717-0210-00010 REV 01

Page 25 of 54

Calculation

Element / Isotope	MCNP ZAID	Temperature (K)	Library Name	Data Source
Kr-83	36083.50c	294.0	rmccsa	ENDF/B-V.0
Kr-84	36084.50c	294.0	rmccsa	ENDF/B-V.0
Kr-86	36086.50c	294.0	rmccsa	ENDF/B-V.0
Y-89	39089.50c	294.0	endf5u	ENDF/B-V.0
Zr-nat	40000.60c	294.0	endf60	ENDF/B-VI.1
Zr-93	40093.50c	294.0	kidman	ENDF/B-V.0
Nb-93	41093.50c	294.0	endf5p	ENDF/B-V.0
Mo-nat	42000.50c	294.0	endf5u	ENDF/B-V.0
Mo-95	42095.50c	294.0	kidman	ENDF/B-V.0
Tc-99	43099.50c	294.0	kidman	ENDF/B-V.0
Ru-101	44101.50c	294.0	kidman	ENDF/B-V.0
Ru-103	44103.50c	294.0	kidman	ENDF/B-V.0
Rh-103	45103.50c	294.0	rmccsa	ENDF/B-V.0
Rh-105	45105.50c	294.0	kidman	ENDF/B-V.0
Pd-105	46105.50c	294.0	kidman	ENDF/B-V.0
Pd-108	46108.50c	294.0	kidman	ENDF/B-V.0
Ag-107	47107.60c	294.0	endf60	ENDF/B-VI.0
Ag-109	47109.60c	294.0	endf60	ENDF/B-VI.0
Cd-nat	48000.50c	294.0	endf5u	ENDF/B-V.0
In-nat	49000.60c	294.0	endf60	ENDF/B-VI.0
Sn-nat	50000.35c	0.0	endl85	LLNL
Xe-131	54131.50c	294.0	kidman	ENDF/B-V.0
Xe-134	54134.35c	0.0	endl85	LLNL
Xe-135	54135.53c	587.0	eprixs	ENDF/B-V

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Page 26 of 54

Element / Isotope	MCNP ZAID	Temperature (K)	Library Name	Data Source
Cs-133	55133.50c	294.0	kidman	ENDF/B-V.0
Cs-135	55135.50c	294.0	kidman	ENDF/B-V.0
Ba-138	56138.50c	294.0	rmccs	ENDF/B-V.0
Pr-141	59141.50c	294.0	kidman	ENDF/B-V.0
Nd-143	60143.50c	294.0	kidman	ENDF/B-V.0
Nd-145	60145.50c	294.0	kidman	ENDF/B-V.0
Nd-147	60147.50c	294.0	kidman	ENDF/B-V.0
Nd-148	60148.50c	294.0	kidman	ENDF/B-V.0
Pm-147	61147.50c	294.0	kidman	ENDF/B-V.0
Pm-148	61148.50c	294.0	kidman	ENDF/B-V.0
Pm-149	61149.50c	294.0	kidman	ENDF/B-V.0
Sm-147	62147.50c	294.0	kidman	ENDF/B-V.0
Sm-149	62149.50c	294.0	endf5u	ENDF/B-V.0
Sm-150	62150.50c	294.0	kidman	ENDF/B-V.0
Sm-151	62151.50c	294.0	kidman	ENDF/B-V.0
Sm-152	62152.50c	294.0	kidman	ENDF/B-V.0
Eu-151	63151.55c	294.0	newxs	LANL/T-2
Eu-152	63152.50c	294.0	endf5u	ENDF/B-V.0
Eu-153	63153.55c	294.0	newxs	LANL/T-2
Eu-154	63154.50c	294.0	endf5u	ENDF/B-V.0
Eu-155	63155.50c	294.0	kidman	ENDF/B-V.0
Gd-152	64152.50c	294.0	endf5u	ENDF/B-V.0
Gd-154	64154.50c	294.0	endf5u	ENDF/B-V.0
Gd-155	64155.50c	294.0	endf5u	ENDF/B-V.0

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Page 27 of 54

Element / Isotope	MCNP ZAID	Temperature (K)	Library Name	Data Source
Gd-156	64156.50c	294.0	endf5u	ENDF/B-V.0
Gd-157	64157.50c	294.0	endf5u	ENDF/B-V.0
Gd-158	64158.50c	294.0	endf5u	ENDF/B-V.0
Gd-160	64160.50c	294.0	endf5u	ENDF/B-V.0
Ho-165	67165.55c	294.0	newxs	LANL/T-2
Ta-181	73181.50c	294.0	endf5u	ENDF/B-V.0
Th-232	90232.50c	294.0	endf5u	ENDF/B-V.0
Pa-233	91233.50c	294.0	endf5u	ENDF/B-V.0
U-233	92233.50c	294.0	rmccs	ENDF/B-V.0
U-234	92234.50c	294.0	endf5p	ENDF/B-V.0
U-235	92235.50c	294.0	eprixs	ENDF/B-V.0
U-236	92236.50c	294.0	endf5p	ENDF/B-V.0
U-237	92237.50c	294.0	endf5p	ENDF/B-V.0
U-238	92238.50c	294.0	eprixs	ENDF/B-V.0
Np-235	93235.35c	0.0	endl85	LLNL
Np-236	93236.35c	0.0	endl85	LLNL
Np-237	93237.50c	294.0	endf5p	ENDF/B-V.0
Np-238	93238.35c	0.0	endl85	LLNL
Pu-237	94237.35c	0.0	endl85	LLNL
Pu-238	94238.50c	294.0	endf5p	ENDF/B-V.0
Pu-239	94239.55c	294.0	rmccs	ENDF/B-V.2
Pu-240	94240.50c	294.0	rmccs	ENDF/B-V.0
Pu-241	94241.50c	294.0	endf5p	ENDF/B-V.0
Pu-242	94242.50c	294.0	endf5p	ENDF/B-V.0

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Page 28 of 54

Calculation

Element / Isotope	MCNP ZAID	Temperature (K)	Library Name	Data Source	
Am-241	95241.50c	294.0	endf5u	ENDF/B-V.0	
Am-242m	95242.50c	294.0	endf5u	ENDF/B-V.0	
Am-243	95243.50c	294.0	endf5u	ENDF/B-V.0	
Cm-242	96242.50c	294.0	endf5u	ENDF/B-V.0	
Cm-243	96243.35c	0.0	endl85	LLNL	
Cm-244	96244.50c	294.0	endf5u	ENDF/B-V.0	
Cm-245	96245.35c	0.0	endl85	LLNL	
Cm-246	96246.35c	0.0	endl85	LLNL	
Cm-247	96247.35c	0.0	endl85	LLNL	
Cm-248	96248.35c	0.0	endl85	LLNL	

Table 5-4. List of Nuclides in "Principal Isotope" Set

Mo-95	Nd-145	Eu-151	U-236	Pu-241
Tc-99	Sm-147	Eu-153	U-238	Pu-242
Ru-101	Sm-149	Gd-155	Np-237	Am-241
Rh-103	Sm-150	U-233	Pu-238	Am-242m
Ag-109	Sm-151	U-234	Pu-239	Am-243
Nd-143	Sm-152	U-235	Pu-240	

Table 5-5. List of Nuclides in "Principal Actinide" Set

U-233	U-236	Pu-238	Pu-241	Am-242m	
U-234	U-238	Pu-239	Pu-242	Am-243	
U-235	Np-237	Pu240	Am-241		

Table 5-6. List of Nuclides in "Actinide-only" Set

U-234	U-238	Pu240	Am-241
U-235	Pu-238	Pu-241	
U-236	Pu-239	Pu-242]

Waste Package Operations	Calculation		
Title: CRC Reactivity Calculations for Quad Cities Unit 2			
Document Identifier: B0000000-01717-0210-00010 REV 01	Page 29 of 54		

5.3 PROCESS FRAMEWORK

The software routine for the MCNP input representations is only one part of the process whereby MCNP input decks are created to model BWR CRCs. The process relies on reliable data flowing from multiple sources. These sources supply the data described in §5.2.

5.3.1 Data Structures

The data obtained from the various sources that are used by the automation to produce the MCNP input decks are loaded into reference datasets. These are ASCII-format files that contain defined sets of data that are applicable to specific components. While these datasets are dependent on a particular core geometrical arrangement or fuel geometrical design, they are not dependent on the particular CRC being evaluated. Thus a set of such datasets will be created for a 724-bundle BWR (e.g., Quad Cities-1) which will be usable for all such cores. Further, geometrical datasets will be prepared for GE 7x7 fuel designs which are present in the Quad Cities-1 initial core. These datasets will be valid for use in other cores which incorporated fuel assemblies with this geometric design.

Datasets were created for common structural materials used in these problems, e.g., Type 304 stainless steel, Zircaloy-2 and Zircaloy-4. This will provide a common source for material compositions and reduce the potential for error in the inclusion of such materials in the MCNP input deck.

Additional datasets for depleted fuel compositions come from results of the SAS2H code. The "cut" files (see Ref. 7.4) from that code are processed into compact ASCII-format datasets for accessing by the automation software routine.

These datasets will be stored in a common location (dataset classes) on the HP workstation used for running the automation. The filenames for these datasets are are:

- Core Geometry datasets: core_database/
- Control Blade Geometry datasets: blade_database/
- Lattice Geometry datasets: lattice database/
- Structural Component Material datasets: material database/

The Fuel Intermediate Datasets representing fuel constituents from SAS2H depend on the specific CRC analyzed.

In addition to the file specification for the location of the SAS2H data, the information shown in Table 5-7 is required by IDSGEN to create the Fuel Intermediate Datasets.

Page 30 of 54

ltem	Purpose		
Lattice Dimensionality	Sizes the Problem		
Lattice Identification	Identifies the Lattice Dataset		
Pellet Stack Densities	Needed to Compute Nodal Mass		
Pellet Outer Diameter	Needed to Compute Nodal Mass		
Lattice Map	Defines the Location of Fuel Rods Types within		
	Lattice to Properly Compute Average Values		
Enrichments	Needed to Compute Proper Inventories for		
	Unexposed Fuel and Name Dataset for both		
	Exposed and Unexposed Fuel		
Gadolinia	Needed to Compute Proper Inventories for		
	Unexposed Fuel and Name Dataset for both		
	Exposed and Unexposed Fuel		

Table 5-7. Input Requirements for IDSGEN

5.3.2 Data Structure Population

The definition and filling of the core geometry dataset for a 724-bundle BWR is given in Attachment II. The contents and generation of the core materials datasets is given in Attachment III (Note that Ref.'s 7.14, 7.15, and 7.17 are used in Attachment III). The creation of lattice geometry datasets applicable to the Quad Cities Unit 1 initial core CRC as well as those applicable to all the exposed core CRC for Quad Cities Unit 2 is documented in Attachment IV. A description of the format of that dataset is also located in that attachment. Attachment V provides the same information for the control blade geometry datasets.

5.3.3 Case-specific Input to Process

With the exception of the Fuel Intermediate Datasets, the data structures are intended to be applicable to more than a single CRC. The requirements for user input to the linkage automation are shown in Table 5-8.

Page 31 of 54

-	Table	5-8.	Input F	Require	ement	s for E	BLINK	

item	Purpose
File Specification for Core Materials Database	Necessary to Locate the Database
File Specification for Core Geometry Database	Necessary to Locate the Database
File Specification for Blade Geometry Database	Necessary to Locate the Database
File Specification for Lattice Geometry Database	Necessary to Locate the Fuel Geometry Datasets
Thermodynamic Parameters	Necessary to Specify Problem Temperatures and Moderator Density
Material Compositions for Upper and Lower Tie Plate Regions	Necessary to Properly Model these Homogenized Regions of the Core
Fuel Assembly Loading Map by Geometry	Placement of Lattice Design
Fuel Assembly Loading Map by Material Composition	Placement of Lattice Design
Blade Position Map	Position of Control Blades
Lattice Assignments to Fuel Assemblies	Necessary to Build Fuel Assembly Models
Names of Lattice Geometry Datasets	Necessary to Locate Proper Geometrical Data
Names of Lattice Material Datasets	Necessary to Locate Proper Material Data
Number, Location and Material Specification for Grid Spacers	Necessary to Properly Model such Spacers (only for beginning-of-life cases)

Calculation

5.4 AUTOMATION CREATION

This section of the document describes the specification for and encoding of automation.

5.4.1 MCNP Model Layout

The model of the MCNP core is comprised of the vessel, core shroud, and various repeating structures. The origin assumed for the model is shown in Figure 5-6. The repeating structures in the core are the fuel assemblies and the control blades. The fuel assemblies are modeled as stacks of rectangular parallelepipeds as shown in Figure 5-7.

The control rods are modeled as a single structure as shown in Figure 5-8. This permits the blades to readily be moved to new positions to perform sensitivity studies and to reduce unnecessary complexity in the blade model. Further subdivision provides no calculational benefit since blade depletion is generally not provided with the CRC data. Further, since blade lifetime criteria are based on small effects on overall core reactivity, the effect of blade depletion should be small and within the resolution of the Monte Carlo calculation. As shown in the illustration, the blade handle and blade velocity limiter are omitted. The handle has a small effect on reactivity due to the displacement of moderator and introduction of stainless steel as an absorber. While these two considerations will offset one another somewhat, the net effect should be small.

These repeating structures are situated in the core through the device of "control cells." A control cell is illustrated in Figure 5-9. Each control cell is constructed from four fuel assemblies and a control blade at the center of the cell. Each fuel assembly may be different in its geometric details – and certainly in their material compositions. These control cells are placed in the larger framework of the core (see Figure 5-10).

Calculation

Figure 5-6. Origin for MCNP Model

Figure 5-7. Fuel Assembly Model

Figure 5-8. Control Blade Model

Page 34 of 54

Page 35 of 54

Figure 5-9. Control Cell Layout Illustration

Figure 5-10. Core Arrangement
5.4.2 Link to Data Structures

The classes of datasets described in §5.3 are used by the automation process to create MCNP input representations for the structures described in §5.2. The dataset classes where information for each component is provided is delineated in Table 5-9. For all the components except the fuel pellets within the fuel rods, material definitions are provided in the Core Structural Material datasets.

Structure	Dataset Class
Vessel	Core Geometry
Core Shroud	Core Geometry
Axial Ends	Core Geometry
Control Blades	Control Blade
Instrument Dry Tubes	Core Geometry
Axial Structure of Fuel	Core Geometry/Lattice
Assembly	Geometry
Channel	Lattice Geometry
Fuel Assembly Spacer Grids	Lattice Geometry
Fuel Rods	Lattice Geometry
Water Rods	Lattice Geometry

Table 5-9.	Location	of Data	for Core	Structures

5.4.3 **Program Flow**

The program flow to transform the instructions from the user and the contents of the appropriate datasets into card image input representations for MCNP is shown in Figure 5-11.

Page 37 of 54

Waste Package Operations

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Calculation

Figure 5-11 (cont'd)

Page 39 of 54

Figure 5-11 (cont'd)

Page 40 of 54

Page 41 of 54

Figure 5-11 (cont'd)

5.5 CONVENTIONS FOR SURFACE, CELL, AND MATERIALS NUMBERING

In order to provide consistent generation of MCNP input decks for a variety of fuel and control rod designs and core sizes, the assignment of indices for cells, surfaces, and materials is performed sequentially by BLINK. However, the order of the indices assigned follows the order shown in Table 5-10. Note that while the cells will appear in this order in the input deck, the indices for the components may not be so ordered. This is because MCNP generates special indices for translated cells; therefore, low numbered cell indices are reserved for such cells. While this could be a consideration for surfaces, there are many fewer surfaces than cells due to the elimination of redundant surfaces.

Relative Position	Components
1	Vessel, Shroud and Axial Region
	Outside Active Fuel
2	Control Blade
3	Fuel Lattice
4	Fuel Assemblies
5	Control Cells
6	Active Core Region
7	Control Cell Lattice

Table 5-10. Order of Indice

5.6 DEVELOPMENT OF MCNP INPUT FOR QUAD CITIES UNIT 1, BOL, CRITICALITY CALCULATIONS

To support the integration testing of the automation, the previously performed calculations for the beginning-of-life (BOL) core of the Quad Cities Unit 1 unit were reiterated. The development of the input for the automation is provided in Attachment XII.

5.7 DEVELOPMENT OF MCNP INPUT FOR QUAD CITIES UNIT 2, CYCLE 13, CRITICALITY CALCULATIONS

Four critical reactor startup tests performed during Cycle 13 of the Quad Cities Unit 2 core were modeled with MCNP. These are identified in Table 5-11 (see the Quad Cities Unit 2 CRC Data Report, §4.3) and the development of the input for the previously described automation is provided in Attachment XVIII (Note that Ref. 7.16 is used in Attachment XVIII).

Table 5-11. Critical Experiments Performed in Cycle 13, in Quad Cities Unit 2

Cycle Exposure (MWd/MTU)	ldentifier
0.0	QC2BOC13
201.61	QC2C13CP10
2257.20	QC2C13CP11
6489.46	QC2C13CP13

5.8 DEVELOPMENT OF MCNP INPUT FOR QUAD CITIES UNIT 2, CYCLE 14, CRITICALITY CALCULATIONS

Two critical reactor startup tests performed during Cycle 14 of the Quad Cities Unit 2 core were modeled with MCNP. These are identified in Table 5-12 (as before, these are from the Quad Cities Unit 2 CRC Data Report, §4.3) and the development of the input for the previously described automation is provided in Attachment XIX.

Table 5-12. Critical Experiments Performed in Cycle 14, in Quad Cities Unit 2

Cycle Exposure (MWd/MTU)	Identifier
0.0	QC2BOC14
4238.45	QC2C14CP16

Waste Package Operations

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Page 44 of 54

6. RESULTS

The results for the CRC reactivity analysis cases for Quad Cities Unit 2, Cycles 13 and 14, are shown in Table 6-1 and illustrated in Figure 6-1.

ldentifier	EFPD	Exposure (MWd/MTU)	k _{eff}	σ (sigma)
Best Estimate		· ·	·	·
QC2BOC13	0.00	0.00	0.99019	0.00033
QC2C13CP10	10.00	201.61	0.99051	0.00032
QC2C13CP11	123.00	2257.20	0.98239	0.0003
QC2C13CP13	325.00	6489.46	1.02798	0.00029
QC2BOC14	0.00	0.00	1.00928	0.00036
QC2C14CP16	211.00	4238.45	0.97708	0.00039
Principal Isotope				·
QC2BOC13	0.00	0.00	1.00019	0.0003
QC2C13CP10	10.00	201.61	1.00329	0.0003
QC2C13CP11	123.00	2257.20	0.99505	0.0003
QC2C13CP13	325.00	6489.46	1.0416	0.00029
QC2BOC14	0.00	0.00	1.01817	0.00037
QC2C14CP16	211.00	4238.45	0.99056	0.0004
Principal Actinide	9			·····
QC2BOC13	0.00	0.00	1.04638	0.00029
QC2C13CP10	10.00	201.61	1.04867	0.00031
QC2C13CP11	123.00	2257.20	1.0425	0.0003
QC2C13CP13	325.00	6489.46	1.10094	0.0003
QC2BOC14	0.00	0.00	1.05882	0.00042
QC2C14CP16	211.00	4238.45	1.04339	0.0004
Actinide Only				
QC2BOC13	0.00	0.00	1.04735	0.00031
QC2C13CP10	10.00	201.61	1.04947	0.00029
QC2C13CP11	123.00	2257.20	1.04367	0.00029
QC2C13CP13	325.00	6489.46	1.10189	0.00026
QC2BOC14	0.00	0.00	1.06044	0.00038
QC2C14CP16	211.00	4238.45	1.04353	0.00037

Table 6-1.	Results	for	CRC	Reactivity	/ Calculations
------------	---------	-----	-----	------------	----------------

Figure 6-1. Results for CRC Reactivity Calculations

6.1 TREATMENT OF GADOLINIA

Gadolinia incorporated as an integral burnable absorber markedly suppresses the power in the fuel rods in which it is incorporated. Since the SAS2H sequence lumps the fuel constituents into a single mass to perform depletion calculations, the significant spatial self-shielding inherent in such fuel rods is lost. Thus the gadolinia depletes uniformly rather than from the surface to the center of a gadolinia-laden fuel rod (the "onion skin" effect). This results in premature burnout of the gadolinia isotopes. An allied effect is the homogeneous distribution of gadolinia in the fuel rods in a given lattice. When the gadolinia is segregated in the relatively few rods in which it was originally placed, by design the effect on reactivity is less in magnitude and longer in duration than if it is uniformly distributed among all the fuel rods in the lattice. This is because most of the gadolinia is spatially self-shielded and the reactivity contribution is suppressed in only the few fuel rods in which it is incorporated, which also leads to a longer burnout time.

The impact of homogeneously distributing the gadolinia in the fuel lattice as opposed to discretely modeling the gadolinia should have a substantial negative impact on the calculated reactivity. This effect should decrease relative to the exposure of the fuel.

To illustrate the effect of the gadolinia depletion rates obtained from the SAS2H analysis, the gadolinia inventory was tabulated for two nodes in a GE 8x8 assembly with a large-central water rod loaded into the core in Cycle 13. The first selected node – designated as "Node 3" – is in the power shaping section of the fuel assembly, where the reaction rates may be assumed to be high,

particularly in the first half of the cycle. This particular lattice has an average enrichment of 3.32 wt% with two gadolinia-bearing fuel rods with a Gd₂O₃ concentration of 3.0 wt% and eight gadolinia-bearing fuel rods with a concentration of 4.0 wt%. The node is 12.0 inches (30.48 cm) in length. These values are provided in Table 6-2 and illustrated in Figure 6-2. The second node selected in this assembly – designated as "Node 7" – is towards the top of core, near the "shutdown zone." This lattice has an average enrichment of 3.48 wt% and the same gadolinia loading. This node is 18.0 inches (45.72 cm) long. Since this second node is further up towards the top of the core, the power should be less than that of the first node. The gadolinia inventory values for this node are shown in Table 6-3 and illustrated in Figure 6-3.

The "weighting factor" is the product of the weight percentage of the gadolinium isotope in the node and the 2200 m/s absorption cross section (Reference 7.12, page 9, hereafter cited as the "Chart of the Nuclides) for that isotope. Thus the change in the sum of these weighting factors over time is a measure of the capability of the gadolinia loading to reduce fuel assembly reactivity. As may be seen from Figure 6-2, the effective weighting factor in Node 3 drops rapidly over the first 2000 MWd/MTU, indicating the rapid burnout of the gadolinium isotopes with high thermal absorption cross sections. For Node 7, Figure 6-3 shows a less dramatic decrease. These two weighting factor curves are compared in Figure 6-4.

The results shown in Figure 6-1 may now be better understood in light of the known behavior of the gadolinia burnout. Two effects are present. The first is the effect of the uniform application of the exposed lattice isotopics to all the fuel rods. The second is the premature depletion of the neutronically important gadolinium isotopes. The first effect markedly decreases the spatial self-shielding of the gadolinium and increases its negative reactivity contribution to the core. This effect is fairly uniform and will exist as long as there is substantial gadolinia burns out. If the gadolinia is effectively gone due to premature burnout, the reactivity "hold down" supplied by the gadolinia also disappears and the inherent excess reactivity of the core is revealed. This phenomenon is at work for both Cycles 13 and 14 which will tend to hold the reactivity flat until the gadolinia burns out, then the reactivity will substantially increase, and then slowly reduce with exposure. These effects can be seen clearly in the results of Figure 6-1. The first three statepoints are relatively flat being "held down" by the gadolinia, then when the gadolinia burns out, reactivity initially increases as occurs in statepoint QC2C13CP13, then gradually drops off with exposure.

As expected, the principal isotope results track the best-estimate results well, indicating that no significant effect is omitted by assuming the abbreviated nuclide set. Further, it may be seen that the reactivity increment accepted by omitting the less important fission products is about 1%.

The effect of eliminating all of the fission products in the principal actinide and actinide only cases produces another increase in reactivity; however, the differences among the results are somewhat softened, probably by the redistribution of power caused by the elimination of the fission products, but this remained to be confirmed.

	Table 6-2. Gadolinian inventory for Node 5								
	Description Critical Point 9		Description Critical Point 9 Critical Point 10		Point 10	Critical Point 11			
	Cycle Exposure	0.00 MWd/MTU		201.61	201.61 MWd/MTU		MWd/MTU		
Gadolinium	σ _a ²²⁰⁰	Weight	Weighting	Weight	Weighting	Weight	Weighting		
Isotope	(barns) [b]	Percentage	Factor	Percentage	Factor	Percentage	Factor		
152	700	0.00110	0.77	0.00108	0.76	0.00102	0.72		
154	60	0.01173	0.70	0.01191	0.71	0.01135	0.68		
155	61000	0.08013	4887.93	0.07877	4804.97	0.04112	2508.50		
156	2	0.11150	0.22	0.11599	0.23	0.14773	0.30		
157	255000	0.08580	21879.00	0.07815	19928.51	0.00696	1774.44		
158	2.4	0.13710	0.33	0.14824	0.36	0.21340	0.51		
160	1	0.12220	0.12	0.12405	0.12	0.12033	0.12		
	Fuel Mass (q)	16122.9	26769.08	16427.2	24735.66	16320.0	4285.27		

Table 6-2. Gadolinium Inventory for Node 3

Table 6-2 (cont'd)

	Critical Point 13 [a]		Critical Po	Critical Point 14 [a]		oint 16 [a]
	6489.46 MWd/MTU		7735.27	MWd/MTU	11973.72	MWd/MTU
Gadolinium	Weight	Weighting	Weight	Weighting	Weight	Weighting
Isotope	Percentage	Factor	Percentage	Factor	Percentage	Factor
152	0.00094	0.66	0.00092	0.64	0.00086	0.61
154	0.01030	0.62	0.01007	0.60	0.00941	0.56
155	0.00004	2.72	0.00005	3.00	0.00004	2.43
156	0.18180	0.36	0.18021	0.36	0.17880	0.36
157	0.00003	8.16	0.00003	7.90	0.00003	7.58
158	0.21361	0.51	0.21243	0.51	0.21147	0.51
160	0.11600	0.12	0.11538	0.12	0.11416	0.11
		13.14		13.13		12.16
	16206.7		16205.9		16198.5	

- [a]. Note that the core-averaged exposure increment has been carried across the cycle break.
- [b]. These values are from the Chart of the Nuclides.

Page 47 of 54

,

Page 48 of 54

	Descriptio	Critical	Critical Point 9		Point 10	Critical Point 11	
	Cycle Exposure	0.00	MWd/MTU	201.61	MWd/MTU	2257.20	MWd/MTU
Gadolinium	σ _a ²²⁰⁰	Weight	Weighting	Weight	Weighting	Weight	Weighting
Isotope	(barns) [b]	Percentage	Factor	Percentage	Factor	Percentage	Factor
152	700	0.00110	0.77	0.00108	0.76	0.00101	0.71
154	60	0.01173	0.70	0.01187	0.71	0.01125	0.67
155	61000	0.08013	4887.93	0.07898	4817.60	0.04714	2875.48
156	2	0.11150	0.22	0.11578	0.23	0.14069	0.28
157	255000	0.08580	21879.00	0.07857	20034.08	0.01345	3430.52
158	2.4	0.13710	0.33	0.14762	0.35	0.20595	0.49
160	1	0.12220	0.12	0.12405	0.12	0.11991	0.12
<u></u>	Fuel Mass (g)	24184.4	26769.08	24727.2	24853.85	24726.9	6308.27

Table 6-3. Gadolinium Inventory for Node 7

Table 6-3 (cont'd)

	Critical Po	oint 13 [a]	Critical Po	oint 14 [a]	Critical Po	oint 16 [a]
	6489.46	MWd/MTU	7735.27	MWd/MTU	11973.72	MWd/MTU
Gadolinium	Weight	Weighting	Weight	Weighting	Weight	Weighting
Isotope	Percentage	Factor	Percentage	Factor	Percentage	Factor
152	0.00090	0.63	0.00087	0.61	0.00079	0.55
154	0.01005	0.60	0.00970	0.58	0.00890	0.53
155	0.00009	5.43	0.00006	3.80	0.00005	3.09
156	0.17677	0.35	0.17334	0.35	0.16730	0.33
157	0.00005	13.72	0.00005	13.41	0.00005	12.45
158	0.20862	0.50	0.20498	0.49	0.19986	0.48
160	0.11331	0.11	0.11125	0.11	0.10754	0.11
		21.35		19.35		17.56
	23618.6		24620.8		24515.7	

[a]. Note that the core-averaged exposure increment has been carried across the cycle break.

[b]. These values are from the Chart of the Nuclides.

Calculation

Waste Package Operations

Ca	lcu	lation

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Page 49 of 54

Figure 6-2. Gadolinia Inventory for Node 3

Waste Package Operations

Title: CRC Reactivity Calculations for Quad Cities Unit 2 **Document Identifier:** B00000000-01717-0210-00010 REV 01

Figure 6-3. Gadolinia Inventory for Node 7

Calculation

Page 50 of 54

Figure 6-4. Comparison of Loss in Gadolinia Effectiveness

6.2 SUMMARY OF CALCULATIONS

Several modeling characteristics used in generating these Quad Cities 2 reactivity calculations are believed to have a substantial effect on the results as shown in Figure 6-1. These characteristics and the associated results suggest that the following actions be taken to supplement these calculations:

- 1. improve the gadolinia treatment by introducing a lattice physics code that properly treats the gadolinia spatial self-shielding;
- 2. improve the treatment of gadolinia by partitioning its placement for both fresh and exposed fuel, i.e., put depleted gadolinia only into fuel rods that originally contained it (note that the use of a two-dimensional lattice physics code for isotopic depletion would eliminate this concern);
- 3. refine the control blade insertion model in the depletion calculations which appear to overcompensate the isotopic generation; and
- 4. improve the fuel temperature treatment to model fuel-to-cladding gap closure.

These calculations are dependent on the data obtained from the utilities; thus, improving the quality of this input data would directly improve the quality of future BWR CRC evaluations.

Page 52 of 54

7. REFERENCES

- 7.1 Oak Ridge National Laboratory (ORNL) 1993. RISC Computer Code Collection: *MCNP 4A, Monte Carlo N-Particle Transport Code System*. CCC-200. Oak Ridge Tennessee: RSIC. TIC: 233782.
- 7.2 Briesmeister, Judith F., ed. 1997. MCNP A General Monte Carlo N-Particle Transport Code. Version 4B-UC 705 and UC 700. LA-12625-M (C). Los Alamos, New Mexico: Los Alamos National Laboratory. ACC: MOL.19980624.0328.
- 7.3 Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 1997. Software Qualification Report for the SCALE Modular Code System Version 4.3. 30011-2002 REV 01. CSCI: 30011 V4.3. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19970731.0884.
- 7.4 CRWMS M&O 1999. CRC Depletion Calculations for Quad Cities Unit 2. B0000000-01717-0210-00009 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990929.0121.
- 7.5 CRWMS M&O 1996. Software Qualification Report for MCNP 4A, A General Monte Carlo N-Particle Transport Code. 30006-2003 REV 01. CSCI: 30006 V4A. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19961028.0277.
- 7.6 CRWMS M&O 1998. Software Qualification Report for MCNP 4B2, A General Monte Carlo N-Particle Transport Code. 30033-2003 REV 01. CSCI: 30006 V4B2LV. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980622.0637.
- 7.7 CRWMS M&O 1997. MCNP CRC Reactivity Calculation for Quad Cities BWR. B0000000-01717-0200-00146 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19971229.0128.
- 7.8 Electric Power Research Institute (EPRI) 1976. Core Design and Operating Data for Cycles 1 and 2 of Quad Cities 1. EPRI NP-240. Palo Alto, California: EPRI. TIC: 237267.
- 7.9 CRWMS M&O 1999. Summary Report for Commercial Reactor Criticality Data for Quad Cities Unit 2. B0000000-01717-5705-00096 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990917.0184.
- 7.10 CRWMS M&O 1997. Disposal Criticality Analysis Methodology Technical Report. B0000000-01717-5705-00020 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980127.0095.

- 7.11 Department of Energy (DOE) 1997. Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages. DOE/RW-0472 Rev. 1. Washington, D.C.: U.S. Department of Energy Office of Civilian Radioactive Waste Management (OCRWM). ACC: MOV.19970416.0125.
- 7.12 General Electric Company (GE) 1989. Nuclides and Isotopes: Chart of the Nuclides. 14th Edition. San Jose, California: GE. TIC: 201637.
- 7.13 CRWMS M&O 1999. Three (3) Compact Disks for CRC Reactivity Calculations for Quad Cities Unit 2. B0000000-01717-0210-00010 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19991015.0393.
- 7.14 CRWMS M&O 1996. Material Compositions and Number Densities for Neutronics Calculations (SCPB: N/A). BBA000000-01717-0200-00002 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19960624.0023.
- 7.15 CRWMS M&O 1997. CRC Statepoint Reactivity Calculations for Cycles 1A, 1B, 2, 3, and 4 of Crystal River Unit 3. BBA000000-01717-0200-00046 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19971218.1060.
- 7.16 Keenan, J. H., Keyes, F. G., Hill. P. G., and Moore, J. G. 1969. *Steam Tables, Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases.* New York, New York: John Wiley and Sons. ACC: NNA.19900604.0041.
- 7.17 American Society for Metals (ASM) International 1989. Properties and Selection: Nonferrous Alloys and Pure Metals. Volume 2 of Metals Handbook. 9th Edition. Materials Park, Ohio: American Society for Metals International. NNA.19900108.0326.
- 7.18 Oak Ridge National Laboratory (ORNL) 1995. Three Mile Island Unit 1 Cycle 5. Volume 4 of SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations. ORNL/TM-12294/V4. Oak Ridge, Tennessee: Oak Ridge National Laboratory. ACC: MOL.19960821.0245.
- 7.19 CRWMS M&O 1998. Eight (8) CD's for CRC Depletion Calculations for Quad Cities Unit 2. B0000000-01717-0210-00009 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980903.0004.
- 7.20 CRWMS M&O 1998. Ten (10) Diskettes for Commercial Reactor Criticals for Quad Cities Unit 2. B0000000-01717-0210-00010 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980810.0213.
- 7.21 CRWMS M&O 1999. Software Change Request(SCR) LSCR214. Software Qualification Report(SQR) for MCNP 4A. 3006-2003 REV 02. B0000000-01717-1200-30006. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990317.0078.

