Civilian Radioactive Waste Management System Management & Operating Contractor

Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology

B0000000-01717-5705-00076 REV 02

September 1999

Prepared for:

U. S. Department of Energy Yucca Mountain Site Characterization Project Office P.O. Box 30307 Las Vegas, Nevada 89036-0307

Prepared by:

Civilian Radioactive Waste Management System Management & Operating Contractor 1261 Town Center Drive Las Vegas, Nevada 89144

> Under Contract Number DE-AC08-91RW00134

Civilian Radioactive Waste Management System Management & Operating Contractor

Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology

B0000000-01717-5705-00076 REV 02

Prepared by:

J.M. Scaglione, Preparer Neutronics Methodology

Checked By:

J.J. Sapyta, Checker Neutronics Methodology

Approved by: D.A. Thomas, Supervisor

D.A. Thomas, Supervisor Neutronics Methodology

Approved by: T. W. T.W. Doering, Department Manager

Waste Package Design

Date: ____

Date: 9/9/99

Date: 09/09/1999

Date: 9, 9, 19, 99

HISTORY OF CHANGE PAGE

.

Initial Issuance, REV 00	September 4, 1997
Revised, REV 01	July 16, 1998
Replaced all of Section 2.2	-
Added Section 3.2.6	
Replaced all of Section 4	
Deleted the HXST and HXT calculations due to redundancy	
Revised, REV 02	September 1999
Complete revision to include calculations performed with	•
latest version of MCNP code (MCNP4B2), to evaluate	
results produced with use of different cross-section libraries,	
and to evaluate the results from additional cases	

•

CONTENTS

1. 1.4 QUALITY ASSURANCE 1 2. ANALYSIS MODEL DESCRIPTION OF THE EXPERIMENT SYSTEMS 6 3. 3.1.1 Critical Configurations of Subcritical Clusters of 2.35 wt% Enriched UO₂ Rods 3.1.4 Critical Configurations with Subcritical Clusters of 4.31 wt% Enriched UO₂ 3.1.5 Critical Configurations with 4.31 wt%²³⁵U Enriched UO₂ Rods in Highly 3.1.7 Electric Power Research Institute 2.35 wt% Enriched Light Water Reactor Fuel 3.1.9 Laboratory Critical Experiments from the Urania-Gadolinia: Nuclear Model 3.1.10 Saxton UO₂ and PuO₂-UO₂ Critical Configurations 10 3.1.11 Critical Configurations Simulating Light Water Reactor Fuel in Close 3.1.12 Electric Power Research Institute Mixed Oxide Critical Configurations 12 3.1.14 TRIGA (Training, Research, Isotopes, General Atomics) Fuel Rod 3.1.16 Water-Moderated Hexagonally Pitched Lattices of Highly Enriched Fuel Rods 3.1.18 Intermediate Heterogeneous Assembly with Highly Enriched Uranium Dioxide 3.1.20 High Enriched Uranium Metal Fast (HMF) Systems...... 19

Page

CONTENTS (Continued)

	3.2 HOMOGENEOUS SOLUTION EXPERIMENTS	
	3.2.1 Mixed Plutonium and Natural Uranium Nitrate Solutions	
	3.2.2 Plutonium Nitrate Solutions	
	3.2.3 Highly Enriched Uranium Nitrate Solutions	
	3.2.4 Intermediate-Enrichment Uranium Solutions	
	3.2.5 Intermediate-Enriched Uranium Nitrate Solutions	
	3.2.6 Intermediate-Enriched Uranyl Sulfate Solutions	
	3.2.7 Low-Enrichment Uranium Solutions	
	3.2.8 Low Enriched Uranyl Flouride Solutions	
	3.2.9 ²³³ U Fuel Homogeneous Criticals	
4.	LCE ANALYSES RESULTS	
	4.1 LATTICE CRITICALS	
	4.2 HOMOGENEOUS CRITICALS	
5.	CONCLUSIONS	60
6.	REFERENCES	

September 1999

Page

v

FIGURES

· · · · ·

3.1-1. Cross Section of the Critical Assembly Representation Through the Core Center
4.1-1. Mixed Oxide Fuel Pin Lattice Critical Experiments (Thermal)
4.1-2. Mixed Oxide Fuel Pin Lattice Critical Experiments (Intermediate)
4.1-3. High Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal)
4.1-4. High Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate) 35
4.1-5. High Enriched Uranium Oxide Fuel Plate Lattice Critical Experiments (Thermal)
4.1-6. High Enriched Uranium Oxide Single-Zone Cruciform Rod Lattice Critical Experiments
(Thermal)
4.1-7. High Enriched Uranium Oxide Dual-Zone Cruciform Rod Lattice Critical Experiments
(Thermal)
4.1-8. Intermediate Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal). 39
4.1-9. Low Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal)
4.1-10. Low Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate) 42
4.2-1. Homogeneous Critical Experiments Using Mixed Plutonium and Natural Uranium Nitrate
Solutions (Thermal)
4.2-2. Homogeneous Critical Experiments Using Plutonium Nitrate Solutions (Thermal)
4.2-3. Plutonium Metal Critical Experiments (Fast)
4.2-4. Homogenous Critical Experiments Using High Enriched Uranium Nitrate Solutions
(Thermal) 51
4 2-5 High Enriched Uranium Metal Critical Experiments (East) 52
4.2-6. Homogenous Critical Experiments Using Intermediate Enriched Uranium Fuel (Thermal)
4.2-0. Homogenous entited Experiments Using intermediate Entrened Oranium Fuer (Therman)
42.7 Hamaganaya Critical Experimenta Using Intermediate Enriched Uranium Eval
4.2-7. Homogenous Critical Experiments Using intermediate Enfected Uranum Fuer
$(\text{Intermediate}) \dots \dots$
4.2-8. Intermediate Enriched Uranium Metal Critical Experiments (Fast)
4.2-9. Homogenous Critical Experiments Using Low Enriched Uranium Nitrate Solutions
(Thermal)
4.2-10. Homogenous Critical Experiments Using Low Enriched Uranium Solutions
(Intermediate)
4.2-11. Homogenous Critical Experiments Using Uranium-233 Fuel (Thermal)
4.2-12. Homogenous Critical Experiments Using Uranium-233 Fuel (Fast)

TABLES

	•
2.2-1. MCNP Cross Section Libraries Used in the LCE Reactivity Calculations	3
3-1. TBV References and Associated Tracking Numbers	6
3.1-1. Differences in Absorber Plates used for Clusters of 2.35 wt% UO ₂ Fuel Rods	7
3.1-2. Water-Reflected Fuel Rod Cluster Critical Experiments	7
3.1-3. MKIA Fuel Assembly Experiments	8
3.1-4. Differences in Experimental Configurations for Clusters of 2.35 wt% UO ₂ Fuel Rods	8
3.1-5. Urania-Gadolinia Critical Experiment Descriptions	10
3.1-6. Saxton Single-Region Critical Configuration Parameters	11
3.1-7. Saxton Multi-Region Critical Configuration Parameters	11
3.1-8. Close Proximity Critical Benchmark Characterization Parameters	.12
3.1-9. SPERT-D Fuel Element Critical Experiments	. 13
3.1-10. Benchmarks for HCT-003 Class of Experiments	.15
3.1-11. Benchmarks for HCT-004 Class of Experiments	15
3.1-12. Benchmarks for HCT-006 Class of Experiments	. 15
3.1-13. Benchmarks for HCT-007 Class of Experiments	16
3.1-14. Benchmarks for HCT-008 Class of Experiments	. 16
3 1-15. Benchmarks for HCT-010 Class of Experiments	.16
3 1-16 Benchmarks for HCI-002 Class of Experiments	.17
3 1-17 FFTF Bierman Array Critical Experiments	.19
3 1-18 HMF Russian Criticality Safety Benchmark Experiments	19
3 1-19 PMF Russian Criticality Safety Benchmark Experiments	20
3 1-20 IMF Experimental Description	21
3 1-21 Dimensions and Mass Characteristics of the IME-003 Critical Assembly	21
3 1-22. Dimensions and Mass Characteristics of the IMF-004 Critical Assembly	21
3.1-22. Dimension and Mass Characteristics of the IME-005 Critical Assembly	22
3.1.24 Dimensions and Mass Characteristics of the IME-006 Critical Assembly	22
2.1.25 Dimensions and Mass Characteristics of the IMF 008 Critical Assembly	23
2.2.1 Denchmonly Drahlam Symmetry for Configurations Incomparing Miyed Distancement	. 23
3.2-1. Benchmark Problem Summary for Configurations incorporating wixed Plutonium and	24
2.2.2. Development Problem Symmetry for Configurations Incomparating Distances Nitrate	. 24
S.2-2. Benchmark Problem Summary for Configurations incorporating Plutomum Intrate	25
2.2.2. Developments Developments for Configurations Incomparations Itics by Developments	. 25
3.2-3. Benchmark Problem Summary for Configurations incorporating Highly Enriched	24
Uranium Nitrate Solutions	. 26
3.2-4. Benchmark Problem Summary for Configurations Incorporating Low-Enrichment	•
Uranium Solutions	. 29
4.1-1. Mixed Oxide Fuel Pin Lattice Critical Experiments (Thermal)	. 32
4.1-2. Mixed Oxide Fuel Pin Lattice Critical Experiments (Intermediate)	. 33
4.1-3. High Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal)	. 34
4.1-4. High Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate)	. 35
4.1-5. High Enriched Uranium Oxide Fuel Plate Lattice Critical Experiments (Thermal)	. 36
4.1-6. High Enriched Uranium Oxide Single-Zone Cruciform Rod Lattice Critical Experimen	ts
(Thermal)	. 37
4.1-7. High Enriched Uranium Oxide Dual-Zone Cruciform Rod Lattice Critical Experiments	1
(Thermal)	. 38

Page

TABLES (Continued)

4.1-8. Intermediate Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal) 39
4.1-9. Low Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal)
4.1-10. Low Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate) 41
4.2-1. Homogeneous Critical Experiments Using Mixed Plutonium and Natural Uranium Nitrate
Solutions (Thermal) 44
4.2-2. Homogeneous Critical Experiments Using Plutonium Nitrate Solutions (Thermal) 46
4.2-3. Plutonium Metal Critical Experiments (Fast)
4.2-4. Homogenous Critical Experiments Using High Enriched Uranium Nitrate Solutions
(Thermal)
4.2-5. High Enriched Uranium Metal Critical Experiments (Fast)
4.2-6. Homogenous Critical Experiments Using Intermediate Enriched Uranium Fuel (Thermal)
52

•

4.2-5. High Enriched Uranium Metal Critical Experiments (Fast)	52
4.2-6. Homogenous Critical Experiments Using Intermediate Enriched Uranium Fuel (Therma	al)
	53
4.2-7. Homogenous Critical Experiments Using Intermediate Enriched Uranium Fuel	
(Intermediate)	54
4.2-8. Intermediate Enriched Uranium Metal Critical Experiments (Fast)	55
4.2-9. Homogenous Critical Experiments Using Low Enriched Uranium Nitrate Solutions	
(Thermal)	56
4.2-10. Homogenous Critical Experiments Using Low Enriched Uranium Solutions	
(Intermediate)	57
4.2-11. Homogenous Critical Experiments Using Uranium-233 Fuel (Thermal)	58
4.2-12. Homogenous Critical Experiments Using Uranium-233 Fuel (Fast)	59
5-1. Average Values for keff from LCE Results	60

1. INTRODUCTION

This report, *Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology*, contains a summary of the laboratory critical experiment (LCE) analyses used to support the validation of the disposal criticality analysis methodology.