8. ATTACHMENTS

The attachments that support the work in this document are listed in Table 8-1.

Table 8-1. List of Attachments

Attachment	Contents	Number
		of
		Pages
1	Index for Computer Output Files Supporting this Analysis	4 [a]
	(moved to Reference 7.13)	
11	Development of Core Geometry Datasets	12
	Development of Core Materials Dataset	42
IV	Development of Lattice Geometry Datasets	15
V	Development of Control Blade Geometry Dataset	11
VI	Development of Algorithms and Encoding for Linkage Automation	40
VII	Specification of Intermediate Datasets for Fuel Materials	11
VIII	Development of Automation to Create Intermediate Fuel Materials Datasets	36
IX	Methodology for Building Control Blade Model	13
Х	Methodology for Building GE 7x7 Fuel Lattice Model	15
XI	Methodology for Building GE 8x8 with Small Water Rods Model	13
XII	Creation of MCNP Model for Quad Cities Unit 1, Beginning-of-Life Core	8
XIII	MCNP Input Deck Generated by BLINK, Version 0, for QC1, BOL	76
XIV	Listing of Routines and Functions for BLINK, Version 0	241
XV	Listing of Routines and Functions for IDSGEN, Version 1	57
XVI	Methodology for Building GE 8x8 with Large Central Water Rod Model	14
XVII	Algorithms and Encoding to Produce BLINK, Version 1	13
XVIII	Creation of MCNP Model for Quad Cities Unit 2 Exposed Core CRCs for	27
	Cycle 13	
XIX	Creation of MCNP Model for Quad Cities Unit 2 Exposed Core CRCs for	20
	Cycle 14	
XX	Listing of Routines and Functions for BLINK, Version 1	180

[a]. This is the number of pages in the hard-copy listing of contents of the compact disks.

Page 54 of 54

Title:	Index for Computer Files Supporting this Analysis	
Docur	nent Identifier: B00000000-01717-0210-00010 REV 01	Atta

Attachment I Page 1 of 4

ATTACHMENT I

This attachment provides a description of the computer output produced in the course of this analysis. Table I-1 provides a listing of the output files which have been written on CD including the file size creation date and a description. A HP CD-Writer Plus model 7200e external CD-rewritable drive for PCs was used to create the attachment. Note that the files sizes shown are as they appear on the HP Series 9000 workstations. The file sizes differ on the attachment CD due to differences in block sizes between the HP and the personal computer. The CDs have been moved to Ref. 7.13.

File Name	Size	Date	Time	Description
	(bytes)			
IDSGEN Output	- CD 1			
cp9sio.sum	16049599	9/20/99	5:49	Consolidated IDSGEN Output for QC2BOC13 Critical Point with Best
			pm	Estimate Isotopics.
cp9piio.sum	9820151	9/21/99	8:35	Consolidated IDSGEN Output for QC2BOC13 Critical Point with
			am	Principal Isotope Isotopics
cp9paio.sum	7911083	9/21/99	8:31	Consolidated IDSGEN Output for QC2BOC13 Critical Point with
			am	Principal Actinide Isotopics
cp9aoio.sum	7596529	9/21/99	8:33	Consolidated IDSGEN Output for QC2BOC13 Critical Point with
			am	Actinide-only Isotopics
cp10aoio.sum	9357231	9/21/99	8:39	Consolidated IDSGEN Output for QC2C13CP10 Critical Point with
			am	Best-estimate Isotopics
cp10io.sum	19671469	9/21/99	8:39	Consolidated IDSGEN Output for QC2C13CP10 Critical Point with
			am	Actinide-only Isotopics
cp10paio.sum	9709599	9/21/99	8:40	Consolidated IDSGEN Output for QC2C13CP10 Critical Point with
			am	Principal Actinide Isotopics
cp10piio.sum	12046495	9/21/99	8:40	Consolidated IDSGEN Output for QC2C13CP10 Critical Point with
			am	Principal Isotope Isotopics
cp11io.sum	20044569	9/21/99	8:40	Consolidated IDSGEN Output for QC2C13CP11 Critical Point with
			am	Best-estimate Isotopics
cp11piio.sum	12153669	9/21/99	8:41	Consolidated IDSGEN Output for QC2C13CP11 Critical Point with
			am	Principal Isotope Isotopics
cp11paio.sum	9786023	9/21/99	8:40	Consolidated IDSGEN Output for QC2C13CP11 Critical Point with
			am	Principal Actinide Isotopics
cp11aoio.sum	9395935	9/21/99	8:40	Consolidated IDSGEN Output for QC2C13CP11 Critical Point with
			am	Actinide-only Isotopics
cp14io.sum	16259312	9/21/99	8:41	Consolidated IDSGEN Output for QC2C13CP13 Critical Point with
			am	Best-estimate Isotopics
cp14piio.sum	10026476	9/21/99	8:41	Consolidated IDSGEN Output for QC2C13CP13 Critical Point with
			am	Principal Isotope Isotopics
cp14paio.sum	8093302	9/21/99	8:41	Consolidated IDSGEN Output for QC2C13CP13 Critical Point with
			am	Principal Actinide Isotopics
cp14aoio.sum	7774730	9/21/99	8:41	Consolidated IDSGEN Output for QC2C13CP13 Critical Point with
			am	Actinide-only Isotopics
cp16io.sum	19978789	9/21/99	8:42	Consolidated IDSGEN Output for QC2BOC14 Critical Point with Best
			am	Estimate Isotopics
cp16piio.sum	12090515	9/21/99	8:42	Consolidated IDSGEN Output for QC2BOC14 Critical Point with
			am	Principal Actinide Isotopics
cp16paio.sum	9742265	9/21/99	8:42	Consolidated IDSGEN Output for QC2BOC14 Critical Point with
			am	Principal Isotope Isotopics
cp16aoio.sum	9356167	9/21/99	8:42	Consolidated IDSGEN Output for QC2BOC14 Critical Point with
			am	Actinide-only Isotopics

Table I-1 Summ	ary of Computer	Output \$	Supporting	this Anal	ysis
----------------	-----------------	-----------	------------	-----------	------

Title: Index for Computer Files Supporting this Analysis **Document Identifier:** B00000000-01717-0210-00010 REV 01

Attachment I Page 2 of 4

File Name	Size (bytes)	Date	Time	Description
cp9io_rev0.sum	16094448	9/21/99	4:45	Consolidated IDSGEN Output for QC2BOC13 Critical Point with
opene_rereas			pm	Best-estimate Isotopics, using Prior Isotopics from Ref 7.19
cp10io rev0.sum	19678193	9/21/99	4:44	Consolidated IDSGEN Output for QC2C13CP10 Critical Point with
· · · · -			pm	Best-estimate Isotopics, using Prior Isotopics from Ref 7.19
cp11io rev0.sum	20041371	9/21/99	4:44	Consolidated IDSGEN Output for QC2C13CP11 Critical Point with
	l		l pm	Best-estimate Isotopics, using Prior Isotopics from Ref 7.19
cp13io rev0.sum	20113941	9/21/99	4:45	Consolidated IDSGEN Output for QC2C13CP13 Critical Point with
· -			pm	Best-estimate Isotopics, using Prior Isotopics from Ref 7.19
cp14io rev0.sum	16329829	9/21/99	4:45	Consolidated IDSGEN Output for QC2BOC14 Critical Point with
·			pm	Best-estimate Isotopics, using Prior Isotopics from Ref 7.19
cp16io_rev0.sum	19967801	9/21/99	4:45	Consolidated IDSGEN Output for QC2C14CP16 Critical Point with
			pm	Best-estimate Isotopics, using Prior Isotopics from Ref 7.19
cp9b_rev0.out	21800399	9/21/99	5:21	BLINK Output for QC2BOC13 Critical Point with Best Estimate
			pm	Isotopics, using Prior Isotopics from Ref 7.19
cp10b_rev0.out	26852631	9/21/99	5:18	BLINK Output for QC2C13CP10 Critical Point with Best Estimate
			pm	Isotopics, using Prior Isotopics from Ref 7.19
cp11b_rev0.out	26968866	9/21/99	5:19	BLINK Output for QC2C13CP11 Critical Point Best Estimate
			pm	Isotopics, using Prior Isotopics from Ref 7.19
cp13b_rev0.out	26992346	9/21/99	5:19	BLINK Output for QC2C13CP13 Critical Point with Best Estimate
			pm	Isotopics, using Prior Isotopics from Ref 7.19
cp14b_rev0.out	22746384	9/21/99	5:20	BLINK Output for QC2BOC14 Critical Point with Best Estimate
			pm	Isotopics, using Prior Isotopics from Ref 7.19
cp16b_rev0.out	27346266	9/21/99	5:21	BLINK Output for QC2C14CP16 Critical Point with Best Estimate
			pm	Isotopics, using Prior Isotopics from Ref 7.19
cp9m_rev0.out	16105522	9/21/99	5:22	MCNP Output for QC2BOC13 Critical Point with Best Estimate
	10000010	0.10.1.10.0	pm	Isotopics, using Prior Isotopics from Ref 7.19
cp10m_rev0.out	18693640	9/21/99	5:18	MCNP Output for QC2C13CP10 Critical Point with Best Estimate
	10107707	0/04/00	pm	Isotopics, using Prior isotopics from Ref 7.19
cp11m_rev0.out	19197784	9/21/99	5:18	MCNP Output for QC2C13CP11 Critical Point with Best Estimate
40	10501057	0/04/00	pm	Isotopics, using Prior isotopics from Ref 7.19
cp13m_rev0.out	19564957	9/21/99	5:20	MCNP Output for QC2C13CP13 Critical Point with Best Estimate
on14m rou0 out	16951904	0/21/00	<u> pm</u>	MCND Output for OC2POC14 Critical Daint with Past Estimate
cp14m_rev0.out	10001094	9/21/99	5.20 nm	lisotonics, using Prior lostonics from Point with Dest Estimate
cn16m rov0 out	10605470	0/21/00	5:21	MCNP Output for OC2C14CP16 Critical Point with Post Estimate
cprom_revo.out	19095470	5/21/55	0.21	lisotonics, using Prior lisotonics from Ref 7 19
BLINK Output - 1	202			
DEMA Output - C	21754554	0/22/00	10.15	PLINK Output for OC2POC12 Critical Daint with Post Estimate
cpasp.out	21704004	9122199	am	Isotopics
cn9snih out	21026911	9/22/99	10.16	BLINK Output for OC2BOC13 OC2C13CP10 Critical Point with
opeopletett	21020011	0/22/00	am	Principal Isotopics
cp9spab out	20683859	9/22/99	10.15	BLINK Output for OC2BOC13 OC2C13CP11 Critical Point with
opeopasioat	20000000	0,22,00	am	Principal Actinide Isotopics
cp9saob.out	20637996	9/22/99	10.15	BLINK Output for OC2BOC13 Critical Point with Actinide-only
			am	Isotopics
cp10b.out	26850353	9/22/99	10:18	BLINK Output for QC2C13CP10 Critical Point with Best Estimate
			am	Isotopics
cp10pib.out	25979384	9/22/99	10:19	BLINK Output for QC2C13CP10 Critical Point with Principal Isotope
			am	Isotopics
cp10pab.out	25557003	9/22/99	10:18	BLINK Output for QC2C13CP10 Critical Point with Principal Actinide
			am	Isotopics
cp10aob.out	25518360	9/22/99	10:18	BLINK Output for QC2C13CP13 Critical Point with Actinide-only
			am	Isotopics
cp11b.out	26970097	9/22/99	10:19	BLINK Output for QC2C13CP11 Critical Point with Best Estimate
			am	Isotopics

Title: Index for Computer Files Supporting this Analysis **Document Identifier:** B0000000-01717-0210-00010 REV 01

NUMBER OF STREET

.....

Attachment I Page 3 of 4

File Name	Size (bytes)	Date	Time	Description
cp11pib.out	26011805	9/22/99	10:21 am	BLINK Output for QC2C13CP11 Critical Point with Principal Isotope Isotopics
cp11pab.out	25586362	9/22/99	10:20 am	BLINK Output for QC2C13CP11 Critical Point with Principal Actinide Isotopics
cp11aob.out	25529809	9/22/99	10:20 am	BLINK Output for QC2C13CP11 Critical Point with Actinide-only Isotopics
cp13b.out	26993366	9/22/99	10:21 am	BLINK Output for QC2C13CP13 Critical Point with Best Estimate Isotopics
cp13pib.out	26013293	9/22/99	10:22 am	BLINK Output for QC2C13CP13 Critical Point with Principal Isotope Isotopics
cp13pab.out	25586184	9/22/99	10:22 am	BLINK Output for QC2C13CP13 Critical Point with Principal Actinide Isotopics
cp13aob.out	25530078	9/22/99	10:21 am	BLINK Output for QC2C13CP13 Critical Point with Actinide-only Isotopics
cp14sb.out	22678302	9/22/99	10:16 am	BLINK Output for QC2BOC14 Critical Point with Best Estimate lsotopics
cp14spib.out	21968038	9/22/99	10:17 am	BLINK Output for QC2BOC14 Critical Point with Principal Isotope Isotopics
cp14spab.out	21620875	9/22/99	10:17 am	BLINK Output for QC2BOC14 Critical Point with Principal Actinide Isotopics
cp14saob.out	21573859	9/22/99	10:16 am	BLINK Output for QC2BOC14 Critical Point with Actinide-only Isotopics
cp16b.out	27349912	9/22/99	4:02 pm	BLINK Output for QC2C14CP16 Critical Point with Best Estimate Isotopics
cp16pib.out	26379583	9/22/99	4:40 pm	BLINK Output for QC2C14CP16 Critical Point with Principal Isotope Isotopics
cp16pab.out	25963140	9/22/99	4:40 pm	BLINK Output for QC2C14CP16 Critical Point with Principal Actinide Isotopics
cp16aob.out	25900353	9/22/99	4:30 pm	BLINK Output for QC2C14CP16 Critical Point with Actinide-only Isotopics
MCNP Output -	CD 3			
cp9sm.out	15252677	9/22/99	4:01 pm	MCNP Output for QC2BOC13 Critical Point with Best Estimate Isotopics
cp9spim.out	12834561	9/22/99	4:02 pm	MCNP Output for QC2BOC13 QC2C13CP10 Critical Point with Principal Isotope Isotopics
cp9spam.out	11721702	9/22/99	4:02 pm	MCNP Output for QC2BOC13 QC2C13CP11 Critical Point with Principal Actinide Isotopics
cp9saom.out	11629630	9/22/99	4:01 pm	MCNP Output for QC2BOC13 Critical Point with Actinide-only Isotopics
cp10m.out	18687770	9/22/99	3:52 pm	MCNP Output for QC2C13CP10 Critical Point with Best Estimate Isotopics
cp10pim.out	15810191	9/22/99	3:55 pm	MCNP Output for QC2C13CP10 Critical Point with Principal Isotope Isotopics
cp10pam.out	14404091	9/22/99	3:54 pm	MCNP Output for QC2C13CP10 Critical Point with Principal Actinide Isotopics
cp10aom.out	14371590	9/22/99	3:52 pm	MCNP Output for QC2C13CP13 Critical Point with Actinide-only Isotopics
cp11m.out	19065851	9/22/99	3:54 pm	MCNP Output for QC2C13CP11 Critical Point with Best Estimate Isotopics
cp11pim.out	15897218	9/22/99	3:55 pm	MCNP Output for QC2C13CP11 Critical Point with Principal Isotope Isotopics
cp11pam.out	14519670	9/22/99	3:54 pm	MCNP Output for QC2C13CP11 Critical Point with Principal Actinide
cp11aom.out	14436863	9/22/99	3:54 pm	MCNP Output for QC2C13CP11 Critical Point with Actinide-only Isotopics

. . . .

Title: Index for Computer Files Supporting this Analysis **Document Identifier:** B0000000-01717-0210-00010 REV 01

Attachment I Page 4 of 4

File Name	Size	Date	Time	Description
10	(Dytes)	0/00/00	0.55	MOND Onter 1 for CODO100 D10 Onthing Delicity ith Deat Estimate
cp13m.out	19143160	9/22/99	3:55	MONP Output for QU2013CP13 Ontical Point with Best Estimate
10	45000070	0/00/00	pm	ISOTOPICS
cp13pim.out	15898972	9/22/99	3:55	MCNP Output for QC2C13CP13 Critical Point with Principal Isotope
	4 15 17000	0/00/00	pm	ISOLOPICS
cp13pam.out	1451/362	9/22/99	3:56	MCNP Output for QC2C13CP13 Critical Point with Principal Actinide
	11100007	0/00/00	pm 0.55	ISOLOPICS
cp13aom.out	14402867	9/22/99	3:55	MONP Output for QO2C 13CP 13 Childai Point with Adimide-only
and down out	10000004	0/02/00	<u>pm</u>	ISOLOPICS MCND Quite it for QC2DQC11 Critical Daint with Post Estimate
cp 14sm.out	16032604	9/22/99	3:57	
and doming and	42722247	0/22/00	<u>pm</u>	ISOLOPICS
cp 14spim.out	13/3324/	9/22/99	3:50	
and damages allt	40507040	0/00/00	<u>pm</u>	ISOLOPICS
cp14spam.out	1253/012	9/22/99	3:50	MONP Output for QC2BOC 14 Childal Point with Principal Adimide
ant to com out	10454000	0/00/00	<u> pm</u>	ISOLOPICS
cp14saom.out	12454206	9/22/99	3:57	MONP Output for QC2BOC 14 Childar Point with Adunide-only
an16m out	20120120	0/22/00	2.50	MOND Output for OC2C14CD16 Oritical Daint with Boat Estimate
icp rom.out	20130139	9/22/99	3:59	Income Output for QC2C 14CP to Childal Point with Best Estimate
on16nim out	16752955	0/22/00	1.00	MCND Output for OC2C14CD16 Critical Point with Principal Instance
icp ropini.out	10/52055	9/22/99	4.00	
on16nom out	15629194	0/22/00	4.00	MCND Output for OC2C14CD16 Critical Boint with Bringing Actinide
ch iohaiir.onr	10020104	9/22/99	4.00	lectopics
an16aam aut	15005242	0/22/00	2.50	MCND Output for OC2C14CD16 Critical Daint with Actinida and
cp roaom.out	10000242	9/22/99	3.09	
halia aum	196500	10/12/00	0.25	Consolidated IDSCEN Output for Ored Citics 1 Paginning of Life
Dono.sum	100009	10/12/99	9.20	
acted out	600781	2/22/09	12:00	Plink Version 0. Output for Oued Cities 1 Reginning of Life case
	090701	3/23/80	12.00	Blink, version 0, Output for Quad Citles T beginning of Life case
actor mout	2201415	2/24/00	12:00	MCND Output for Ougd Citics 1 Paginging of Life case, constructed
derer_m.out	2301413	3/24/90	12.00	from Plink Vorsion Quesing MCNP vorsion 44
	000150	0/20/00	2.15	Plink Version 1. Output for Qued Cities 1 Perinning of Life ages
dere iv.out	990150	9/20/99	3:15	Dink, version 1, Output for Quad Cities 1 beginning of Life case
actoty mout	1244022	0/21/00	1 4:22	MOND Output for Ougd Citics 1 Paginging of Life good, constructed
quiciv_m.out	1344033	9/21/99	4.33	from Plink Version 1, using MCND version 4P2
nov Over diff	595	10/1/00	<u>pm</u>	Differences File between MOND Invest Files for "refet at m" and
revov.din	000	10/1/99	0.07	Prinerence rite between Monte input rites for goto1_m and
revOvo	1657740	0/20/00	11.20	MCND Output for Ougd Citics 1 Reginning of Life case, constructed
10000	1001140	9130199	nm	from Blink Version 0 using MCNP version 482
	1	/	i pin	

,

Title: Development of Core Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment II Page 1 of 12

CONTENTS

		Page
1.	Introduction	5
2.	Dataset Structure and Contents	5
3.	Dataset Creation	8
	 3.1. Dataset Title Record 3.2. Namelist Input 3.3. Space-delimited Fields 3.4. Dataset Identification 	8 8 8 8 8

Title: Development of Core Geometry Datasets	
Document Identifier: B0000000-01717-0210-00010 REV 01 Attachr	nent II Page 2 of 12

~

FIGURES

Page

•

2-1	Location Indexing for Control Blades and Dry Tubes	7
3-1	Core Geometry Dataset for 724 Bundle BWR/3	9

TABLES

2-1 Contents of Dataset

Page

6

Title: Development of Core Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment II Page 4 of 12

WORKSHEETS

3-1 Namelist Input Development

Page

11

Title: Development of Core Geometry Datasets **Document Identifier:** B00000000-01717-0210-00010 REV 01

Attachment II Page 5 of 12

1. Introduction

This attachment describes the creation of the datasets defining the core layout and core support structures. It provides a detailed list of contents for such datasets and documents the creation of the datasets of this type used in the present calculation.

2. Dataset Structure and Contents

The dataset structure is an ASCII-format file that incorporates both FORTRAN Namelist-type input and fields of space-delimited data. The contents of this dataset are given in Table 2-1. In this table the format of each datum is given. The indexing for the locations of the control blades and the in-core instrumentation dry tube are depicted in Figure 2-1. In this figure, the control blade shown has an index of (2,2) and the instrument location also has an index of (2,2). This permits the location of the blades and the instrument dry tubes to be referenced to the same scheme as for the fuel assemblies.

Title: Development of Core Geometry Datasets Document Identifier: B0000000-01717-0210-00010 REV 01

Attachment II Page 6 of 12

Mnemonic	Definition	Comments	Format
Title	Dataset Title	Character String Describes Application for this Dataset (Class of BWR to which it is Applicable)	Single Line
ncol	Dimensionality of Core	Integer Maximum Number of Fuel Assemblies in the Widest Rod of such Assemblies	Namelist
nrow	Dimensionality of Core	Integer Maximum Number of Fuel Assemblies in the Longest Column of such Assemblies	Namelist
apitch	Assembly Pitch (cm)	Real Always Six Inches (15.34 cm) except for BWR/1 and Advanced Boiling Water Reactor (ABWR)	Namelist
vod	Vessel Outer Diameter (cm)	Defines Lateral Outer Surface for Problem	Namelist
vthick	Vessel Thickness (cm)	Used to Compute Inner Surface of Vessel Cell	Namelist
sod	Core Shroud Outer Diameter (cm)	Defines Shroud and Jet Pump Region	Namelist
sthick	Core Shroud Thickness (cm)	Used to Compute Inner Surface of Core Shroud Cell	Namelist
tutpr	Top of Upper Tie Plate Region (cm) [a]	Defines the First Upper Reflector Region	Namelist
tcgr	Top of Core Grid Region (cm) [a]	Defines the Second Upper Reflector Region	Namelist
bltpr	Bottom of Lower Tie Plate Region (cm) [a]	Defines the First Lower Reflector Region	Namelist
bcpr	Bottom of Fuel Support/Core Plate Region (cm) [a]	Defines the Second Lower Reflector Region	Namelist
dtod	Instrument Dry Tube Outer Diameter (cm)	Used to Dimension Dry Tube	Namelist
dtid	Instrument Dry Tube Inner Diameter (cm)	Used to Dimension Dry Tube	Namelist

Material

Material

Material

Material

Combined with Water to Create a Homogenized Namelist

Table 2-1 Contents of Dataset

[a]. The axial datum is the bottom of active fuel (BAF).

Material Identifier for

Material Identifier for

Material Identifier for

Material Identifier for

Vessel

Core Shroud

Core Plate

Core Top Guide

mvessel

mshroud

mtg

mcp

Title: Development of Core Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attach

Attachment II Page 7 of 12

Mnemonic	Definition	Comments	Format
migt	Material Identifier for In- core Guide Tube		Namelist
valid	Array of Valid Assembly Locations	Integer Values for Entire Core are Provided and then Partitioned for the Particular Problem	Space-delimited Field
bvalid	Array of Valid Control Blade Locations	Integer Values are Provided for each Control Cell (or implied Control Cell for Peripheral and non-fuel Locations)	Space-delimited Field
ivalid	Array of Locations for In- core Instrumentation Dry Tubes	Integer Values are Provided for each Control Cell (or implied Control Cell for Peripheral and non-fuel Locations)	Space-delimited Field

Figure 2-1 Location Indexing for Control Blades and Dry Tubes

Table 2-1 (cont'd)

Title: Development of Core Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment II Page 8 of 12

3. Dataset Creation

Each group of data in the dataset will now be discussed in greater detail and the creation of the dataset for a 724-bundle BWR/3 documented. The final dataset is shown in Figure 3-1.

3.1. Dataset Title Record

The first line of the dataset is a title. While the contents of this line are arbitrary, it should contain the following information to ensure consistency with the file name:

- number of bundles in the core (724 in this case); and
- the class of BWR (3 in this case).

3.2. Namelist Input

The FORTRAN namelist-type input variables must adhere to the restrictions inherent in the format of such input. Care must be taken to ensure that the value provided is consistent with the data storage class in the automation (i.e., integer input for integer variables and real input for real variables) so that precision is not lost for real variables and illusory precision is implied for integer variables.

The development of the values appropriate for the 724-bundle BWR/3 is shown in Worksheet 3-1. All of the material identifiers for the dataset are consistent with Type 304 stainless steel (Reference 7.8, for the first two cycles of operation of the Quad Cities-1 core, Table 12 and Figure 29 – hereafter cited as the "EPRI Report").

3.3. Space-delimited Fields

These fields are used for "maps" indicating the locations of fuel assemblies, control blades and in-core instrumentation dry tubes. While these are read in a "free-format," good practice indicates that they should be arrayed in a regular fashion that maximizes legibility.

3.4. Dataset Identification

This dataset file is named: bwr3_724bundle.dat

Waste Package Operations

Title: Development of Core Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment II Page 9 of 12

Core Geometry for 724-bundle BWR/3 \$core ncol = 30nrow = 30apitch = 15.24vod = 668.654vthick = 15.557sod = 526.096sthick = 5.08tutpr = 399.0tcgr = 403.0bltpr = -13.49bcpr = -18.57mvessel = 'SS304' mshroud = 'SS304'mtg = '3TG1'mcp = '3CP1'migt = 'SS304'dtod = 1.78dtid = 1.63\$end Valid Assembly Locations 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Figure 3-1 Core Geometry Dataset for 724 Bundle BWR/3

Title: Development of Core Geometry Datasets	
Document Identifier: B00000000-01717-0210-00010 REV 01	Attachment II Page 10 of 12

Figure 3-1 (cont'd)

Waste Package Operations

Title: Development of Core Geometry Datasets Document Identifier: B0000000-01717-0210-00010 REV 01 Attachment II Page 11 of 12

		Reference				
Mnemonic	Definition	Value	Units	Source	Name	
ncol	Dimensionality of Core	30	n/a	[a]	n/a	
nrow	Dimensionality of Core	30	n/a	[a]	n/a	
apitch	Assembly Pitch	6	inches	[b]	APITCH	
vod	Vessel Outer Diameter	668.654	cm	[C]	n/a	
vthick	Vessel Thickness	15.557	cm	[c]	n/a	
sod	Core Shroud Outer Diameter	526.096	cm	[c]	n/a	
sthick	Core Shroud Thickness	5.08	cm	[c]	n/a	
n/a	Assembly Length (Handle to Nosepiece)	171.27	inches	[d]	ATLEN	
n/a	Nosepiece Guide	1.48	inches	[d]	LNPG	
n/a	Nosepiece Cylinder	0.625	inches	[d]	LNPCYL	
n/a	Lower Tie Plate	5.31	inches	[d]	LLTP	
n/a	Active Fuel Length	144	inches	[d]	AFL	
n/a	Handle Length	6.65	inches	[d]	LHANDLE	
tutpr	Top of Upper Tie Plate Region	n/a	n/a	n/a	TUTPR	
tcgr	Top of Core Grid Region	158.6875	inches	[e]	TCGR	
bltpr	Bottom of Lower Tie Plate Region	n/a	n/a	n/a	n/a	
n/a	Core Support Plate Thickness	2	inches	[e]	CSPTH	
bcpr	Bottom of Fuel Support/Core Plate Region	n/a	n/a	n/a	n/a	
dtod	Instrument Dry Tube Outer Diameter	0.700	inches	[f]	DTD	
	Dry Tube Thickness	0.03	inches	[f]	DTD	
dtid	Instrument Dry Tube Inner Diameter	0.64	inches	n/a	DTID	

Worksheet 3-1 Namelist Input Development

[a]. This value is from the EPRI Report, Table 15.

[b]. This value is from the EPRI Report, Table 3.

[c]. Reference 7.7, Table 4.1-1.

[d]. This value is from the EPRI Report, Figure 10.[e]. This value is from the EPRI Report, Figure 26.[f]. This value is from the EPRI Report, Figure 29.

Title: Development of Core Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment II Page 12 of 12

		Dataset]
Mnemonic	Definition	Value	Units	Computation
ncol	Dimensionality of Core	30	n/a	n/a
nrow	Dimensionality of Core	30	n/a	n/a
apitch	Assembly Pitch	15.24	cm	= 2.54*APITCH
vod	Vessel Outer Diameter	668.654	cm	n/a
vthick	Vessel Thickness	15.557	cm	n/a
sod	Core Shroud Outer Diameter	526.096	cm	n/a
sthick	Core Shroud Thickness	5.08	cm	n/a
n/a	Assembly Length (Handle to Nosepiece)	435.03	cm	= 2.54*ATLEN
n/a	Nosepiece Guide	3.76	cm	= 2.54*LNPG
n/a	Nosepiece Cylinder	1.59	cm	= 2.54*LNPCYL
n/a	Lower Tie Plate	13.49	cm	= 2.54*LLTP
n/a	Active Fuel Length	366	cm	= 2.54*AFL
n/a	Handle Length	16.89	cm	= 2.54*LHANDLE
tutpr	Top of Upper Tie Plate Region	399	cm	= 2.54*(AFL+ATLEN- LNPG-LNPCYL-LLTP-AFL- LHANDLE)
tcgr	Top of Core Grid Region	403.0663	cm	= 2.54*TCGR
bltpr	Bottom of Lower Tie Plate Region	-13.49	cm	= -2.54*LLTP
n/a	Core Support Plate Thickness	5.08	cm	= 2.54*CSPTH
bcpr	Bottom of Fuel Support/Core Plate Region	-18.57	cm	= -2.54*(LLTP+CSPTH)
dtod	Instrument Dry Tube Outer Diameter	1.78	cm	= 2.54*DTOD
	Dry Tube Thickness	0.076	cm	= 2.54*DTD
dtid	Instrument Dry Tube Inner Diameter	1.63	cm	= 2.54*(DTOD-2*DTD)

Worksheet 3-1 (cont'd)

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 1 of 42

CONTENTS

		Page
1.	Introduction	5
2.	Dataset Structure and Contents	5
3.	Dataset Creation	7
3333	3.1. Dataset Title Record3.2. Space-separated-variable Fields3.3. Dataset Location	7 7 22

Calculation (Attachment)

.

Title: Development of Core Materials Dataset	
Document Identifier: B0000000-01717-0210-00010 REV 01	Attachment III Page 2 of 42

TABLES

Page

2-1	Contents of Dataset	6
3-1	Isotopic Constants	8
3-2	End-zone Component Specifications	11
3-3	Moderator Weight Percentages	11
3-4	Moderator Density Values	13
3-5	Upper Tie Plate Region Composition	15
3-6	Lower Tie Plate Composition	15
3-7	Core Grid and Core Plate Compositions	16
3-8	Spacer Grid Composition	20
3-9	Material Dataset Elemental Portion	22
3-10	D Material Dataset – Isotopic Portion	29
A DESCRIPTION OF THE OWNER AND A DESCRIPTION OF THE OWNER AND

Page

Title: Development of Core Materials Dataset	
Document Identifier: B00000000-01717-0210-00010 REV 01	Attachment III Page 3 of 42

FIGURES

Figure 3-1Core Grid Geometry in Control Cell12Figure 3-2Moderator Density Values14Figure 3-3Dataset for Core Materials36

.

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 4 of 42

WORKSHEETS

Page

3-1	B₄C Composition Calculation	10
3-2	Materials Composition for End-zone Regions	16
3-3	Channel Cross-sectional Area Values	19
3-4	Computation of Spacer Composition and Effective Density	20

.

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 5 of 42

1. Introduction

This attachment describes the creation of the datasets defining the core materials dataset, including the fuel channel materials, fuel rod cladding and spacer grids. It provides a detailed list of contents for such datasets and documents the creation of the datasets of this type used in the present analysis. Such datasets are not necessarily specific to the calculation at hand and may be referenced and used in other subsequent calculations.

2. Dataset Structure and Contents

The dataset structure is an ASCII-format file that incorporates fields of space-separated-variable data. The contents of this dataset is given in Table 2-1.

Title: Development of Core Materials Dataset Document Identifier: B00000000-01717-0210-00010 REV 01

Attachment III Page 6 of 42

Value	Description	Notes
Title	Descriptive Title of File Contents	
Material Mnemonic	Five Alphanumeric Character Identifier for Material	This is used as in the input directives to select materials from the dataset for use in the representation of a particular cell.
Density	Material Density in Units of g/cm ³	Density is used on the Cell Card.
Weight Percentage	Weight Percentage of a Given Element in the Composition	
Atomic Number		The atomic number is used to identify the element and construct the reference to the library.
Library (Elemental) [a]	Suffix for Library Entry	This is used to build the library entry identifier for a element.
Mass Number	Atomic Mass Number	This is used to identify the isotope and construct the reference to the library.
Natural Abundance	Frequency of Occurrence of this Isotope in Nature as an Atom Percentage	The natural abundance is used to modify the elemental weight percentage to properly reflect the amount of the nuclide present.
Library (Isotopic) [a]	Suffix for Library Entry	This is used to build the library entry identifier for an isotope.

Table 2-1 Contents of Dataset

[a]. A value of zero for this entry indicates that no values are available for this portion of the dataset.

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 7 of 42

3. Dataset Creation

Each group of data in the dataset will now be discussed in greater detail and the creation of the dataset documented. The final dataset is shown in Figure 3-3.

3.1. Dataset Title Record

The first line of the dataset is a title. While the contents of this line are arbitrary, it should contain the following information to ensure consistency with the file name:

3.2. Space-separated-variable Fields

These fields form the bulk of the information on the dataset. The values in the dataset is given in Tables 3-9 and 3-10. Note that the dataset has been loaded with the library suffixes given in the main body of this document.

Note that the data is grouped by element and isotopes within each element (see Figure 3-3). Thus the first line of a material definition contains, as its last value, a numeral corresponding to the total number of elements in the material. These elements then sequentially follow in the dataset. The elements may also be further sub-divided into data for each constituent isotope. Again, the last value on the record defining the element is a numeral that represents the subsequent number of records of isotopic information.

3.2.1. Homogeneous Compositions

For structures that are composed of a single material rather than a mixture of two distinct (e.g., stainless steel and light water), the basic isotopic constants from Table 3-1 are appropriately combined based on the previously determined compositions (Reference 7.14, hereafter cited as the "Materials Compilation"). For boron carbide, the computation of the weight percentages is given in Worksheet 3-1.

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachmer

Attachment III Page 8 of 42

Element	Atomic Number [a]	Library [b]	Mass Number [a]	Natural Abundance, Atom percent [a.c]	Library [b]	Atomic Weight g/g-atom [a]	Weight Percentage
Hydrogen	1	n/a	1	100.00	.50c	1.00782503	100.000
Boron	5	n/a	10	19.9	.50c	10.0129371	18.426
			11	80.1	.56c	11.0129371	81.574
Carbon	6	.50c	12	100.00	n/a	12.00000000	100.000
Nitrogen	7	n/a	14	100.00	.50c	14.00307401	100.000
Oxygen	8	n/a	16	100.00	.50c	15.9994	100.000
Magnesium	12	.50c	24	78.99	n/a	23.985042	77.950
_			25	10.00	n/a	24.985837	10.280
			26	11.01	n/a	25.982594	11.770
Aluminum	13	n/a	27	100	.50c	26.981538	100.000
Silicon	14	.50c	28	92.23	n/a	27.976927	91.873
			29	4.67	n/a	28.976494	4.818
			30	3.1	n/a	29.973770	3.308
Phosphorus	15	n/a	31	100.0	.50c	30.973762	100.000
Sulfur	16	n/a	32	100.0	.50c	31.9720705	100.000
Titanium	22	.50c	46	8.0	n/a	45.952630	7.920
			47	7.3	n/a	46.951764	7.298
			48	73.8	n/a	47.947947	73.845
			49	5.5	n/a	48.947871	5.532
			50	5.4	n/a	49.944792	5.405
Chromium	24	n/a	50	4.345	.60c	49.946047	4.179
	ļ		52	83.79	.60c	51.940511	83.701
			53	9.50	.60c	52.940652	9.673
			54	2.365	.60c	53.938884	2.448
Manganese	25	n/a	55	100.00	.50c	54.938048	100.000
Iron	26	n/a	54	5.9	.60c	53.939613	5.650
			56	91.72	.60c	55.934940	91.898
			57	2.1	.60c	56.935398	2.161
			58	0.28	.60c	57.933278	0.290
Nickel	27	n/a	58	68.27	.60c	57.935348	67.201
			60	26.10	.60c	59.930788	26.773
			61	1.13	.60c	60.931058	1.183
			62	3.59	.60c	61.928346	3.830
			64	0.91	.60c	63.92796988	1.013
Copper	29	n/a	63	69.17	.60c	62.929699	68.499
			65	30.83	.60c	64.927792	31.501
Zirconium	40	.60c	90	51.45	n/a	89.904702	50.706
			91	11.22	n/a	90.905643	11.181
			92	17.15	n/a	91.905038	17.278
			94	17.38	n/a	93.906314	17.891
			96	2.80	n/a	95.908275	2.944
Molybdenum	42	.50c	92	14.84	n/a	91.90607	14.217
			94	9.25	n/a	93.905085	9.055
			95	15.92	n/a	94.905841	15.750
	1		96	16.68	n/a	95.904678	16.675

Table 3-1 Isotopic Constants

Title: Development of Core Materials Dataset **Document Identifier:** B0000000-01717-0210-00010 REV 01

Attachment III Page 9 of 42

Element	Atomic Number [a]	Library [b]	Mass Number [a]	Natural Abundance, Atom percent [a,c]	Library [b]	Atomic Weight g/g-atom [a]	Weight Percentage
			97	9.55	n/a	96.906020	9.647
			98	24.13	n/a	97.905407	24.627
			100	9.63	n/a	99.90748	10.029
Tin	50	.35c	112	0.97	n/a	111.90482	0.914
			114	0.65	n/a	113.902761	0.624
			115	0.36	n/a	114.903347	0.329
			116	14.53	n/a	115.901745	14.196
			117	7.68	n/a	116.902953	7.563
			118	24.22	n/a	117.901606	24.055
			119	8.58	n/a	118.903309	8.604
			120	32.59	n/a	119.902197	32.917
			122	4.63	n/a	121.903440	4.755
			124	5.79	n/a	123.905274	6.043

[a]. These values are from the Chart of the Nuclides (Reference 7.12, hereafter cited as the "Chart of the Nuclides"). [b]. These values are from Reference 7.15, page 31.

[c]. In some cases the natural abundances have been changed due to the absence of libraries for some of the isotopes.

Calculation (Attachment)

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 10 of 42

Symbol	Description	Value	Units	Reference/Computation
TDB4C	Theoretical Density of B₄C	2.44	g/cm ³	Materials Compilation, §4.1.22.2.
FTDB4C	Fraction of Theoretical Density	0.73	n/a	Materials Compilation, §4.1.22.2.
DB4C	B₄C Density	1.78	g/cm ³	= TDB4C*FTDB4C
AAB10	Natural Abundence of B-10 in Boron	19.90	a/o	Chart of the Nuclides
AAB11	Natural Abundence of B-11 in Boron	80.10	a/o	Chart of the Nuclides
AWB10	Atomic Weight of B-10	10.0129372	g/gm atom	Chart of the Nuclides
AWB11	Atomic Weight of B-11	11.009306	g/gm atom	Chart of the Nuclides
AWB	Atomic Weight of Boron	10.811	g/gm atom	= (AAB10*AWB10+AAB11*AWB11)/100.0
WPB10	Weight Percentage of B-10 in Boron	18.431	w/o	= (AAB10*AWB10)/AWB
WPB11	Weight Percentage of B-11 in Boron	81.569	w/o	= (AAB11*AWB11)/AWB
AWC	Atomic Weight of Carbon	12.011	g/gm atom	Chart of the Nuclides
MWB4C	Molecular Weight of B ₄ C	55.2548	g/mol	= 4*AWB+AWC
WPBB4C	Weight Percentage of Boron in B ₄ C	78.2631	w/o	= 400*AWB/MWB4C
WPCB4C	Weight Percentage of Carbon in B ₄ C	21.7369	w/o	= 100*AWC/MWB4C

Worksheet 3-1 B₄C Composition Calculation

3.2.2. Non-homogenous Mixtures

While the majority of the components modeled in the MCNP model are homogenous in composition, some of them are homogenizations of homogeneous materials and moderator. These components are:

- upper tie plate, and empty fuel rod ends and channel portion adjacent to the upper tie plate;
- lower tie plate;
- top grid;
- fuel support piece and core plate; and
- fuel grid spacers.

The composition and effective density of these components and the associated moderator is dependent not only on their relative volume fractions, but also on the moderator density for the calculation.

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 11 of 42

3.2.2.1. Compositions for End-zone Region

The specifications for the regions both above and below the active core are given in Table 3-2. These values are from the EPRI report on values for methods benchmarking from the Quad Cities Unit 1 core (Reference 7.8 – hereafter cited as the "EPRI Report").

Component [a]	Material	Quantity	Weight (Ib _m)	Mass (kg)
End Plugs	Zircaloy-2	98	3.565	1.6171
Lower Tie Plate	Type 304 Stainless Steel	1	9.614	4.3608
Upper Tie Plate	Type 304 Stainless Steel	1	4.514	2.0475
Hold-down Spring	Type 304 Stainless Steel	49	3.402	1.5431
Getter	Type 304 Stainless Steel	49	0.972	0.4409
Orificed Fuel Support [b]	Type 304 Stainless Steel	1	62	28.1227

Table 3-2	End-zone	Component	Specifications
-----------	----------	-----------	----------------

[a]. These values are from the EPRI Report, Table 12, except as noted.

[b]. This value is from the EPRI Report, Figure 28.

For the moderator in all regions, the weight percentages for the isotopic constituents are as shown in Table 3-3 and the density depends on the pressure and temperature of the moderator for the particular CRC. The proper densities are computed from the tables for saturated liquid by linear interpolation as shown in Table 3-4 and illustrated in Figure 3-2. The computation of the volume of the core grid in a control cell is based on the scheme shown in Figure 3-1. The density in this table and figure were evaluated at 147°F which was the temperature of the Quad Cities Unit 1 initial core critical as documented in the EPRI Report, Figure 35, Page C-35.

Table 3-3	Moderator	Weight	Percentages
-----------	-----------	--------	-------------

Element	Atomic Weight (g/g-atom) [a]	Atom Fractions	Atomic Mass (g/g-atom)	Weight Percentage
Hydrogen	1.0079	0.6667	0.6720	11.1898
Oxygen	15.9994	0.3333	5.3331	88.8102
		Total	6.0051	100.0000

[a]. These values are from the Chart of the Nuclides.

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 12 of 42

.....

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 13 of 42

		r	r
Temperature	Pressure	V_{f}	ρ_{f}
(r) [a]	(wpa)	(m /kg)	(g/cm)
273.16	0.0006113	0.001000	1.000000
275	0.000698	0.001000	1.000000
280	0.0009912	0.001000	1.000000
285	0.001388	0.001001	0.999001
290	0.001919	0.001001	0.999001
295	0.00262	0.001002	0.998004
300	0.003536	0.001004	0.996016
305	0.004718	0.001005	0.995025
310	0.00623	0.001007	0.993049
315	0.008143	0.001009	0.991080
320	0.01054	0.001011	0.989120
325	0.01353	0.001013	0.987167
330	0.01721	0.001015	0.985222
335	0.02171	0.001018	0.982318
337.04	0.02394	0.00102	0.981141
340	0.02718	0.001021	0.979432
345	0.03377	0.001024	0.976563
350	0.04166	0.001027	0.973710

Table 3-4 Moderator Density Values

[a]. These values are from Reference 7.16.

e Operations

Calculation (Attachment)

nt of Core Materials Dataset	
r: B00000000-01717-0210-00010 REV 01	Attachment III Page 14 of 42

Figure 3-2 Moderator Density Values

For the Quad Cities Unit 1 initial core CRC, the material weight percentages for the Upper Tie Plate Region are shown in Table 3-5. Those for the Lower Tie Plate Region are given in Table 3-6; those for the Core Grid Region and Core Plate Region (incorporating the Fuel Support Piece) are shown in Table 3-7. The computation of these material weight percentages is shown in Worksheet 3-2 as well as the determination of the effective densities for the non-homogenous mixtures. This computation assumes the computation of channel cross-sectional area values shown in Worksheet 3-3.

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 16 of 42

	Core G	Frid Mass Fr	actions	Core Plate Mass Fractions			
	SS-304	Water	Total	Total SS-304		Total	
	0.069	0.931	1.000	0.701	0.299	1.000	
Hydrogen		10.415	10.415		3.343	3.343	
Carbon	0.006		0.0055	0.056		0.056	
Nitrogen	0.007		0.0069	0.070		0.070	
Oxygen		82.657	82.6571		26.533	26.533	
Silicon	0.052		0.0520	0.526		0.526	
Phosphorus	0.003		0.0031	0.032		0.032	
Sulfur	0.002		0.0021	0.021		0.021	
Chromium	1.316		1.3164	13.324		13.324	
Manganese	0.139		0.1386	1.402		1.402	
Iron	4.763		4.7629	48.207		48.207	
Nickel	0.641		0.6409	6.486		6.486	
Zirconium			0.0000			0.000	
Tin			0.0000			0.000	
	6.928	93.072	100.000	70.124	29.876	100.000	

Table 3-7 Core Grid and Core Plate Compositions

Worksheet 3-2 Materials Composition for End-zone Regions

Symbol	Parameter	Value	Units	Computation/Reference
CL	Cladding Length	156	inches	EPRI Report, Table 1 (396.24 cm)
AFL	Active Fuel Length	144	inches	EPRI Report, Figure 10 (365.76 cm).
N/A	Cladding Length Below Bottom of Active Fuel	~0	inches	EPRI Report, Figure 10
CLATAF	Cladding Length Above Top of Active Fuel	30.480	cm	= (CL-AFL)*2.54
COD	Cladding Outer Diameter	0.563	inches	EPRI Report, Table 4 (1.43 cm)
CWTH	Cladding Wall Thickness	0.032	inches	EPRI Report, Table 4 (0.081 cm)
CID	Cladding Inner Diameter	1.267	cm	= (COD-2*CWTH)*2.54
ZIRC2D	Zircaloy-2 Density	6.560	g/cm ³	Table 3-1
ZIRC4D	Zircaloy-4 Density	6.560	g/cm ³	Table 3-1
SS304D	SS-304 Density	7.900	g/cm ³	Table 3-1
RHOM	Moderator Density for Quad Cities-1 Initial Core Critial Point	0.98114	g/cm ³	From Table 3-3
CMATAF	Cladding Mass Above Top of Active Fuel	3374.246	g	= 49*CLATAF*((PI()/4)*(((COD*2.54)^2)- (CID^2)))ZIRC2D
CVATAF	Cladding Volume Above Top of Active Fuel	514.367	cm ³	= CMATAF/ZIRC2D
EPTM	Endplug Mass (Zircaloy-2)	1617.057	g	
EPVBBAF	Endplug Volume Below Bottom of Active Fuel	123.251	cm ³	= (EPTM/2)/ZIRC2
EPVATAF	Endplug Volume Above Top of Active Fuel	123.251	cm ³	= (EPTM/2)/ZIRC2
LTPM	Lower Tie Plate Mass (SS-304)	4360.837	g	
LTPV	Lower Tie Plate Volume	552.005	cm ³	= LTPM/SS304D
UTPM	Upper Tie Plate Mass (SS-304)	2047.516	a	

.

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 17 of 42

Symbol	Parameter	Value	Units	Computation/Reference
UTPV	Upper Tie Plate Volume	259.179	cm ³	= UTPM/SS304D
MHDS	Mass of Hold-down Springs (SS- 304)	1543.121	g	
HDSV	Volume of Hold-down Springs	195.332	cm ³	= MHDS/SS304D
MG	Mass of Getters (SS-304)	440.892	g	
VG	Volume of Getters	55.809	cm ³	= MG/SS304D
FVICATAF	Free Volume Inside Fuel Cladding Above Top of Active Fuel	1509.992	cm ³	= 49*((PI()/4)*(CID^2)*CLATAF)-EPVTAF-HDSV- VG
APITCH	Assembly Pitch	6.000	inches	EPRI Report, Table 3 (15.24 cm)
BCG	Bottom of Core Grid	144.4375	inches	EPRI Report, Figure 26 (zero axial location re- adjusted to be at the Bottom of Active Fuel). (366.87 cm)
CGATH	Core Grid Axial Thickness	14.250	inches	EPRI Report, Figure 26 (361.95 cm)
CGWTH	Core Grid Web Thickness	0.360	inches	EPRI Report, Figure 27 (0.914 cm)
ODOFS	Outer Diameter of Orificed Fuel Support at Core Plate	10.447	inches	EPRI Report, Figure 28 (26.535 cm)
CPTH	Core Plate Thickness	2.00	inches	EPRI Report, Figure 26 (5.08 cm)
HOFS	Height of Orificed Fuel Support	10.270	inches	EPRI Report, Figure 28 (26.09 cm)
Upper Tie Plate	e Region above Assembly			
TUTPR	Top of Upper Tie Plate Region	399.000	cm	
CGVUTPR	Core Grid Volume in Upper Tie Plate Region	68.357	cm ³	= (CGWTH*APITCH-(CGWTH/2)^2)*(TUTPR- (BCG*2.54))
CGMUTPR	Core Grid Mass in Upper Tie Plate Region	540.021	g	= CGVUTPR*SS304D
CVUTPR	Channel Volume in Upper Tie Plate Region	3329.814	cm ³	= CCSA*(TUTPR-AFL)
CMUTPR	Channel Mass in Upper Tie Plate Region	21843.581	g	= CVUTPR*ZIRC4D
VUTPRAA	Volume of Upper Tie Plate Region above Assemblies	59225.688	cm ³	= ((APITCH*2.54)^2)*(TUTPR-AFL)
MVUTPRAA	Moderator Volume in Upper Tie Plate Region above Assemblies	53169.587	cm ³	= VUTPRAA-CVATAF-EPVATAF-UTPV-HDSV-VG- FVICATAF-CVUTPR-CGVUTPR
MMUTPRAA	Moderator Mass in Upper Tie Plate Region above Assemblies	52166.877	g	= MVUTPRAA*RHOM
MUTPRAA	Mass in Upper Tie Plate Region	82764.782	g	= CMATAF+(EPTM/2)+UTPM+MHDS+MG+ MMUTPRAA+ CGMUTPR
MFC	Mass Fraction for Cladding	0.041	n/a	= CMATAF/MUTPRAA
MFUE	Mass Fraction for Upper Endplugs	0.010	n/a	= (EPTM/2)/MUTPRAA
MFUTP	Mass Fraction for Upper Tie Plate	0.025	n/a	= UTPM/MUTPRAA
MFHDS	Mass Fraction of Hold-down Springs	0.019	n/a	= MHDS/MUTPRAA
MFG	Mass Fraction for Getters	0.005	n/a	= MG/MUTPRAA
MFUTPRMAA	Mass Fraction for Upper Tie Plate Region Moderator above Assembly	0.630	n/a	= MMUTPRAA/MUTPRAA
MFCUTPR	Mass Fraction for Channel in Upper Tie Plate Region	0.264	n/a	= CMUTPR/MUTPRAA
MFCGUTPR	Mass Fraction for Core Grid in Upper Tie Plate Region	0.007	n/a	= CGMUTPR/MUTPRAA
EDUTPR	Effective Density in Upper Tie Plate Region	1.397	g/cm ³	= MUTPRAA/ VUTPRAA

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 18 of 42

Symbol	Parameter	Value	Units	Computation/Reference
Lower Tie Plate	Region below Assembly		L	
BLTPR	Bottom of Lower Tie Plate Region	-12.7	cm	
CLLTPR	Channel Length in Lower Tie Plate Region	7.303	cm	EPRI Report, Figure 10
CVLTPR	Channel Volume in Lower Tie Plate Region	95.357	cm ²	= CCSA*CLLTPR
CMLTPR	Channel Mass in Lower Tie Plate Region	625.540	g	= CVLTPR*ZIRC4D
VLTPRBA	Volume of Lower Tie Plate Region below Assembly	2949.672	cm ³	= ((APITCH*2.54)^2)*(-BLTPR)
MVLTPRBA	Moderator Volume in Lower Tie Plate Region below Assembly	2179.059	cm ³	= VLTPRBA-EPVBBAF-LTPV-CVLTPR
MMLTPRBA	Moderator Mass in Lower Tie Place Region below Assembly	2137.965	g	= MVLTPRBA*RHOM
MLTPRBA	Mass in Lower Tie Plate Region	7932.870	g	= (EPTM/2)+LTPM+MMLTPRBA+CMLTPR
MFLE	Mass Fraction in Lower End Plugs	0.102	n/a	= (EPTM/2)/MLTPRBA
MFLTP	Mass Fraction in Lower Tie Plate	0.550	n/a	= LTPM/MLTPRBA
MFLTPRMBA	Mass Fraction for Lower Tie Plate Region Moderator below Assembly	0.270	n/a	= MMLTPRBA/MLTPRBA
MFCLTPR	Mass Fraction for Chanel in Lower Tie Plate Region	0.079	n/a	= CMLTPR/MLTPRBA
EDLTPR	Effective Density in Lower Tie Plate Region	2.689	g/cm ³	= MLTPRBA/VLTPRBA
Core Grid Regi	on			
TCGR	Top of Core Grid Region	403.000	cm	
CGVCGR	Core Grid Volume in Core Grid Region	8.510	cm ³	= (CGWTH*APITCH-(CGWTH/2)^2)*(TCGR- TUTPR)
CGMCGR	Core Grid Mass in Core Grid Region	67.232	g	= CGVCGR*SS304D
VCGRAA	Volume of Core Grid Region above Assembly	929.030	cm ³	= ((APITCH*2.54)^2)*(TCGR-TUTPR)
MVCGRAA	Moderator Volume in Core Grid Region above Assembly	920.520	cm ³	= VCGRAA-CGVCGR
MMCGRAA	Moderator Mass in Core Grid Region above Assembly	903.160	g	= MVCGRAA*RHOM
MCGR	Mass in Core Grid Region	970.392	g	= CGMCGR+MMCGRAA
MFCGCGR	Mass Fraction of Core Grid in Core Grid Region	0.069	n/a	= CGMCGR/MCGR
MFMCGR	Mass Fraction of Moderator in Core Grid Region	0.931	n/a	= MMCGRAA/MCGR
EDCGR	Effective Density of the Core Grid Region	1.045	g/cm³	= MCGR/MVCRGAA
Core Plate Reg	ion			•
BCPR	Bottom of Core Plate Region	-38.79	cm	= BLTPR-(HOFS*2.54)
MOFS	Mass of Orificed Fuel Support	28122.73	g	
MOFSBA	Mass of Orificed Fuel Support below Assembly	7030.68	g	= MOFS/4

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 19 of 42

Symbol	Parameter	Value	Units	Computation/Reference
VOFS	Volume of Orificed Fuel Support	3559.84	cm ³	= MOFS/SS304D
VOFSBA	Volume of Orificed Fuel Support below Assembly	889.96	cm ³	= VOFS/4
CPVBA	Core Plate Volume below Assembly	477.53	cm ³	= (CPTH*2.54)*(APITCH*2.54)^2- (PI()/4)*(CPTH*2.54/4)*(ODOFS*2.54)^2
СРМВА	Core Plate Mass below Assembly	3772.52	g	= CPVBA*SS304D
VCPRBA	Volume of Core Plate Region below Assembly	6058.63	cm ³	= (BLTPR-BCPR)*(APITCH*2.54)^2
VMCPRBA	Volume of Water in Core Plate Region below Assembly	4691.13	cm ³	= VCPRBA-VOFSBA-CPVBA
MMCPRBA	Mass of Water in Core Plate Region below Assembly	4602.66	g	= VMCPRBA*RHOM
MCPRBA	Mass of Core Plate Region below Assembly	15405.86	g	= MOFSBA+CPMBA+MMCPRBA
MFOFSCPR	Mass Fraction of Orificed Fuel Support in Core Plate Region	0.456	n/a	= MOFSBA/MCPRBA
MFCPCPR	Mass Fraction of Core Plate in Core Plate Region	0.245	n/a	= CPMBA/MCPRBA
MFMCPR	Mass Fraction of Moderator in Core Plate Region	0.299	n/a	= MMCPRBA/MCPRBA
EDCPR	Effective Density of Core Plate Region	2.543	g/cm ³	= MCPRBA/VCPRBA

Worksheet 3-3 Channel Cross-sectional Area Values

Symbol	Parameter	Value	Units	Computation/Reference
COS	Outside Span of Channel	5.454	inches	EPRI Report, Figure 14 (Top of Channel Values).
CIS	Inside Span of Channel	5.258	inches	EPRI Report, Figure 14 (Top of Channel Values).
CICR	Channel Inside Corner Radius	0.4	inches	EPRI Report, Table 1
CSSL	Length of Straight Side	11.3233	cm	= (CIS*2.54)-2*CICR*2.54
СТН	Channel Thickness	0.2489	cm	= ((COS-CIS)/2)*2.54
CSSA	Straight Side Area	2.8186	cm ²	= CTH*CSSL
COCR	Channel Outside Corner Radius	1.2649	cm	= (CICR*2.54)+CTH
CCA	Corner Area	0.4459	cm ²	= ((PI()/4)*(COCR^2-(CICR*2.54)^2)
CCSA	Channel Cross-sectional Area	13.0581	cm ²	= 4*(CSSA+CCA)

3.2.2.2. Compositions for Spacer Grids

The composition and effective density for the spacer grids in the Quad Cities Unit-1 core are shown in Table 3-8. The computation of these values is shown in Worksheet 3-4.

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 20 of 42

	Spacer Grid Node Weight Percentages								
	Inconel-X	Zircaloy-4	Water	Total					
	0.027	0.141	0.832	1.000					
Hydrogen			9.309	9.309					
Carbon	0.001			0.001					
Oxygen		0.017	73.884	73.901					
Aluminum	0.024			0.024					
Silicon	0.008			0.008					
Titanium	0.067			0.067					
Chromium	0.452	0.014		0.466					
Manganese	0.013			0.013					
Iron	0.242	0.028		0.271					
Nickel	1.885			1.885					
Zirconium		13.857		13.857					
Tin		0.198		0.198					
Total	2.693	14.113	83.193	100.000					

Table 3-8 Spacer Grid Composition

Worksheet 3-4 Computation of Spacer Composition and Effective Density

Symbol	Description	Value	Units	Reference/Computation
NSPACER	Number of Spacers in Assembly	7	n/a	EPRI Report, Table 12.
TZ4WSG	Weight of Zircaloy-4 in Assembly Spacer Grids	3.757	lb _m	EPRI Report, Table 12. (1.704 kg)
TIWSG	Weight of Inconel in Assembly Spacer Grid Springs	0.717	lb _m	EPRI Report, Table 12. (0.325 kg)
Z4MSG	Zircaloy-4 Mass in Spacer Grid	243.5	g	= 1000*(TZ4WSG/NSPACER)/2.2046
IMSG	Inconel Mass in Spacer Grid	46.5	g	= 1000*(TIWSG/NSPACER)/2.2046
NNAF	Number of Nodes in Active Fuel	24	n/a	Assumption
NLEN	Node Length	15.2400	cm	= (AFL*2.54)/NNAF
VNIC	Volume of Node Inside Channel	2704.77	cm ³	= (CSSL^2+4*(CSSL*CICR*2.54)+ PI()*(CICR*2.54)^2)*NLEN
VNFR	Volume of Node Displaced by Fuel Rods	1199.38	cm ³	= NLEN*49*PI()*((COD/2)*2.54)^2
VNZSG	Volume of Node Displaced by Zircaloy in Spacer Grid	37.11	cm ³	= Z4MSG/ZIRC4D
IXD	Density of Inconel-X	8.22	g/cm ³	Reference 7.17, Page 441.
VNISG	Volume of Node Displaced by Inconel-X in Spacer Grid Springs	5.65	cm ³	= IMSG/IXD
VNW	Volume of Water in Node Inside Channel	1462.63	cm ³	= VNIC-VNFR-VNZSG-VNISG
RH2OD	Reference Density of Water	0.981141	g/cm ³	Valid for Quad Cities-1, Initial Core Critical Experiment
MNW	Nodal Mass of Water	1435.05	g	= VNW*RH2OD
NMFZ	Mass Fraction for Zircaloy-4	0.141	n/a	= Z4MSG/(Z4MSG+IMSG+MNW)
NMFI	Mass Fraction for Inconel-X	0.027	n/a	= IMSG/(Z4MSG+IMSG+MNW)
NMFW	Mass Fraction for Water	0.832	n/a	= MNW/(Z4MSG+IMSG+MNW)

-

.....

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 21 of 42

Symbol	Description	Value	Units	Reference/Computation
NHD	Homogenized Density	1.179	g/cm ³	= (MNW+Z4MSG+IMSG)/MNW
CS1E	Center of First Spacer above Bottom of Active Fuel	18.500	inches	EPRI Report, Table 12, Page A-8.
CS2E	Center of Second Spacer above Bottom of Active Fuel	38.000	inches	EPRI Report, Table 12, Page A-8.
CS3E	Center of Third Spacer above Bottom of Active Fuel	57.500	inches	EPRI Report, Table 12, Page A-8.
CS4E	Center of Fourth Spacer above Bottom of Active Fuel	77.000	inches	EPRI Report, Table 12, Page A-8.
CS5E	Center of Fifth Spacer above Bottom of Active Fuel	96.500	inches	EPRI Report, Table 12, Page A-8.
CS6E	Center of Sixth Spacer above Bottom of Active Fuel	116.000	inches	EPRI Report, Table 12, Page A-8.
CS7E	Center of Seventh Spacer above Bottom of Active Fuel	135.500	inches	EPRI Report, Table 12, Page A-8.
CS1M	Center of First Spacer above Bottom of Active Fuel	46.990	cm	= CS1E*2.54
CS2M	Center of Second Spacer above Bottom of Active Fuel	96.520	cm	= CS2E*2.54
CS3M	Center of Third Spacer above Bottom of Active Fuel	146.050	cm	= CS3E*2.54
CS4M	Center of Fourth Spacer above Bottom of Active Fuel	195.580	cm	= CS4E*2.54
CS5M	Center of Fifth Spacer above Bottom of Active Fuel	245.110	cm	= CS5E*2.54
CS6M	Center of Sixth Spacer above Bottom of Active Fuel	294.640	cm	= CS6E*2.54
CS7M	Center of Seventh Spacer above Bottom of Active Fuel	344.170	cm	= CS7E*2.54

•

Waste Package Operations

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 22 of 42

3.3. Dataset Location

This dataset file has the following name:

• core_materials.dat

The contents of the individual fields in the dataset are shown in Tables 3-9 and 3-10, while a copy of the dataset itself is provided in Figure 3-3.