1.1 BACKGROUND

The United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is developing a methodology for criticality analysis to support disposal of commercial spent nuclear fuel in a geologic repository. A supplement to the Disposal Criticality Analysis Methodology Topical Report is scheduled to be submitted to the United States Nuclear Regulatory Commission (NRC) for formal review later in 1999. This technical report is one of a series of reports that provides a summary of the results of the analyses that support the development of the disposal criticality analysis methodology.

1.2 OBJECTIVE

The objective of this report is to present a summary of the LCE analyses' results. These results demonstrate the ability of MCNP to accurately predict the critical multiplication factor (k_{eff}) for fuel with different configurations. Results from the LCE evaluations will support the development and validation of the criticality models used in the disposal criticality analysis methodology. These models and their validation have been discussed in the *Disposal Criticality Analysis Methodology Topical Report* (CRWMS M&O 1998a).

1.3 SCOPE

The scope of this *Summary Report* includes the LCE analytical results for the following types of critical experiments:

- Lattice Criticals
- Homogeneous Mixture Criticals
- Fast Metal Fuel Criticals.

Additional types of critical experiments may be added in future revisions to this report.

1.4 QUALITY ASSURANCE

The Quality Assurance (QA) program applies to the development of this report. The data provided in this report will indirectly be used to develop the methodology for evaluating the Monitored Geologic Repository (MGR) waste package and engineered barrier segment. The QAP-2-3 (*Classification of Permanent Items*) evaluation entitled *Classification of the Preliminary MGDS Repository Design* (p. IV-11, CRWMS M&O 1999a) has identified the waste package as an MGR item important to radiological safety and waste isolation. The Waste Package Operations responsible manager has evaluated the technical document development activity in accordance with QAP-2-0, *Conduct of Activities*. The QAP-2-0 activity evaluation, *Neutronics Methodology* (CRWMS M&O 1999e), has determined that the preparation and

review of this technical document is subject to *Quality Assurance Requirements and Description* (DOE OCRWM 1998) requirements. As specified in NLP-3-18, *Documentation of QA Controls* on Drawings, Specifications, Design Analyses, and Technical Documents, this activity is subject to QA controls.

1.5 USE OF COMPUTER SOFTWARE

As discussed in CRWMS M&O (1999b), CRWMS M&O (1999c), and CRWMS M&O (1999d), the MCNP code was used to calculate the eigenvalue for the LCE configurations. The software specifications are as follows:

Program Name: MCNP Version/Revision Number: Version 4B2LV CSCI Number: 30033 V4B2LV Computer Type: HP 9000 Series Workstations Computer Processing Unit Number: (Bloom) 700887

The input and output files for the various MCNP calculations are documented throughout CRWMS M&O (1999b), CRWMS M&O (1999c), and CRWMS M&O (1999d), such that an independent repetition of the software use may be performed. The MCNP software used was: (a) appropriate for the application of eigenvalue calculations, (b) used only within the range of validation as documented throughout Briesmeister (1997) and CRWMS M&O (1998b), and (c) obtained from the Software Configuration Manager in accordance with appropriate procedures.

Title: Excel Version/Revision Number: Microsoft® Excel 97

The Excel spreadsheet program was used for simple graphical displays of the results as presented in Section 4 of this report.

2. ANALYSIS MODEL

This section provides a description of the configurations used to generate the supporting analytic results reported in this document.

2.1 CRITICALITY MODEL

The criticality models used to calculate the reactivity of the various experiments are discussed in CRWMS M&O (1999b), CRWMS M&O (1999c), and CRWMS M&O (1999d). The tool used to assess the reactivity of each of the experiments is MCNP 4B (Briesmeister 1997 and CRWMS M&O 1998b), which is an implementation of the Monte Carlo method. The computer inputs for the LCE calculations are provided in Attachments I, III, and V of CRWMS M&O (1999b), CRWMS M&O (1999c), and CRWMS M&O (1999d).

2.2 CROSS SECTIONS

Table 2.2-1 lists all of the MCNP cross section library identifiers (ZAIDs) used in the LCE reactivity calculations documented in CRWMS M&O (1999b), CRWMS M&O (1999c), and CRWMS M&O (1999d). The MCNP ZAID is used to identify a cross section library. The ZAID consists of a four- or five-digit element and isotope identifier followed by a cross section library suffix. The first one or two digits in the ZAID refer to the atomic number of the corresponding element. The three digits preceding the decimal always refer to the isotopic mass number. The suffix identifies the library. Details are in Appendix G of Briesmeister (1997).

Each of the critical experiments were run with three sets of cross-section libraries – ENDF/B-V, ENDF/B-VI, and a hybrid set that is a combination of the two referred to as the WPO Selected set which comes from CRWMS M&O (1998c). The WPO Selected set uses isotopic cross-section data that is from ENDF/B-VI in place of elemental cross-sections that came from ENDF/B-V for certain elements. A complete listing is provided in CRWMS M&O (1998c).

Element/Isotope	MCNP ZAID	Temperature (K)	Library name	Data source
H-1	1001.50c	294.0	rmccs	ENDF/B-V.0
H-1	1001.60c	294.0	endf60	ENDF/B-VI.1
H-2	1002.55c	294.0	rmccs	LANL/T-2
H-2	1002.60c	294.0	endf60	ENDF/B-VI.0
Li-6	3006.50c	294.0	rmccs	ENDF/B-V.0
Li-6	3006.60c	294.0	endf60	ENDF/B-VI.1
Li-7	3007.55c	294.0	rmccs	ENDF/B-V.2
Li-7	3007.60c	294.0	endf60	ENDF/B-VI.0
Be-9	4009.50c	294.0	rmccs	ENDF/B-V.0
Be-9	4009.60c	294.0	endf60	ENDF/B-VI.0
B-10	5010.50c	294.0	rmccs	ENDF/B-V.0
B-10	5010.60c	294.0	endf60	ENDF/B-VI.1
B-11	5011.56c	294.0	newxs	LANL/T-2
B-11	5011.60c	294.0	endf60	ENDF/B-VI.0
C-nat	6000.50c	294.0	rmccs	ENDF/B-V.0
C-nat	6000.60c	294.0	endf60	ENDF/B-VI.1
C-12	6012.50c	294.0	rmccs	ENDF/B-V.0

Table 2.2-1. MCNP Cross Section Libraries Used in the LCE Reactivity Calculations

Element/Isotope	MCNP ZAID	Temperature (K)	Library name	Data source
N-14	7014.50c	294.0	rmccs	ENDF/B-V.0
N-14	7014.60c	294.0	endf60	LANL/T-2
N-15	7015.55c	294.0	rmccsa	LANL/T-2
N-15	7015.60c	294.0	endf60	ENDF/B-VI.0
O-16	8016.50c	294.0	rmccs	ENDF/B-V.0
0-16	8016.60c	294.0	endf60	ENDF/B-VI.0
0-17	8017.60c	294.0	endf60	ENDF/B-VI.0
F-19	9019.50c	294.0	endf5p	ENDF/B-V.0
F-19	9019.60c	294.0	endf60	ENDF/B-VI.0
Na-23	11023.50c	294.0	endf5p	ENDF/B-V.0
Na-23	11023.60c	294.0	endf60	ENDF/B-VI.1
Mg-nat	12000.50c	294.0	endf5u	ENDE/B-V.0
Mg-nat	12000.60c	294.0	endf60	ENDE/B-VL0
Al-27	13027 500	294.0	rmccs	ENDE/B-V 0
AI-27	13027.60c	294.0	endf60	ENDE/B-VL0
Si-nat	14000.50c	294.0	endf5p	
Si-nat	14000.600	294.0	endf60	
0i-fiat	15031 500	294.0	endf5u	
P-31	15031.500	294.0	endf60	
F-31	16022.500	294.0	endf5u	
5-32	16032.500	294.0	endiou	
5-32	10032.000	294.0	endiou	ENDF/B-VI.0
CI-nat	17000.500	294.0	endtop	
CI-nat	17000.600	294.0	endfou	ENDF/B-VI.0
K-nat	19000.50c	294.0	endf5u	ENDF/B-V.0
K-nat	19000.60c	294.0	endf60	ENDF/B-VI.0
Ca-nat	20000.50c	294.0	endf5u	ENDF/B-V.0
Ca-nat	20000.60c	294.0	endf60	ENDF/B-VI.0
Ti-nat	22000.50c	294.0	endf5u	ENDF/B-V.0
Ti-nat	22000.60c	294.0	endf60	ENDF/B-VI.0
V-nat	23000.50c	294.0	endf5u	ENDF/B-V.0
V-nat	23000.60c	294.0	endf60	ENDF/B-VI.0
Cr-nat	24000.50c	294.0	rmccs	ENDF/B-V.0
Cr-50	24050.60c	294.0	endf60	ENDF/B-VI.1
Cr-52	24052.60c	294.0	endf60	ENDF/B-VI.1
Cr-53	24053.60c	294.0	endf60	ENDF/B-VI.1
Cr-54	24054.60c	294.0	endf60	ENDF/B-VI.1
Mn-55	25055.50c	294.0	endf5u	ENDF/B-V.0
Mn-55	25055.60c	294.0	endf60	ENDF/B-VI.0
Fe-nat	26000.55c	294.0	rmccs	LANL/T-2
Fe-54	26054.60c	294.0	endf60	ENDF/B-VI.1
Fe-56	26056.60c	294.0	endf60	ENDF/B-VI.1
Fe-57	26057.60c	294.0	endf60	ENDF/B-VI.1
Fe-58	26058.60c	294.0	endf60	ENDF/B-VI.1
Ni-nat	28000.50c	294.0	rmccs	ENDF/B-V.0
Ni-58	28058.60c	294.0	endf60	ENDF/B-VI.1
Ni-60	28060.60c	294.0	endf60	ENDF/B-VI 1
Ni-61	28061.60c	294.0	endf60	ENDF/B-VI 1
Ni-62	28062.60c	294.0	endf60	ENDF/B-VI 1
Ni-64	28064.60c	294.0	endf60	ENDE/B-VI 1
Cu-nat	29000.50c	294.0	rmccs	ENDE/B-\/ 0
Cu-63	29063.600	294.0	endf60	ENDE/8-1/12
<u>Cu-65</u>	29065.600	294.0	endf60	ENDE/R_\/1.2
Garnet	31000.500	204.0	rmccs	
Gainat	31000.000	207.0	ondf60	
	40000.560	204.0	mischer	
Zi-liau	40000.000	294.0	IIIISUUXS	
Zi-nat	4000.000	294.0	enatou	ENDF/B-VI.1

Table 2.2-1. MCNP Cross Section Libraries Used in the LCE Reactivity Calculations