		Cons	tituents		Elemental	
Material	Mnemonic	Density (g/cm³)	Element	Weight Percentage	Atomic Number	Library
Type 304 Stainless Steel	SS304	7.900	Carbon	0.080	6	.50c
			Manganese	2.000	25	n/a
			Phosphorus	0.045	15	n/a
			Sulfur	0.030	16	n/a
			Silicon	0.750	14	.50c
		- - -	Chromium	19.00	24	n/a
			Nickel	9.250	27	n/a
			Nitrogen Iron	0.100	7	n/a n/a
Zircaloy-2	ZIRC2	6.56	Oxygen	0.12	8	n/a
			Chromium	0.10	24	n/a
			Iron	0.10	26	n/a
			Nickel	0.05	27	n/a

Table 3-9 Ma	aterial Datase	t – Eleme	ntal Portion
--------------	----------------	-----------	--------------

Waste Package Operations

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 23 of 42

		Elemental				
Material	Mnemonic	Density (g/cm³)	Element	Weight Percentage	Atomic Number	Library
			Tin	1.40	50	.35c
			Zirconium	98.23	40	.60c
Zircaloy-4	ZIRC4	6.56	Oxygen	0.12	8	n/a
			Chromium	0.10	24	n/a
			Iron	0.20	26	n/a
			Tin	1.40	50	.35c
			Zirconium	98.18	40	.60c
Boron Carbide	B4C	1.76	Boron	78.26	5	n/a
Inconel-X	INCX	8 22	Iron	21.74	6 26	.50c
		0.22				

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 24 of 42

	Constituents				Elemental		
Material	Mnemonic	Density (g/cm³)	Element	Weight Percentage	Atomic Number	Library	
			Nickel	70.00	27	n/a	
			Chromium	16.77	24	n/a	
			Titanium	2.50	22	.50c	
			Manganese Carbon	0.50	25	n/a 50c	
			Silicon	0.30	14	.50c	
			Aluminum	0.90	13	n/a	
Upper Tie Plate Region	G7UTP1	1.397	Hydrogen	7.05	1	n/a	
			Carbon	0.004	6	.50c	
			Nitrogen	0.006		n/a	
			Silicon	0.04	14	.50c	
			Phoenborus	0.002	15	n/a	
			Sulfur	0.002	15	n/a	
			Chromium	1.081	24	n/a	
	i i		Manganese	0.11	25	n/a	
			Iron	3.85	25	n/a	
			Nickel	0.51	27	n/a	

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 25 of 42

			Elemental			
Material	Mnemonic	Density (g/cm³)	Element	Weight Percentage	Atomic Number	Library
			Zirconium	30.88	40	.60c
			Tin	0.44	50	.35c
Lower Tie Plate Region	G7LTP1	1.397	Hydrogen	3.02	1	n/a
			Carbon	0.044	6	.50c
			Nitrogen	0.055	7	n/a
			Oxygen	23.957	8	n/a
			Silicon	0.41	14	.50c
			Phosphorus	0.025	15	n/a
			Sulfur	0.016	16	n/a
			Chromium	10.463	24	n/a
			Manganese	1 10	25	n/a
			Iron	37.82	25	n/a
			Nickel	5.09	27	n/a
			Zirconium	17.75	40	.60c

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 26 of 42

		Constituents				ental
Material	Mnemonic	Density (g/cm³)	Element	Weight Percentage	Atomic Number	Library
			Tin	0.25	50	.35c
		4.045		10.11		
BVVR/3 Core Grid	3161	1.045	Hydrogen	10.41	1	n/a
			Carbon	0.006	6	.500
			Nitrogen	0.007	7	n/a
			Oxygen	82.657	8	n/a
			Silicon	0.052	14	.50c
			Phosphorus	0.003	15	n/a
			Sulfur	0.002	16	n/a
			Chromium	1.316	24	n/a
			Manganaga	0.14	25	
			Iron	4.76	25	n/a
			Nickel	0.64	27	n/a
BWR/3 Fuel Support/	3CP1	1.045	Hydrogen	3.34	1	n/a
Core Plate			Carbon	0.056	6	.50c
			Nitrogen	0.070	7	n/a
			Oxygen	26.533	8	n/a
			Silicon	0.526	14	.50c
			Phosphorus	0.032	15	n/a
	l Ì		Sulfur	0.021	16	n/a
			Chromium	13.324	24	n/a

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 27 of 42

		Cons	Constituents			
Material	Mnemonic	Density (g/cm³)	Element	Weight Percentage	Atomic Number	Library
			Manganese	1.40	25	n/a
			Iron	48.21	26	n/a
			Nickel	6.49	27	n/a
057.70	00704					
GE /x/ Spacer Grid	SG7D1	1.179	Hydrogen	9.309	1	n/a
D-Lattice			Carbon	0.001	6	.500
			Oxygen	73.901	8	n/a
			Silicon	0.024	10	11/a 500
			Titanium	0.000	22	.500
			Chromium	0.466	24	n/a
			Mangapasa	0.013	25	n/a
			Iron	0.013	25	n/a
				0.271	20	1/a
			Nickel	1.885	27	n/a
			Zirconium	13.857	40	.60c

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 28 of 42

	Constituents				Elemental	
Material	Mnemonic	Density (g/cm³)	Element	Weight Percentage	Atomic Number	Library
			Tin	0.198	50	.35c

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 29 of 42

		Isotopic		
Material	Element	Mass Number	lsotopic Weight Percentage	Library
Type 304 Stainless Steel	Carbon	12	100	n/a
	Manganese	55	100	50c
	Phosphorus	31	100	500
	Sulfur	32	100	500
	Silicon	28	91.873	n/a
		29	4,818	n/a
		30	3.308	n/a
	Chromium	50	4.179	.60c
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
	Nickel	58 ·	67.201	.60c
		60	26.773	.60c
		61	1.183	.60c
		62	3.830	.60c
		64	1.013	.60c
	Nitrogen	14	100.000	.50c
	Iron	54	5.650	.60c
		56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
Zircaloy-2	Oxygen	16	100.000	.50c
·	Chromium	50	4.179	.60c
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
	Iron	54	5.650	.60c
	1	56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
	Nickel	58	67.201	.60c
	[60	26.773	.60c
		61	1.183	.60c
		62	3.830	.60c
		64	1.013	.60c
	Tin	112	0.914	n/a
	l I	114	0.624	n/a
	[115	0.329	n/a
	l l	116	14.196	n/a
		117	7.563	n/a
	l I	118	24.055	n/a

Table 3-10	Material Dataset -	 Isotopic 	Portion
------------	--------------------	------------------------------	---------

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 30 of 42

		Isotopic		
Material	Element	Mass	Isotopic	Library
		Number	Weight	
			Percentage	
		119	8.604	n/a
		120	32.917	n/a
		122	4.755	n/a
		124	6.043	n/a
	Zirconium	90	50.706	n/a
		91	11.181	n/a
		92	17.278	n/a
		94	17.891	n/a
		96	2.944	n/a
Zircaloy-4	Oxygen	16	100.000	.50c
	Chromium	50	4.179	.60c
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
	Iron	54	5.650	.60c
		56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
	Tin	112	0.914	n/a
		114	0.624	n/a
		115	0.329	n/a
		116	14.196	n/a
		117	7.563	n/a
		118	24.055	n/a
		119	8.604	n/a
		120	32.917	n/a
	1	122	4.755	n/a
		124	6.043	n/a
	Zirconium	90	50.706	n/a
		91	11.181	n/a
		92	17.278	n/a
]	94	17.891	n/a
		96	2.944	n/a
Boron Carbide	Boron	10	18.426	.50c
		11	81.574	.56c
	Carbon	55	100.000	.50c
Inconel-X	Iron	54	5.650	.60c
		56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
	Nickel	58	67.201	.60c
		60	26.773	.60c
		61	1.183	.60c

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 31 of 42

		Isotopic		
Material	Element	Mass	Isotopic	Library
		Number	Weight	· ·
			Percentage	
· · · · · · · · · · · · · · · · · · ·		62	3.830	.60c
		64	1.013	.60c
	Chromium	50	4.179	.60c
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
	Titanium	46	7.920	n/a
		47	7.298	n/a
		48	73.845	n/a
		49	5.532	n/a
		50	5.405	n/a
	Manganese	55	100.000	.50c
	Carbon	12	100.000	n/a
	Silicon	28	91.873	n/a
		29	4.818	n/a
		30	3.308	n/a
	Aluminum	27	100.000	.50c
Upper Tie Plate Region	Hydrogen	1	100.000	.50c
	Carbon	12	100.000	n/a
	Nitrogen	14	100.000	.50c
	Oxygen	16	100.000	.50c
	Silicon	28	91.873	n/a
		29	4.818	n/a
		30	3.308	n/a
	Phosphorus	31	100.000	.50c
	Sulfur	32	100.000	.50c
	Chromium	50	4.179	.60c
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
	Manganese	55	5.405	n/a
	Iron	55	100.000	50c
		54	5.650	.60c
		56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
	Nickel	58	67.201	.60c
		60	26.773	.60c
		61	1.183	.60c
		62	3.830	.60c
		64	1.013	.60c
	Zirconium	90	50.706	n/a
		91	11.181	n/a

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 32 of 42

		Isotopic		
Material	Element	Mass Number	lsotopic Weight	Library
······································			Percentage	
		92	17.278	n/a
		94	17.891	n/a
		96	2.944	n/a
	lin	112	0.914	n/a
		114	0.624	n/a
		115	0.329	n/a
		116	14.196	n/a
		117	7.563	n/a
		118	24.055	n/a
		119	8.604	n/a
		120	32.917	n/a
		122	4.755	n/a
		124	6.043	n/a
ower Tie Plate Region	Hydrogen	1	100.000	.50c
	Carbon	12	100.000	n/a
	Nitrogen	14	100.000	.50c
	Oxygen	16	100.000	.50c
	Silicon	28	91.873	n/a
		29	4.818	n/a
		30	3.308	n/a
	Phosphorus	31	100.000	.50c
	Sulfur	32	100.000	.50c
	Chromium	50	4.179	.60c
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
	Manganese	55	100.000	.50c
	Iron	55	100.000	.50c
		54	5.650	.60c
		56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
	Nickel	58	67.201	.60c
		60	26.773	.60c
		61	1.183	.60c
		62	3.830	.60c
		64	1.013	.60c
	Zirconium	90	50.706	n/a
		91	11.181	n/a
		92	17.278	n/a
	[94	17.891	n/a
		96	2.944	n/a
	Tin	112	0.914	n/a

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 33 of 42

			Isotopic	
Material	Element	Mass	Isotopic	Library
		Number	Weight	
			Percentage	
		114	0.624	n/a
		115	0.329	n/a
		116	14.196	n/a
		117	7.563	n/a
		118	24.055	n/a
		119	8.604	n/a
		120	32.917	n/a
		122	4.755	n/a
		124	6.043	n/a
BWR/3 Core Grid	Hydrogen	1	100.000	.50c
	Carbon	12	100.000	n/a
	Nitrogen	14	100.000	.50c
	Oxygen	16	100.000	.50c
	Silicon	28	91.873	n/a
		29	4.818	n/a
		30	3.308	n/a
	Phosphorus	31	100.000	.50c
	Sulfur	32	100.000	.50c
	Chromium	50	4.179	.60c
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
	Manganese	55	100.000	.50c
	Iron	54	5.650	.60c
		56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
		58	67.201	.60c
	Nickel	58	67.201	.60c
		60	26.773	.60c
		61	1.183	.60c
		62	3.830	.60c
		64	1.013	.60c
BWR/3 Fuel Support/	Hydrogen	1	100.000	.50c
Core Plate	Carbon	12	100.000	n/a
	Nitrogen	14	100.000	.50c
	Oxygen	16	100.000	.50c
	Silicon	28	91.873	.60c
		29	4.818	.60c
		30	3.308	n/a
	Phosphorus	31	100.000	.50c
	Sulfur	32	100.000	.50c
	Chromium	50	4.179	.60c

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 34 of 42

		Isotonic		
Material	Flement	Mass Isotopio Libra		Library
material	Liement	Number	Weight	
			Percentage	
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
	Manganese	55	100.000	.50c
	Iron	54	5.650	.60c
		56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
		58	67.201	.60c
	Nickel	58	67.201	.60c
		60	26.773	.60c
		61	1.183	.60c
		62	3.830	.60c
		64	1.013	.60c
GE 7x7 Spacer Grid	Hydrogen	1	100.000	.50c
D-Lattice	Carbon	12	100.000	n/a
	Oxygen	16	100.000	.50c
	Aluminum	27	100.000	.50c
	Silicon	28	91.873	n/a
	Titanium	46	7.920	n/a
		47	7.298	n/a
		48	73.845	n/a
		49	5.532	n/a
		50	5.405	n/a
	Chromium	50	4.179	.60c
		52	83.701	.60c
		53	9.673	.60c
		54	2.448	.60c
		55	100.000	.50c
	Manganese	55	100.000	.50c
	Iron	54	5.650	.60c
		56	91.898	.60c
		57	2.161	.60c
		58	0.290	.60c
	Nickel	58	67.201	.60c
		60	26.773	.60c
		61	1.183	.60c
		62	3.830	.60c
		64	1.013	.60c
	Zirconium	90	50.706	n/a
		91	11.181	n/a
		92	17.278	n/a
		94	17.891	n/a

Title: Development of Core Materials Dataset Document Identifier: B00000000-01717-0210-00010 REV 01

Attachment III Page 35 of 42

		Isotopic		
Material	Element	Mass Number	lsotopic Weight Percentage	Library
		96	2.944	n/a
	Tin	112	0.914	n/a
		114	0.624	n/a
		115	0.329	n/a
		116	14.196	n/a
		117	7.563	n/a
		118	24.055	n/a
		119	8.604	n/a
		120	32.917	n/a
		122	4.755	n/a
		124	6.043	n/a

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 36 of 42

Core Materials for BWR Type 304 Stainless Steel SS304 7.900 9 Carbon 0.080 6 .50c 1 12 100.0 0 Manganese 2.000 25 0 1 55 100 .50c Phosphorus 0.045 15 0 1 31 100 .50c Sulfur 0.030 16 0 1 32 100.0 .50c Silicon 0.750 14 .50c 3 28 91.873 0 29 4.818 0 30 3.308 0 Chromium 19.00 24 0 4 50 4.179 .60c 52 83.701 .60c 53 9.673 .60c 54 2.448 .60c Nickel 9.250 28 0 5 58 67.201 .60c 60 26.773 .60c 61 1.183 .60c 62 3.83 .60c 64 1.013 .60c Nitrogen 0.100 7 0 1 14 100.0 .50c Iron 68.745 26 0 4 54 5.65 .60c 56 91.898 .60c 57 2.161 .60c 58 0.290 .60c Zircaloy 2 ZIRC2 6.56 6 Oxygen 0.12 8 0 1 16¹⁰⁰.50c Chromium 0.10 24 0 4 50 4.179 .60c 52 83.701 .60c 53 9.673 .60c 54 2.448 .60c Iron 0.10 26 0 4 54 5.650 .60c 56 91.898 .60c 57 2.161 .60c 58 0.290 .60c Nickel 0.05 28 0 5 58 67.201 .60c 60 26.773 .60c 61 1.183 .60c 62 3.83 .60c 64 1.013 .60c

Figure 3-3 Dataset for Core Materials

Document Identifier: B00000000-01717-0210-00010 REV 01	Attachment III Page 37 of 42
Tin 1.40 50 .35c 10 112 0.914 0 114 0.624 0 115 0.329 0 116 14.196 0 117 7.563 0 118 24.055 0 119 8.604 0 120 32.917 0 122 4.755 0 124 6.043 0	
Zirconium 98.23 40 .60c 5 90 50.706 0 91 11.181 0 92 17.278 0 94 17.891 0 96 2.944 0 Zircaloy 4 ZIRC4 6.56 5	
Oxygen 0.12 8 0 1 16 100 .50c Chromium 0.10 24 0 4 50 4.179 .60c 52 83.701 .60c 53 9.673 .60c 54 2.448 .60c Iron 0.20 26 0 4 54 5.650 .60c 56 91.898 .60c 57 2.161 .60c 58 0 290 .60c	
Tin 1.40 50 .35c 10 112 0.914 0 114 0.624 0 115 0.329 0 116 14.196 0 117 7.563 0 118 24.055 0 119 8.604 0 120 32.917 0 122 4.755 0 124 6 043 0	
Zirconium 98.18 40 .60c 5 90 50.706 0 91 11.181 0 92 17.278 0 94 17.891 0 96 2.944 0 Boron Carbide B4C 1.76 2 Boron 78.26 5 0 2 10 18.426 .50c 11 81.574 .56c	

Figure 3-3 (cont'd)

Title: Development of Core Materials Dataset **Document Identifier:** B0000000-01717-0210-00010 REV 01 Attachment III Page 38 of 42 Carbon 20.0 6 .50c 1 12 100.0 0 Spacer GE 7x7 D Lattice (0.981141 Water Density) SG7D1 1.179 12 Hydrogen 9.309 1 0 1 1 100 .50c Carbon 0.001 6 .50c 1 12 100 0 Oxygen 73.901 8 0 1 16 100 .50c Aluminum 0.024 13 0 1 27 100 .50c Silicon 0.008 14 .50c 3 28 91.873 0 29 4.818 0 30 3.308 0 Titanium 0.067 22 .50c 5 46 7.920 0 47 7.298 0 48 73.845 0 49 5.532 0 50 5.405 0 Chromium 0.466 24 0 4 50 4.179 .60c 52 83.701 .60c 53 9.673 .60c 54 2.448 .60c Manganese 0.013 25 0 1 55 100 .50c Iron 0.271 26 0 4 54 5.650 .60c 56 91.898 .60c 57 2.161 .60c 58 0.290 .60c Nickel 1.885 28 0 5 58 67.201 .60c 60 26.773 .60c 61 1.183 .60c 62 3.83 .60c 64 1.013 .60c Zirconium 13.857 40 .60c 5 90 50.706 0 91 11.181 0 92 17.278 0 94 17.891 0 96 2.944 0 Tin 0.198 50 .35c 10 112 0.914 0 114 0.624 0 115 0.329 0 116 14.196 0 117 7.563 0 118 24.055 0 119 8.604 0 120 32.917 0 122 4.755 0 124 6.043 0

Figure 3-3 (cont'd)

Waste Package Operations

Calculation (Attachment)

Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 39 of 42

Upper Tie Plate Region GE-7x7 Fuel, BWR/3 (0.981141 Water Density) 7GUTP1 1.397 13 Hydrogen 7.053 1 0 1 1 100 .50c Carbon 0.004 6 .50c 1 12 100 0 Nitrogen 0.006 7 0 1 14 100 .50c Oxygen 56.015 8 0 1 16 100 .50c Silicon 0.041 14 .50c 3 28 91.873 0 29 4.818 0 30 3.308 0 Phosphorus 0.002 15 0 1 31 100 .50c Sulfur 0.002 16 0 1 32 100.0 .50c Chromium 1.081 24 0 4 50 4.179 .60c 52 83.701 .60c 53 9.673 .60c 54 2.448 .60c Manganese 0.110 25 0 1 55 100 .50c Iron 3.855 26 0 4 54 5.650 .60c 56 91.898 .60c 57 2.161 .60c 58 0.290 .60c Nickel 0.513 28 0 5 58 67.201 .60c 60 26.773 .60c 61 1.183 .60c 62 3.83 .60c 64 1.013 .60c Zirconium 30.876 40 .60c 5 90 50.706 0 91 11.181 0 92 17.278 0 94 17.891 0 96 2.944 0 Tin 0.440 50 .35c 10 112 0.914 0 114 0.624 0 115 0.329 0 116 14.196 0 117 7.563 0 118 24.055 0 119 8.604 0 120 32.917 0 122 4.755 0 124 6.043 0 Lower Tie Plate Region GE-7x7 Fuel, BWR/3 (0.981141 Water Density) 7GLTP1 1.397 13

Figure 3-3 (cont'd)
Title: Development of Core Materials DatasetDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment III Page 40 of 42

Hydrogen 3.016 1 0 1 1 100 .50c Carbon 0.044 6 .50c 1 12 100 .0 Nitrogen 0.055 7 0 1 14 100 .50c Oxygen 23.957 8 0 1 16 100 .50c Silicon 0.412 14 .50c 3 28 91.873 0 29 4.818 0 30 3.308 0 Phosphorus 0.025 15 0 1 31 100 .50c Sulfur 0.016 16 0 1 32 100.0 .50c Chromium 10.463 24 0 4 50 4.179 .60c 52 83.701 .60c 53 9.673 .60c 54 2.448 .60c Manganese 1.099 25 0 1 55 100 .50c Iron 37.816 26 0 4 54 5.650 .60c 56 91.898 .60c 57 2.161 .60c 58 0.290 .60c Nickel 5.090 28 0 5 58 67.201 .60c 60 26.773 .60c 61 1.183 .60c 62 3.83 .60c 64 1.013 .60c Zirconium 17.754 40 .60c 5 90 50.706 0 91 11.181 0 92 17.278 0 94 17.891 0 96 2.944 0 Tin 0.253 50 .35c 10 112 0.914 0 114 0.624 0 115 0.329 0 116 14.196 0 117 7.563 0 118 24.055 0 119 8.604 0 120 32.917 0 122 4.755 0 124 6.043 0 Core Grid, BWR/3 (0.981141 Water Density) 3TG1 1.045 11 Hydrogen 10.415 1 0 1 1 100 .50c

Figure 3-3 (cont'd)

Title: Development of Core Materials Dataset**Document Identifier:** B0000000-01717-0210-00010 REV 01Attachment III Page 41 of 42

Carbon 0.006 6 .50c 1 12 100 0 Nitrogen 0.007 7 0 1 14 100 .50c Oxygen 82.657 8 0 1 16 100 .50c Silicon 0.052 14 .50c 3 28.91.873 0 29 4.818 0 30 3.308 0 Phosphorus 0.003 15 0 1 31 100 .50c Sulfur 0.002 16 0 1 32 100.0 .50c Chromium 1.316 24 0 4 50 4.179 .60c 52 83.701 .60c 53 9.673 .60c 54 2.448 .60c Manganese 0.139 25 0 1 55 100 .50c Iron 4.763 26 0 4 54 5.650 .60c 56 91.898 .60c 57 2.161 .60c 58 0.290 .60c Nickel 0.641 28 0 5 58 67.201 .60c 60 26.773 .60c 61 1.183 .60c 62 3.83 .60c 64 1.013 .60c Core Plate, BWR/3 (0.981141 Water Density) 3CP1 2.543 11 Hydrogen 3.343 1 0 1 1 100 .50c Carbon 0.056 6 .50c 1 12 100 0 Nitrogen 0.070 7 0 1 14 100 .50c Oxygen 26.533 8 0 1 16 100 .50c Silicon 0.526 14 .50c 3 28 91.873 0 29 4.818 0 30 3.308 0 Phosphorus 0.032 15 0 1 31 100 .50c Sulfur 0.021 16 0 1 32 100.0 .50c Chromium 13.324 24 0 4 50 4.179 .60c 52 83.701 .60c 53 9.673 .60c 54 2.448 .60c

Figure 3-3 (cont'd)

Title: Development of Core Materials DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment III Page 42 of 42

Manganese 1.402 25 0 1 55 100 .50c Iron 48.207 26 0 4 54 5.650 .60c 56 91.898 .60c 57 2.161 .60c 58 0.290 .60c Nickel 6.486 28 0 5 58 67.201 .60c 60 26.773 .60c 61 1.183 .60c 62 3.83 .60c 64 1.013 .60c

Figure 3-3 (cont'd)

Title: Development of Lattice Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment IV Page 1 of 15

CONTENTS

		Page
1.	Introduction	5
2.	Dataset Structure and Contents	5
3.	Dataset Creation	9
3 3 3	 Dataset Title Record Namelist Input Dataset Location 	9 9 9

Title: Development of Lattice Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment IV Page 2 of 15

FIGURES

Page

2-1	Lattice Parameters for GE 7x7 Lattice	7
2-2	Illustration of GE 8x8 Lattice with Large Central Water Rod	8
3-1	Lattice Geometry Dataset for GE 7x7 Lattice	10
3-2	Lattice Geometry Dataset for GE 8x8 Lattice with Small Water Rods	10
3-3	Lattice Geometry Dataset for GE 8x8 Lattice with Large Central Water Rod	11

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 3 of 15

TABLES

2-1 Contents of Dataset for Fuel Lattices

Page

6

Title: Development of Lattice Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment IV Page 4 of 15

WORKSHEETS

Page

3-1	Namelist Input Development for GE 7x7 Lattice	12
3-2	Namelist Input Development for GE 8x8 Lattice with Small Water Rods	13
3-3	Namelist Input Development for GE 8x8 Lattice with Large Central Water Rod	14

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 5 of 15

1. Introduction

This attachment describes the creation of the datasets defining the fuel assembly lattices. It provides a detailed list of contents for such datasets and documents the creation of the datasets of this type used in the present calculation.

2. Dataset Structure and Contents

The dataset structure is an ASCII-format file that incorporates FORTRAN Namelist-type input. The contents of this dataset for BWR fuel are given in Table 2-1. Note that all dimensional values in this dataset are in units of centimeters. In this table the format of each datum is given. The locations of most of the geometrical parameters shown in this table are shown in Figure 2-1 for a GE 7x7 lattice. The layout of a GE 8x8 lattice which incorporates a large central water rod is shown in Figure 2-2.

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 6 of 15

Mnemonic	Definition	Comments	Format
Title	Dataset Title	Character String Describes Application for this Dataset	Single Line
ASIN	Inner Span of Assembly (cm)	Defines Active Flow Area of Lattice	NAMELIST
WGAP	Wide Gap Thickness (cm)	Defines Placement of Channel within Control Cell	NAMELIST
NGAP	Narrow Gap Thickness (cm)	Defines Placement of Channel within Control Cell	NAMELIST
CTHICK	Channel Thickness (cm)	Defines Channel Component	NAMELIST
CRADIUS	Inner Radius of Channel Corner (cm)	Defines Channel Component	NAMELIST
FRSD	Clad Surface to Clad Surface Separation (cm)	Used for Relative Positioning of Fuel Rods	NAMELIST
CFRSD	Clad Surface to Inner Channel Surface Separation (cm)	Situates Fuel Rods with respect to Channel	NAMELIST
RPITCH	Fuel Rod Pitch (cm)	Used for Relative Positioning of Fuel Rods	NAMELIST
COD	Cladding Outer Diameter (cm)	Used to Dimension Fuel Rod Components	NAMELIST
CLD	Cladding Thickness (cm)	Used to Dimension Fuel Rod Components	NAMELIST
POD	Pellet Outer Diameter (cm)	Used to Dimension Fuel Rod Components	NAMELIST
FRCMAT	Material Identifier for Fuel Rod Cladding (cm)		NAMELIST
FCMAT	Material Identifier for Channel		NAMELIST
LATDIM	Lattice Dimensionality		NAMELIST
NWR	Number of Water Rods		NAMELIST
WROD	Outer Diameter for Water Rod(s) (cm)	Only used if Water Rod(s) are Differently Sized than Fuel Rod Cladding	NAMELIST
WRTH	Thickness of Water Rod(s) (cm)	Only used if Water Rod(s) are Differently Sized than Fuel Rod Cladding	NAMELIST

Table 2-1 Contents of Dataset for Fuel Lattices

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 7 of 15

Figure 2-1 Lattice Parameters for GE 7x7 Lattice

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 8 of 15

Calculation (Attachment)

Title: Development of Lattice Geometry DatasetsDocument Identifier: B0000000-01717-0210-00010 REV 01Attachment IV Page 9 of 15

3. Dataset Creation

Each group of data in the dataset will now be discussed in greater detail and the creation of the datasets for a GE 7x7 lattice, GE 8x8 lattice with small – i.e., fuel rod-sized – water rods and a GE 8x8 lattice with a large central water rod (displacing four fuel rods) documented. The final datasets are shown in Figures 3-1, 3-2 and 3-3 (most of the values are from the EPRI report for the Quad Cities Unit-1 initial core design – Reference 7.8 – hereafter cited as the "EPRI Report").

3.1. Dataset Title Record

The first line of the dataset is a title. While the contents of this line are arbitrary, it should contain the following information to ensure consistency with the file name:

- dimensionality of the lattice;
- important characteristics of lattice (such as the number of water rods, if any);
- manufacturer; and
- BWR lattice (D-lattice in all these examples).

3.2. Namelist Input

The FORTRAN namelist-type input variables must adhere to the restrictions inherent in the format of such input. Care must be taken to ensure that the value provided is consistent with the data storage class in the automation (i.e., integer input for integer variables and real input for real variables) so that neither precision is lost for real variables and nor is illusory precision implied for integer variables.

The development of the values appropriate for the 7x7 GE lattice is shown in Worksheet 3-1. That for the GE 8x8 lattice with small water rods is provided in Worksheet 3-2, while the same information for the GE 8x8 lattice with a large central water rod is given in Worksheet 3-3.

3.3. Dataset Location

This datasets have the following file names:

- ge7x7.dat
- ge8x8_swr_2.dat
- ge8x8_lcwr.dat

Waste Package Operations

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 10 of 15

```
GE 7x7 D-lattice/No Water Rod/No Curtains/
$FUEL
 CTHICK = 0.20
 ASIN = 13.406
 WGAP = 0.953
 NGAP = 0.478
 CRADIUS = 1.02
 FSRD = 0.445
CFSRD = 0.3645
 RPITCH = 1.875
 COD = 1.430
CLD = 0.081
 POD = 1.240
 FRCMAT = 'ZIRC2'
FCMAT = 'ZIRC4'
LATDIM = 7
NWR = 0
$END
```

Figure 3-1 Lattice Geometry Dataset for GE 7x7 Lattice

```
GE 8x8 D-lattice/Two Water Rods/No Curtains/
$FUEL
CTHICK = 0.20
ASIN = 13.406
.WGAP = 0.953
NGAP = 0.478
CRADIUS = 1.02
FSRD = 0.196
CFSRD = 0.3874
RPITCH = 1.626
COD = 1.252
CLD = 0.086
 POD = 1.057
FRCMAT = 'ZIRC2'
FCMAT = 'ZIRC4'
LATDIM = 8
NWR = 2
$END
```

Figure 3-2 Lattice Geometry Dataset for GE 8x8 Lattice with Small Water Rods

Waste Package Operations

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 11 of 15

```
GE 8x8 D-lattice/Large Central Water Rod/No Curtains/
$FUEL
 CTHICK = 0.20
 ASIN = 13.406
 WGAP = 0.953
 NGAP = 0.478
 CRADIUS = 1.02
 FSRD = 0.196
 CFSRD = 0.3874
 RPITCH = 1.6256
 COD = 1.2268
 CLD = 0.0813
 POD = 1.0414
 FRCMAT = 'ZIRC2'
 FCMAT = 'ZIRC4'
LATDIM = 8
NWR = 1
WROD = 2.6187
WRTH = 0.0813
$END
```

Figure 3-3 Lattice Geometry Dataset for GE 8x8 Lattice with Large Central Water Rod

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IVPage 12 of 15

			Reference		
Mnemonic	Definition	Value	Units	Source	Name
	Outside Span of Channel	5.438	inches	[a]	ASOUT
CTHICK	Channel Wall Thickness	0.080	inches	[a]	CTHICK
ASIN	Inner Span of Channel	n/a	n/a	n/a	ASIN
WGAP	Wide Gap Half-thickness	0.375	inches	[a]	WGAP
NGAP	Narrow Gap Half-thickness	0.188	inches	[a]	NGAP
CRADIUS	Channel Corner Inner Radius	0.40	inches	[a]	CRADIUS
FSRD	Cladding to Cladding Distance for Fuel Rods	n/a	n/a	n/a	FSRD
CFSRD	Cladding to Channel Inner Surface Separation of Edge Row of Fuel Rods	0.1435	inches	[a]	CFSRD
RPITCH	Fuel Rod Pitch	0.738	inches	[a]	RPITCH
COD	Fuel Rod Cladding Outer Diameter	0.563	inches	[b]	COD
CLD	Fuel Rod Cladding Thickness	0.032	inches	[b]	CLD
POD	Fuel Pellet Outer Diameter [c]	0.488	inches	[b]	POD

Worksheet 3-1 Namelist Input Development for GE 7x7 Lattice

[a]. This data is from the EPRI Report, Table 1.

[b]. This data is from the EPRI Report, Table 4.

[c]. The slightly smaller diameter of Gadolinia-bearing pellets (viz., 0.487 inches) is neglected.

		Dat	aset	
Mnemonic	Definition	Value	Units	Computation
	Outside Span of Channel	13.81	cm	= 2.54*ASOUT
CTHICK	Channel Wall Thickness	0.20	cm	= 2.54*CTHICK
ASIN	Inner Span of Channel	13.406	cm	= 2.54*(ASOUT-2*CTHICK)
WGAP	Wide Gap Half-thickness	0.953	cm	= 2.54*WGAP
NGAP	Narrow Gap Half-thickness	0.478	cm	= 2.54*NGAP
CRADIUS	Channel Corner Inner Radius	1.02	cm	= 2.54*CRADIUS
FSRD	Cladding to Cladding Distance for Fuel Rods	0.445	cm	= 2.54*(RPITCH-COD)
CFSRD	Cladding to Channel Inner Surface Separation of Edge Row of Fuel Rods	0.3645	cm	= 2.54*CFSRD
RPITCH	Fuel Rod Pitch	1.875	cm	= 2.54*RPITCH
COD	Fuel Rod Cladding Outer Diameter	1.430	cm	= 2.54*COD
CLD	Fuel Rod Cladding Thickness	0.081	cm	= 2.54*CLD
POD	Fuel Pellet Outer Diameter [c]	1.240	cm	= 2.54*POD

Worksheet 3-1 (cont'd)

Waste Package Operations

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 13 of 15

			Reference		
Mnemonic	Definition	Value	Units	Source	Name
	Outside Span of Channel	5.438	inches	[a]	ASOUT
CTHICK	Channel Wall Thickness	0.080	inches	[a]	CTHICK
ASIN	Inner Span of Channel	n/a	n/a	n/a	ASIN
WGAP	Wide Gap Half-thickness	0.375	inches	[a]	WGAP
NGAP	Narrow Gap Half-thickness	0.188	inches	[a]	NGAP
CRADIUS	Channel Corner Inner Radius	0.40	inches	[a]	CRADIUS
FSRD	Cladding to Cladding Distance for Fuel Rods	n/a	n/a	n/a	FSRD
CFSRD	Cladding to Channel Inner Surface Separation of Edge Row of Fuel Rods	0.1525	inches	[a]	CFSRD
RPITCH	Fuel Rod Pitch	0.64	inches	[a]	RPITCH
COD	Fuel Rod Cladding Outer Diameter	0.493	inches	[b]	COD
CLD	Fuel Rod Cladding Thickness	0.034	inches	[b],[d]	CLD
POD	Fuel Pellet Outer Diameter	0.416	inches	[b]	POD
NWR	Number of Water Rods	2	n/a	[c]	NWR

Worksheet 3-2 Namelist Input Development for GE 8x8 Lattice with Small Water Rods

[a]. This data is from the EPRI Report, Table 2.

[b]. This data is from the EPRI Report, Table 9. Note that these values differ slightly from those provided in the QAP-3-5 document for the Quad Cities Unit 2 CRC Data (Reference 7.9, p.11, hereafter cited as the "QC2 3-5 Document"); however, the effect on neutron multiplication should be small.

[c]. This data is from the QC2 3-5 Document, §2.

[d]. This value from the EPRI Report, Table 9 was erroneously reported there as 0.34 inches not 0.034 inches. This is self-evident from the other information in the EPRI Report from Table 9, and from Tables 4 through 11.