Element/Isotope	MCNP ZAID	Temperature (K)	Library name	Data source
Nb-93	41093.50c	294.0	endf5p	ENDF/B-V.0
Nb-93	41093.60c	294.0	endf60	ENDF/B-VI.1
Mo-nat	42000.50c	294.0	endf5u	ENDF/B-V.0
Mo-nat	42000.60c	294.0	endf60	ENDF/B-VI.0
Cd-nat	48000.50c	294.0	endf5u	ENDF/B-V.0
Ba-138	56138.50c	294.0	rmccs	ENDF/B-V.0
Ba-138	56138.60c	294.0	endf60	ENDF/B-VI.0
Gd-152	64152.50c	294.0	endf5u	ENDF/B-V.0
Gd-152	64152.60c	294.0	endf60	ENDF/B-VI.0
Gd-154	64154.50c	294.0	endf5u	ENDF/B-V.0
Gd-154	64154.60c	294.0	endf60	ENDF/B-VI.0
Gd-155	64155.50c	294.0	endf5u	ENDF/B-V.0
Gd-155	64155.60c	294.0	endf60	ENDF/B-VI.0
Gd-156	64156.50c	294.0	endf5u	ENDF/B-V.0
Gd-156	64156.60c	294.0	endf60	ENDF/B-VI.0
Gd-157	64157.50c	294.0	endf5u	ENDF/B-V.0
Gd-157	64157.60c	294.0	endf60	ENDF/B-VI.0
Gd-158	64158.50c	294.0	endf5u	ENDF/B-V.0
Gd-158	64158.60c	294.0	endf60	ENDF/B-VI.0
Gd-160	64160.50c	294.0	endf5u	ENDF/B-V.0
Gd-160	64160.60c	294.0	endf60	ENDF/B-VI.0
W-nat	74000.55c	294.0	rmccs	ENDF/B-V.2
W-182	74182.60c	294.0	endf60	ENDF/B-VI.0
W-183	74183.60c	294.0	endf60	ENDF/B-VI.0
W-184	74184.60c	294.0	endf60	ENDF/B-VI.0
W-186	74186.60c	294.0	endf60	ENDF/B-VI.0
U-233	92233.50c	294.0	rmccs	ENDF/B-V.0
U-233	92233.60c	294.0	endf60	ENDF/B-VI.0
U-234	92234.50c	294.0	endf5p	ENDF/B-V.0
U-234	92234.60c	294.0	endf60	ENDF/B-VI.0
U-235	92235.50c	294.0	rmccs	ENDF/B-V.0
U-235	92235.60c	294.0	endf60	ENDF/B-VI.2
U-236	92236.50c	294.0	endf5p	ENDF/B-V.0
U-236	92236.60c	294.0	endf60	ENDF/B-VI.0
U-238	92238.50c	294.0	rmccs	ENDF/B-V.0
U-238	92238.60c	294.0	endf60	ENDF/B-VI.2
Pu-238	94238.50c	294.0	endf5p	ENDF/B-V.0
Pu-238	94238.60c	294.0	endf60	ENDF/B-VI.0
Pu-239	94239.55c	294.0	rmccs	ENDF/B-V.2
Pu-239	94239.60c	294.0	endf60	ENDF/B-VI.2
Pu-240	94240.50c	294.0	rmccs	ENDF/B-V.0
Pu-240	94240.60c	294.0	endf60	ENDF/B-VI.2
Pu-241	94241.50c	294.0	endf5p	ENDF/B-V.0
Pu-241	94241.60c	294.0	endf60	ENDF/B-VI.1
Pu-242	94242.50c	294.0	endf5p	ENDF/B-V.0
Pu-242	94242.60c	294.0	endf60	ENDF/B-VI.0
Am-241	95241.50c	294.0	endf5u	ENDF/B-V.0
Am-241	95241.60c	294.0	endf60	LANL/T-2

Table 2.2-1. MCNP Cross Section Libraries Used in the LCE Reactivity Calculations

pp. 6 through 9 of CRWMS M&O 1999b

NOTE: * nat = natural element composition

.

3. DESCRIPTION OF THE EXPERIMENT SYSTEMS

The represented experiments are described in Baldwin et al. (1979) through Wittekind (1992). The data from OECD-NEA (1998) is from a standard handbook, is generally accepted by the scientific and engineering community, and used in a number of license applications and validation reports through out the nuclear industry. The data in this reference is therefore considered "Accepted Data". Throughout the rest of this section, information from the references specified in Table 3-1 should be considered to be verified (TBV) in that they are not considered accepted data sources per the retroactive procedural requirement of AP-SIII.2Q initiated by the July 27, 1999 issuance of the DOE Letter, "Accepted Data Call", from R.E. Spence to J.L. Younker (DOE 1999).

Reference	TBV Tracking Number
Baldwin et al. 1979	TBV-1357
Newman 1984	TBV-1358
Taylor 1965	TBV-1359
Wittekind 1992	TBV-1360
Bierman 1990	TBV-1361
Bierman et al. 1977	TBV-1362
Bierman et al. 1981	TBV-1363
Bierman and Clayton 1981	TBV-1364
Durst et al. 1982	TBV-1365
Bierman et al. 1984	TBV-1366
Brown et al. 1965	TBV-1367
DeHardt and Bowman 1995	TBV-1368
Mele et al. 1994	TBV-1369
Miyoshi et al. 1997	TBV-1370
Bierman et al. 1979	TBV-1371

Table 3-1. TBV References and Associated Tracking Numbers

It should be noted that some of the experiments were not true critical configurations, but were subcritical approaches extrapolated to critical. The number of digits in the values cited herein may be the results of a calculation or may reflect the input from another source; consequently, the number of digits should not be interpreted as an indication of accuracy. In the following sections, intermediate-enriched uranium (IEU) is defined as having a ²³⁵U concentration greater than 10 wt% but less than 80 wt%. Low-enriched uranium (LEU) and high-enriched uranium (HEU) are outside this range.

3.1 LATTICE EXPERIMENTS

The fresh fuel LCEs presented in this section represent moderated lattice configurations containing fissile oxide fuel. Each of the LCE configurations described in this section have been analyzed with the MCNP code system using the cross section library previously described (Section 2.2). An experiment identifier for each configuration is provided for subsequent reference when the results are reported.

3.1.1 Critical Configurations of Subcritical Clusters of 2.35 wt% Enriched UO₂ Rods in Water with Fixed Neutron Absorber Plates

Experiments with subcritical clusters of low-enrichment UO_2 fuel rods were performed at the Pacific Northwest Laboratory and documented by Bierman et al. (1977). The four experiments

modeled with MCNP consisted of three rectangular arrays of aluminum-clad fuel rods. The fuel rods comprising the arrays had a uniform enrichment of 2.35 wt%²³⁵U. The three arrays of fuel were arranged in a row and, in three of the experiments, sheets of neutron poison were interposed between adjacent arrays. The structure of the experimental assembly was provided by aluminum structural members on the margins of the fuel arrays. Axial support for the fuel rods was provided by an acrylic base plate. The lateral alignment of the fuel rods was provided by another acrylic plate. The experimental apparatus was closely reflected by full-density water.

The pertinent differences among these four experiments are shown in Table 3.1-1. These critical experiments help demonstrate the ability of MCNP to accurately predict the critical multiplication factor for configurations containing light-water reactor fuel separated by absorber plates.

Experiment identifier	Interposed plate
exp1	none
exp2	Boral [™]
exp3	Type 6061 Aluminum
exp4	Type 304 Stainless Steel

Table 3.1-1.	Differences in Absorber Plates used for Clusters of 2.35
	wt% UO ₂ Fuel Rods

3.1.2 Water-Reflected Fuel Rod Clusters in Square Pitched Arrays

A series of critical experiments with clusters of aluminum clad UO₂ fuel rods in a large waterfilled tank was performed over a period of several years at the Critical Mass Laboratory at Pacific Northwest Laboratories (PNL). Eight cases were analyzed under this category that correspond to water-reflected clusters at 2.032 cm square pitch with no absorber plates, reflecting walls, dissolved poison, or gadolinium impurity. Table 3.1-2 provides a brief description of the experiments. Each of the experiments used 2.35 wt%²³⁵U enriched UO₂ fuel with an average loading of 17.08 g of ²³⁵U per rod (OECD-NEA 1998, p. 7 LCT-001).

Experiment identifier	Description (p. 10, OECD-NEA 1998, LCT-001) number of rods ¹ (X x Y), number of clusters, cluster separation	H/X ratio ²
Case 1	20 x 18.08, 1 cluster	459
Case 2	20 x 17, 3 clusters, 11.92 ± 0.04 cm separation	487
Case 3 ³	20 x 16, 3 clusters, 8.41 ± 0.05 cm separation	469
Case 4	20 x 16 (center), 22 x 16 (two outer), 3 clusters, 10.05 ± 0.05 cm separation	474
Case 5	20 x 15, 3 clusters, 6.39 ± 0.05 cm separation	459
Case 6	20 x 15 (center), 24 x 15 (two outer), 3 clusters, 8.01 ± 0.06 cm separation	462
Case 7	20 x 14, 3 clusters, 4.46 ± 0.10 cm separation	449
Case 8 ⁴	$19 \times 6, 3$ clusters, 7.57 ± 0.04 cm separation	467

Table 3.1-2. Water-Reflected Fuel Rod Cluster Critical Experiments

NOTES: ¹ For three-cluster configurations, the first dimension is along the direction of the cluster placement. The second dimension is the width of facing sides, as shown in Figure 5 of OECD-NEA 1998, on p. 11 LCT-001.

- ² The H/X ratio is the ratio of hydrogen to fissile material per unit cell. These values are from p. 9 of CRWMS M&O 1999c.
- ³ The cluster separation referenced was 8.41 cm, but footnote (d) on p. 10 LCT-001 of OECD-NEA 1998, states that the cluster separation should be 0.762 cm less. Thus, 7.648 cm was represented in the MCNP case for the cluster separation.
- ⁴ The cluster separation referenced was 7.57 cm, but footnote (d) on p. 10 LCT-001 of OECD-NEA 1998, states that the cluster separation should be 0.762 cm less. Thus, 6.808 cm was represented in the MCNP case for the cluster separation.

3.1.3 LEU Systems Typical of N-Reactor Fuel in the K Basin

Three cases which analyzed a lattice of actual N-Reactor MKIA fuel elements were performed. The MKIA cases analyzed 101.2 fuel elements, 67.4 fuel elements, and 90.3 fuel elements with corresponding pitches of 7.112 cm, 7.874 cm, and 8.636 cm, respectively (p. 52, Wittekind 1992). The MKIA experiments were performed for three different lattice pitches resulting in three experimental values to achieve a k_{eff} of unity. The lattice pitches and corresponding critical number of fuel elements are listed in Table 3.1-3. It should be noted that the MKIA experiments used 26.2 in. (66.548 cm) long fuel elements stacked two high for a 52.4 in. (133.096 cm) fuel column per lattice (p. 5, Brown et al. 1965) with 121 filled fuel lattices (p. 52, Wittekind 1992).

Experiment identifier	Lattice pitch	Critical number of fuel elements experimentally determined	H/X ratio ¹
SUBC2P8H	7.112 cm	101.2	994
SUBC3P1H	7.874 cm	67.4	1414
SUBC3P4H	8.636 cm	90.3	1876

Table 3.1-3.	MKIA F	uel Assembly	Experiments
--------------	--------	--------------	-------------

NOTE: ¹ Values are from p. 11 of CRWMS M&O 1999c

3.1.4 Critical Configurations with Subcritical Clusters of 4.31 wt% Enriched UO₂ Rods in Water with Reflecting Walls

These three experiments were also performed at the PNL and were documented in Bierman et al. (1981) and Bierman and Clayton (1981). In these experiments three similar fuel assemblies were laterally surrounded by reflectors of different compositions. The fuel lattices in each critical experiment contained 4.31 wt%²³⁵U enriched UO₂ fuel rods on a square pitch of 1.892 cm. The distinguishing characteristics of each experiment are given in Table 3.1-4. These critical experiments demonstrate the ability of MCNP to accurately predict the critical multiplication factor for configurations with different shielding materials used for reflectors.