		Dat	aset	
Mnemonic	Definition	Value	Units	Computation
	Outside Span of Channel	13.81	cm	= 2.54*ASOUT
CTHICK	Channel Wall Thickness	0.20	cm	= 2.54*CTHICK
ASIN	Inner Span of Channel	13.406	cm	= 2.54*(ASOUT-2*CTHICK)
WGAP	Wide Gap Half-thickness	0.953	cm	= 2.54*WGAP
NGAP	Narrow Gap Half-thickness	0.478	cm	= 2.54*NGAP
CRADIUS	Channel Corner Inner Radius	1.02	cm	= 2.54*CRADIUS
FSRD	Cladding to Cladding Distance for Fuel	0.373	cm	= 2.54*(RPITCH-COD)
	Rods			
CFSRD	Cladding to Channel Inner Surface	0.3874	cm	= 2.54*CFSRD
	Separation of Edge Row of Fuel Rods			
RPITCH	Fuel Rod Pitch	1.626	cm	= 2.54*RPITCH
COD	Fuel Rod Cladding Outer Diameter	1.252	cm	= 2.54*COD
CLD	Fuel Rod Cladding Thickness	0.086	cm	= 2.54*CLD
POD	Fuel Pellet Outer Diameter	1.057	cm	= 2.54*POD
NWR	Number of Water Rods	2	n/a	n/a

Worksheet 3-2 (cont'd)

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 14 of 15

Worksheet 3-3 Namelist Input Development for GE 8x8 Lattice with Large Central Water Rod

			Reference]
Mnemonic	Definition	Value	Units	Source	Name
	Outside Span of Channel	5.438	inches	[a]	ASOUT
СТНІСК	Channel Wall Thickness	0.080	inches	[a]	CTHICK
ASIN	Inner Span of Channel	n/a	n/a	n/a	ASIN
WGAP	Wide Gap Half-thickness	0.375	inches	[a]	WGAP
NGAP	Narrow Gap Half-thickness	0.188	inches	[a]	NGAP
CRADIUS	Channel Corner Inner Radius	0.40	inches	[a]	CRADIUS
FSRD	Cladding to Cladding Distance for Fuel Rods	n/a	n/a	n/a	FSRD
CFSRD	Cladding to Channel Inner Surface Separation of Edge Row of Fuel Rods	0.1525	inches	[a]	CFSRD
RPITCH	Fuel Rod Pitch	0.64	inches	[b]	RPITCH
COD	Fuel Rod Cladding Outer Diameter	0.483	inches	[b]	COD
CLD	Fuel Rod Cladding Thickness	0.032	inches	[b]	CLD
POD	Fuel Pellet Outer Diameter	0.410	inches	[b]	POD
NWR	Number of Water Rods	1	n/a	[b]	NWR

[a]. This data is from the EPRI Report, Table 2.

[b]. This data is from the QC2 3-5 Document.

Title: Development of Lattice Geometry DatasetsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment IV Page 15 of 15

		Data	aset	
Mnemonic	Definition	Value	Units	Computation
	Outside Span of Channel	13.81	cm	= 2.54*ASOUT
CTHICK	Channel Wall Thickness	0.20	cm	= 2.54*CTHICK
ASIN	Inner Span of Channel	13.406	cm	= 2.54*(ASOUT-2*CTHICK)
WGAP	Wide Gap Half-thickness	0.953	cm	= 2.54*WGAP
NGAP	Narrow Gap Half-thickness	0.478	cm	= 2.54*NGAP
CRADIUS	Channel Corner Inner Radius	1.02	· cm	= 2.54*CRADIUS
FSRD	Cladding to Cladding Distance for Fuel Rods	0.399	cm	= 2.54*(RPITCH-COD)
CFSRD	Cladding to Channel Inner Surface Separation of Edge Row of Fuel Rods	0.3874	cm	= 2.54*CFSRD
RPITCH	Fuel Rod Pitch	1.6256	cm	= 2.54*RPITCH
COD	Fuel Rod Cladding Outer Diameter	1.2268	cm	= 2.54*COD
CLD	Fuel Rod Cladding Thickness	0.0813	cm	= 2.54*CLD
POD	Fuel Pellet Outer Diameter	1.0414	cm	= 2.54*POD
NWR	Number of Water Rods	1	n/a	n/a

Worksheet 3-3 (cont'd)

,

.

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 1 of 11

CONTENTS

	Page
1. Introduction	5
2. Dataset Structure and Contents	5
3. Dataset Creation	8
3.1. Dataset Title Record3.2. Namelist Input3.3. Dataset Location	8 8 8

Waste Package Operations	Calculation (Attachment)		
Title: Development of Control Blade Geometry Dataset			
Document Identifier: B00000000-01717-0210-00010 REV 01	Attachment V Page 2 of 11		

FIGURES

Page

2-1	Geometry Parameters for GE D-lattice Control Blade	7
3-1	Lattice Geometry Dataset for GE D-lattice Control Blade	9

.

TABLES

2-1 Contents of Dataset for BWR Control Blade

ŧ

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 4 of 11

WORKSHEETS

3-1 Namelist Input Development

Page

10

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 5 of 11

1. Introduction

This attachment describes the creation of the datasets defining the control blades. It provides a detailed list of contents for such datasets and documents the creation of the datasets of this type used in the present calculation.

2. Dataset Structure and Contents

The dataset structure is an ASCII-format file that incorporates FORTRAN Namelist-type input. The relevance of each of these variables to the blade dimensions is shown in Figures 2-1. This illustration shows a GE D-lattice Original Equipment blade. The contents of this dataset for a D-lattice control blade are given in Table 2-1 (values are from the EPRI report for the initial core design, Reference 7.8, hereafter cited as the "EPRI Report"). In this table the format of each datum is given.

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 6 of 11

Mnemonic	Definition	Comments	Format
Title	Dataset Title	Character String Describes Application for this Dataset (Class of BWR to which it is Applicable)	Single Line
NTUBE	Number of Absorber Tubes	Defines the Number of Absorber Tubes to Populate the Wings of the Blade	NAMELIST
CBSPAN	Control Blade Span (cm)	Span of Individual Wing (from Tie Rod Center to Tip)	NAMELIST
ATID	Absorber Tube Inner Diameter (cm)	Sizes Individual Absorber Tubes	NAMELIST
ATOD	Absorber Tube Outer Diameter (cm)	Sizes Individual Absorber Tubes	NAMELIST
CBTHICK	Wing Thickness (cm)		NAMELIST
TRSPAN	Tie Rod Span (cm)	Helps to Situate Absorber Tubes in the Wing	NAMELIST
TRTHICK	Tie Rod Thickness (cm)	Define the Width of the Channel formed for the Absorber Tubes	NAMELIST
WSTHICK	Sheath Thickness (cm)	Defines Wing Sheaths	NAMELIST
CBLENGTH	Control Length (cm)	Length of Absorber Material	NAMELIST
NCS	Number of Wing Central Stiffeners	Only Zero and Unity are Valid Entries	NAMELIST
CSOFF	Central Stiffener Offset (cm)	Distance from Center of Tie Rod to Center of Central Stiffener	NAMELIST
CSWIDTH	Central Stiffener Width (cm)	Width of Central Stiffener	NAMELIST
CBPMAT	Poison Material	Five Character Identifier for Blade Poison Material from Core Structural Materials Databset (see Attachment 3)	NAMELIST
ATMAT	Absorber Tube Material	Five Character Identifier for Blade Absorber Tube Wall Material from Core Structural Materials Databset (see Attachment 3)	NAMELIST
CBSMAT	Sheath Material	Five Character Identifier for Blade Sheath Material from Core Structural Materials Databset (see Attachment 3)	NAMELIST
CBTRMAT	Tie Rod Material	Five Character Identifier for Blade Tie Rod Material from Core Structural Materials Databset (see Attachment 3)	NAMELIST

Table 2-1 Contents of Dataset for BWR Control Blade

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 7 of 11

Figure 2-1 Geometry Parameters for GE D-lattice Control Blade

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 8 of 11

3. Dataset Creation

Each group of data in the dataset will now be discussed in greater detail and the creation of the dataset for a D-lattice GE control blade documented. The final dataset is shown in Figure 3-1.

3.1. Dataset Title Record

The first line of the dataset is a title. While the contents of this line are arbitrary, it should contain the following information to ensure consistency with the file name:

- manufacturer; and
- BWR lattice (D-lattice in this case).

3.2. Namelist Input

The FORTRAN namelist-type input variables must adhere to the restrictions inherent in the format of such input. Care must be taken to ensure that the value provided is consistent with the data storage class in the automation (i.e., integer input for integer variables and real input for real variables) so that neither precision is not lost for real variables nor is illusory precision implied for integer variables.

The development of the values appropriate for the D-lattice GE control blade is shown in Worksheet 3-1.

3.3. Dataset Location

The dataset for the GE D-lattice blade in named: ge_d_lattice.dat.

Waste Package Operations

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 9 of 11

```
GE D-lattice Control Blade
SBLADE
NTUBE = 84
 CBSPAN = 12.38
 ATOD = 0.478
 ATID = 0.351
 CBTHICK = 0.7925
 WSTHICK = 0.14
 TRSPAN = 1.985
 TRTHICK = 0.508
 CBLENGTH = 363.2
 CBPMAT = 'B4C'
ATMAT = 'SS304'
CBSMAT = 'SS304'
 CBTRMAT = 'SS304'
$END
```

Figure 3-1 Lattice Geometry Dataset for GE D-lattice Control Blade

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 10 of 11

		F	Reference		
Mnemonic	Definition	Value	Units	Source	Name
NTUBE	Number of Absorber Tubes in Blade	84	N/A	[a]	N/A
CBSPAN	Span of Blade from Center of Tie Rod to Wing Tip	4.875	inches	[a]	CBSPAN
ATOD	Absorber Tube Outer Diameter	0.188	inches	[a]	ATOD
	Absorber Tube Thickness	0.025	inches	[a]	ATD
ATID	Absorber Tube Inner Diameter	N/A	N/A	N/A	ATID
CBTHICK	Control Blade Wing Thickness	0.3120	inches	[a]	CBTHICK
WSTHICK	Blade Sheath Thickness	0.056	inches	[a]	WSTHICK
TRSPAN	Tie Rod Span (Half of Total)	0.7815	inches	[a]	TRSPAN
TRTHICK	Tie Rod Thickness	N/A	N/A	N/A	N/A
CBLENGTH	Control Length	143.0	inches	[a]	CBLENGTH
CBPMAT	Poison	B4C	N/A	[a]	N/A
ATMAT	Absorber Tube Material Identifier	SS304	N/A	[b]	N/A
CBSMAT	Sheath Material	SS304	N/A	[b]	N/A
CBTRMAT	Tie Rod Material	SS304	N/A	[b]	N/A

Worksheet 3-1 Namelist Input Development

[a]. This data is from the EPRI Report, Table 13.

.

[b]. This assumes that the stainless steel used in the blade components is the same as that used in the fuel assembly tie plate (see Table 12 of the EPRI Report).

Calculation (Attachment)

Title: Development of Control Blade Geometry DatasetDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment V Page 11 of 11

		Data	aset	
Mnemonic	Definition	Value	Units	Computation
NTUBE	Number of Absorber Tubes in Blade	84	N/A	N/A
CBSPAN	Span of Blade from Center of Tie Rod to Wing Tip	12.38	cm	= 2.54*CBSPAN
ATOD	Absorber Tube Outer Diameter	0.478	cm	= 2.54*ATOD
	Absorber Tube Thickness	0.064	cm	= 2.54*ATD
ATID	Absorber Tube Inner Diameter	0.351	cm	= 2.54*(ATOD-2*ATD)
CBTHICK	Control Blade Wing Thickness	0.7925	cm	= 2.54*CBTHICK
WSTHICK	Blade Sheath Thickness	0.14	cm	= 2.54*WSTHICK
TRSPAN	Tie Rod Span (Half of Total)	1.985	cm	= 2.54*TRSPAN
TRTHICK	Tie Rod Thickness	0.508	cm	= 2.54*(CBTHICK- 2*WSTHICK)
CBLENGTH	Control Length	363.2	cm	= 2.54*CBLENGTH

Worksheet 3-1 (cont'd)

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 1 of 40

CONTENTS

		Page
1.	Introduction	4
2.	Specifications	4
3.	Encoding of Process	4
	3.1. Program Flow3.2. Input Parameters to Process3.3. Detailed Algorithms	4 9 12
4.	Testing	34
5.	Integration Testing	40

TABLES

Page

3-1	Input Variables	9
3-2	Service Routine List	14
3-3	Type Description for Structured Variables	15
3-4	List of Input Routines	16
3-5	Input Editing Routine List	21
3-6	Deck Generation Routine Listing	29
4-1	Input Values used to Create Vessel and Core Internals Models	35
4-2	Surface Definitions for Vessel and Core Internals Models	36
4-3	Cell Definitions for Vessel and Core Internals Models	38
5-1	Results of Integration Testing Case	40

Waste Package Operations

Calculation (Attachment)

Title: Development of Algorithms and Encoding of Linkage Auton	nation	
Document Identifier B00000000-01717-0210-0010 REV 01	Attachment VI	Page 3 of 40

FIGURES

		Page
3-1	Top Level Flowchart	5
3-2	BLINK Input Deck for Quad Cities Unit-1 Initial Core	11
3-3	Illustration of Linked List Concept	13
3-4	Flowchart for Input Processing	17
3-5	Input Editing Flowchart	22
3-6	Building of Core Model from Unique Components	24
3-7	"Window" for Fuel Assembly in Control Cell	26
3-8	Window in Control Cell Model for Control Blade	27
3-9	Assembly Loading into Control Cell	28
3-10	Deck Generation Flowchart	30

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 4 of 40

1. Introduction

This attachment contains the detailed specifications for and documents the development of a software routine to create MCNP input decks (References 7.1 and 7.2 – the Los Alamos National Laboratory (LANL) User's Manuals – and References 7.5 and 7.6 – the Software Qualification Reports) for analyzing Commercial Reactor Criticals (CRC's) using isotopic inventories from the SAS2H sequence of the SCALE code (Reference 7.3 –the Software Qualification Report).

2. Specifications

This process must include the following functions:

- accept input from the user that controls the operation of the software routine and specifies the source of information about the fuel assemblies geometry and material composition, control blades and reactor statepoint;
- generate a complete MCNP input card image representation that permits a CRC analysis to be performed without additional modification;
- create an output file that documents the processing performed.

3. Encoding of Process

The computational algorithms and the process described in Attachment VII must be encoded in a software routine on an HP workstation. For this application, a mixture of C and FORTRAN coding is used. The name for this software routine is "BLINK".

3.1. Program Flow

A top-level flowchart for the software routine is shown in Figure 3-1.

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 5 of 40

Figure 3-1 Top Level Flowchart

Waste Package Operations

Figure 3-1 (cont'd)

Waste Package Operations

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 8 of 40

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 9 of 40

3.2. Input Parameters to Process

The input to the linkage software routine is all the information necessary to construct an MCNP geometrical representation of the core and populate it with the proper material representation. The input is an ASCII-format file that incorporates both FORTRAN Namelist-type input and fields of space-delimited data. The input variables are described in Table 3-1. A copy of the input deck for the Quad Cities Unit-1 initial core is shown in Figure 3-2. The automation also makes use of a large number of prepared datasets to minimize the size of the input file.

3.2.1. Dataset Title Record

The first line of the dataset is a title. While the contents of this line are arbitrary, good practice indicates that it should contain the following information:

- name of plant modeled,
- cycle and exposure point,
- thermal-hydraulic conditions, and
- software routine execution options.

3.2.2. Namelist Input

The FORTRAN namelist-type input variables must adhere to the restrictions inherent in the format of such input. Care must be taken to ensure that the value provided is consistent with the data storage class in the automation (i.e., integer input for integer variables and real input for real variables) so that neither precision is not lost for real variables nor is illusory precision implied for integer variables.

3.2.3. List Input Fields

These fields are used for vectors and arrays of data, such as indices to fuel assembly axial nodes and "maps" indicating the locations of fuel assembly geometrical types. While these are read in a "free-format," good practice indicates that they should be arrayed in a regular fashion that maximizes legibility. The list input fields are preceded by a title line in every instance.

Variable	Definition	Comments	Format
Title	Case Title	Character String Describes Analysis	Single Line
CORE_DB	File Specification for Core Geometry Database		Namelist
CORE_MTLS	File Specification for Core Materials Database		Namelist
BLADE_DB	File Specification for Control Blade Geometry Database		Namelist
FPREFIX	Directory Specification for Location of Fuel Material Intermediate Database		Namelist
LPREFIX	Directory Specification for Location of Lattice Ge- ometry Database		Namelist
NAXIAL	Number of Axial Nodes in Core Representation	Must be Consistent with SAS2H Analysis forming the Source of the Fuel Material	Namelist

Table 3-	1 Input	Variables
----------	---------	-----------

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 10 of 40

Variable	Definition	Comments	Format
		Compositions	
AFL	Active Fuel Length	Value must be in centimeters	Namelist
NCOLP	Maximum Number of Columns of Fuel Assem- blies in the Problem	May be Consistent with Quarter-core, Half- core or Full-core Representations	Namelist
NROWP	Maximum Number of Rows of Fuel Assemblies in the Problem	May be Consistent with Quarter-core, Half- core or Full-core Representations	Namelist
RHO	Density for In-channel Moderator	Units are g/cm ³	Namelist
RHOBYP	Density for Moderator in Bypass Region	Units are g/cm ³	Namelist
ТЕМРК	Problem Temperature for Scattering Kernel	Units are Kelvin	Namelist
MUTP	Material Identifier for Up- per Tie Plate Region	Maximum of Six Characters	Namelist
MLTP	Material Identifier for Lower Tie Plate Region	Maximum of Six Characters	Namelist
GMAP	Map Pointing to Fuel As- sembly Geometrical Da- taset Vectors		List Format
MMAP	Map Pointing to Fuel Material Intermediate Dataset Vectors		List Format
BLADEP	Control Blade Position	Map of Control Blade Positions (must be an even integer between 0 and 48, inclusive)	List Format
LGVECT	Lattice Geometry Vectors	Supplies Description of Datasets that Rep- resent the Geometry of the Lattices	List Format
LMVECT	Lattice Material Vectors	Supplies Description of Datasets that Rep- resent the Material Composition of the Lat- tices	List Format
N_SPACER	Number of Spacers for each Geometrical Fuel Type		List Format
S_LOC	Spacer Location for Each Spacer for a Given Geo- metrical Fuel Type		List Format
S_MTL	Spacer Material Label for Each Geometrical Fuel Type		List Format

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 11 of 40

```
Quad Cities-1, Beginning of Life
$LINKIN
 CORE DB = '/users/anderson/crc bwr/core database/bwr3 724bundle.dat'
 CORE MTLS = '/users/anderson/crc bwr/materials database/core materials.dat'
 BLADE DB = '/users/anderson/crc bwr/blade database/ge d lattice.dat'
 LPREFIX = '/users/anderson/crc bwr/qclic/lattice database/'
 FPREFIX = '/users/anderson/crc bwr/qclic/fuel composition database/'
 NAXIAL = 24
 AFL = 365.760
 NCOLP = 15
 NROWP = 15
 RHO = 0.981141
 RHOBYP = 0.981141
 TEMPK = 337.04
 MUTP = '7GUTP1'
MLTP = '7GLTP1'
$END
Fuel Geometry Loading Map
 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 Fuel Material Loading Map
0 0 0 0 0 0 0 0 0 0 3 3 3 3 3
0 0 0 0 0 0 0 0 0 3 3 1 3 1 3
 0 0 0 0 0 0 3 3 3 3 1 4 1 3 1
 0 0 0 0 0 3 3 1 3 1 4 1 4 2 4
 0 0 0 0 3 3 1 3 2 4 2 4 2 4 2
 0 0 0 3 3 1 3 2 4 2 4 1 4 2 4
 0 0 3 3 1 3 1 4 2 4 2 4 2 4 2 4 2
 0 0 3 1 3 2 4 2 4 2 4 1 3 1 3
 0 0 3 3 2 4 2 4 2 4 1 3 1 3 1
 0 3 3 1 4 2 4 2 4 1 3 1 3 1 3
 3 3 1 4 2 4 2 4 1 3 1 3 1 3 1
 3 1 3 2 4 2 4 1 3 1 3 1 3 1 3 1 3
 3 3 1 4 2 4 2 3 1 3 1 3 1 3 1
 3 1 3 2 4 2 4 1 3 1 3 1 3 1 3
 3 3 1 4 2 4 2 3 1 3 1 3 1 3 1
Blade Positions
-1 -1 -1 -1 -1 48 00 48
-1 -1 -1 00 00 00 00 00
-1 -1 00 48 00 48 00 48
```

Figure 3-2 BLINK Input Deck for Quad Cities Unit-1 Initial Core

Title: Development of Algorithms and Encoding of Linkage Aut	tomation
Document Identifier B0000000-01717-0210-0010 REV 01	Attachment VI Page 12 of 40

-1 00 00 00 00 00 00 00 -1 48 00 48 00 48 00 48 00 00 00 00 00 00 00 00 00 48 00 48 00 48 00 48 00 00 00 00 00 00 00 00 Lattice Geometry Indices 1 24*1 Lattice Material Indicies 1 1 7*2 10*3 5*2 1 2 4 7*5 10*6 5*5 4 3 7 22*8 7 4 9 22*10 9 Lattice Geometry Datasets ge7x7.dat Lattice Material Datasets G7212G003DL1.dat G7212G006DL2.dat G7212G007DL3.dat G7211G003DL4.dat G7211G006DL5.dat G7211G007DL6.dat G7212G003DL7.dat G7212G006DL8.dat G7211G003DL9.dat G7212G006DL10.dat Fuel Assembly Spacers for each Bundle Type 7 Locations of Spacer for Each Bundle Type 46.99 96.52 146.05 195.58 245.11 294.64 344.17 Spacer Material Mnemonics SG7D1

Figure 3.2 (cont'd)

3.3. Detailed Algorithms

The coding that comprises the software routine is described in this sub-section by functional block. Listings of the FORTRAN coding are provided in Attachment XIV.

3.3.1. Driver Routine

The driver routine manages the overall processing performed by the software routine and is well represented by the flowchart in Figure 3-1. It is comprised of the main function ("main").

3.3.2. Service Routines

These are routines that provide memory management, file management, control of overall output processing, and miscellaneous services. These routines are listed in Table 3-2. Memory management in this software routine is achieved by utilizing the dynamic memory allocation functions of the C libraries. Structured variables used in the software routine, and particularly in the construction of linked lists, are shown in Table 3-3.

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 13 of 40

In a linked list, the memory address of the next structure is part of the existing structure; therefore, if the base member of the linked list is known, then the list may be traversed in the forward direction. In the linked lists in BLINK, the memory address of the previous member of the list is included in the structure, permitting the list also to be traversed in the backward direction. This is illustrated in Figure 3-3. The use of linked lists of structures permits the use of dynamic memory without a priori knowledge of the number of entries in the list.

Figure 3-3 Illustration of Linked List Concept

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 14 of 40

Name [a]	Function		
abort (c)	Common Location for Controlled Termination of Processing when		
	Error Detected by Coding		
bufferpad (c)	Adds Blanks to a C Character String		
copy_ascii_file (c)	Copies the Contents of One ASCII File to Another		
discard_scratch_file (c)	Creates Sub-process to Delete Scratch File used in Processing		
fortran_message (c)	C Function to Print Message from FORTRAN Routines to the Out- put Stream		
FTCLOSE (f)	Manages the Closing of FORTRAN Sequential Text Files		
FTOPEN (f)	Manages the Opening of FORTRAN Sequential Text Files		
header (c)	Prints Header for New Output Page; also Obtains Process Infor-		
	mation (i.e., Date, Time and Process Identification Number for		
,	Case Identification)		
INVALI (f)	Initializes an Integer Vector to a Given Value		
INVALR (f)	Initializes a Real Vector to a Given Value		
lines (c)	Tracks the Number of Output Lines on a Page and Requests a		
	New Page when Current Page is Full		
load_core_mtls (c)	Loads the Contents of the Core Materials Dataset into Memory		
load_fuel_material (c)	Loads the Contents of a Intermediate Fuel Material Dataset in		
	Memory		
load_surface_usage_list (c)	Loads Entries into "surface_usage_list" Structure in Linked List		
load_usage_list (c)	Loads Entries into "usage_list" Structure in Linked List		
MCHAR (f)	Determines the Last Non-blank Character in a Character String		
memory_ascii_record (c)	Manages Memory Requests for Variables of the "ascii_record" Type (see Table 3-3 for Definition)		
memory_ascii_string (c)	Manages Memory Requests for Variables of the "ascii_string" Type (viz., char[133])		
memory_fg_list (c)	Manages Memory Requests for Variables of the "fg_list" Type (see Table 3-3 for Definition)		
memory float (c)	Manages Memory Requests for Single-precision Real Variables		
memory integer (c)	Manages Memory Requests for Integer Variables		
memory lattice list (c)	Manages Memory Requests for Variables of the "aug-		
)()	mented lattice list" Type (see Table 3-3 for Definition)		
memory s material (c)	Manages Memory Requests for Variables of the "II material" Type		
	(see Table 3-3 for Definition)		
memory_surface_usage_list (c)	Manages Memory Requests for Variables of the "sur-		
	face_usage_list" Type (see Table 3-3 for Definition)		
memory_usage_list (c)	Manages Memory Requests for Variables of the "usage_list" Type		
	(see Table 3-3 for Definition)		
memsum (c)	Summarizes Software Routine Dynamic Memory Usage		
rollup_llm (c)	Returns Memory Associated with a "II_material" Linked List		
search_surface_usage_list (c) Searches Linked Lists of the "surface_usage_list" Type eithe			
	Index or Label		
search_usage_list (c)	Searches Linked Lists of the "usage_list" Type either by Index or		
	Label		

Table 3-2 Service Routine List

[a]. The character in parentheses represents the computer language in which the routine is created. A lower case "c" represents C source statements while a lower case "f" represents FORTRAN source statements. The name of FORTRAN source routines are also given in all uppercase letters.

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 15 of 40

Type Name	Definition	Comments
ascii_string	char[133]	character string variable used to process text from ASCII files
ascii_record	ascii_record *last	linked list structure used to load
	ascii_string	the contents of ASCII files into
	ascii_record *next	memory
Il_material	Il_material *last	linked list structure used to load
	int atomic_number	the material definitions into
	int mass_number	memory for processing
	float weight_percentage	
	char library_suffix[5]	
usage_list	usage_list *last	linked list structure used to track
	Int index	the usage of material definitions
	ascli_string label	
		linked list structure word to treat
surface_usage_list		the users of ourfood definitions
		the usage of surface definitions
	ascii_stiilig value	
	onai minemonic[4]	
	usage list *peyt	
fa list	ascii string de name	structure used to hold the con-
Ig_list	int latdim	stants defining a lattice deometry
	int nwr	stants demining a lattice geometry
	float cthick	
	float asin	
	float wgap	
	float ngap	
	float cradius	
	float fsrd	
	float cfsrd	
	float rpitch	
	float cod	
	float cld	
	float pod	
	char frcmat[6]	
	char fcmat[6]	
all	all *last	linked list structure used to ac-
	int basis_lattice_material_index	cumulate list of lattices that must
	int lattice_material_index	be replicated due to the presence
	all *next	of a fuel grid spacer

Table 3-3 Type Description for Structured Variables

3.3.3. Input Processing

These routines control the processing of input data to the software routine. Thus, they process the input variables shown in Table 3-1. These functions are listed in Table 3-4, and the flow of the input process is shown in Figure 3-4.

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 16 of 40

Name [a]	Function
BPCHEK (f)	Ensures that Control Blade Indices are in Valid Locations and all
	Positions are in a Valid Range
CBUNDLE (f)	Computes the Number of Unique Fuel Assembly Types
CLATTICE (f)	Determines the Number of Unique Fuel Lattices in the Core
echo (c)	Copies an Image of the Input File to the Output Stream
LDLV (f)	Reads Vectors of Integers and an Associated Title Line
LDLVR (f)	Reads Vectors of Real Values and an Associated Title Line
LODCT (f)	Creates Correspondence Table between Lattice Geometry Indices
	and Lattice Material Indices
MAPCHEK (f)	Ensures that Fuel Assembly Indices are in Valid Locations and all
	Valid Locations are Filled
R2DMAP (f)	Reads Rectangular Arrays of Integer Variables
RBLADE (f)	Reads the Contents of the Control Blade Geometry Dataset
READIN (f)	Manages the Reading of Input Files
RLATTICE (f)	Reads the Contents of the Lattice Geometry Dataset
STRNGR (f)	Reads Character Strings from FORTRAN Logical Unit

Table 3-4 List of Input Routines

[a]. The character in parentheses represents the computer language in which the routine is coded. A lower case "c" represents C source statements while a lower case "f' represents FORTRAN source statements. The name of FORTRAN source routines are also given in all uppercase letters.

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 17 of 40

Figure 3-4 Flowchart for Input Processing

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 18 of 40

Figure 3-4 (cont'd)

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 19 of 40

Figure 3-4 (cont'd)

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 20 of 40

Figure 3-4 (cont'd)

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 21 of 40

3.3.4. Input Editing Routines

.

These routines edit the user input to the software routine and the contents of many of the datasets selected for the creation of the MCNP input deck. These routines are listed in Table 3-5 and the flow of the input editing process is shown in Figure 3-5.

Name [a]	Function
editin (c)	Edits Input from User Input Directives from FORTRAN NAMELIST Input
coredb_edt (c)	Edits Contents of Core Geometry Dataset
bladedb_edt (c)	Edits Contents of Blade Geometry Dataset
fgds_edt (c)	Edits Contents of Fuel Geometry Datasets
edit_ct (c)	Edits Correspondence Table which Relates Lattice Geometry Indi- ces and Lattice Material Indices
edit_spacer (c)	Edits Input Variables Defining Fuel Assembly Spacers

[a]. The character in parentheses represents the computer language in which the routine is coded. A lower case "c" represents C source statements while a lower case "f" represents FORTRAN source statements. The name of FORTRAN source routines are also given in all uppercase letters.

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 22 of 40

Figure 3-5 Input Editing Flowchart

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 23 of 40

Figure 3-5 (cont'd)

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 24 of 40

3.3.5. MCNP Input Deck Generation

The MCNP model for a BWR core is created from the smallest set of unique components for which differentiated nuclear data is available: lattices filling a "node" of the core. Thus separate MCNP universes are built for each unique lattice. These lattices are then built up into unique fuel assembly models that are merely strings of such nodes. The next higher grouping of components in the core is "control cells," which are groups of four fuel assemblies, the control blade location at the center, and, possibly, one or more in-core instrumentation guide tube at the corner of the control cell. These unique control cells are then loaded into the core region of the model to complete the fuel mass. This process is illustrated in Figure 3-6.

Figure 3-6 Building of Core Model from Unique Components

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 25 of 40

The details of the construction of the MCNP model for specific lattices are shown in other attachments and the building of the assemblies is straightforward. Each assembly is placed in a specially prepared "cell" in each control cell as shown in Figure 3-7. While the fuel assembly is roughly square in cross section, this "window" has been adjusted to provide clearance for in-core instrumentation guide tubes which may be present in the corner of the control cell. The coordinate of the center of this curved surface and the ambiguity planes are computed as:

Eq. 3-1
$$\delta = -\delta_0 + \frac{\sqrt{2}}{2} \cdot \left(\frac{\text{DTOD}}{2} + \delta_0\right)$$

Here DTOD is the outer diameter of the guide tube and δ_0 is sum of the clearance between the guide tube outer surface and the window for the fuel assembly model. The radius of the curved surface may be computed as:

Eq. 3-2
$$\mathbf{R} = \sqrt{2} \cdot \delta \cdot tan(67.5^{\circ})$$

The coordinates of the center of the curved surface may be written as:

Eq. 3-3
$$x_{c} = (APITCH - \delta_{0}) - R$$
$$y_{c} = (APITCH - \delta_{0}) + R$$

Here APITCH is the lattice pitch.

There is also a "window" constructed for the control blade as shown in Figure 3-8. The location of blade window is defined by a fixed offset from the center of the control cell that accommodates both the control blade and the fuel assembly. The fuel assemblies are loaded into the windows and distributed in the control cell as shown in Figure 3-9. The reference location for the fuel assembly window is in the southeast quadrant and assemblies at other locations are placed by rotating the defined cell-about the center of the control cell-to the proper location.

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 26 of 40

Figure 3-7 "Window" for Fuel Assembly in Control Cell

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 27 of 40

Figure 3-8 Window in Control Cell Model for Control Blade

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 28 of 40

Figure 3-9 Assembly Loading into Control Cell

These routines perform the primary function of the software routine, viz., governing the production of the MCNP input deck. These names and function of these routines are listed in Table 3-6 and the logic flow for this portion of the software routine is shown in Figure 3-10.

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 29 of 40

Table 3-6 Deck Generation Routine Listing

Name [a]	Function		
add_cell (c)	Adds Cell Definition to MCNP Model		
add_like_but (c)	Adds Cell of Form "Like But" to MCNP Model		
add_material (c)	Adds Material Definition to MCNP Model		
add_surface (c)	Adds Surface Definition to MCNP Model		
add_symmetry_surfaces (c)	Adds Symmetry Surfaces to MCNP Model		
augment_lattice_list (c)	Adds Lattices Incorporating Spacer Grids into Material Lattice		
	Loading Vectors		
build_assemblies (c)	Combines Unique Lattice Types into Unique Assembly Types		
build_control_blade (c)	Creates Cells, Surfaces and Material Definitions for Control Blade		
build_control_cells (c)	Creates Control Cells and Loads Fuel Assembly Models as Appropriate		
CCMGEN (f)	Determines the Location and Number of Unique Control Cells		
core_lattice_generation (c)	Creates Control Cell Lattice within Core Shroud		
echo_MCNP_deck (c)	Copies the MCNP Input File to the Output Stream		
edit_materials (c)	Edits the Descriptions of Materials used in the Problem		
edit_surfaces (c)	Edits the Descriptions of Surfaces used in the Problem		
edit_universes (c)	Edits the Universe Indices for the Control Cells and Fuel Assem-		
	blies		
ge7x7_lattice (c)	Creates Cells, Surfaces and Material Definitions for Model of GE 7x7 Lattice (No Water Rods)		
ge8x8_lattice_swr (c)	Creates Cells, Surfaces and Material Definitions for Model of GE		
	8x8 Lattice with Small Water Rods		
generate_deck (c)	Combines Scratch Files containing Segments of MCNP Input In-		
	structions into a Single MCNP Input File		
generate_lattice_model (c)	Controls the Generation of the Appropriate Lattice Representation		
	for each Unique Lattice in the Core [b]		
material_match (c)	Matches Material Identifiers with Materials in the Linked List for		
	Core Materials		
search_fau_list (c)	Search List of Fuel Assembly Assignments to Control Cells and		
	Returns Fuel Assembly Indices at Desired Locations		
source_specification (c)	Adds Source Specification and Other Problem Control to the MCNP Input		
spacer_location (c)	Determines the Nodal Locations of Each Fuel Spacer Grid		
vessel_generation (c)	Creates Cells, Surfaces and Material Definitions for Vessel, Vessel		
	Internals and Axial Reflector Regions		

[a]. The character in parentheses represents the computer language in which the routine is coded. A lower case "c" represents C source statements while a lower case "f" represents FORTRAN source statements. The name of FORTRAN source routines are also given in all uppercase letters.

[b]. This function calls other functions that create the appropriate cells, surfaces and material definitions for each lattice geometrical type. The models for these various lattice types are documented in individual attachments (see §8 of the main document).

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 30 of 40

Figure 3-10 Deck Generation Flowchart

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 31 of 40

Figure 3-10 (cont'd)

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 32 of 40

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 34 of 40

4. Testing

The MCNP model for a quarter core contains many components, the modeling of which is verified in the attachments which document the specific components. The testing in this section of this attachment seeks only to show that the vessel and core internals models, including the control cells, are appropriately constructed. For this testing, the MCNP input deck generated for the Quad Cities Unit 1 Beginning of Life CRC calculation is used (see Attachment XII).

The input parameters used to generate the model are shown in Table 4-1. These values are used to create the surfaces shown in Table 4-2 and the cell definitions given in Table 4-3 (note that the cell indices merely provide the ordering of the cells and do not correspond to any particular input). These may be compared with the input deck shown in Attachment XII to confirm that the linkage automation is creating the expected values.

Title: Development of Algorithms and Encoding of Linkage Automation **Document Identifier** B00000000-01717-0210-0010 REV 01 Attachment VI Page 35 of 40

		Reference			
Mnemonic	Definition	Value	Units	Source	Name
ncol	Dimensionality of Core	30	n/a	[a]	n/a
nrow	Dimensionality of Core	30	n/a	[a]	n/a
apitch	Assembly Pitch	6	inches	[b]	APITCH
vod	Vessel Outer Diameter	668.654	cm	[c]	VOD
vthick	Vessel Thickness	15.557	cm	[C]	VTHICK
sod	Core Shroud Outer Diameter	526.096	cm	[c]	SOD
sthick	Core Shroud Thickness	5.08	cm	[c]	STHICK
n/a	Assembly Length (Handle to Nosepiece)	171.27	inches	[d]	ATLEN
n/a	Nosepiece Guide	1.48	inches	[d]	LNPG
n/a	Nosepiece Cylinder	0.625	inches	[d]	LNPCYL
n/a	Lower Tie Plate	5.31	inches	[d]	LLTP
n/a	Active Fuel Length	144	inches	[d]	AFL
n/a	Handle Length	6.65	inches	[d]	LHANDLE
tutpr	Top of Upper Tie Plate Region	N/a	n/a	n/a	TUTPR
tcgr	Top of Core Grid Region	158.6875	inches	[e]	TCGR
bltpr	Bottom of Lower Tie Plate Region	N/a	n/a	n/a	n/a
n/a	Core Support Plate Thickness	2	inches	[e]	CSPTH
bcpr	Bottom of Fuel Support/Core Plate Re- gion	N/a	n/a	n/a	n/a
dtod	Instrument Dry Tube Outer Diameter	0.700	inches	[f]	DTOD
	Dry Tube Thickness	0.03	inches	[f]	DTD
dtid	Instrument Dry Tube Inner Diameter	0.64	inches	n/a	DTID
d0	Offset between Instrument Tube and Window for Fuel Assembly	0.1	cm	[g]	D0
	Corner Radius for Window for Fuel As- sembly	n/a	n/a	n/a	CR
	Blade Window Offset	0.4	cm	[g]	BWO
	Control Blade Span	4.875	inches	[h]	CBSPAN

Table 4-1 Input Values used to Create Vessel and Core Internals Models

[a]. This value is from Reference 7.8 (hereafter cited as the "EPRI Report"), Table 15.

[b]. This value is from the EPRI Report, Table 3.

[c]. This value is from Reference 7.7 (hereafter cited as "QC1 BOL Report"), Table 4.1-1.
[d]. This value is from the EPRI Report, Figure 10.

[e]. This value is from the EPRI Report, Figure 26.

[f]. This value is from the EPRI Report, Figure 29.

[g]. This is an assumed value which provides adequate cell clearance in the MCNP model.

[h]. This value is from the EPRI Report, Table 13.

Title: Development of Algorithms and Encoding of Linkage Au	tomation
Document Identifier B0000000-01717-0210-0010 REV 01	Attachment VI Page 36 of 40

Index	Symbol	Definition	Mnemonic	Parameters	Justification/Computation	
1	STP	Top of Problem	pz	4.3307E+02	= 2.54*TCGR+30.0	
2	SBP	Bottom of Problem	pz	-4.8567E+01	= -2.54*(LLTP+CSPTH)-30.0	
3	SMREP	Maximum Radial Extent of Problem	cz	3.3433E+02	= VOD/2	
4	SXZP	X-Z Plane	ру	0.0000E+00	Symmetry Line	
5	SYZP	Y-Z Plane	рх	0.0000E+00	Symmetry Line	
6	SIRSV	Inner Radial Surface of Vessel	cz	3.1877E+02	= (VOD-2*VTHICK)/2	
7	SORSCS	Outer Radial Surface of Core Shroud	cz	2.6305E+02	= SOD/2	
8	SIRSCS	Inner Radial Surface of Core Shroud	cz	2.5797E+02	= (SOD-2*STHICK)/2	
9	STAF	Top of Active Fuel	pz	3.6576E+02	From Quad Cities Unit 1 Input Deck	
10	STUTPR	Top of Upper Tie Plate Region	pz	3.9938E+02	= TUTPR	
11	STCGR	Top of Core Grid Region	pz	4.0307E+02	= 2.54*TCGR	
12	SBAF	Bottom of Active Fuel	pz	0.0000E+00	Datum for Model	
13	SBLTPR	Bottom of Lower Tie Plate Region	pz	-1.3487E+01	= -2.54*LLTP	
14	SBCPR	Bottom of Fuel Support/Core Plate Region	pz	-1.8567E+01	= -2.54*(LLTP+CSPTH)	
15	STFN	Top of Fuel Nodes	pz	1.5240E+01	= STAF/24 (Number of Axial Nodes from	
			DZ	3.0480E+01	Quad Cities Unit 1 Input Deck)	
			DZ	4.5720E+01		
			pz	6.0960E+01		
			bz	7.6200E+01		
			DZ	9.1440E+01		
			 DZ	1.0668E+02		
ļ			07	1 2192E+02		
			<u>pz</u>	1.2702E+02		
			n7	1.5710E+02		
			<u>pz</u>	1.6764E+02		
ŀ			P2	1.0704E+02		
			<u>P2</u>	1.0200E+02		
				2 1336E+02		
			pz 	2.1000E+02		
			pz pz	2.2000E+02		
1				2.43046102		
			<u>pz</u>	2.3900E+02		
			p2	2.7432E+02		
			p2 n7	3.0480E+02		
			p2 p7	3 2004E+02		
			- pz	3.2004E+02		
			PZ	3.50200+02		
	SEAVAMYY	Window for Fuel Assembly (max X)	μ <u>2</u>	1.5140E+01	- (2.54*APITCH) 0.1	
01	SEDIA/MANY	Window for Fuel Assembly (max A)	μλ nv	5 0000 = 01	Assumed Offset for Blade Window ± 0.10	
02	SEANAMY	Window for Fuel Assembly (mar X)	py py	1.5140E+01	- (2.54*ADITCH) 0.1	
92	SEAMANY	Mindow for Fuel Assembly (min Y)	Py DV	5.0000E.01	Assumed Offset for Blade Mindow + 0.10	
04	SCSEAM	Curved Surface for Eucl Assombly Mindow	<u> </u>	1 30045+04		
54	SUSPAW	Curved Surface for Fuel Assembly Window	0/2	1.3094E+01		
				-1.3094E+01	(2.54 APTICH-D0)-CR	
	SASEA1A/4	Ambiguity Surface for Evol Accombly Min	nu	1 30045+04		
95	SASPAVVI	dow	ру	-1.3094E+01		
96	SASFAW2	Ambiguity Surface for Fuel Assembly Win- dow	рх	1.3094E+01	= 2.54*APITCH-D0-CR	
97	SBC1	Surface 1 for Blade Cutout	ру	-4.0000E-01	Assumed Offset for Blade Window	
98	SBC2	Surface 2 for Blade Cutout	ру	4.0000E-01	Assumed Offset for Blade Window	

Table 4-2 Surface Definitions for Vessel and Core Internals Models

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 37 of 40

Index	Symbol	Definition	Mnemonic	Parameters	Justification/Computation
99	SBC3	Surface 3 for Blade Cutout	рх	-1.2483E+01	= -(2.54*CBSPAN+0.1)
100	SBC4	Surface 4 for Blade Cutout	рх	1.2483E+01	= 2.54*CBSPAN+0.1
101	SBC5	Surface 5 for Blade Cutout	px	-4.0000E-01	Assumed Offset for Blade Window
102	SBC6	Surface 2 for Blade Cutout	px	4.0000E-01	Assumed Offset for Blade Window
103	SBC7	Surface 7 for Blade Cutout	ру	-1.2483E+01	= -(2.54*CBSPAN+0.1)
104	SBC8	Surface 8 for Blade Cutout	рх	1.2483E+01	= 2.54*CBSPAN+0.1
105	SOSGT	Outer Surface of Guide Tube	c/z	1.5240E+01	= 2.54*APITCH
				-1.5240E+01	= -2.54*APITCH
				1.7780E+00	= 2.54*DTOD
106	SISGT	Inner Surface of Guide Tube	c/z	1.5240E+01	= 2.54*APITCH
				-1.5240E+01	= -2.54*APITCH
				1.6256E+00	= 2.54*(DTOD-2*DTD)
107	SECCMXX	Edge of Control Cell (max X)	рх	1.5240E+01	= 2.54*APITCH
108	SECCMNX	Edge of Control Cell (min X)	рх	-1.5240E+01	= -2.54*APITCH
109	SECCMXY	Edge of Control Cell (max Y)	рх	1.5240E+01	= 2.54*APITCH
110	SECCMNY	Edge of Control Cell (min Y)	рх	-1.5240E+01	= -2.54*APITCH

 Title: Development of Algorithms and Encoding of Linkage Automation

 Document Identifier B00000000-01717-0210-0010 REV 01
 Attachment VI Page 38 of 40

				Surfaces				
Cell Index	Definition	Material Index	Universe	Surface Index	Mnemonic	Notes [reference as appro- priate]	Cell Definition	
2000	Pressure Vessel	1	0	-1	pz	Material 1 is SS304	-12-34-56	
				2	pz			
				-3	cz			
1				4	ру			
				-5	рх			
				6	CZ			
2001	Outside World	0	0	3	cz		(3:1:-2:-4:5)	
				1	pz			
				-2	pz			
ł				-4	ру			
				5	рх			
2002	Jet Pump Region	2	0	-6	cz	Material 2 is Bypass	-674-5-12	
				7	cz	Moderator		
				4	ру			
				-5	рх			
				-1	pz			
				2	pz			
2003	Core Shroud	1	0	-7	cz		-7 8 -4 5 -1 2	
				8	cz			
				-4	ру			
				5	рх			
				-1	pz			
				2	pz			
2004	Upper Tie Plate Region	3	0	-8	CZ	Material 3 is a Mixture of	-8 4 -5 9 -10	
				4	ру	SS304 and Moderator		
				-5	рх			
				9	pz	4		
				-10	pz			
2005	Core Grid Region	4	0	-8	cz	Material 4 is a Mixture of	-8 4 -5 10 -11	
				4	ру	SS304 and Moderator		
				-5	рх	1		
				10	pz			
0000				-11	pz		0.0.5.44.4	
2006	Opper Plenum Region	2	0	-8	CZ		-84-511-1	
				4	ру			
				-5	px			
				11	pz			
2007	Lower Tie Diete Besien			-1	pz	Material E is a Mindura of	0.4 5 40 40	
2007	Lower The Plate Region	5	U	-8	CZ	IVIAterial 5 is a Wixture of	-8 4 -5 -12 13	
				4 E	Py Py	155504 and inioderator		
				-0				
				-12	μz			
2008	Fuel Support/			13		Material C is a Minture of	94 5 12 14	
2000	Core Support	° I	0	-0 A		Invialental o is a IVIIXTURE OF	-04-0-1314	
	Core Support			-4 				
				-0				
		1 · · ·		-13	μz	1		

Table 4-3 Cell Definitions for Vessel and Core Internals Models

Calculation (Attachment)

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 39 of 40

				Surfaces			1
Cell Index	Definition	Material Index	Universe	Surface Index	Mnemonic	Notes [reference as appro- priate]	Cell Definition
	<u> </u>			14	pz		
2009	Lower Plenum Region	2	0	-8	CZ		-8 4 -5 -14 2
	J			4	py	-	
			}	-5	px		
Į				-14	pz	4	
				2	pz		
11	Fuel Assembly in	2	151	-90	px	Filled with a Fuel Lattice	(-90 91 -92 93)
	Northwest Quadrant			91	px	Universe, the Reference	(#(-90 93 94 95 96 n/a))
1	}	1		-92	ру	Location is Rotated by 180°	
				93	py	To Obtain this Cell	
1				-90	рх	1	
[93	ру	4	
				94	c/z	1	
				95	py	1	
				96	px	1	
12	Fuel Assembly in	2	151	n/a	n/a	Created by Rotating	
	Northeast Quadrant					Cell 151 by 90°	
13	Fuel Assembly in	2	151	n/a	n/a	Cloned from Cell 151	······································
	Southeast Quadrant					without Rotation	
14	Fuel Assembly in	2	151	n/a	n/a	Created by Rotating	
Į	Southwest Quadrant					Cell 151 by -90°	
15	Blade Window	2	151	97	ру	Filled with a Control Blade	(97 -98 99 -100):
ł				-98	ру	Universe	(-101 -102 -103 -104)
				99	рх		
]	-100	рх		
-				-101	рх	1	
				-102	рх		
Į				-103	ру		
				-104	рх]	
16	Guide Tube Segment	1	151	-105	c/z		-105 106
1				106	c/z]	
17	Inside Guide Tube Segment	0	151	-106	c/z		-106
2620	Active Core	2	0	-8	cz	Filled with Core Lattice Universe	-8 4 -5 -9 12
				4	ру		
				-5	рх	1	
				-9	pz	1	
				12	pz	1	
2621	Core Lattice	2	235	-107	рх		-107 108 109 -110
				108	рх	1	
				109	рх	1	
				-110	рх	1	

Title: Development of Algorithms and Encoding of Linkage AutomationDocument Identifier B00000000-01717-0210-0010 REV 01Attachment VI Page 40 of 40

5. Integration Testing

Integration testing of the linkage automation is performed by repeating the analysis for the Quad Cities Unit 1 initial core (see the QC1 BOL Report). The MNCP input deck generated by BLINK, Version 0, is given in Attachment XII based on the input values given in that attachment. The results from the current analysis as well as the reference analysis are shown in Table 5-1. The excellent agreement with the actual critical measurement, where the eigenvalue is unity, and the previous analysis provides confidence that BLINK is properly preparing the MCNP model.

Note that MCNP version 4A code was retired at the time of preparing this calculation, but at the time this case was executed this version was still fully qualified. To alleviate concerns, this case was rerun using MCNP 4B2, as shown in the table below. The results demonstrate consistency between the reference analysis and the present evaluation, using both MCNP versions.

Case	Eigenvalue	Uncertainty
Reference Analysis, using MCNP 4A	1.00435	0.0004
Evaluation using BLINK Version 0, and MCNP 4A [a]	0.99967	0.00035
Evaluation using BLINK Version 0, and MCNP 4B [b]	1.00007	0.00046

Table 5-1 Results of Integration Testing Case

[a]. The input deck generated by BLINK for this case is named, "qc1c1_m.inp".

[b]. The only difference compared to the file of [a] above is in two cards (dbcn and klost) where changes between MCNP versions 4A and 4B required these for the same case to execute.

Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment VII Page 1 of 11

CONTENTS

		Page
1.	Introduction	4
2.	Dataset Structure and Contents	4
3.	Dataset Creation	6
(1) (1) (1)	 3.1. Dataset Title Record 3.2. Comma-separated-variable Fields 3.3. Dataset Location 	6 6 6

Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment VII Page 2 of 11

FIGURES

		Page
3-1	Dataset for Unexposed Fuel	8
3-2	Dataset for Exposed Fuel	10

Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment VII Page 3 of 11

TABLES

2-1 Contents of Dataset

Page

5
Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment VII Page 4 of 11

1. Introduction

This attachment describes the creation of the datasets defining the fuel materials dataset. These datasets must be provided for each unique node in the MCNP core model and are either based processed files from SAS2H (References 7.3 and especially 7.4), which provide isotopics for exposed fuel, or are created from the specification of fresh fuel. This attachment provides a detailed list of contents for such datasets and documents the creation of the datasets of this type used in the present calculation.

2. Dataset Structure and Contents

A separate dataset is created for each unique fueled node partition in the core portion modeled. Here a "partition" may be either the entire lattice or some sub-set of the lattice (sub-lattice). Therefore, for a particular Commercial Reactor Critical (CRC) calculation (i.e., a combination of core exposure, control blade pattern and moderator temperature), datasets are available for each fuel node.

The dataset structure is an ASCII-format file that incorporates fields of comma-separated-variable (CSV) data. The contents of this dataset are given in Table 2-1.

Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment VII Page 5 of 11

Table 2-1 Contents of Dataset

Value	Description	Notes
Title	Descriptive Title of File Contents	For isotopics from SAS2H analysis, this should contain information about that evaluation; for fresh fuel, it should include the enrichment and integral burnable absorber inventory, if any.
Header for Density Val- ues	"Density Value(s)"	This is an aid to users who may ex- amine the file.
Density Value(s)	Material Density in Units of g/cm ³	This is a single value for data from SAS2H and a vector of values for each distinct fuel rod type for unex- posed fuel. If the unexposed fuel isotopics are smeared across the lat- tice, then this is a single value.
Header for Fuel Rod Type Map	"Fuel Rod Type Map"	This is an aid to users who may ex- amine the file.
Fuel Rod Type Map	Map of Indices for Placement of Unique Fuel Rod Types within the Lattice or Sub-lattice	This is used to properly assign unique fuel rod types for unexposed fuel lat- tices; otherwise used for consistency checking for other treatments.
Header for Fuel Material Compositions	"Fuel Material Compositions"	This is an aid to users who may ex- amine the file.
Fuel Material Composi- tions		The following entries are on a single line and are repeated for each mate- rial in the fuel rod type.
	Fuel Rod Type	This is an index corresponding to the indices in the Fuel Rod Type Map. For data from SAS2H or smeared values for unexposed fuel, the entry is a blank, since there is a single fuel material composition
	Atomic Number	This is the atomic number of the iso- tope on this line.
	Library Suffix	This is the neutron interaction library suffix for this isotope.
	Mass Number	This is the mass number of the iso- tope on this line
	Weight Fraction	This is the weight fraction for the iso- tope on this line.

Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment VII Page 6 of 11

3. Dataset Creation

In order to facilitate the creation of these intermediate datasets and minimize the potential for transmission errors, automation was created for this process. The specification and development of this automation are described in Attachment VIII. That attachment also provides details on the computation of the isotopics for unexposed fuel lattices.

Each group of data in the dataset will now be discussed in greater detail and the creation of the dataset documented. The dataset for an unexposed lattice is shown in Figure 3-1. This dataset is based on the first lattice type given in the EPRI report on the initial core for Quad Cities-1 (Reference 7.8). This is a GE 7x7 lattice with a lattice-averaged enrichment of 2.12 w/o and two rods incorporating integral burnable absorber. One such fuel rod has a gadolinia concentration of 0.5 w/o, while the other has a concentration of 2.0 w/o. The dataset for an exposed lattice is shown in Figure 3-2. This lattice is a GE 8x8 lattice with two small water rods. The initial enrichment was 3.19 w/o with 6 gadolinia-bearing fuel rods with 3 w/o Gd_2O_3 . The inventory of the entire lattice was uniformly distributed in the fuel rods of the exposed lattice.

3.1. Dataset Title Record

The first line of the dataset is a title. While the contents of this line are arbitrary, it should contain the following information to ensure consistency with the file name:

- lattice manufacturer;
- lattice dimensionality;
- lattice-averaged initial enrichment; and
- number and concentration of gadolinia-bearing fuel rods.

3.2. Comma-separated-variable Fields

These fields form the bulk of the information on the dataset. Note that the dataset has been loaded with the library suffixes appropriate to the recommended ENDF/B-V nuclear data constants in Appendix G of the MCNP User's Manuals (References 7.1 and 7.2).

3.3. Dataset Location

This dataset has a file name representative of its contents:

• mnneeegccctaaazz.dat

In the file name, "m" is a single character representing the manufacturer (e.g., G for GE; S for Siemens or its predecessors – ANF or Exxon, and A for ABB). The second or second and third letters, "nn", represent the dimensionality of the lattice or sub-lattice (i.e., 7 - 7x7, 8 - 8x8, 9 - 9x9, 10 - 10x10, 4 - 4x4 sub-lattice). The next sequence of letters, "eee", represents the average ²³⁵U weight-percentage enrichment of the lattice or sub-lattice modeled multiplied by a factor of 100. In the next string of characters, viz., "gccc", "g" is a literal character used to differentiate the gadolinia concentration from the enrichment, and "ccc" is a character string that gives the gadolinia concentration as a weight percentage again multiplied by a factor of 100. The single character denoted by "t" is the treatment of unique fuel rod types in the lattice. For unexposed fuel where data is provided for each distinct fuel rod, this character is the letter "D", representing a discrete set of data. For exposed fuel from SAS2H or unexposed fuel for which the isotopics have been mass-averaged over the lattice, the "t" becomes the letter "S", representing smeared values. The next string of three characters, "aaa", is an index to the assembly in which the lattice or sub-lattice is located. Finally, the trailing two characters, "zz", represent the axial location in the assembly, where a value of unity represents the bottom fuel node. The last two sets of characters are not present for unexposed data, since these values are reasonably expected to be applied to multiple nodes within the core.

Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment VII Page 7 of 11

Thus the file name g7303g02012304.dat represented a GE 7x7 lattice with an average 235 U enrichment of 3.03 w/o that incorporates gadolinia-bearing fuel rods with a lattice-averaged concentration of 0.2 w/o gadolinia. This node is contained in the fuel assembly with an index of "123" and is located in the fourth axial node.

Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010REV 01Attachment VIIPage 8 of 11

```
GE 7x7/Avg Enrichment 2.12/Avg Gadolinia .070/Discrete
Density Value(s)
10.420,10.420,10.420,10.290,10.390
Fuel Rod Type Map
   3
       2 2 2
                2
                  3
 3
 3
    2
       2
          1 1 1
                  2
 2
   2
       5 1 1 1 1
 2
   1
       1 1 1
               4 1
 2
   1
       1 1
                1 1
             1
 2
   1 \ 1 \ 4 \ 1
               1
                  1
 3 2 1 1 1 1
                  2
Fuel Material Compositions
Index 1,92,.50c,234, .00018
,92,.50c,235, .02177
,92,.50c,236, .00010
,92,.50c,238, .85942
,8,.50c,16, .11853
,64,.52c,152, .00000
,64,.50c,154, .00000
,64,.50c,155, .00000
,64,.50c,156, .00000
,64,.50c,157, .00000
,64,.50c,158, .00000
,64,.50c,160, .00000
Index 2,92,.50c,234,
                      .00012
,92,.50c,235, .01499
,92,.50c,236, .00007
,92,.50c,238, .86631
,8,.50c,16, .11852
,64,.52c,152, .00000
,64,.50c,154, .00000
,64,.50c,155, .00000
,64,.50c,156, .00000
,64,.50c,157, .00000
,64,.50c,158, .00000
,64,.50c,160, .00000
Index 3,92,.50c,234, .00008
,92,.50c,235, .01058
,92,.50c,236, .00005
,92,.50c,238, .87078
,8,.50c,16, .11851
,64,.52c,152, .00000
,64,.50c,154, .00000
,64,.50c,155, .00000
,64,.50c,156, .00000
,64,.50c,157, .00000
,64,.50c,158, .00000
,64,.50c,160, .00000
```

Figure 3-1 Dataset for Unexposed Fuel

.

Title: Specification of Intermediate Dataset for Fuel MaterialsDocument Identifier: B00000000-01717-0210-00010 REV 01Attachment VII Page 9 of 11

Index 4,92,.50c,234, .00018 ,92,.50c,235, .02112 ,92,.50c,236, .00010 ,92,.50c,238, .83364 ,8,.50c,16, .11894 ,64,.52c,152, .00005 ,64,.50c,154, .00056 ,64,.50c,155, .00380 ,64,.50c,156, .00528 ,64,.50c,157, .00406 ,64,.50c,158, .00649 ,64,.50c,160, .00579 Index 5,92,.50c,234, .00018 ,92,.50c,235, .02166 ,92,.50c,236, .00010 ,92,.50c,238, .85512 ,8,.50c,16, .11859 ,64,.52c,152, .00001 ,64,.50c,154, .00009 ,64,.50c,155, .00063 ,64,.50c,156, .00088 ,64,.50c,157, .00068 ,64,.50c,158, .00108 ,64,.50c,160, .00096

Figure 3-1 (cont'd)

Title: Specification of Intermediate Dataset for Fuel Materials Document Identifier: B00000000-01717-0210-00010 REV 01 Attachment VII Page 10 of 11

GE 8x8/Avg Enrichment 3.19/Avg Gadolinia .290/Exposed Fuel Generated by IDSGEN 0:- on 15-May-98 at 14:55:31 by Process 10020 Fuel Rod Type Map 1 -1 1 1 1 1 1 1 1 -1 Density Value(s) 10.171 Fuel Material Compositions 69 1,.50c, 3,3.2052E-06 2,.50c, 4,7.5629E-06 8,.50c, 16,1.1972E+01 33,.35c, 75,9.0034E-06 36,.50c, 82,3.1212E-05 36,.50c, 83,3.2832E-03 36,.50c, 84,9.1835E-03 36,.50c, 86,1.5186E-02 39,.50c, 89,3.7514E-02 40,.50c, 93,3.7514E-02 42,.50c, 95,5.9122E-02 43,.50c, 99,6.2424E-02 44,.50c,101,5.8342E-02 44,.50c,103,1.6086E-04 45,.50c,103,3.5834E-02 46,.50c,105,2.5930E-02 46,.50c,108,8.8233E-03 47,.50c,109,5.7742E-03 54,.50c,131,3.4993E-02 54,.35c,134,1.1404E-01 55,.50c,133,9.1835E-02 55,.50c,135,3.2472E-02 56,.50c,138,9.8437E-02 59,.50c,141,8.5832E-02 60,.50c,143,6.1823E-02 60,.50c,145,5.3360E-02 60,.50c,147,5.7322E-07 60,.50c,148,2.7550E-02 61,.50c,147,1.0564E-02 61,.50c,148,6.9626E-08 62,.50c,147,1.3085E-02 62,.50c,149,1.1824E-04 62,.50c,150,1.9867E-02 62,.50c,151,7.9230E-04 62,.50c,152,1.0684E-02 63,.55c,151,4.9939E-06 63,.50c,152,5.3480E-06 63,.55c,153,7.6829E-03 63,.50c,154,1.0144E-03 63,.50c,155,3.1212E-04

Title: Specification of Intermediate Dataset for Fuel Materials	
Document Identifier: B00000000-01717-0210-00010 REV 01	Attachment VII Page 11 of 11

64,.50c,152,6.0023E-06 64,.50c,154,2.2028E-04 64,.50c,155,1.8127E-05 64,.50c,156,4.1476E-03 64,.50c,157,3.0792E-06 64,.50c,158,9.2435E-04 64,.50c,160,6.0623E-05 67,.55c,165,3.0011E-06 90,.50c,232,5.6541E-09 92,.50c,233,8.2831E-09 92,.50c,234,1.5846E-02 92,.50c,235,7.3228E-01 92,.50c,236,3.4513E-01 92,.50c,237,1.9747E-08 92,.50c,238,8.4032E+01 93,.50c,237,2.3889E-02 94,.50c,238,7.2027E-03 94,.55c,239,3.2772E-01 94,.50c,240,1.6566E-01 94,.50c,241,6.2424E-02 94,.50c,242,2.8091E-02 95,.50c,241,6.3624E-03 95,.50c,242,8.1031E-05 95,.50c,243,3.8354E-03 96,.50c,242,3.4273E-04 96,.35c,243,1.0924E-05 96,.50c,244,6.6025E-04 96,.35c,245,1.4225E-05 96,.35c,246,1.2005E-06

Figure 3-2 (cont'd)

Page

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 1 of 36

CONTENTS

1. Introduction	5
2. Specifications	5
 2.1. Computation of Constituents for Unexposed Fuel 2.2. Computation of Constituents for Exposed Fuel 2.3. Computation of Values for FMID Naming Nomenclature 	5 7 9
3. Encoding of Process	10
3.1. Program Flow3.2. Input Parameters to Process3.3. Detailed Algorithms	10 12 14
4. Testing	24
4.1. Unexposed Fuel4.2. Exposed Fuel	24 33
5. Integration Testing	36

Waste Package Operations

Calculation (Attachment)

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 2 of 36

FIGURES

Page

3-1	Flowchart for Intermediate Fuel Dataset Creation	11
3-2	Flowchart for Input Process	16
3-3	Flowchart for Processing of Unexposed Fuel Lattices	18
3-4	Flowchart for Processing of Exposed Fuel Lattices	22
4-1	Example Input Deck for Unexposed Fuel, Non-smeared	24
4-2	Example Input Deck for Unexposed Fuel, Smeared	25
4-3	Example Dataset for Unexposed Fuel, Non-smeared	26
4-4	Example Dataset for Unexposed Fuel, Smeared	28
4-5	Example Input Deck for Exposed Case	33
4-6	Dataset for Exposed Fuel	34

Waste Package Operations

Calculation (Attachment)

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 3 of 36

TABLES

Page

3-1	Input to Software Routine	13
3-2	List of Service Routines	14
3-3	List of Input Routines	15
3-4	List of Routines for Processing Unexposed Fuel Lattices	17
3-5	List of Routines for Processing Exposed Fuel Lattices	21

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 4 of 36

WORKSHEETS

Page

2-1	Solution for Uranium Isotopic Atom Fractions	8
4-1	Assumed Lattice Parameters	29
4-2	Assumed Atomic Weights and Natural Abundances	30
4-3	Computation of Isotopic Weight Fractions for Unexposed Fuel	31

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 5 of 36

1. Introduction

This attachment contains the specifications for and documents the development of a software routine to create Fuel Material Intermediate Datasets (FMID's) for Commercial Reactor Critical calculations.

The fuel pellet material compositions for exposed fuel must be obtained from the output of the CRAFT Version 4B (Reference 7.4), which is an executive program for performing calculations with the SAS2H sequence of the SCALE code (Reference 7.3, the Software Qualification Report). For unexposed fuel these material compositions must be computed from the description of the fuel (i.e., enrichment and integral burnable absorber loading–if any). The software routines which are specified and developed in this attachment automate the creation of fuel intermediate material datasets. These datasets are intermediate in the sense that they represent processed results from SAS2H analyses, but are not the card image input representations for MCNP.

2. Specifications

This process must include the following functions:

- accept input from the user that controls the operation of the software routine and specifies the source of information about the fuel composition;
- for unexposed fuel, compute the appropriate weight percentages for the constituent elements and nuclides;
- for exposed fuel, process the isotopics available from SAS2H analyses;
- for exposed fuel, accommodate a custom set of nuclides to process, excluding others that are present in the processed SAS2H file;
- create a Fuel Material Intermediate Dataset for this fuel composition; and
- create an output file that documents the processing performed.

2.1. Computation of Constituents for Unexposed Fuel

While the ²³⁵U enrichment is provided on a fuel rod-by-fuel rod basis, the weight percentages of the remaining uranium isotopes are not; therefore, the following equations (page 16 of Reference 7.18) are used to compute the weight percentages of ²³⁴U, ²³⁶U and ²³⁸U for a given enrichment.

Eq. 2-1
$$W_{24} = 0.007731 \cdot (W_{25})^{1.0837}$$

Eq. 2-2 $W_{26} = 0.0046 \cdot W_{25}$

Eq. 2-3 $W_{28} = 100.0 - W_{24} - W_{25} - W_{26}$

Here, the uranium isotopes have been identified with two-digit subscripts. The first digit is the last number in the atomic number and the second digit is the last digit in the mass number.