Table 3.1-4. Differences in Experimental Configurations for Clusters of 2.35 wt% UO₂ Fuel Rods

Experiment identifier	Reference	Reflector
exp5	Bierman et al. 1981	uranium
exp6	Bierman et al. 1981	lead
exp7	Bierman and Clayton 1981	stainless steel

3.1.5 Critical Configurations with 4.31 wt% ²³⁵U Enriched UO₂ Rods in Highly Borated Water Lattices

This set of four experiments was performed at the PNL and documented by Durst et al. (1982). These experiments used 4.31 wt% ²³⁵U uniformly enriched UO₂ fuel rods arranged in squarepitch, water-moderated lattices of different size with various amounts of boric acid in the moderator. The fuel rods were clad with aluminum and were loaded into polypropylene lattice templates fastened inside a plexiglass tank. The plexiglass tank was surrounded on all four sides by an unborated water reflector and was positioned on top of a plexiglass slab. The borated water was restricted to the water volume inside the plexiglass tank.

Rectangular critical arrays were constructed by sequentially filling rows of the lattice template starting at the plexiglass tank wall. The water level in the tank was held constant by removing an appropriate volume of water as each fuel rod was loaded. These experiments were denoted as "exp8" through "exp11."

3.1.6 Critical Configurations with Neutron Flux Traps

Pacific Northwest Laboratories performed experiments studying the effect of neutron flux traps on criticality. These experiments were documented by Bierman (1990) and served as the source for two configurations modeled with MCNP. These two critical experiments were each composed of four fuel rod arrays arranged in a square and separated by a neutron flux trap region. Each fuel lattice in a given configuration was nearly equal in size. Two polypropylene lattice templates were used to position the fuel rods. The fuel rods were composed of aluminumclad 4.31 wt%²³⁵U enriched UO₂ fuel. The neutron flux traps were created by positioning two plates of BoralTM between interacting faces of each fuel lattice. The experimental configurations were moderated and closely reflected by full-density water. These experiments are denoted as "exp12" and "exp13."

3.1.7 Electric Power Research Institute 2.35 wt% Enriched Light Water Reactor Fuel Critical Configurations

Criticality experiments were sponsored by Electric Power Research Institute (EPRI) for light water reactor fuel configurations. These were documented by EPRI and subsequently described by Dehart and Bowman (1995). Two critical experiment configurations composed of water-moderated lattices of 2.35 wt% enriched UO_2 fuel rods were modeled with MCNP. The fuel rods were supported in a core structure composed of "eggcrate" type lattice plates with an upper lead shield. The configuration was closely reflected by full-density water laterally and below the fuel. These experiments were designated as "exp14" and "exp15."

3.1.8 Water-Moderated, Lead-Reflected Uranium Dioxide Rod Array

OECD-NEA (1998) LEU-COMP-THERM-027 documents a series of four experiments involving lead-reflected, water-moderated arrays of low-enriched UO_2 fuel rods. The experiments were subcritical approaches extrapolated to critical; the multiplication factor reached was very close to 1.000 (within 0.1%). The experiments were tests of the lead reflector effect. Only the first case was evaluated in CRWMS M&O (1999d). This case consisted of a 14 x 14 array of 4.74 wt% enriched UO_2 fuel rods reflected on four sides by 30-cm-thick lead reflectors with no water gap between the array and the lead reflectors. This experiment was denoted as lct27-1.

3.1.9 Laboratory Critical Experiments from the Urania-Gadolinia: Nuclear Model Development and Critical Experiment Benchmark Report

A number of critical experiments were performed by Babcock and Wilcox for urania fuel incorporating gadolinia as an integral burnable absorber. These experiments were documented in Newman (1984). The configurations modeled with MCNP included critical configurations containing arrangements of 2.46 wt% ²³⁵U enriched UO₂ fuel rods, 4.02 wt% ²³⁵U enriched UO₂ fuel rods, combination 4 wt% Gd₂O₃ and 96 wt% (1.944 wt% ²³⁵U enriched) UO₂ fuel rods, Ag-In-Cd absorber rods, and B₄C absorber rods. The fuel rods were supported by a top and bottom aluminum "eggcrate" type grid plate. The fuel rods rested on an aluminum base plate. The central 45 x 45 array of rod lattice cells was separated into nine 15 x 15 arrays of rod lattice cells. These arrays were intended to simulate pressurized water reactor fuel assembly lattices.

Descriptions of the experimental configurations are shown in Table 3.1-5.

Exp. ID ^a	Number of 2.46 wt% ²³⁵ U fuel rods	Number of 4.02 wt% ²³⁵ U fuel rods	Number of Gd ₂ O ₃ fuel rods	Number of B₄C rods	Number of Ag-In-Cd rods	Number of void rods	Number of water holes
ugd1	4808	0	0	0	0	0	153
ugd2	4808	0	0	0	16	0	137
ugd3	4788	0	20	0	0	0	153
ugd4	4788	0	20	0	16	0	137
ugd5	4780	0	28	0	0	0	153
ugd6	4780	0	28	0	16	0	137
ugd7	4780	0	28 (Annular)	0	0	0	153
ugd8	4772	0	36	0	0	0	153
ugd9	4772	0	36	0	16	0	137
ugd10	4772	0	36	0	0	16	137
ugd12	3920	888	0	0	0	0	153
ugd13	3920	888	0	16	0	0	137
ugd14	3920	860	28	0	0	0	153
ugd15	3920	860	28	16	0	0	137
ugd16	3920	852	36	0	0	0	153
ugd17	3920	852	36	16	0	0	137
ugd18	3676	944	0	Ō	0	0	180
ugd19	3676	928	16	0	0	0	180
ugd20	3676	912	32	0	0	0	180

Table 3.1-5. Urania-Gadolinia Critical Experiment Descriptions

NOTE: ^aID = Identifier

3.1.10 Saxton UO₂ and PuO₂-UO₂ Critical Configurations

Single- and multi-region uranium and plutonium oxide fueled cores, water moderated, clean, and borated, have been used in a series of critical experiments at the Westinghouse Reactor Evaluation Center in support of the Saxton Plutonium Program. In this series of experiments,

criticality was achieved entirely by varying the water level inside the core tank. The fuel used in the experiments were UO₂ fuel with 5.74 wt% ²³⁵U enrichment, and mixed oxide (MOX) fuel containing 6.6 wt% PuO₂ and natural enriched UO₂ (p. A-1, Taylor 1965). This work was documented by Taylor (1965) and subsequently described by DeHart and Bowman (1995). This section includes eight single-region configurations and six multi-region configurations. The fuel rods were loaded into a single rectangular array for each critical experiment. The fuel rods were supported by three aluminum grid plates with holes for rod emplacement. The fuel rod type, pitch, array size, moderator height, and boron concentration were adjusted in each LCE. Table 3.1-6 presents a description of the various single-region experiments and Table 3.1-7 presents a description of the multi-region experiments.

Experiment identifier	Fuel	Pitch (cm)	Core configuration	Critical water height (cm)
ssr83	UÕ2	1.3208	449 cylindrical	95.25
ssr48	UO ₂	1.4224	19 x 19 square	83.71
ssr70	MOX	1.3208	22 x 23 square	84.56
ssr57	MOX	1.4224	19 x 19 square	82.46
ssr27	MOX	1.4224	21 x 21 square	89.70
ssr66	MOX	1.8669	13 x 13 square	70.11
ssr53	MOX	2.0117	12 x 12 square	78.43
ssr74	MOX	2.6416	11 x 11 square	81.17

Table 3.1-6. Saxton Single-Region Critical Configuration Parameters

|--|

Experiment identifier	Core configuration	Critical water height (cm)
smr1	19 x 19 square: 11 x 11 MOX center region; UO ₂ outer region	91.07
smr9	19 x 19 square: 11 x 11 MOX center region; UO ₂ outer region; Al plate at the fuel interface	92.07
smr5	27 x 27 square: 19 x 19 UO ₂ center region; MOX outer region	86.70
smr11	27 x 27 square: 19 x 19 MOX center region; UO_2 outer region; water slot at the region boundary	99.80
smr12	27 x 27 square: 19 x 19 MOX center region; UO ₂ outer region; Al slab at the interface	106.35
smr8	27 x 27 square: 19 x 19 MOX center region; UO ₂ outer region; L shaped UO ₂ insert in MOX region	92.19

3.1.11 Critical Configurations Simulating Light Water Reactor Fuel in Close Proximity Water Storage

Babcock and Wilcox performed experiments simulating neutron multiplication in pool storage racks. These were documented in Baldwin et al. (1979). Twenty such critical configurations, each containing a 3 x 3 array of 14 x 14 fuel rod assemblies, were modeled with MCNP. Two different methods were utilized to support the fuel assemblies in the critical experiment core. The first support method used top and bottom grid plates to hold the fuel rods in place. The second support method used a bottom grid plate and vertical alignment system consisting of locating bars and fastening plates. The gaps between assemblies contained a number B_4C rods and water, stainless steel sheets and water, borated aluminum sheets and water, or only water.

The critical experiment arrays were assembled in an aluminum core tank. The fuel rods were composed of 2.46 wt% 235 U enriched UO₂ clad in Type 6061 aluminum. The B₄C rods were aluminum tubes filled with B₄C powder. Six sets of borated aluminum sheets were used in the critical experiments. The soluble boron concentration and moderator heights were adjusted to obtain a critical configuration.

The key parameters which distinguish the twenty critical configurations are shown in Table 3.1-8.

Experiment identifier	Assembly spacing, rod pitch ¹	Number of B₄C rods	Metal between unit assemblies
core2	0	0	n/a²
core3	1	0	n/a
core4	1	84	n/a
core5	2	64	n/a
core6	2	64	n/a
core7	3	34	n/a
core8	3	34	n/a
core9	4	0	n/a
core10	3	n/a	none
core11	1	n/a	SS ³
core12	2	n/a	SS
core13	1	n/a	B/AI set 5
core14	1	n/a	B/AI set 4
core15	1	n/a	B/AI set 3
core16	2	n/a	B/AI set 3
core17	1	n/a	B/AI set 2
core18	2	n/a	B/AI set 2
core19	1	n/a	B/AI set 1
core20	2	n/a	B/AI set 1
core21	3	n/a	B/AI set 1

NOTES: ¹ number of rod pitches ² n/a = not applicable

 3 SS = stainless steel

3.1.12 Electric Power Research Institute Mixed Oxide Critical Configurations

DeHart and Bowman (1995) describe criticality tests with mixed oxide fuel performed for the Electric Power Research Institute. Six critical experiment configurations composed of unborated and borated water moderated lattices of 2 wt% PuO₂ (8 wt% ²⁴⁰Pu)/98 wt% UO₂ (natural) fuel rods were modeled with MCNP. The fuel rods were clad with aluminum and were supported in a core structure composed of "eggcrate" type lattice plates with an upper lead shield. The configurations were closely reflected with full-density water laterally and below the core. These experiments are denoted as "exp22" through "exp27."

3.1.13 Critical Triangular Lattice of MOX & UO₂ Fuel Rods

Bierman et al. (1984) documented critical experiments performed at PNL incorporating both urania and mixed-oxide (MOX) fuel rods in a triangular lattice. One such experiment, designated "exp34", contained a triangular lattice of uniformly distributed PuO₂-UO₂ and UO₂ fuel rods. The fuel rods were placed in a uniform distribution with a $Pu/^{235}U$ ratio approximating that of a 20,000 MWd/MTU burnup. Each PuO_2 - UO_2 fuel rod was surrounded by six UO_2 fuel rods with a triangular lattice pitch. The fuel rods were supported by three polypropylene lattice plates.

3.1.14 TRIGA (Training, Research, Isotopes, General Atomics) Fuel Rod Experiments

These benchmark experiments documented in Mele et al. (1994) used fresh stainless steel clad TRIGA fuel rods in a TRIGA Mark II reactor. The configuration was a cylindrical water filled reactor with an annular graphite reflector. The fuel elements were arranged in six concentric rings, and were made up of 20 wt%²³⁵U mixed with zirconium hydride. The fuel had a 1.65 hydrogen-zirconium atom ratio. Two experiments of this type were evaluated and are identified as "tri17" and "tri18".