2.1.1. Urania Fuel

For fuel that does not contain gadolinia, the weight fractions of the constituent isotopes, assuming nominal stochiometry, may be calculated with the following expressions:

Title: Development of Automation to Create Intermediate Fuel Material Datasets**Document Identifier** B00000000-01717-0210-00010 REV 01Attachment VIII Page 6 of 36

	$\Delta W_{i} = \sum_{i=24}^{28} (W_{i} \cdot AW_{i})$	
Eq. 2-4	100.0	(g/g·atom)
Note that s this approxi	trictly, the atom percentage should be used in this e mation makes a negligible difference in calculated ur	equation; however, it is shown in §2.2 that anium isotopic inventories.
Eq. 2-5	$AW_{UO_2} = AW_U + AW_O$	(g/g·atom)
Eq. 2-6	$M_{UO_2} = \frac{\rho_{UO_2} \cdot \left(\frac{\pi \cdot D^2}{4}\right)}{AW_{UO_2}}$	(g·atom/cm)
Eq. 2-7	$M_U = M_{UO_2}$	(g·atom/cm)
Eq. 2-8	$M_{\rm O} = 2 \cdot M_{\rm UO_2}$	(g·atom/cm)
Eq. 2-9	$m_U = M_U \cdot AW_U$	(g/cm)
Eq. 2-10	$m_o = M_o \cdot AW_o$	(g/cm)
Eq. 2-11	$m_i = \frac{m_U \cdot w_i}{100.0}$	(g/cm)
Eq. 2-12	$f_i = \frac{m_i}{\rho \cdot \left(\frac{\pi \cdot D^2}{4}\right)}$	(dimensionless)

In these equations, *w* represents the weight percentage of the uranium isotopes in uranium metal, AW represents the atomic weight (g/g·atom), ρ represents the mass density (g/cm³), *D* represents the fuel pellet outer diameter (cm), *M* represents the linear atomic density (g·atom/cm), *m* represents the linear mass loading (g/cm), and *f* represents the mass fraction of a given constituent in UO₂.

2.1.2. Urania Fuel Incorporating Gadolinia as an Integral Burnable Absorber

For fuel incorporating gadolinia as an integral burnable absorber, the equations of \$2.1.1 must be modified to accommodate the presence of the Gd_2O_3 . The fuel pellet density for such fuel varies with the amount of gadolinia incorporated.

Eq. 2-13
$$\mathbf{m}_{\mathrm{Gd}_2\mathrm{O}_3} = \mathbf{w}_{\mathrm{Gd}} \cdot \rho_{\mathrm{UO}_2\mathrm{Gd}_2\mathrm{O}_3} \cdot \left(\frac{\pi \cdot \mathrm{D}^2}{4}\right)$$
 (g/cm)

Eq. 2-14
$$m_{UO_2} = m_{UO_2Gd_2O_3} - m_{Gd_2O_3}$$
 (g/cm)

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 7 of 36

Once the UO_2 density has been computed, the weight fractions of the uranium isotopes in the fuel may be computed from the relationships given in §2.1.1.

Eq. 2-15	$M_{Gd_{2}O_{3}} = \frac{m_{Gd_{2}O_{3}}}{AW_{Gd_{2}O_{3}}}$	(g∙atom/cm)
Eq. 2-16	$M_{\rm Gd} = 2 \cdot M_{\rm Gd_2O_3}$	(g∙atom/cm)
Eq. 2-17	$M_{\scriptscriptstyle O} = 2 \cdot M_{\scriptscriptstyle UO_2} + 3 \cdot M_{\scriptscriptstyle Gd_2O_3}$	(g∙atom/cm)
Eq. 2-18	$m_{_{Gd}}=M_{_{Gd}}\cdot AW_{_{Gd}}$	(g/cm)
Eq. 2-19	$m_{{\sf Gd}_i}=m_{{\sf Gd}}\cdot w_{{\sf Gd}_i}$	(g/cm)
Eq. 2-20	$\mathbf{f}_{Gd_1} = \frac{\mathbf{m}_{Gd_1}}{\mathbf{m}_{Gd_2O_3}}$	(dimensionless)

2.2. Computation of Constituents for Exposed Fuel

For exposed fuel, nodal masses of the constituents are read from the SAS2H file. To reduce the number of isotopes treated in the fuel, the SAS2H calculations do not include oxygen in the fuel material definition; therefore, the oxygen must be added back into the material composition for processing by MCNP. The nodal mass (grams) for oxygen in the fresh fuel that corresponds to the exposed fuel composition provided in the SAS2H file is computed as:

Eq. 2-21
$$m_{\text{oxygen}}^{\text{nodal}} = \frac{\left(m_{\text{UO2}}^{\text{nodal}} \cdot AW_{\text{oxygen}} \cdot 200\right)}{\left(\varepsilon_{25} \cdot AW_{25} + \varepsilon_{24} \cdot AW_{24} + \varepsilon_{26} \cdot AW_{26} + \varepsilon_{28} \cdot AW_{28} + 200 \cdot AW_{0}\right)}$$

Here ε is the initial weight percentage for each of the uranium isotopes and the *AW* values are the elemental and isotopic atomic weights. The weight percentage value for ²³⁵U is the reported initial enrichment, while the values for the other isotopes are computed from Equations 2-1 through 2-3. Note the computation of the atomic weight for uranium in the denominator of Equation 2-21 is an approximation. The proper computation of the atomic weight for uranium (g/g·atom) is:

Eq. 2-22
$$AW_U = f_{25} \cdot AW_{25} + f_{24} \cdot AW_{24} + f_{26} \cdot AW_{26} + f_{28} \cdot AW_{28}$$

Here, f_i is the atom fractions for each of the uranium isotopes; however, these atom fractions are not known. Considering for the moment a mass of uranium with the given enrichment distribution, it may be noted that:

Eq. 2-23
$$\varepsilon_i = \frac{m_i}{m_U} \cdot 100 = \frac{m_i}{M_m^U \cdot AW_U} \cdot 100 = \frac{M_i \cdot AW_i}{M_U \cdot AW_U} \cdot 100$$

The atom fractions for the same isotopes may be written as:

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 8 of 36

Eq. 2-24
$$f_i = \frac{M_i}{M_{11}}$$
 (dimensionless)

Combining the two previous equations and solving for the atom fraction yields:

Eq. 2-25
$$f_i = \frac{\varepsilon_i}{100} \cdot \frac{AW_U}{AW_i}$$
 (dimensionless)

The exact form of Equation 2-21 is thus:

Eq. 2-26
$$m_{oxygen}^{nodal} = \frac{\left(m_{UO2}^{nodal} \cdot 200 \cdot AW_{oxygen}\right)}{\left[AW_{U} \cdot \sum_{i} \left(\frac{\varepsilon_{i}}{AW_{i}}\right) + 200 \cdot AW_{O}\right]}$$
 (g/cm)

From Equation 2-25, the atom percentages and the atomic weight for the uranium are unknown; however, the atomic weight may readily be computed from the atom fractions:

Eq. 2-27
$$AW_U = \sum_i (f_i \cdot AW_i)$$
 (g/g·atom)

Thus for each of the four uranium isotopes, there is a separate equation and the four may be used to solve for the atom fractions.

$$\text{Eq. 2-28} \qquad \left(1 - \frac{\varepsilon_i}{100}\right) \cdot f_i + \sum_{j, j \neq i} \frac{\varepsilon_i \cdot AW_j}{100 \cdot AW_i} \cdot f_j = 0$$

This system of equations was solved for fuel enriched to 5 w/o and the results are shown in Worksheet 2-1. This table is divided into two sections. The first section provides the known weight percentages for uranium enriched to 5 w/o in ²³⁵U, the isotopic weights and the isotopic atom fractions computed from the system of equations. This section also includes the uranium atomic weights computed both from the atom fractions and approximated with the weight percentages. The second section shows the solution of the system of linear equations. Since this system was solved with an iterative method; the column denoted as "Row Sums" and the entry labeled as "Total" provide a measure of the convergence of the solution. As may be seen from the comparison of the two atomic weights for uranium, there is negligible error in using the weight percentages rather than the atom fractions.

Worksheet 2-1 Solution for Uranium Isotopic Atom Fractions

		Enric	nment				
	£25	E24	£26	£28	AW	AWimproper	Δ
w/o	5.00000	0.04423	0.02300	94.93277	238.03674	237.89821	-0.000582
AW	235.043922	234.040945	236.045561	238.050785			
a/o	0.05020	0.00071	0.00036	0.94932			

Isotope	Terms in	Equation			Row Sums
25	0.047690285	-3.5499E-05	-1.8075E-05	-0.04807306	-0.0004364
24	-2.2298E-05	0.000712714	-1.6057E-07	-0.00042707	0.0002632
26	-1.1497E-05	-1.626E-07	0.000359881	-0.0002202	0.000128

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 9 of 36

28 |-0.04705458 |-0.0006655 |-0.00033885 |0.048104061 | 4.514E-05 | Total 3.792E-16

For constituent isotopes other than uranium, the weight percentages are computed directly as:

Eq. 2-29
$$\mathbf{w}_i = \frac{\mathbf{m}_i^{\text{nodal}}}{\mathbf{m}_{\text{UO2}}^{\text{nodal}}}$$

(dimensionless)

The nodal mass for UO₂ is that of the fresh fuel and is computed as:

Eq. 2-30
$$m_{UO2}^{nodal} = H \cdot \sum_{i} \left[N_{i} \cdot \rho_{i} \cdot \left(\frac{\pi}{4}\right) \cdot D_{i}^{2} \right]$$

Since MCNP re-normalizes the weight percentages of a particular composition, this treatment is acceptable. Here N_i is the number of fuel rods for each fuel rod type in the lattice, ρ_i is the pellet density for this rod type, D_i is the fuel pellet diameter, and H is the height of the node.

The density for the exposed fuel is computed from the isotopic inventories obtained from the SAS2H file, the oxygen inventory from Equation 2-21, and the fuel nodal mass computed from the initial enrichment, pellet diameters and the node height. This is computed as:

Eq. 2-31
$$\rho_{\text{eff}} = \frac{\sum_{j} m_{j} + m_{\text{oxygen}}^{\text{nodal}}}{V_{\text{UO2}}^{\text{nodal}}}$$

Here m_j is the nodal mass of each constituent from the SAS2H file, and the denominator is the total nodal volume of UO₂. Since the mass from SAS2H is less than the initial mass due to the failure of some isotopes to meet the lower cutoff in that code, the density is less than the initial density.

2.3. Computation of Values for FMID Naming Nomenclature

As a part of the naming of the Fuel Material Intermediate Datasets, the lattice-averaged enrichment and lattice-averaged gadolinia concentration are used. The lattice-averaged enrichment is directly computed from the input values as:

Eq. 2-32
$$\overline{\epsilon} = \frac{\sum_{i} (N_i \cdot \epsilon_i)}{N_{rods}}$$

Here, N_i is the number of fuel rods associated with a given pellet enrichment, ε_i is the pellet enrichment and N_{rods} is the total number of fuel rods in the lattice.

The lattice-averaged gadolinium concentration is computed based on the UO₂ linear mass for the lattice.

Eq. 2-33
$$L_{UO2} = \sum_{i} \rho_{i} \cdot N_{i} \cdot \left(\frac{\pi}{4}\right) \cdot D_{pellet}^{2}$$

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 10 of 36

Here D_{pellet} is the pellet diameter and ρ_i is the fuel pellet outer diameter.

The lattice-averaged gadolinia concentration is then computed as:

$$\mathbf{J}_{\text{avg}} = \frac{\sum_{i} \left(\mathbf{G} \mathbf{d}_{i} \cdot \mathbf{p}_{i} \cdot \mathbf{N}_{i} \cdot \left(\frac{\pi}{4} \right) \cdot \mathbf{D}_{\text{pellet}}^{2} \right)}{\mathbf{L}_{\text{UO2}}}$$

Here Gd_i is the gadolinia (Gd₂O₃) concentration associated with a given fuel rod type.

3. Encoding of Process

The computational algorithms and the process described in Attachment VII must be encoded in a software routine on an HP workstation. For this application, FORTRAN is used exclusively. The name for this software routine is "IDSGEN." Slight modifications were made to this routine compared to the original version as contained in the Rev. 00 of this document. For those reasons the IDSGEN as documented here is identified version 1.

3.1. Program Flow

A flowchart for the software routine is shown in Figure 3-1.

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B000000000-01717-0210-00010 REV 01 Attachment VIII Page 11 of 36

Figure 3-1 Flowchart for Intermediate Fuel Dataset Creation

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 12 of 36

3.2. Input Parameters to Process

For exposed fuel isotopics from SAS2H analyses, the primary process input is the file name of the "cut" file which contains the masses of constituents present in the fuel. For unexposed fuel, information necessary to properly compute the fuel densities and weight fractions that will be uniformly allocated to all the fuel rods within the lattice or sub-lattice is required. This information is also required for exposed lattice cases to identify the data in accordance with the process nomenclature. For both cases, a database of valid nuclides is required. This database contains the valid MCNP identifiers and the corresponding SAS2H abbreviations. By changing this database, restricted sets of nuclides (e.g., principal isotopics, actinides only, etc.) may be written to FMID's.

The input is an ASCII-format file that incorporates both FORTRAN Namelist-type input and fields of space-delimited data. The input variables are described in Table 3-1.

3.2.1. Dataset Title Record

The first line of the dataset is a title. While the contents of this line are arbitrary, good practice indicates that it should contain the following information:

- name of fuel lattice manufacturer,
- lattice dimensionality,
- average enrichment,
- number of fuel rods containing integral burnable absorber and the concentration thereof, and
- software routine execution options.

3.2.2. Namelist Input

The FORTRAN Namelist-type input variables must adhere to the restrictions inherent in the format of such input. Care must be taken to ensure that the value provided is consistent with the data storage class in the automation (i.e., integer input for integer variables and real input for real variables) so that neither precision is not lost for real variables nor is illusory precision implied for integer variables.

3.2.3. List Input Fields

These fields are used for vectors of data, such as stack densities and "maps" indicating the locations of unique fuel rods types within the lattice. While these are read in a "free-format," good practice indicates that they should be arrayed in a regular fashion that maximizes legibility.

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 13 of 36

Variable	Definition	Comments	Format
Title	Case Title	Character String Describes Lattice	Single Record
OPTION	Processing Option	0 – unexposed fuel, 1 – exposed fuel (integer)	Namelist
NLAT	Lattice or Sub-lattice Di- mensionality	Used for processing fuel rod type map and cre- ating the final dataset name (integer)	Namelist
MDEX	Fuel Manufacturer	Used for creating the final dataset name (single character)	Namelist
DB_NAME	File Specification for Valid Nuclide Database	Used for Exposed Fuel Cases Only	Namelist
CUT	Data from "cut" File	Flag to Indicate whether the SAS2H Values are being Processed from a Full SAS2H Output or a "cut" File (0 – Full Output, 1 – "cut" File)	Namelist
NOGAD	Omit Gadolinia Associ- ated with Integral Burn- able Absorber	Flag to Indicate whether Gadolinium Isotopes from Integral Burnable Absorber will be Deleted from FMID's (0 – Retain Gadolinium Isotopes, 1 – Delete Gadolinium Isotopes)	Namelist
NOFPGD	Omit Fission Product Gadolinium Isotopes	Flag to Indicate whether Gadolinium Isotopes Generated as Fission Products will be Deleted from FMID" (0 —Retain Gadolinium Isotopes, 1 – Delete Gadolinium Isotopes)	Namelist
FADEX	Fuel Assembly Index	Used for creating the final dataset name for exposed fuel lattices (integer in the range of unity through 999)	Namelist
NODE	Axial Node	Used for creating the final dataset name for exposed fuel lattices (integer in the range of unity through 25)	Namelist
NTYPE	Number of Unique Fuel Rod Types	Unity for exposed fuel	Namelist
SMEAR	Flag for Producing Lat- tice-averaged Values	 0 - do not smear, 1 - smear, 2 - smear, but put gadolinia isotopics in only rods originally containing gadolinia 	Namelist
DENSITY	Fuel Stack Densities	Dimensions are g/cm ³ (real – applicable to un- exposed fuel only)	List Format
PELOD	Pellet Outer Diameter	Dimensions are in inches (real – applicable to unexposed fuel only)	List Format
ENRICH	²³⁵ U Enrichment	Weight Percentages (real – applicable to unex- posed fuel only)	List Format
GCON	Gadolinia Concentrations	Weight Percentages (real – applicable to unex- posed fuel only)	List Format
MAP	Fuel Rod Type Map	(integer a value of -1 indicates a water rod)	List Format

Table 3-1 Input to Software Routine

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 14 of 36

3.3. Detailed Algorithms

The coding that comprises the software routine is described in this sub-section by functional block. Listings of the FORTRAN coding are provided in Attachment XV.

3.3.1. Driver Routine

The driver routine manages the overall processing performed by the software routine and is well represented by the flowchart in Figure 3-1. It is comprised of the main routine IDSGEN and the block data section.

3.3.2. Service Routines

These are routines that provide memory management, file management, control of overall output processing, and miscellaneous services. These routines are listed in Table 3-2. Memory management in this software routine is not true memory management in the sense of requesting additional process space from the UNIX operating system, but rather allocation of a fixed amount of memory from a pre-allocated amount in BLANK COMMON. Thus improved memory utilization is obtained by allocating regions of the fixed memory for specific processes and then returning it to this "pool" when finished.

Name	Function
ABORT	Common Location for Controlled Abort of Proc-
	essing when Error Detected by Coding
FCLOSE	Manages the Closure of Open Files
FOPEN	Manages the Opening of Sequential Text Files
HEADER	Prints Header for New Page; also Obtains Proc-
	ess Information (i.e., Date, Time and Process
	Identification Number for Case Identification)
INVALR	Initializes a Real Array to a Given Value
LINES	Tracks the Number of Output Lines on an Output
	Page and Requests a New Page when Current
	Page Full
MCHAR	Determines the Last Non-blank Character in a
	Character String
MEMORY	Manages Memory
MEMSUM	Edit Dynamic Memory Allocation Statistics

	Table 3	3-2 L	ist of	Service	Routines
--	---------	-------	--------	---------	----------

3.3.3. Input Processing

These routine control the processing of input data to the software routine (not including the processing of the SAS2H "cut" file); thus, they process the input variables shown in Table 3-1. These routines are listed in Table 3-3 and the flow of the input process is shown in Figure 3-2.

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 15 of 36

Name	Function
ECHO	Echoes the Input Card Images to the Output File
EDITIN	Edits in the Input to the Software Routine
R2DMAP	Reads Rectangular Arrays of Integer Values
RDBVAL	Performs Reading of Valid Nuclide Database En- tries
READDB	Manages the Reading of Database of Valid Nu- clide, including Memory Management
READIN	Reads NAMELIST-type Input and Manages Processing of Vector and Array Input in List- directed Format
RRD	Reads Vectors of Real Values

Table 3-3 List of Input Routines

·~~~/

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B000000000-01717-0210-00010 REV 01Attachment VIII Page 16 of 36

Figure 3-2 Flowchart for Input Process

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 17 of 36

3.3.4. Unexposed Fuel Processing Routines

These routines translate the input description of the lattices into dataset representation using the equations described in §2.1.1 and 2.1.2. These routines are listed in Table 3-4 and the flow of the process is shown in Figure 3-3.

Name	Function
AVERAG	Computes the Material Composition of Each Unique Fuel Rod in the Lattice
CNRODS	Determines the Number of Unique Fuel Rod Types in the Lattice
DSGEN	Create Fuel Material Intermediate Dataset
EDTAGV	Edits the Results of the Computations in Subrou- tine AVERAG

Table 3-4 List of Routines for Processing Unexposed Fuel Lattices

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 18 of 36

Figure 3-3 Flowchart for Processing of Unexposed Fuel Lattices

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B000000000-01717-0210-00010 REV 01 Attachment VIII Page 19 of 36

Figure 3-3 (cont'd)

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 20 of 36

Figure 3-3 (cont'd)

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 21 of 36

3.3.5. Exposed Fuel Processing Routines

These routines translate the input description of the lattices into dataset representation using the equations described in §2.2. These routines are listed in Table 3-5 and the flow of the process is shown in Figure 3-4.

Name	Function
CMASS	Computes the UO ₂ Mass for Unexposed Fuel and the Average Enrichment and Average Den- sity
DSGENE	Write Fuel Material Intermediate Dataset for Ex- posed Fuel
MASSES	Computes Weight Percentages for Exposed Fuel
MATCH	Matches MCNP Nuclide Prefix with Entry in Valid Nuclide List and Returns the Corresponding In- dex
MATCH2	Matches Nuclide Labels from SAS2H "cut" File and Entries in Valid Nuclide List and Returns the Corresponding Index
MOGEN	Generate Oxygen Mass for Initial Fuel Composi- tion
SLOAD	Interrogates the SAS2H "cut" File and Reads the Appropriate Nuclide Masses
SLOAD2	Interrogates the SAS2H Full Output File and Reads the Appropriate Nuclide Masses

Table 3-5 List of Routines for Processing Exposed Fuel Lattices

Sec.

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B000000000-01717-0210-00010 REV 01 Attachment VIII Page 22 of 36

Figure 3-4 Flowchart for Processing of Exposed Fuel Lattices

`~~~~~

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 23 of 36

Figure 3-4 (cont'd)

Title: Development of Automation to Create Intermediate Fuel Material Datasets **Document Identifier** B000000000-01717-0210-00010 REV 01 Attachment VIII **Page** 24 of 36

4. Testing

This section contains examples of the computations performed by the software routine. Three examples are included and verify the proper functioning of the coding; two for unexposed fuel, both with and without smearing, and one for exposed fuel.

4.1. Unexposed Fuel

For both examples (without and with smearing), the first lattice type from the EPRI Quad Cities-1 Initial Core report will be used (Reference 7.8, hereafter cited as the "EPRI Report"). This is a GE 7x7 lattice with a lattice-averaged enrichment of 2.12 w/o and which incorporates two fuel rods with integral burnable absorber. One such rod has a gadolinia concentration of 0.5 w/o, while the other has an inventory of 2.0 w/o. The input deck for the non-smeared case is shown in Figure 4-1, while the input deck for the smeared case is shown in Figure 4-2. The resulting fuel material intermediate datasets are shown in Figures 4-3 and 4-4, respectively. Computations that demonstrate that the software routine is properly performing these calculations are shown in Worksheets 4-1, 4-2 and 4-3. Note that in Worksheet 4-3, the results for the non-smeared case are entitled as, "Isotopic Fractions by Rod Type," while those for the smeared case are entitled as, "Isotopic Fractions for Lattice."

```
Test Case for Fuel Material Intermediate Dataset Creation
$FUEL
 OPTION = 0
 NLAT = 7
MDEX = 'G'
 DB NAME = '/users/anderson/util/idsgen/complete nuclide list.db'
NTYPE = 5
 FADEX = 1
 SMEAR = 0
$END
Stack Densities
3*10.42,10.29, 10.39
Pellet Outer Diameters
3*0.488, 2*0.487
Enrichments
2.47, 1.70, 1.20, 2*2.47
Gadolinia Concentrations
3*0.0, 3.0, 0.5
Fuel Rod Type Map
 3 3 2 2 2 2 3
 3221112
 2 2 5 1 1 1 1
 2 1 1 1 1 4 1
 2 1 1 1 1 1 1
 2 1 1 4 1 1 1
 3211112
```

Figure 4-1 Example Input Deck for Unexposed Fuel, Non-smeared

Waste Package Operations

and the standard strategies and second to be

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 25 of 36

```
Test Case for Fuel Material Intermediate Dataset Creation
$FUEL
 OPTION = 0
NLAT = 7
 MDEX = 'G'
 DB NAME = '/users/anderson/util/idsgen/complete_nuclide_list.db'
 NT\overline{Y}PE = 5
 FADEX = 1
 SMEAR = 1
$END
Stack Densities
3*10.42,10.29, 10.39
Pellet Outer Diameters
3*0.488, 2*0.487
Enrichments
2.47, 1.70, 1.20, 2*2.47
Gadolinia Concentrations
3*0.0, 3.0, 0.5
Fuel Rod Type Map
 3 3 2 2 2 2 3
 3 2 2 1 1 1 2
 2 \ 2 \ 5 \ 1 \ 1 \ 1 \ 1
 2 1 1 1 1 4 1
 2 1 1 1 1 1 1 1
2 1 1 4 1 1 1
 3 2 1 1 1 1 2
```

Figure 4-2 Example Input Deck for Unexposed Fuel, Smeared

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 26 of 36

```
GE 7x7/Avg Enrichment 2.12/Avg Gadolinia .070/Discrete
Generated by IDSGEN 0:- on 5-May-98 at 14:26:29 by Process 17385
Fuel Rod Type Map
 3
    3
       2
          2
             2
                    3
                 2
 3
2
    2
      2
                    2
          1
             1
                 1
    2
      5
          1
             1
                 1
                    1
 2
    1
      1
          1
             1
                 4
                    1
 2
   1
      1
          1
             1
                 1
                   1
 2
   1
       1
          4
                 1
                    1
             1
 3
   21
          1
             1
                 1
                    2
Density Value(s)
10.420,10.420,10.420,10.290,10.390
Fuel Material Compositions
        1 12
Index
92,.50c,234, .00018
92,.50c,235, .02177
92,.50c,236, .00010
92,.50c,238, .85942
8,.50c,16, .11853
64,.50c,152, .00000
64,.50c,154, .00000
64,.50c,155, .00000
64,.50c,156, .00000
64,.50c,157, .00000
64,.50c,158, .00000
64,.50c,160, .00000
        2 12
Index
92,.50c,234, .00012
92,.50c,235, .01499
92,.50c,236, .00007
92,.50c,238, .86631
8,.50c,16, .11852
64,.50c,152, .00000
64,.50c,154, .00000
64,.50c,155, .00000
64,.50c,156, .00000
64,.50c,157, .00000
64,.50c,158, .00000
64,.50c,160, .00000
        3 12
Index
92,.50c,234, .00008
92,.50c,235, .01058
92,.50c,236, .00005
92,.50c,238, .87078
8,.50c,16, .11851
64,.50c,152, .00000
64,.50c,154, .00000
64,.50c,155, .00000
64,.50c,156, .00000
64,.50c,157, .00000
64,.50c,158, .00000
64,.50c,160, .00000
```

Figure 4-3 Example Dataset for Unexposed Fuel, Non-smeared

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 27 of 36

Index 4 12	
92.,50c.234.	.00018
92. 50c. 235.	.02112
92. 50c.236.	00010
92, 50c 238.	83364
8 50c 16 1	189/
61 50 = 152	00005
64, .500, 152, 64, 50 - 154	.00005
64, 500, 154, 64, 50-155	.00056
64,.50C,155,	.00380
64,.50C,156,	.00528
64,.50C,157,	.00406
64,.50C,158,	.00649
64,.50c,160,	.00579
Index 5 12	
92,.50c,234,	.00018
92,.50c,235,	.02166
02 502 026	00010
92,.500,250,	.00010
92,.50C,238,	.85512
92,.50C,238, 92,.50c,238, 8,.50c,16, .1	.85512
92,.50C,238, 92,.50c,238, 8,.50c,16, .1 64,.50c,152,	.85512 .1859 .00001
92,.50C,236, 92,.50c,238, 8,.50c,16, .1 64,.50c,152, 64,.50c,154,	.00010 .85512 .1859 .00001 .00009
92,.50C,236, 92,.50c,238, 8,.50c,16, .1 64,.50c,152, 64,.50c,154, 64,.50c,155,	.00010 .85512 .1859 .00001 .00009 .00063
92,.50C,236, 92,.50c,238, 8,.50c,16, .1 64,.50c,152, 64,.50c,154, 64,.50c,155, 64,.50c,156,	.00010 .85512 .1859 .00001 .00009 .00063
92,.50C,236, 92,.50c,238, 8,.50c,16, .1 64,.50c,152, 64,.50c,154, 64,.50c,155, 64,.50c,156, 64,.50c,157,	.00010 .85512 .1859 .00001 .00009 .00063 .00088
92,.50C,236, 92,.50C,238, 8,.50C,16, .1 64,.50C,152, 64,.50C,154, 64,.50C,155, 64,.50C,156, 64,.50C,158	.00010 .85512 .1859 .00001 .00009 .00063 .00088 .00068
92,.50C,236, 92,.50C,238, 8,.50C,16, .1 64,.50C,152, 64,.50C,154, 64,.50C,155, 64,.50C,156, 64,.50C,157, 64,.50C,158, 64,.50C,160	.00010 .85512 .1859 .00001 .00009 .00063 .00088 .00068 .00108

Figure 4-3 (cont'd)

Waste Package Operations

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B000000000-01717-0210-00010 REV 01 Attachment VIII Page 28 of 36

```
GE 7x7/Avg Enrichment 2.12/Avg Gadolinia .070/Smeared
Generated by IDSGEN 0:- on 5-May-98 at 14:24:13 by Process 17359
Fuel Rod Type Map
 1 1 1 1 1
              1
                  1
 1 1 1 1 1 1
                 1
 1
  1 1 1 1 1 1
 1
  1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1
               1
                 1
Density Value(s)
10.414
Fuel Material Compositions
12
92,.50c,234, .00015
92,.50c,235, .01866
92,.50c,236, .00009
92,.50c,238, .86143
8,.50c,16, .11854
64,.50c,152, .00000
64,.50c,154, .00002
64,.50c,155, .00017
64,.50c,156, .00023
64,.50c,157, .00018
64,.50c,158, .00028
64,.50c,160, .00025
```

Figure 4-4 Example Dataset for Unexposed Fuel, Smeared
Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 29 of 36

Symbol	Description	Value	Units	Source	NAME
NLAT	Lattice Dimensionality	7	n/a	[a]	NLAT
NTYPE	Number of Distinct Fuel Types	5	n/a	[b]	NTYPE
NTI	Number of Each Lattice Type	27	n/a	[b]	
		14	n/a		
		5	n/a		
		2	n/a		
		1	n/a		
DENSITY	Stack Density	10.42	g/cm ³	[c]	DENSITY
		10.42	g/cm ³		
		10.42	g/cm ³		
		10.29	g/cm ³	1	
		10.39	g/cm ³		
PELOD	Pellet Outer Diameter	0.488	inches	[c]	PELOD
		0.488	inches		
		0.488	inches		
		0.487	inches		
		0.487	inches		
ENRICH	Enrichment	2.47	w/o	[b]	ENRICH
		1.70	w/o		
		1.20	w/o		
		2.47	w/o		
		2.47	w/o		
GDCON	Gadolinia Concentration	0.0	w/o	[b]	GDCON
		0.0	w/o		
		0.0	w/o]	
		3.0	w/o	[. i	
		0.5	w/o		

Worksheet 4-1 Assumed Lattice Parameters

AREA	Pellet Cross-sectional Area	1.206693	cm ²	[d].	AREA
		1.206693	cm ²	1	
		1.206693	cm ²		
1		1.201753	cm ²	1	
		1.201753	cm ²		

[a]. This values is from the EPRI Report, Table 1.

[b]. This values is from the EPRI Report, Figure 1.

[c]. This values is from the EPRI Report, Table 4.

[d]. AREA = $(\pi/4)$ ·PELOD²

And the second s

Title: Development of Automation to Create Intermediate Fuel Material DatasetsDocument Identifier B00000000-01717-0210-00010 REV 01Attachment VIII Page 30 of 36

Worksheet 4-2	Assumed Atomic	Weights and	Natural Abundances
---------------	----------------	-------------	--------------------

lsotope/ Element	Atomic Weight (g/ atom) AW _i	omic Weight Natural Abun- (g/ atom) dance (a/o) AW _i NA _i	
¹⁵² Gd	151.919788 [a]	0.200000 [a]	0.193218 [c]
¹⁵⁴ Gd	153.920862 [a]	2.180000 [a]	2.133818 [c]
¹⁵⁵ Gd	154.922619 [a]	14.800000 [a]	14.580756 [c]
¹⁵⁶ Gd	155.922119 [a]	20.470000 [a]	20.296870 [c]
¹⁵⁷ Gd	156.923957 [a]	15.650000 [a]	15.617341 [c]
¹⁵⁸ Gd	157.924100 [a]	24.840000 [a]	24.946148 [c]
¹⁶⁰ Gd	159.927050 [a]	21.860000 [a]	22.231849 [c]
Gd	157.25 [b]	100.00	100.00
²³⁴ U	234.040947 [a]		
²³⁵ U	235.043924 [a]		
²³⁶ U	236.045563 [a]		
²³⁸ U	238.050785 [a]		
Oxygen	15.999400 [a]		

[a]. These values are from the *Chart of the Nuclides* (Reference 7.12). $\sum_{i=1}^{n} (A_{i}A_{i})$

[b]. Computed as
$$AW_{Gd} = \frac{\sum (AW_{Gd_i} \cdot NA_i)}{100.0}$$

[c]. Computed as $NA_i(W \neq 0) = \frac{(AW_{Gd_i} \cdot NA_i)}{AW_{Gd}}$

Title: Development of Automation to Create Intermediate Fuel Material Datasets **Document Identifier** B000000000-01717-0210-00010 REV 01 Attachment VIII **Page** 31 of 36

Worksheet 4-3 Computation of Isotopic Weight Fractions for Unexposed Fuel

	Uranium Metal						
Type Index	Weight Per- centage ²³⁴ U	Weight Per- centage ²³⁵ U	Weight Per- centage ²³⁶ U	Weight Per- centage ²³⁸ U	Atomic Weight of U	Molecular Weight of UO ₂	Molecular Weight of Gd ₂ O ₃
1	0.0206	2.47	0.0114	97.4980	237.975	269.974	362.502
2	0.0137	1.70	0.0078	98.2784	237.999	269.998	362.502
3	0.0094	1.20	0.0055	98.7851	238.014	270.013	362.502
4	0.0206	2.47	0.0114	97.4980	237.975	269.974	362.502
5	0.0206	2.47	0.0114	97.4980	237.975	269.974	362.502

Type Index	Mass (g/cm)	Gd ₂ O ₃ Mass (g/cm)	UO ₂ Mass (g/cm)	Gd ₂ O ₃ Mass (g atom/cm)	UO ₂ Mass (g atom/cm)	U Mass (g atom/cm)	O Mass (g atom/cm)
1	339.4911	0.0000	339.4911	0.0000	1.2575	1.2575	2.5150
2	176.0324	0.0000	176.0324	0.0000	0.6520	0.6520	1.3040
3	62.8687	0.0000	62.8687	0.0000	0.2328	0.2328	0.4657
4	24.7321	0.7420	23.9901	0.0020	0.0889	0.0889	0.1839
5	12.4862	0.0624	12.4238	0.0002	0.0460	0.0460	0.0926

Type Index	Gd Mass (g atom/cm)	U Mass (g/cm)	Gd Mass (g/cm)	O Mass (g/cm)	Total Mass (g/cm)
1	0.0000	299.253	0.000	40.238	339.4911
2	0.0000	155.170	0.000	20.862	176.0324
3	0.0000	55.418	0.000	7.450	62.8687
4	0.0041	21.147	0.644	2.942	24.7321
5	0.0003	10.951	0.054	1.481	12.4862

Isotopic Linear Loadings

Type Index	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	0	Total Mass (g/cm)
1	0.0616	7.3915	0.0340	291.7656	40.2383	339.4911
2	0.0213	2.6379	0.0121	152.4986	20.8625	176.0324
3	0.0052	0.6650	0.0031	54.7450	7.4505	62.8687
4	0.0044	0.5223	0.0024	20.6176	2.9417	24.7321
5	0.0023	0.2705	0.0012	10.6773	1.4808	12.4862

Type Index	¹⁵² Gd	¹⁵⁴ Gd	¹⁶⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁶⁰ Gd
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	0.0012	0.0137	0.0939	0.1307	0.1005	0.1606	0.1431
5	0.0001	0.0012	0.0079	0.0110	0.0085	0.0135	0.0120

- -----

Calculation (Attachment)

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 32 of 36

Worksheet 4-3 (cont'd)

Isotopic Fractions by Rod Type

Type Index	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	0	Total
1	0.00018	0.02177	0.00010	0.85942	0.11853	1.0000
2	0.00012	0.01499	0.00007	0.86631	0.11852	1.0000
3	0.00008	0.01058	0.00005	0.87078	0.11851	1.0000
4	0.00018	0.02112	0.00010	0.83364	0.11894	1.0000
5	0.00018	0.02166	0.00010	0.85512	0.11859	1.0000

Type index	¹⁵² Gd	¹⁵⁴ Gd	¹⁵⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁶⁰ Gd
1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
4	0.00005	0.00056	0.00380	0.00528	0.00406	0.00649	0.00579
5	0.00001	0.00009	0.00063	0.00088	0.00068	0.00108	0.00096

Isotopic Fractions for Lattice

²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	0	Total
0.00015	0.01866	0.00009	0.86143	0.11854	1.00000

¹⁵² Gd	¹⁵⁴ Gd	¹⁵⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁶⁰ Gd
0.00000	0.00002	0.00017	0.00023	0.00018	0.00028	0.00025

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 33 of 36

4.2. Exposed Fuel

For exposed fuel, the inventory is always smeared over all the fuel rods in the lattice or sub-lattice.

The input deck for this sample lattice is shown in Figure 4-5. The Fuel Material Intermediate Dataset created by this IDSGEN run is shown in Figure 4-6.

```
$FUEL
 OPTION = 1
 NLAT = 8
 MDEX = 'G'
 DB NAME = 'complete nuclide list.db'
 NDNAME = 'QC2A04N02DC12T142AC13T000.cut'
 NTYPE = 8
 NOGAD = 0
 NOFPGD = 0
 CUT = 1
 FADEX = 1
 NODE = 2
 HEIGHT = 6
 SMEAR = 1
$END
Stack Densities
8*10.3
Pellet Outer Diameters
8*0.411
Enrichments
1.50 2.00 2.40 2.80 3.00 3.30 3.80 3.95
Gadolinia Concentrations
4*0.0 3.0 3*0.0
Fuel Rod Type Map
  1
     2
       3 4 4 4
                    3
                       2
             5
                       3
  2
     3
        4
           6
                 7
                    6
  3
        7
           8 8
     4
                 8
                    5
                       4
  4
     6
        8
          8 -1
                 8
                    8
                       7
  4
     5
        8 -1
             8
                 8
                    8
                       7
  4
     7
        8
          8
             8
                 8
                    5
                       6
  3
     6
        5
           8
             8
                 5
                    8
                       4
  2
     3
        4
           7
              7
                 6
                    4
                       3
```

Figure 4-5 Example Input Deck for Exposed Case

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B000000000-01717-0210-00010 REV 01 Attachment VIII Page 34 of 36

```
.290/Exposed Fuel
GE 8x8/Avg Enrichment 3.19/Avg Gadolinia
 Generated by IDSGEN 0:- on 4-May-98 at 10:27:42 by Process
                                                                 7050
 Fuel Rod Type Map
             1
                    1
    1
        1
           1
                       1
  1
                 1
  1
    1
        1
           1 1
                 1
                    1
                       1
  1
    1
       1
          1 1
                    1
                       1
                 1
  1
    1
       1
          1 -1
                    1
                       1
                 1
  1
    1
       1 -1
             1
                 1
                    1
                       1
  1
    1
       1
           1 1
                 1
                    1
                       1
  1
    1
       1
          1
             1
                 1
                    1
                       1
    1 1
           1 1
  1
                 1
                    1
                       1
 Density Value(s)
 19.098
 Fuel Material Compositions
  69
   1,.50c,
            3,6.4104E-06
   2,.50c,
           4,1.5126E-05
  8,.50c, 16,1.1854E+01
  33,.35c, 75,1.8007E-05
  36,.50c, 82,6.2424E-05
  36,.50c, 83,6.5665E-03
  36,.50c, 84,1.8367E-02
  36,.50c, 86,3.0371E-02
  39,.50c, 89,7.5028E-02
  40,.50c, 93,7.5028E-02
  42,.50c, 95,1.1824E-01
  43,.50c, 99,1.2485E-01
  44,.50c,101,1.1668E-01
  44,.50c,103,3.2172E-04
 45,.50c,103,7.1667E-02
 46,.50c,105,5.1860E-02
  46,.50c,108,1.7647E-02
  47,.50c,109,1.1548E-02
 54,.50c,131,6.9986E-02
 54,.35c,134,2.2809E-01
 55,.50c,133,1.8367E-01
 55,.50c,135,6.4944E-02
 56,.50c,138,1.9687E-01
 59,.50c,141,1.7166E-01
 60,.50c,143,1.2365E-01
 60,.50c,145,1.0672E-01
 60,.50c,147,1.1464E-06
 60,.50c,148,5.5101E-02
 61,.50c,147,2.1128E-02
 61,.50c,148,1.3925E-07
 62,.50c,147,2.6170E-02
 62,.50c,149,2.3649E-04
 62,.50c,150,3.9735E-02
 62,.50c,151,1.5846E-03
 62,.50c,152,2.1368E-02
 63,.55c,151,9.9878E-06
 63,.50c,152,1.0696E-05
 63,.55c,153,1.5366E-02
 63,.50c,154,2.0288E-03
 63,.50c,155,6.2424E-04
```

Figure 4-6 Dataset for Exposed Fuel

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 35 of 36

64,.50c,152,1.2005E-05 64,.50c,154,4.4057E-04 64,.50c,155,3.6254E-05 64,.50c,156,8.2951E-03 64,.50c,157,6.1583E-06 64,.50c,158,1.8487E-03 64,.50c,160,1.2125E-04 67,.55c,165,6.0023E-06 90,.50c,232,1.1308E-08 92,.50c,233,1.6566E-08 92,.50c,234,3.1692E-02 92,.50c,235,1.4646E+00 92,.50c,236,6.9026E-01 92,.50c,237,3.9495E-08 92,.50c,238,1.6806E+02 93,.50c,237,4.7778E-02 94,.50c,238,1.4405E-02 94,.55c,239,6.5545E-01 94,.50c,240,3.3132E-01 94,.50c,241,1.2485E-01 94,.50c,242,5.6181E-02 95,.50c,241,1.2725E-02 95,.50c,242,1.6206E-04 95,.50c,243,7.6709E-03 96,.50c,242,6.8546E-04 96,.35c,243,2.1848E-05 96,.50c,244,1.3205E-03 96,.35c,245,2.8451E-05 96,.35c,246,2.4009E-06

Figure 4-6 (cont'd)

Title: Development of Automation to Create Intermediate Fuel Material Datasets Document Identifier B00000000-01717-0210-00010 REV 01 Attachment VIII Page 36 of 36

5. Integration Testing

Integration testing of the proper operation of this software routine can only be performed in the context of the entire process whereby lattice depletion is performed with SAS2H and a CRC model is built in MCNP.

Since changes were made to create IDSGEN version 1 as documented here, integration testing by performing complete calculations using this IDSGEN version combined with BLINK version 1 were done. To have a direct comparison, these calculations were done using prior depletion data as input and compared to calculations using the same input depletion data, but constructed using IDSGEN version 0 (see Ref.'s 7.19 and 7.20). The results are shown in Table 5-1 below.

Identifier	EFPD	Exposure (MWD/t)	k _{eff} (original)	σ (original)	k _{eff} (ver. 1)	σ (ver. 1)
Best Estimate	L	<u> </u>				
QC2BOC13[a]	0.00	0.00	1.02122	0.00027	1.01971	0.0004
QC2BOC13[b]	0.00	0.00	0.98992	0.00026	n/a	n/a
QC2C13CP10	10.00	201.61	0.99525	0.00024	0.9936	0.00046
QC2C13CP11	123.00	2257.20	1.00254	0.00025	1.00009	0.0006
QC2C13CP13	325.00	6489.46	1.03404	0.00026	1.03231	0.00048
QC2BOC14[a]	0.00	0.00	1.01929	0.00028	1.01836	0.00049
QC2BOC14[b]	0.00	0.00	1.00293	0.00034	n/a	n/a
QC2C14CP16	211.00	4238.45	1.00176	0.00036	0.99888	0.00057

Table 5-1 Integration Testing Validation Results Comparison

The closeness of the results confirm consistency between the two processes, and that version 1 of IDSGEN is performing its intended functions. The slight differences between the results of Table 5-1 were investigated and it was discovered that some of the fuel bundle depletion data intended to be used in the original calculation was actually not (earlier information was actually used). A slight modeling error for one of the lattices was also discovered and corrected in IDSGEN version 1. The version 1 cases are available from Attachment I.

معروريه ا

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 1 of 13

CONTENTS

	Page
1. Introduction	4
2. Specifications	6
 2.1. Definition of Control Blade Absorber Tubes 2.2. Definition of Control Blade Tie Rod 2.3. Definition of Control Blade Sheath 2.4. Integration of Components 	6 6 6 6
3. Encoding of Process	13

Waste]	Package	Operations
---------	---------	-------------------

" Margarat

Title: Methodology for Developing Control Blade Model **Document Identifier** B00000000-01717-0210-00010 REV 01

Attachment IX Page 2 of 13

FIGURES

1-1	Cross-sectional Geometry for D-lattice BWR Control Blade	5
2-1	Components of Control Blade Absorber Tube	7
2-2	Tie Rod Surfaces	8
2-3	Sheath Pictures	8
2-4	Universe Definitions	9
3-1	Flowchart for Creating Control Blade Model	13

Waste Package Operations	Calculation (Attachment)
Title: Methodology for Developing Control Blade Model	
Document Identifier B00000000-01717-0210-00010 REV 01	Attachment IX Page 3 of 13

WORKSHEETS

2-1	Computation of Internal Variables from Dataset Variables	10
2-2	Computation of Surface Values	11
2-3	Definition of Cells	12

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 4 of 13

1. Introduction

No and a

This attachment describes the methodology used to create control blade models for use in MCNP (References 7.1, 7.2, 7.5, and 7.6) representations of BWR cores. The methodology assumes the existence of a dataset describing the blade geometry that has been generated according to the requirements of Attachment V.

The geometry of a typical BWR control blade is shown in Figure 1-1. The coding within the linkage automation is intended to be sufficiently robust to readily model all the varieties of the GE "Original Equipment" control blade (i.e., those blades initially deployed with the initial core of the reactor).

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 5 of 13

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 6 of 13

2. Specifications

This process must include the following functions:

- process data obtained from the blade geometry dataset (this processing is described in Attachment VI of this document);
- algorithms to create the various components of control blade; and
- integrate the models for the various components into a unified control blade model.

The illustrative calculations shown in this attachment are consistent with a GE D-lattice Original Equipment control blade and the basis values are shown in Attachment V. Processing of these values into variables used in the software routine are shown in Worksheet 2-1, while the cell and universe definitions are shown in Worksheet 2-3. Note that this is provided to illustrate the process whereby an MNCP model of the control blade is constructed and may not correspond to exactly any model used in subsequent calculations; however, given the blade geometry definition, the same process is used to obtain the control blade model.

2.1. Definition of Control Blade Absorber Tubes

The absorber tubes of a BWR Control Blade are comprised of stainless steel absorber tubes filled with vibratory-compacted boron carbide (Reference 7.8) as shown in Figure 2-1. Computation of the values for the absorber tubes defining surfaces is shown in Worksheet 2-2, while the cell and universe definitions are shown in Worksheet 2-3.

2.2. Definition of Control Blade Tie Rod

The stainless steel tie rod forms the central structural member of the control blade. A schematic depiction of a cross section of the tie rod is shown in Figure 2-2. Computation of the values for the tie rod surfaces is shown in Worksheet 2-2, while the cell and universe definitions are shown in Worksheet 2-3.

2.3. Definition of Control Blade Sheath

The control blade sheath surrounds the absorber tubes and provides lateral support and containment for them. A schematic depiction of a cross section of the sheath is shown in Figure 2-3. Computation of the values for the sheath surfaces is shown in Worksheet 2-2, while the cell and universe definitions are shown in Worksheet 2-3.

2.4. Integration of Components

The combination of the blade components into a complete model is illustrated in Figure 2-4. The universe symbolic names are from Worksheet 2-3.

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 7 of 13

Figure 2-1 Components of Control Blade Absorber Tube

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 8 of 13

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 9 of 13

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 10 of 13

Worksheet 2-1 Computation of Internal Variables from Dataset Variables

Definition	Symbol	Value	Units	Computation
Poison Tip when Fully Inserted	ZTMI	365.76	cm	= 144*2.54
Poison Bottom when Fully Inserted	ZBMI	2.54	cm	= ZTMI-CBLENGTH
Boron Carbide Poison Outer Radius	POR	0.1753	cm	= ATID/2
Absorber Tube Outer Radius	ATOR	0.2388	cm	= ATOD/2
Inner Surface of Sheath Corner	XCORN	11.8745	cm	= CBSPAN-TRTHICK
Tube Field Span	TFS	9.8895	cm	= XCORN-TRSPAN
XMAX Surface of Reference Absorber Cell	ACMAX	2.4559	cm	= (TFS/(NTUBE/4))+TRSPAN
Center for Reference Absorber Tube	XO	2.2205	cm	= (ACMAX+TRSPAN)/2
Ambiguity Surface for Sheath Corner	XAMBIG	11.6390	cm	= TRSPAN+((NTUBE/4)-0.5)*(ACMAX-TRSPAN)

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 11 of 13

Index	Symbol	Definitions	Mnemonic	Parameters	Computation
1	SZTMI	Top of Absorber Column	pz	365.7600	= ZTMI
2	SZBMI	Bottom of Absorber Column	pz	2.5400	= ZBMI
3	SPOR	Reference Boron Carbide Outer Radius	c/z	2.2205	= X0
				0.0000	On Axis
				0.1753	= POR
4	SATOR	Reference Absorber Tube Outer Radius	c/z	2.2205	= X0
				0.0000	On Axis
				0.2388	= ATOR
5	SRATMAX	XMAX for Reference Absorber Tube Cell	рх	2.4559	= ACMAX
6	SRATMIN	XMIN for Reference Absorber Tube Cell	рх	1.9850	= TRSPAN
7	SRATYMAX	YMAX for Reference Absorber Tube	ру	0.5080	= TRTHICK
8	SRATYMIN	YMIN for Reference Absorber Tube	ру	-0.5080	= -TRTHICK
9	TRS2	Tie Rod Surface #2	рх	0.6502	= TRTHICK+WSTHICK
10	TRS3	Tie Rod Surface #3	рх	-0.6502	= -(TRTHICK+WSTHICK)
11	TRS4	Tie Rod Surface #4	рх	-1.9850	= -TRSPAN
12	TRS5	Tie Rod Surface #5	ру	-1.9850	= -TRSPAN
13	TRS6	Tie Rod Surface #6	ру	-0.6502	= -(TRTHICK+WSTHICK)
14	TRS7	Tie Rod Surface #7	ру	0.6502	= TRTHICK+WSTHICK
15	TRS8	Tie Rod Surface #8	ру	1.9850	= TRSPAN
16	SAMBIG	Ambiguity Surface for Sheath Corner	рх	11.6390	= XAMBIG
17	SCOR	Outer Surface of Sheath Corner	c/z	11.6390	= XAMBIG
				0.0000	On Axis
	1			0.6502	= TRTHICK+WSTHICK
18	SCIR	Inner Surface of Sheath Corner	c/z	11.6390	= XAMBIG
				0.0000	On Axis
				0.5080	= TRTHICK
19	SXMINBW	XMIN for Blade Window	рх	1.9950	= TRSPAN+0.01
20	SXMAXBW	XMAX for Blade Window	рх	12.3925	= CBSPAN+0.01
21	SYMINBW	YMIN for Blade Window	ру	-0.6602	= -(TRTHICK+WSTHICK+0.01)
22	SYMAXBW	YMAX for Blade Window	ру	0.6602	= TRTHICK+WSTHICK+0.01
23	SXMINSI	XMIN for Sheath Interior	рх	6.0010	= SRATMIN+001
24	SYMAXSI	YMAX for Sheath Interior	ру	6.9990	= SRATYMAX-0.001
25	SYMINSI	YMIN for Sheath Interior	ру	7.9990	= SRATYMIN-0.001

Worksheet 2-2 Computation of Surface Values

·----

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 12 of 13

Index	Symbol	Universe	Symbol	Definition
1	CBC	1	UAR	Boron Carbide in Reference Absorber Tube
2	CAT	1		Reference Absorber Tube
3	CIM	1		Moderator Outside Reference Absorber Tube
4	CRAT	2	US	Reference Absorber Tube Cell
5	CTR	3	UBLADE	Tie Rod
6	CS	4	UWING	Control Blade Sheath
7		4		Inside of Control Blade Sheath
8	COW	4		Region Outside of Wing
9	CBW	3		Window for Wing of Blade
10	CCBN	3	UBLADE	Cloned Wing to North Position
11	CCBW	3		Cloned Wing to West Position
12	CCBS	3		Cloned Wing to South Position
13	n/a	3		Region Outside of Blade

Worksheet 2-3 Definition of Cells

Worksheet 2-3 (cont'd)

Index	Symbol	Cell Definition
1	CBC	-3 -1 2 u= 1
2	CAT	3 -4 -1 2 u= 1
3	CIM	4 -1 2 u= 1
4	CRAT	-5 6 -7 8 -1 2 lat = 1 u = 1fill = 0:20 0:0 0:0 1 20r
5	CTR	(13 -14 -6 11 -1 2):(10 -9 12 -15 -1 2) u= 3
6	CS	(6 -16 7 -14 -1 2):(6 -16 -8 13 -1 2):(16 18 -17 -1 2) u= 4
7	0	(23 -24 25):(16 -18) u= 4
8	cow	#4 #6 u= 4
9	CBW	19 -20 21 -22 fill= 4
10	CCBN	like 9 but *trcl=(0 0 0 90 0 90 180 90 90 90 90 0) u= 3
11	CCBW	like 9 but *trcl=(0 0 0 180 90 90 -90 180 90 90 90 0) u= 3
12	CCBS	like 9 but *trcl=(0 0 0 -90 180 90 0 -90 90 90 90 0) u= 3
13	n/a	#5 #9 #10 #11 #12 u= 3

Title: Methodology for Developing Control Blade ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment IX Page 13 of 13

3. Encoding of Process

The flowchart for the coding to implement the specification is shown in Figure 3-1. This logic has been implemented as a C language function named build_control_blade.

Figure 3-1 Flowchart for Creating Control Blade Model

Waste Package Operations	Calculation (Attachment)
Title: Methodology for GE 7x7 Fuel Lattice Model	

CONTENTS

	Page
1. Introduction	4
2. Specifications	5
 2.1. Definition of Fuel Rods 2.2. Definition of Fuel Lattice 2.3. Definition of Fuel Channel 2.4. Integration of Components 	5 5 5 5 5
3. Encoding of Process	12
3.1. Driver Function3.2. Lattice-preparation Function	12 12

مريد الم

Title: Methodology for GE 7x7 Fuel Lattice Model **Document Identifier** B00000000-01717-0210-00010 REV 01

Attachment X Page 2 of 15

FIGURES

Page

2-1	Fuel Rod	6
2-2	Lattice Population	7
2-3	Channel	8
2-4	Integration of Components into Lattice	9
3-1	Flowchart for Lattice Model Generation Driver Function	13
3-2	Flowchart for Creation of GE 7x7 Lattice	14

Waste Package Operations	Calculation (Attachment)		
Title: Methodology for GE 7x7 Fuel Lattice Model			
Document Identifier B000000000-01717-0210-00010 REV 01	Attachment X Page 3 of 15		

WORKSHEETS

Page

2-1	Computation of Surface Coordinates	10
2-2	Cell Definitions	11

Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment X Page 4 of 15

1. Introduction

This attachment describes the methodology used to create fuel lattice models for use in MCNP (References 7.1, 7.2, 7.5, and 7.6) representations of Boiling Water Reactor (BWR) cores. The methodology assumes the existence of a dataset describing the blade geometry that has been generated according to the requirements of Attachment V.

The driver coding within the linkage automation is intended to be sufficiently robust to readily model all the varieties of BWR fuel. Specific models for each lattice design are required. In this case, the model for a GE 7x7 fuel lattice is described.

Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment X Page 5 of 15

2. Specifications

This process must include the following functions:

- process data obtained from the lattice geometry dataset (this processing is described in Attachment VI of this document);
- govern the generation of lattice model for each unique lattice in the core (lattices are differentiated by geometry and material composition of the fuel rods within the lattice);
- algorithms to create the various components of the lattice; and
- integrate the various components into a unified model for the lattice.

The illustrative calculations shown in this attachment are consistent with a GE 7x7 lattice and the basis values are shown in Attachment IV. Note that the values shown herein do not necessarily correspond to a particular lattice used in the analyses, but are shown to illustrate the process whereby such an MCNP input deck is constructed.

2.1. Definition of Fuel Rods

The fuel rods are comprised of zircaloy tubes filled with UO_2 ceramic pellets (Reference 7.8) as shown in Figure 2-1. Computation of the values for the absorber tubes defining surfaces is shown in Worksheet 2-1, while the cell and universe definitions are shown in Worksheet 2-2.

2.2. Definition of Fuel Lattice

The fuel rods fill a regular lattice. In the case of the GE 7x7 fuel design, there are no water rods which displace fuel rods (see Figure 2-2). For the case of lattices with water rods, locations within the lattice will be filled with water rods – or perhaps water rod segments.

2.3. Definition of Fuel Channel

The channel is assumed to be of uniform thickness with rounded corners as shown in Figure 2-3. The assumption of constant thickness is also assumed for those channel designs that incorporate variations in the wall thickness to increase the water mass in the bypass region (i.e. GE's "interactive" channel). For such channels, the thickness is selected to maintain the same areal density of zirconium. Computation of the values for the channel defining surfaces is shown in Worksheet 2-1, while the cell and universe definitions are shown in Worksheet 2-2.

2.4. Integration of Components

The combination of the lattice components into a complete model is illustrated in Figure 2-4.

Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment X Page 6 of 15

Figure 2-1 Fuel Rod

مرد ما

Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment X Page 7 of 15

Figure 2-2 Lattice Population

Title: Methodology for GE 7x7 Fuel Lattice Model **Document Identifier** B00000000-01717-0210-00010 REV 01

Attachment X Page 8 of 15

Figure 2-3 Channel

Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment X Page 9 of 15

Figure 2-4 Integration of Components into Lattice

Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment X Page 10 of 15

Index	Symbol	Definition	Mnemonic	Parameters	Computation	
1	SPOR	Reference Fuel Pellet Outer Surface	c/z	2.2352	= WGAP+CTHICK+CFSRD+(COD	
				-2.2352	= -(WGAP+CTHICK+CFSRD+(COD/2))	
			0.6198		= POD/2	
2	SCIR	Reference Cladding Inner Surface	c/z	2.2352	= WGAP+CTHICK+CFSRD+(COD/2)	
				-2.2352	= -(WGAP+CTHICK+CFSRD+(COD/2))	
				0.63373	= (COD/2)-CLD	
3	SCOR	Reference Cladding Outer Surface	c/z	2.2352	= WGAP+CTHICK+CFSRD+(COD/2)	
ļ				-2.2352	= -(WGAP+CTHICK+CFSRD+(COD/2))	
				0.7150	= COD/2	
4	XMINFRW	XMIN Surface for Fuel Rod Window	рх	-0.9373	= -(RPITCH/2)	
5	XMAXFRW	XMAX Surface for Fuel Rod Window	рх	0.9373	= RPITCH/2	
6	YMINFRW	XMIN Surface for Fuel Rod Window	ру	-0.9373	= -(RPITCH/2)	
7	YMAXFRW	XMAX Surface for Fuel Rod Window	ру	0.9373	= RPITCH/2	
8	WGCOWX	Wide Gap, Channel Outside Wall,	рх	0.9525	= WGAP	
		px Surface				
9	WGCIWX	Wide Gap, Channel Inside Wall, pX	рх	1.1557	= WGAP+CTHICK	
		Sunace				
10	NGCIWX	Narrow Gap, Channel Inside Wall,	рх	6.4337	= WGAP+CTHICK+ASIN	
		pA Surface				
] 11	NGCOWX	Narrow Gap, Channel Outside Wall,	рх	6.6369	= WGAP+(2*CTHICK)+ASIN	
		px Sunace				
12	WGCOWY	Wide Gap, Channel Outside Wall,	ру	-0.9525	= -WGAP	
	14/00/140/					
13	WGCIWY	Wide Gap, Channel Inside Wall, pY	ру	-1.1557	= -(WGAP+CTHICK)	
	NOCIMAN	Nerrow Con Channel Inside Mari		0.4007		
14	NGCIVVY	INARTOW Gap, Channel Inside Wall,	ру	-0.4337	= -(WGAP+CTHICK+ASIN)	
15	NICCOWY	Nerrow Con Channel Outside Mall		6,6360		
	NGCOW	narrow Gap, Channel Outside Wall, InY Surface	РУ	-0.0369	= -(VVGAP+(2 CTHICK)+ASIN)	
16	YAMBIG1	Ambiguity Surface for Channel		2 1717		
		Corners (Wide Gap)	μx	2.1717		
17	XAMBIG2	Ambiguity Surface for Channel		5 4177		
	X-INDIG2	Corners (Narrow Gap)	μx	5.4177		
18	YAMBIG1	Ambiguity Surface for Channel		-2 1717	= -MAGAP+CTHICK+CRADIUS)	
	17.0001	Corners (Wide Gap)	۲y (°≊⊶17 {		
19	YAMBIG2	Ambiguity Surface for Channel	nv	-5 4177	= -(WGAP+CTHICK+ASIN-CRADIUS)	
		Corners (Narrow Gap)	24	0.4177		
20	CC1RO	Outer Radius for Corner 1		2,1717	= WGAP+CTHICK+CRADIUS	
				-2 1717	= -(WGAP+CTHICK+CRADIUS)	
				1,2192	= CRADIUS+CTHICK	
21	CC1RI	Inner Radius for Corner 1		2 1717		
'	00111		012	-2 1717	$= -(W_{GAP} + CTH CK + CPAD S)$	
				1.016		
22	CC2RO	Outer Radius for Corner 2		<u></u>		
	002110		512	-2 1717		

Worksheet 2-1 Computation of Surface Coordinates

~~~~

# Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment X Page 11 of 15

| Index | Symbol | Definition                | Mnemonic | Parameters | Computation                   |
|-------|--------|---------------------------|----------|------------|-------------------------------|
|       |        |                           |          | 1.2192     | = CRADIUS+CTHICK              |
| 23    | CC2RI  | Inner Radius for Corner 2 | c/z      | 5.4177     | = WGAP+CTHICK+ASIN-CRADIUS    |
|       |        |                           |          | -2.1717    | = -(WGAP+CTHICK+CRADIUS)      |
|       |        |                           |          | 1.016      | = CRADIUS                     |
| 24    | CC3RO  | Outer Radius for Corner 3 | c/z      | 5.4177     | = WGAP+CTHICK+ASIN-CRADIUS    |
|       |        |                           |          | -5.4177    | = -(WGAP+CTHICK+ASIN-CRADIUS) |
|       |        |                           |          | 1.2192     | = CRADIUS+CTHICK              |
| 25    | CC3RI  | Inner Radius for Corner 3 | c/z      | 5.4177     | = WGAP+CTHICK+ASIN-CRADIUS    |
|       |        |                           |          | -5.4177    | = -(WGAP+CTHICK+ASIN-CRADIUS) |
|       |        |                           |          | 1.016      | = CRADIUS                     |
| 26    | CC4RO  | Outer Radius for Corner 4 | c/z      | 2.1717     | = WGAP+CTHICK+CRADIUS         |
|       |        | -<br>-                    | ÷        | -5.4177    | = -(WGAP+CTHICK+ASIN-CRADIUS) |
| Į I   |        |                           |          | 1.2192     | = CRADIUS+CTHICK              |
| 27    | CC4RI  | Inner Radius for Corner 4 | c/z      | 2.1717     | = WGAP+CTHICK+CRADIUS         |
|       |        |                           |          | -5.4177    | = -(WGAP+CTHICK+ASIN-CRADIUS) |
|       |        |                           |          | 1.016      | = CRADIUS                     |

Worksheet 2-2 Cell Definitions

| Index | Symbol | Universe | Symbol | Definition                    | Cell Definition                             |
|-------|--------|----------|--------|-------------------------------|---------------------------------------------|
| 1     | CFP    | 1        | UFR    | Fuel Pellet                   | -1 u= 1                                     |
| 2     | CFCG   | 1        |        | Pellet-Cladding Gap           | -2 1 u= 1                                   |
| 3     | CFRC   | 1        |        | Cladding                      | -3 2 u= 1                                   |
| 4     | CMOFR  | 1        |        | Moderator Outside Fuel Rod    | 3 u= 1                                      |
| 5     | CWFRL  | 2        | UFRL   | Window for Fuel Rod (Lattice) | 4 -5 6 -7 u= 2 fill= 1                      |
| 6     | CCHAN  | 3        | UCHAN  | Channel                       | ( 8 -9 -18 19 ):( -12 13 16 -17 ):          |
|       |        |          |        |                               | ( -14 15 16 -17 ):( 10 -11 -18 19 ):        |
|       | ļ      |          |        |                               | ( -20 21 18 -16 ):( -22 23 18 17 ):         |
| 1     | ł      |          |        |                               | ( -24 25 17 -19 ):( -26 27 -19 -16 )        |
| }     |        |          |        |                               | u= 3                                        |
| 7     | CWIC   | 3        |        | Water Inside Channel          | ( 16 -17 -13 14 ):( 9 -16 -18 19 ):         |
|       |        |          |        |                               | ( 17 -10 -18 19 ):( -21 -16 18 ):           |
|       |        |          |        | 1                             | ( -23 17 19 ):( -25 17 -19 ):( 27 -16 -19 ) |
| }     |        |          |        |                               | u= 3 fill= 2                                |
| 8     | CWOC   | 3        |        | Water Outside Channel         | #7 #6 u= 3                                  |

## Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B000000000-01717-0210-00010 REV 01Attachment X Page 12 of 15

#### 3. Encoding of Process

There are two distinct parts of the process for creating lattice models. The first is a driver function that manages the selection of the appropriate data for the lattice and second is a lattice-geometry-specific function that creates the detailed lattice model.

#### 3.1. Driver Function

The driver function ensures that the appropriate lattice geometry and lattice material composition datasets are selected for the subject lattice. Once this information has been staged, the function selects the function corresponding to the lattice geometry design and calls that function to create the detailed lattice model. The logical flow of this function is shown in Figure 3-1.

#### 3.2. Lattice-preparation Function

This function is specific to a particular lattice design. For instance, GE 7x7 and GE 8x8 lattices require different functions since they are different in geometrical layout. Further, different varieties of GE 8x8 lattices might require different functions since they can incorporate different numbers and sizes of water rods (i.e., fuel-rod-sized water rods, large water rods displacing two fuel rods, or a large-central water rod displacing four fuel rods). Fuel assemblies constructed by different manufacturers may also require different functions, even when the constituent lattices have the same lattice dimensionality. This is most likely due to details in the number, placement, or shape of water rods.

The flowchart of this process for GE 7x7 fuel assemblies is shown in Figure 3-2.

Sec. and

## Title: Methodology for GE 7x7 Fuel Lattice ModelDocument Identifier B00000000-01717-0210-00010 REV 01Attachment X Page 13 of 15



Figure 3-1 Flowchart for Lattice Model Generation Driver Function