3.1.15 SPERT-D Fuel Experiments

Twenty-three critical experiments involving lattices of SPERT-D fuel elements were performed at Oak Ridge National Laboratories (ORNL). The fuel elements consisted of plates of uraniumaluminum alloy. Each fuel element contained approximately 300 grams (p. 1, OECD-NEA 1998, HEU-MET-THERM-006 [HMT-006]) of ²³⁵U in 22 aluminum clad fuel plates. The average enrichment was 93.17 wt% ²³⁵U (p. 10, OECD-NEA 1998). Table 3.1-9 provides a listing of the various SPERT-D cases and the experiment identifiers. The reflector and moderator for cases 1 through 18 was demineralized water, and an aqueous solution of uranyl nitrate U(92.6)O₂(NO₃)₂ in cases 19 through 23 (p. 10, OECD-NEA 1998, HMT-006).

Experiment identifier	Global description	Reflector above fuel (cm) (p. 23, OECD-NEA 1998, HMT-006)
spert1	4 x 3.77 lattice ¹ , 4.63 kg U ²³⁵ , 0.0 in. spacing	9.825
spert2	4 x 3.16 lattice ¹ , 3.87 kg U ²³⁵ , 0.25 in. spacing	12.8982
spert3	4 x 3.09 lattice ¹ , 3.79 kg U ²³⁵ , 0.50 in. spacing	9.8401
spert4	circular, 3.48 kg U ²³⁵ , 0.50 in. spacing	7.3136
spert5	4 x 3.16 lattice ¹ , 3.87 kg U ²³⁵ , 0.75 in. spacing	17.21
spert6	4 x 3.70 lattice ¹ , 4.54 kg U ²³⁵ , 1.00 in. spacing	13.853
spert7	5 x 4.03 lattice , 6.16 kg U ²³⁵ , 1.25 in. spacing	13.0186
spert8	6 x 5.34 lattice ¹ , 9.82 kg U ²³⁵ , 1.50 in. spacing	11.3984
spert9	7 x 6.68 lattice ¹ , 6.16 kg U ²³⁵ , 1.60 in. spacing	12.0359
spert10	4 x 3.2 x 3 lattice ¹ , 11.78 kg U ²³⁵ , 0.0 in. spacing	9.4309
spert11	3 x 3.36 x 3 lattice ¹ , 9.28 kg U ²³⁵ , 0.50 in. spacing	12.0994
spert12	4 x 4 x 3 lattice ¹ , 14.71 kg U ²³⁵ , 1.25 in. spacing	8.0
spert13	slab 16 x 2.32 ¹ , 11.37 kg U ²³⁵ , 1.25 in. spacing	11.6162
spert14	slab 16 x 3 ¹ , 14.71 kg U ²³⁵ , 0.50 in./2.19 in. spacing	7.5728
spert15	slab 16 x 4 ¹ , 19.62 kg U ²³⁵ , 0.50 in./2.56 in. spacing	10.75
spert16	2 slabs 16 x 2 ¹ , 19.62 kg U ²³⁵ , 0.50 in./0.50 in./6.37 in. spacing	12.7351
spert17	slab 4 x 5.0 ¹ w/ Cd, 6.19 kg U ²³⁵ , 0.0 in./0.75 in. spacing	10.7471
spert18	slab 4 x 7.04 ¹ w/ Cd, 8.64 kg U ²³⁵ , 0.0 in./0.75 in. spacing	13.8573
spert19	U Nitrate (3.99 g U ²³⁵ /liter) & 3 x 3.09 ¹ , 2.86 kg U ²³⁵ , 0.5 in. spacing,	6.8208
spert20	U Nitrate (3.99 g U ²³⁵ /liter) & 4 x 4.20 ¹ , 5.15 kg U ²³⁵ , 0.5 in. spacing, 0.389 g B/liter	8.3311
spert21	U Nitrate (3.99 g U ²³⁵ /liter) & 5 x 4.41 ¹ , 6.76 kg U ²³⁵ , 0.5 in. spacing, 0.579 g B/liter	4.6946

Table 3.1-9. SPERT-D Fuel Element Critical Expe

Experiment identifier	Global description	Reflector above fuel (cm) (p. 23, OECD-NEA 1998, HMT-006)
spert22	U Nitrate (3.99 g U ²³⁵ /liter) & 6 x 4.96 ¹ , 8.90 kg U ²³⁵ , 0.5 in. spacing, 0.773 g B/liter	5.5725
spert23	U Nitrate (3.99 g U ²³⁵ /liter) & 6 x 5.55 ¹ , 10.15 kg U ²³⁵ , 0.5 in. spacing, 0.871 g B/liter	7.7118

Table 3.1-9. SPERT-D Fuel Element Critical Experiments

NOTE: ¹ Dimensions of lattice (number of elements)

3.1.16 Water-Moderated Hexagonally Pitched Lattices of Highly Enriched Fuel Rods of Cross-Shaped Cross Section

A series of critical experiments with water moderated hexagonally pitched lattices of highly enriched fuel rods of cross-shaped cross section was performed over several years in the Russian Research Center (RRC) "Kurchatov Institute". Each of the experiments used UO_2 plus copper fuel, and were taken from the benchmark compilation OECD-NEA (1998), Vol. II. These experiments were categorized under the HEU-Comp-Therm (HCT) class of experiments in the reference. The 28 experiments analyzed under this category consist of the following:

- 1) Fifteen critical two-zone lattice experiments corresponding to different combinations of inner and peripheral zones of cross-shaped fuel rods at two pitches. Descriptions for these experimental configurations and their experiment identifiers are presented in Table 3.1-10.
- 2) Four critical configurations of hexagonal lattices of fuel rods with Gd or Sm rods. These experiments consisted of double lattices of fuel rods and absorber rods containing Gd or Sm. Descriptions of these experimental configurations and their experiment identifiers are presented in Table 3.1-11.
- 3) One critical configuration of hexagonal pitched clusters of lattices of fuel rods with Cu rods. The configuration was arranged with a 5.2-mm pitch and a total of 2257 fuel rods. In the reference, two cases were evaluated: one considered the fuel rod as a cylinder in a simplified model, and the other represented the fuel rod in a detailed cross-shaped model; only the detailed case is represented in this report.
- 4) Three critical configurations with uniform hexagonal lattices with pitch values of 5.6, 10.0, and 21.13 mm. Descriptions for these experimental configurations and their experiment identifiers are presented in Table 3.1-12.
- 5) Three critical configurations with double hexagonal lattices of fuel rods and zirconium hydride rods. Descriptions for these experimental configurations and their experiment identifiers are presented in Table 3.1-13. In the reference, two sets of cases were evaluated: one considered the fuel rod as a cylinder in a simplified model, and the other represented a detailed cross-shaped fuel rod model; only the detailed cases are represented in this report.
- 6) Two critical configurations with double hexagonal lattices of fuel rods and boron carbide rods. Descriptions for these experimental configurations and their experiment identifiers are presented in Table 3.1-14.

Experiment identifier	Configuration description			
hct3-1	Center zone: 12.2 mm pitch, 19 rods			
	Outer zone: 6.1 mm pitch, 1390 rods			
hct3-2	Center zone: 12.2 mm pitch, 61 rods			
11010 2	Outer zone: 6.1 mm pitch, 1182 rods			
hct3-3	Center zone: 12.2 mm pitch, 121 rods			
	Outer zone: 6.1 mm pitch, 897 rods			
hct3-4	Center zone: 12.2 mm pitch, 199 rods			
11010-4	Outer zone: 6.1 mm pitch, 577 rods			
het3-5	Center zone: 12.2 mm pitch, 271 rods			
10:0-0	Outer zone: 6.1 mm pitch, 325 rods			
bet3.6	Center zone: 6.1 mm pitch, 1099 rods			
10.0-0	Outer zone: 12.2 mm pitch, 167 rods			
het3 7	Center zone: 6.1 mm pitch, 793 rods			
1013-7	Outer zone: 12.2 mm pitch, 250 rods			
het3.8	Center zone: 6.1 mm pitch, 757 rods			
11010-0	Outer zone: 12.2 mm pitch, 249 rods			
het3.0	Center zone: 6.1 mm pitch, 445 rods			
11010-9	Outer zone: 12.2 mm pitch, 319 rods			
hot210	Center zone: 6.1 mm pitch, 217 rods			
10.010	Outer zone: 12.2 mm pitch, 372 rods			
bet211	Center zone: 6.1 mm pitch, 85 rods			
nciorr	Outer zone: 12.2 mm pitch, 415 rods			
hot212	Center zone: 18.3 mm pitch, 121 rods			
1101312	Outer zone: 6.1 mm pitch, 985 rods			
hat212	Center zone: 18.3 mm pitch, 301 rods			
1101313	Outer zone: 6.1 mm pitch, 426 rods			
hot214	Center zone: 6.1 mm pitch, 763 rods			
110(314	Outer zone: 18.3 mm pitch, 186 rods			
bct215	Center zone: 6.1 mm pitch, 337 rods			
10010	Outer zone: 18.3 mm pitch, 325 rods			

Table 3.1-10. Benchmarks for HCT-003 Class of Experiments

Table 3.1-11. Benchmarks for HCT-004 Class of Experiments

Experiment identifier	Configuration description		
hct4-1	106 Gd rods on 27.54 mm pitch, 2760 fuel rods		
hct4-2	55 Gd rods on 36.72 mm pitch, 2520 fuel rods		
hct4-3	121 Sm rods on 27.54 mm pitch, 3198 fuel rods		
hct4-4	58 Gd rods on 36.72 mm pitch, 2727 fuel rods		

Table 3.1-12.	Benchmarks	for HCT-006	Class of Ex	periments

Experiment identifier	Configuration description	
hct6-t1	1819 fuel rods on a 5.6 mm pitch	-
hct6-t2	457 fuel rods on a 10.0 mm pitch	
hct6-t3	554 fuel rods on a 21.13 mm pitch	_

Table 3, 1-13, Derichmarks for HCT-007 Class of Experiment	Table 3.1-13.	Benchmarks for HCT-	-007 Class of	f Experiments
--	---------------	---------------------	---------------	---------------

Experiment identifier	Configuration description
hct7-4	523 Zr rods on 10.5655 mm pitch, 1064 fuel rods
hct7-5	121 Zr rods on 21.1310 mm pitch, 1400 fuel rods
hct7-6	31 Zr rods on 42.2620 mm pitch, 1484 fuel rods

Table 3.1-14. Benchmarks for HCT-008 Class of Experiments

Experiment identifier	Configuration description		
hct8-1	217 B ₄ C rods (1.0 g B/rod) on 21.2 mm pitch, 3460 fuel rods		
hct8-2	169 B ₄ C rods (3.5 g B/rod) on 26.5 mm pitch, 4130 fuel rods		

3.1.17 Critical Experiments of EBOR Fuel Pins in Water

Twenty-one critical experiments involving lattices of EBOR (Experimental Beryllium Oxide Reactor) fuel pins were performed in 1967 at ORNL. The fuel pins consisted of compressed ceramic pellets contained in Hastelloy X-280 tubes. The pellets were a homogeneous mixture of U(62.4)O₂ and BeO. Two sets of experiments were conducted. The first set of experiments (total of 15 experiments) consisted of EBOR fuel pins arranged in various lattice configurations moderated and reflected by water (p. 8, OECD-NEA 1998, HEU-COMP-THERM-010 [HCT-010]). The second set (6 experiments) consisted of EBOR fuel pins arranged in various lattice configurations with boron and/or with uranyl nitrate in the water (p. 14, OECD-NEA 1998, HCT-010). Experimental configuration descriptions and identifiers are presented in Table 3.1-15.

Experiment identifier	Surface separation (cm)	Critical number of pins	Critical height of solution above the fuel in the fuel tank (cm) ^a	Solution inside the core
hct101	0.290	222	15.2000	Water
hct102	0.290	223	-50.3000	Water
hct103	0.536	138	30.8000	Water
hct104	0.790	102	-21.3000	Water
hct105	1.046	85	15.2000	Water
hct106	1.046	86	-60.8000	Water
hct107	1.323	78	15.2000	Water
hct108	1.323	79	-39.0000	Water
hct109	1.300	77	-3.90000	Water
hct110	1.554	75	15.2000	Water
hct111	1.554	76	-61.3000	Water
hct112	1.826	77	-43.2000	Water
hct113	2.042	83	-34.1000	Water
hct114	1.544 1.585 ⁵	96	-10.4000	Water
hct115	1.6477	75	-12.2000	Water
hct116	1.5478	99	19.3675	Water
hct117	1.5478	114	19.3675	Aqueous solution of boron
hct118	1.5478	113	19.3675	Aqueous solution of boron
hct119	1.5478	133	19.3675	Aqueous solution of boron

Table 3.1-15.	Benchmarks for HCT-010 Class of Experiments
---------------	---

Experiment identifier	Surface separation (cm)	Critical number of pins	Critical height of solution above the fuel in the fuel tank (cm) ^a	Solution inside the core
hct120	1.5478	83	19.3675	Aqueous solution of uranyl nitrate
hct121	1.5478	133	19.3675	Aqueous solution of uranyl nitrate and boron

Table 3.1-15.	Benchmarks	for HCT-010	Class of Ex	periments

NOTES: * Negative water heights refer to distance below top of fuel.

^b The average surface separation was 1.544 cm between pins in the 16-pin direction and 1.585 cm in the 6pin direction.

3.1.18 Intermediate Heterogeneous Assembly with Highly Enriched Uranium Dioxide and Sand/Water Radial Reflector

An experiment was performed at the RRC "Kurchatov Institute" to investigate accidental sand and water immersion criticality safety of the thermionic intermediate reactor-converter with highly enriched fuel (approximately 96% ²³⁵U), zirconium hydride moderator, and end beryllium reflectors (p. 1, OECD-NEA 1998, HEU-COMP-INTER-002 HCI-002). Described in this category are five configurations of the critical assemblies simulating water ingress into different reactor cavities, as well as surrounding the reactor with sand and water. The experimental descriptions of each configuration are presented in Table 3.1-16. Figure 3.1-1 illustrates the thermionic intermediate reactor as simulated. In configurations 1 and 2, wet sand is the reflector material and the rotating drums are filled with wet sand. All cavities are filled with water. The number of drums and the position of the control drums vary. In configurations 3, 4, and 5, the drum channels were removed, water is the radial reflector, and the number of drums and their positions vary.

Experiment	Mat	erial		Rotating drums
identifier	Radial reflector	Core cavities	Total number	Position in assemblies ¹
hci2-1	SiO ₂ +H ₂ O	H₂O	12	CD-5, φ=36° CD-1 ↑,CD-3 ↓, CD-6 ↓, the other CD and all SD ↑
hci2-2	SiO₂ +H₂O	H ₂ O	11	CD-5, φ=121° CD-3 removed, CD-1, 2, 4, 6 ↓, CD-6 ↓, all SD ↑
hci2-3	H ₂ O	H ₂ O	12	CD-5, φ=119.5° the other CD and all SD ↑
hci2-4	H ₂ O	H ₂ O	11	CD-5, ϕ =95.5° CD-3 removed, the other CD and all SD \uparrow
hci2-5	H ₂ O	H₂O	10	CD-5, φ=76° CD-3 and SD-3 removed, the other CD and all SD ↑

Table 3.1-16. Benchmarks for HCI-002 Class of Experiments

NOTES: ¹ \uparrow -Control drums turned out (φ =180°), \downarrow -Control drums turned in (φ =0°),

Rotation angle φ is shown in Figure 3.1-1.

Figure 3.1-1. Cross Section of the Critical Assembly Representation Through the Core Center (ϕ is the angle of the drum rotation) (p. 3, OECD-NEA [1998], HCI-002)

3.1.19 FFTF Fuel Pin Array Experiments

These experiments were from predicted critical configurations extrapolated from near critical experiments performed by Bierman with plutonium oxide-uranium oxide fuel pins containing about 20 wt% plutonium with light water moderation and reflection (p. 1, OECD-NEA 1998, MIX-COMP-THERM-001 [MCT-001]). Six experiments were evaluated under this classification. These experiments were performed at the PNL Critical Mass Laboratory. The experimental configuration was comprised of an array of fast test reactor fuel pins within a large tank containing water. An axial description of the experimental arrangement is shown on page 4 of OECD-NEA (1998), MCT-001. In the case, the steel grids were replaced with polypropylene grids (p. 144, Bierman et al. 1979). Various lattice pitches were used in the array, resulting in different numbers of fuel rods being required to obtain criticality. The fuel used for the experimental program was a mixture of PuO₂ and UO₂, with the pins comprised of either 19.84 or 24.39 wt% plutonium (p. 141, Bierman et al. 1979). The plutonium contained 11.5 wt% 240 Pu, and the uranium in the PuO₂-UO₂ mixture was natural uranium. The remainder of the pin consisted of end-caps, plenum, and other types of hardware (e.g., natural UO₂ insulators and

Inconel reflectors). Table 3.1-17 provides a brief description of these experiments along with their experiment identifier names.

Experiment identifier	Configuration description
fftf001	18 pin lattice width, 1.2588 cm lattice spacing, 279 total pins
fftf003r	36 pin lattice width, 0.7671 cm lattice spacing, 1037 total pins
fftf004	18 pin lattice width, 1.5342 cm lattice spacing, 205 total pins
fftf005	28 pin lattice width, 0.9525 cm lattice spacing, 605 total pins
fftf006	14 pin lattice width, 1.9050 cm lattice spacing, 162 total pins
fftf029	28 pin lattice width, 0.9677 cm lattice spacing, 580 total pins

Table 3.1-17. FFTF Bierman Array Critical Experiments

3.1.20 High Enriched Uranium Metal Fast (HMF) Systems

Reactivity calculations involving Fast Metal Fuel are presented in this section. In the two following sections, a series of critical experiments performed by the Institute for Experimental Physics of the Russian Federal Nuclear Center at Arzamas-16 and the Institute for Technical Physics of the Russian Federal Nuclear Center at Chelyabinsk-70 are described. Detailed experimental configurations and material compositions for these experiments are included in OECD-NEA (1998). The series of experiments studied in this report include uranium metal systems of intermediate enrichment, high enrichment, and plutonium systems reflected by the following materials: depleted uranium, steel, aluminum, graphite, and polyethylene. An experiment identifier for each configuration is provided for subsequent reference in this document in Tables 3.1-18 and 3.1-19.

Reference	²³⁵ 11 wt%	Core dimensions (cm)		Reflector	Reflector	Experiment identifier	
location	0 11/0	Radius	Height	material	(cm)	Experiment identifier	
HEU-MET-FAST-001	93.71	8.74		None		HMF1G	
HEU-MET-FAST-003	93.5	6.463		Nickel	20.32	HMF3Ni	
HEU-MET-FAST-008	90	10.150		None		HMF8	
HEU-MET-FAST-011	90	7.550		Polyethylene	13.230	HMF11	
HEU-MET-FAST-012	90	9.150		Aluminum	0.850, 2.850	HMF12	
HEU-MET-FAST-013	90	8.350		Steel	3.650	HMF13	
HEU-MET-FAST-014	90	7.750		Depleted U	4.650	HMF14	
HEU-MET-FAST-015	96	9.995	11.130	None		HMF15	
HEU-MET-FAST-018	90	9.150		None		HMF18	
HEU-MET-FAST-019	90	9.150		Graphite	3.450	HMF19	
HEU-MET-FAST-020	90	8.350		Polyethylene	1.450	HMF20	
HEU-MET-FAST-021	90	7.550		Steel	9.700	HMF21	
HEU-MET-FAST-022	90	8.350		Duralumin	3.900	HMF22	
HEU-MET-FAST-024	90	7.550		Steel, polyethylene	0.850, 2.850	HMF24	
HEU-MET-FAST-028	93.27	6.116		Natural uranium	18.009	HMF28	

Table 3 1-18	HMF Russian	Criticality Safety	/ Renchmark	Experiments
	TIME NUSSIAN	United by Salety		Experiments

Volume II, OECD-NEA 1998

3.1.21 Plutonium Metal Fast (PMF) Systems

Handbook	²³⁹ Pu	Core dimensions (cm)		Reflector	Reflector	Case name	
identifier	at%'	Radius	Height	material	thickness (cm)		
PU-MET-FAST-020	89	5.350		Depleted U	7.650	PMF20	
PU-MET-FAST-022	98	6.670		None		PMF22	
PU-MET-FAST-023	98	6.000		Graphite	2.350	PMF23	
PU-MET-FAST-024	98	6.000		Polyethylene	1.550	PMF24	
PU-MET-FAST-025	98	6.000		Steel	1.550	PMF25	
PU-MET-FAST-026	98	5.350		Steel	11.900	PMF26	
PU-MET-FAST-027	89	5.350		Polyethylene	5.580	PMF27	
PU-MET-FAST-028	89	5.350		Steel	19.650	PMF28	
PU-MET-FAST-029	88	6.670	~~	None		PMF29	
PU-MET-FAST-030	88	4.660		Graphite	4.490	PMF30	
PU-MET-FAST-031	88	4.660		Polyethylene	3.690	PMF31	
PU-MET-FAST-032	88	4.660		Steel	4.490	PMF32	

Table 3.1-19. PMF Russian Criticality Safety Benchmark Experiments

Volume I, OECD-NEA 1998

NOTE: 1 at% = atom percent

3.1.22 Intermediate Enriched Uranium Metal Fast (IMF) Systems

3.1.22.1 The Early Jemima Experiments: Bare Cylindrical Configurations of Enriched and Natural Uranium

The early Jemima experiments, performed at the Pajarito critical assembly facility at Los Alamos (1952-1954), was to determine critical conditions for bare uranium cylinders of intermediate enrichment. Vertical cylindrical columns were constructed by stacking thin disks of enriched uranium (Oralloy, or Oy, 93.4 wt% ²³⁵U) and natural uranium (Tuballoy, or Tu) in different orders. A total of five critical cylindrical configurations of uranium disks, partial disks (in the shape of 45° circular sectors), and layers of rectangular blocks were assembled. Documentation and detailed drawings of these experiments are shown on pages 16 through 37 of OECD-NEA (1998) IEU-MET-FAST-001 (IMF-001). For the four experiments, the reference listed detailed and idealized cases. Only the results of the detailed cases were reported in this report. The cases are identified as "IMF1-1", "IMF1-2", "IMF1-3", and "IMF1-4".

3.1.22.2 Natural Uranium Reflected Assembly of Enriched and Natural Uranium Plates

This critical experiment was a cylindrical assembly with a core of alternating plates of enriched and natural uranium surrounded by a natural uranium reflector. The core average enrichment was 16 wt% ²³⁵U (p. 1, OECD-NEA 1998, IMF-002). This experiment was performed at the Los Alamos Pajarito critical assembly facility and can be considered an extension of the earlier Jemima experiments that determined the critical conditions of bare natural and enriched uranium disks of combined intermediate enrichments (29-94 wt% ²³⁵U; p. 1, OECD-NEA 1998, IMF-002). This experiment was designated as "imf2-1".

3.1.22.3 Spherical Assembly of 36 wt%²³⁵U

A series of critical experiments with a spherical assembly of 36 wt%²³⁵U was performed over the course of several years (1993-1996) by the Institute for Experimental Physics of the Russian Federal Nuclear Center. The assembly core included different layers of fissile material (lower core limit) and could be covered by different layers of graphite, steel, or duralumin (upper core limit). The upper core layers are the reflector layers. Table 3.1-20 shows the descriptions for the experimental configurations. More detailed descriptions for this set of experiments is provided in Sections 3.1.22.4 through 3.1.22.8.

	Table 3.1-20.	IMF	Experimental	Description
--	---------------	-----	--------------	-------------

Reference identifier	Description	Experiment identifier
IEU-MET-FAST-003	Bare spherical assembly (detailed)	IMF3-1
IEU-MET-FAST-004	Graphite reflected spherical assembly (detailed)	IMF4-1
IEU-MET-FAST-005	Steel reflected spherical assembly (detailed)	IMF5-1
IEU-MET-FAST-006	Duralumin reflected spherical assembly (detailed)	IMF6-1
IEU-MET-FAST-008	Uranium depleted reflected spherical assembly	IMF8-1
p. 14, OECD-NEA (1998),	IEU-MET-FAST-003 (IMF-003)	
p. 13, OECD-NEA (1998),	IEU-MET-FAST-004 (IMF-004)	
p. 13, OECD-NEA (1998),	IEU-MET-FAST-005 (IMF-005)	

p. 14, OECD-NEA (1998), IEU-MET-FAST-006 (IMF-006)

p. 14, OECD-NEA (1998), IEU-MET-FAST-007 (IMF-008)

3.1.22.4 Bare Spherical Assembly of 36 wt% ²³⁵U

A criticality measurement of a bare spherical assembly of 36 wt% ²³⁵U was performed. The assembly had a core of 36 wt% ²³⁵U incorporating 10 spherical layers of fissile material. Characteristics for these core layers are presented in Table 3.1-21. This case is identified as "imf3-1".

Table 3.1-21. Dimensions and Mass Characteristics of the IMF-003 Critical Assembly

	Detailed 10 shell case					
	Radiu	s (cm)				
Layer no.	Inner	Outer	Layer mass (g)			
1	0.00	2.00	623.29			
2	2.00	6.00	16256			
3	6.00	7.55	16630			
4	7.55	9.15	25864			
5	9.15	11.00	43638			
6	11.00	12.25	39021			
7	12.25	13.25	37156			
8	13.25	14.00	31449			
9	14.00	15.00	48363			
10	15.00	15.324	17128			

p. 12, OECD-NEA 1998, IMF-003

3.1.22.5 Graphite-Reflected Spherical Assembly of 36 wt% ²³⁵U

A criticality measurement of a graphite reflected spherical assembly of 36 wt%²³⁵U was performed. The assembly core had a central cavity of 2-cm radius and incorporated 7 spherical layers of fissile material. Characteristics of these core layers are presented in Table 3.1-22. The graphite reflector was a single spherical layer with an outer radius of 17.2 cm. This case is identified as "imf4-1".

	Detailed 8	shell case	
	Radiu	s (cm)	
Layer no.	Inner	Outer	Layer mass (g)
	Fi	iel	
1	2.788	6.000	15267
2	6.000	7.550	16791
3	7.550	9.150	26169
4	9.150	11.000	44087
5	11.000	12.250	39542
6	12.250	13.250	37804
7	13.250	14.000	32214
	Graphite	reflector	· · · · · · · · · · · · · · · · · · ·
1	14.000	17.200	15222

Table 3.1-22. Dimensions and Mass Characteristics of the IMF-004 Critical Assembly

p. 11, OECD-NEA 1998, IMF-004

3.1.22.6 Steel-Reflected Spherical Assembly of 36 wt% ²³⁵U

A criticality measurement for a steel reflected spherical assembly of 36 wt%²³⁵U was performed. The assembly core had a central cavity of 2.686-cm radius and incorporated 6 spherical layers of fissile material. Characteristics of these core layers are presented in Table 3.1-23. Five spherical layers that differ slightly in density represented the steel reflector. The outermost layer had an outer radius of 21.5 cm. The reflector was represented in as 2 spherical layers that differ slightly in density. This case was identified as "imf5-1".

Table 3.1-23. Dimension and Mass Characteristics of the IMF-005 Critical Assembly

	Detailed 8	shell case	
	Radiu	s (cm)	
Layer no.	Inner	Outer	Layer mass (g)
	Fi	el	
1	2.686	6.000	15366
2	6.000	7.550	16630
3	7.550	9.150	25864
4	9.150	11.000	43638
5	11.000	12.250	39021
6	12.250	13.250	37156
	Steel re	eflector	
1	13.250	15.000	32860
2	15.000	21.500	208500

p. 11, OECD-NEA 1998, IMF-005

3.1.22.7 Duralumin-Reflected Spherical Assembly of 36 wt% ²³⁵U

A criticality measurement for a duralumin reflected spherical assembly of 36 wt% ²³⁵U was performed. The assembly core had a central cavity of 2.1 cm radius and incorporated 6 spherical layers of fissile material. Characteristics of these core layers are presented in Table 3.1-24. Seven spherical layers that differ slightly in density represented the duralumin reflector. The outermost layer had an outer radius of 25 cm. The reflector was represented as 2 spherical layers that differ slightly in density. This case was designated as "imf6-1".

	Detailed 8	3 shell case	
Laverna	Radiu	is (cm)	
Layer no.	Inner	Outer	Layer mass (g)
	F	uel	
1	2.10 ^ª	6.00	16157
2	6.00	7.55	16630
3	7.55	9.15	25864
4	9.15	11.00	43638
5	11.00	12.25	39021
6	12.25	13.25	37156
	Duralum	in reflector	
1	13.25	15.00	11150
2	15.00	25.00	129550

Table 3.1-24. Dimensions and Mass Characteristics of the IMF-006 Critical Assembly

pp. 11, 12, 13, OECD-NEA 1998, IMF-006

3.1.22.8 Depleted Uranium-Reflected Spherical Assembly of 36 wt% ²³⁵U

A criticality measurement for a depleted uranium reflected spherical assembly of 36 wt% ²³⁵U was performed. The assembly core had a central cavity of 2 cm radius and incorporated 6 spherical layers of fissile material. Characteristics of these core layers are presented in Table 3.1-25. Three spherical layers that differ slightly in density represented the depleted uranium reflector. The outermost layer had an outer radius of 16.5 cm. This case was designated as "imf8-1".

Table 3 1-25	Dimensions	and Mass	Characteristics	of the	IME-008	Critical	Assembly
Table 3. 1-23.	DIMENSIONS	anu mass	Characteristics	oruie		Unitida	Assembly

Detailed 9 shells case											
	Radius	; (cm)									
Layer no.	Inner	Outer	Layer mass (g)								
	Fuel										
0	1.40 ^a	2.00	395.7								
1	2.00	6.00	16256								
2	6.00	7.55	16630								
3	7.55	9.15	25864								
4	9.15	11.00	43638								
5	11.00	12.25	39021								
6	12.25	13.25	37156								
Depleted uranium reflector											
1	13.25	14.00	31510								
2	14.00	15.00	48390								
3	15.00	16.50	85890								

p. 12, OECD-NEA 1998, IMF-008

3.2 HOMOGENEOUS SOLUTION EXPERIMENTS

The LCEs presented in this section represent solutions containing uranium, plutonium, or both uranium and plutonium. Each of the LCE configurations described in this section have been analyzed with the MCNP code system using the cross section sets previously described in Section 2.2 of this document. An experiment identifier for each configuration is provided for subsequent reference in this document. With a few exceptions that are noted in the text, the vast majority of the assessed benchmarks come from the OECD compilation (OECD-NEA 1998).

The following sections briefly describe the LCEs according to the grouping in which the results are presented.

3.2.1 Mixed Plutonium and Natural Uranium Nitrate Solutions

The experiments involving plutonium and uranium with naturally occurring isotopic ratios are from OECD-NEA (1998), Volume VI and are listed in Table 3.2-1.

Reference Identifier	Experiment Identifier				
MIX-SOL-THERM-001	PNL3187				
	PNL3391				
	PNL3492				
	PNL3593				
	PNL3694				
	PNL3795				
	PNL3896				
	PNL3897				
	PNL3898				
	PNL3808				
	PNL3999				
	PNL5300				
MIX-SOL-THERM-002	PNL1158				
	PNL1159				
	PNL1161				
MIX-SOL-THERM-003	awre1				
	awre2				
	awre3				
	awre4				
	awre5				
	awre6				
	awre7				
	awre8				
	awre9				
	awre10				
MIX-SOL-THERM-004	PNL1577				
``	PNL1678				
	PNL1783				
	PNL1868				
	PNL1969				
	PNL2070				
	PNL2565				
	PNL2666				
	PNL2767				

Table 3.2-1. Benchmark Problem Summary for Configurations Incorporating Mixed Plutonium and Natural Uranium Nitrate Solutions

3.2.2 Plutonium Nitrate Solutions

The experiments involving plutonium are from OECD-NEA (1998), Volume I and are listed in Table 3.2-2.

Reference Identifier	Experiment Identifier
PU-SOL-THERM-001	pust1t1
	pust1t2
	pust1t3
	pust1t4
	pust1t5
	pust1t6
PU-SOL-THERM-003	pu003-1
	pu003-2
	pu003-3
	pu003-4
	pu003-5
	pu003-6
	pu003-7
	pu003-8
PU-SOL-THERM-004	pu004-1
	pu004-2
	pu004-3
	pu004-4
	pu004-5
	pu004-6
	pu004-7
	pu004-8
	pu004-9
	pu04-10
	pu04-11
	pu04-12
	pu04-13
PU-SOL-THERM-005	pu005-1
	pu005-2
	pu005-3
	pu005-4
	pu005-5
	pu005-6
	pu005-7
	pu005-8
	pu005-9
PU-SOL-THERM-007	pu007-2
	pu007-3
	pu007-5
	pu007-6
	pu007-7
	pu007-8
	pu007-9
	pu07-10
PU-SOL-THERM-009	pust9-1
	pust9-2
	pust9-3
PU-SOL-THERM-0010	pu10091
	pu10092
	pu10093
	l nu10111

Table 3.2-2. Benchmark Problem Summary for ConfigurationsIncorporating Plutonium Nitrate Solutions

Reference Identifier	Experiment Identifier
	pu10112
	pu10113
	pu10114
	pu10115
	pu10116
	pu10117
	pu10121
	pu10122
	pu10123
	pu10124
PU-SOL-THERM-0011	pu11161
	pu11162
	pu11163
	pu11164
	pu11165
	pu11181
	pu11182
	pu11183
	pu11184
	pu11185
	pu11186
	pu11187

 Table 3.2-2.
 Benchmark Problem Summary for Configurations

 Incorporating Plutonium Nitrate Solutions

3.2.3 Highly Enriched Uranium Nitrate Solutions

The experiments involving highly enriched uranium are from OECD-NEA (1998), Volume II and are listed in Table 3.2-3.

Reference Identifier	Experiment Identifier				
HEU-SOL-THERM-001	hest1-1				
	hest1-2				
	hest1-3				
	hest1-4				
	hest1-5				
	hest1-6				
	hest1-7				
	hest1-8				
	hest1-9				
	hest110				
HEU-SOL-THERM-002	hest2-1				
	hest2-2				
	hest2-3				
	hest2-4				
	hest2-5				
	hest2-6				
	hest2-7				
	hest2-8				
	hest2-9				
	hest2-10				
	hest2-11				
	hest2-12				

Table 3.2-3. Benchmark Problem Summary for Configurations Incorporating Highly Enriched Uranium Nitrate Solutions

Reference Identifier	Experiment Identifier
	hest2-13
	hest2-14
HEU-SOL-THERM-003	heust31
	heust32
	heust33
	heust34
	heust35
	heust36
	heust37
	heust38
	heust39
	hest310
	hest311
	hest312
	hest313
	hest314
	hest315
	heat216
	heat217
	nest317
	nest318
	nest319
HEU-SOL-THERM-007	heust/1
	heust72
	heust73
	heust74
	heust75
	heust76
	heust77
	heust78
	heust79
	hest710
	hest711
	hest712
	hest713
	hest714
	hest715
	hest716
	hest717
HEU-SOL-THERM-008	heust81
	heust83
	heust86
	heust80
	host813
	host121
	host122
	hesti 32
	nest133
	nest134
HEU-SUL-THEKM-0014	nest141
	nest142
	hest143
HEU-SOL-THERM-0015	hest151
	hest152
	hest153
	hest154
	hest155

Table 3.2-3.	Benchmar	k Problem	Summary	for Conf	igurations
Incorpora	ting Highly	Enriched I	Uranium N	litrate So	lutions

Reference Identifier	Experiment Identifier
HEU-SOL-THERM-0016	hest161
	hest162
	hest163
HEU-SOL-THERM-0017	hest171
	hest172
	hest173
	hest174
	hest175
	hest176
	hest177
	hest178
HEU-SOL-THERM-0018	hest181
	hest182
	hest183
	hest184
	hest185
	hest186
	hest187
	hest188
	hest189
	hst1810
	hst1811
	hst1812
HEU-SOL-THERM-0019	hest191
	hest192
	hest193
HEU-SOL-THERM-012	hst-121
HEU-SOL-THERM-032	hst-321

Table 3.2-3. Benchmark Problem Summary for Configurations Incorporating Highly Enriched Uranium Nitrate Solutions

3.2.4 Intermediate-Enrichment Uranium Solutions

The experiments involving intermediate-enrichment uranium are from OECD-NEA (1998), Volume III. All involve arrays of polyethylene-moderated $U(30)F_4$ -polytetraflouroethlyene one-inch cubes. These experiments are denoted as IECT101 through IECT129.

3.2.5 Intermediate-Enriched Uranium Nitrate Solutions

A series of critical experiments with aqueous uranyl nitrate solutions with uranium enriched to 10 wt% ²³⁵U was performed at the Solution Critical Facility of the Institute of Physics and Power Engineering, Obninsk, Russia. These experiments are from (p.12, OECD-NEA 1998, LEU-SOL-THERM-003 [LST-003]). Spheres with outer diameters of 66 cm, 88 cm, and 120 cm were used. Experiments differed from one another in geometry, size, and in uranium concentration in the solution. These experiments are denoted as 1st3-1 through 1st3-9.

3.2.6 Intermediate-Enriched Uranyl Sulfate Solutions

These experiments were performed at the RRC "Kurchatov Institute" in 1980-1981, and were to investigate nuclear safety issues for a special-purpose compact reactor with an aqueous solution of uranyl-sulphate (~20.9 at% ²³⁵U) and graphite reflector. These experiments are from (p. 1,

OECD-NEA 1998, IEU-SOL-THERM-001 [IST-001]). These experiments are denoted as cases "ist1-1" through "ist1-4".

3.2.7 Low-Enrichment Uranium Solutions

The first set of experiments involving low-enrichment uranium are from OECD-NEA (1998), Volume IV, the second set (case prefix "LEUJ") are from work at the Japan Atomic Energy Research Institute (Miyoshi et al. 1997), and the third set (case prefix SPHU9) are cases that look at UO_3 -H₂O critical solutions (p. 43, Bierman et al. 1984). These problems are listed in Table 3.2-4.

Reference Identifier	Experiment Identifier				
LEU-SOL-THERM-002	LEUST21				
	LEUST22				
	LEUST23				
JAERI	LEUJA01				
•	LEUJA29				
	LEUJA33				
	LEUJA34				
	LEUJA46				
	LEUJA51				
	LEUJA54				
	LEUJA14				
	LEUJA30				
	LEUJA32				
	LEUJA36				
	LEUJA49				
SPHU9	SPHU9A				
	SPHU9B				
	SPHU9C				
	SPHU9D				
	SPHU9E				
	SPHU9F				
	SPHU9G				
	SPHU9H				
	SPHU91				
	SPHU9J				
	SPHU9K				
	SPHU9L				

Table 3.2-4. Benchmark Problem Summary for Configurations Incorporating Low-Enrichment Uranium Solutions

3.2.8 Low Enriched Uranyl Flouride Solutions

This experiment involved an aqueous solution of about 5 wt% enriched uranyl fluoride and is taken from OECD-NEA (1998), LEU-SOL-THERM-001 (LST-001). This experiment used the SHEBA-II (Solution High Energy Burst Assembly-II), which is a critical assembly experiment that was operated at the Los Alamos Critical Experiments Facility. This experiment is identified as lst1-1.

3.2.9 ²³³U Fuel Homogeneous Criticals

The experiments involving ²³³U Fuel are from OECD-NEA (1998), Volume V. All involve spheres of enriched ²³³U Fuel. The first ten are fast-metal systems. These experiments are denoted as u2331a through u2336a. The other six are thermal solution systems. These experiments are denoted as u233s1 through u233s6.

4. LCE ANALYSES RESULTS

This section tabulates the MCNP k_{eff} results from the three different cross section sets and the average energy of a neutron causing fission (AENCF) results for the LCEs from CRWMS M&O (1999b), CRWMS M&O (1999c), and CRWMS M&O (1999d) according to experimental similarities. The cross section sets were the evaluated nuclear data file (ENDF)/B-V, ENDF/B-VI, and a combination of the two as selected in CRWMS M&O (1998c) referred to as the WPO Selected. Based on the AENCF values, the systems were divided into the following categories: Fast (1.0 Mev \leq AENCF); Intermediate (0.1 Mev \leq AENCF \leq 1.0 Mev); and Thermal (AENCF \leq 0.1 Mev). The AENCF value is the average energy of all fissions – fast, thermal, and intermediate – that occur in a given configuration, and are calculated from the MCNP outputs as described on page 7 of CRWMS M&O (1999c). It should be noted that due to the AENCF being an average over all energies, a system that has a small number of very high energy neutrons causing fission and a lot of low energy neutrons causing fission. Thus, this grouping structure is used for illustrative purposes only, and should not be considered the same as traditional spectrum nomenclature for fast, thermal, and intermediate systems.

In the following sections the index in the plots refers to the number (#) designation in the tables for each case.

4.1 LATTICE CRITICALS

Tables 4.1-1 through 4.1-10 and Figures 4.1-1 through 4.1-10 present the results for the LCEs according to the following distinct experimental classifications:

- Table and Figure 4.1-1: Moderated lattices containing mixed oxide fuel (Thermal System)
- Table and Figure 4.1-2: Moderated lattices containing mixed oxide fuel (Intermediate System)
- Table and Figure 4.1-3: Moderated lattices containing HEU fuel pins (Thermal System)
- Table and Figure 4.1-4: Moderated lattices containing HEU fuel pins (Intermediate System)
- Table and Figure 4.1-5: Moderated lattices containing HEU fuel plates (Thermal System)
- Table and Figure 4.1-6: Moderated single-zone lattices containing HEU cruciform fuel pins (Thermal System)
- Table and Figure 4.1-7: Moderated dual-zone lattices containing HEU cruciform fuel pins (Thermal System)
- Table and Figure 4.1-8: Moderated lattices containing IEU fuel pins (Thermal System)
- Table and Figure 4.1-9: Moderated lattices containing LEU fuel pins (Thermal System)
- Table and Figure 4.1-10: Moderated lattices containing LEU fuel pins (Intermediate System)

Future revisions of this report may include additional LCEs.

The tables include the calculated values for k_{eff} , standard deviation (sigma), and the average energy of a neutron causing fission (AENCF). The values are all taken from the MCNP output files as described in CRWMS M&O (1999b), CRWMS M&O (1999c), and CRWMS M&O (1999d).

Table 4. 1-1. Mixed Oxide Luci Lini Lattice Ontical Experiments (Therma	Table 4.1-1.	Mixed Oxide Fuel Pin Lattice Critical Experimen	ts (Thermal
---	--------------	---	-------------

# 6000		WPO Selected		ENDF/B-V			ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF
1	fftf004 ^a	1.00635	0.00361	0.0819	0.99333	0.00348	0.0816	1.00137	0.00337	0.0779
2	fftf006 ^a	1.00558	0.00313	0.0609	1.01291	0.00285	0.0635	0.99947	0.00313	0.0646

NOTE: ^a Values based on TBV-1371

Figure 4.1-1. Mixed Oxide Fuel Pin Lattice Critical Experiments (Thermal)

	Casa	WPO Selected			ENDF/B-V			ENDF/B-VI		
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF
1	exp22e5	0.99624	0.00174	0.25557	0.99574	0.00153	0.2559	0.99267	0.00161	0.25764
2	exp23e5	1.0005	0.00169	0.27397	1.00004	0.00157	0.27645	0.99307	0.00176	0.2732
3	exp24e5	1.00302	0.00171	0.16128	1.00819	0.00177	0.16053	0.99653	0.00176	0.16065
4	exp25e5	1.00835	0.00161	0.18944	1.00635	0.00161	0.18898	1.00214	0.00167	0.19096
5	exp26e5	1.00709	0.0016	0.13192	1.00864	0.00158	0.13287	0.999	0.00162	0.13166
6	exp27e5	1.00752	0.00155	0.15372	1.0045	0.0016	0.15299	1.00186	0.00155	0.15393
7	fftf001	1.00557	0.00355	0.1015	1.00567	0.00342	0.1044	0.99485	0.00344	0.1043
8	fftf003r	0.99049	0.00276	0.2453	0.98913	0.00307	0.2447	0.99388	0.00371	0.2388
9	fftf005	1.00373	0.0031	0.1728	0.99582	0.00361	0.1717	0.99835	0.00316	0.1727
10	fftf0029	0.99776	0.00278	0.1647	0.99891	0.00323	0.1694	0.9985	0.0032	0.1661
11	smr1	0.99783	0.00073	0.1715	0.99627	0.00072	0.1707	0.99302	0.00072	0.1705
12	smr5	0.99349	0.00073	0.1919	0.99442	0.00072	0.1928	0.99087	0.00074	0.1919
13	smr8	0.99956	0.00068	0.2051	0.99861	0.00064	0.2045	0.99444	0.00058	0.2037
14	smr9	0.99683	0.00078	0.1673	0.99468	0.00072	0.1683	0.99151	0.00074	0.1667
15	smr11	0.99783	0.00078	0.0205	0.99833	0.00072	0.2049	0.99247	0.00079	0.2027
16	smr12	0.99992	0.0008	0.2049	0.99869	0.00073	0.2041	0.99358	0.00077	0.2024
17	ssr27	0.99881	0.00082	0.2015	0.99728	0.00077	0.2013	0.99195	0.00077	0.2017
18	ssr53	1.00454	0.00066	0.1065	1.0034	0.00065	0.1063	0.99503	0.00074	0.1064
19	ssr57	0.99807	0.00075	0.1938	0.99673	0.00076	0.1933	0.99009	0.00072	0.1928
20	ssr66	1.00308	0.00073	0.1183	1.00272	0.00074	0.1182	0.99383	0.00073	0.1189
21	ssr70	0.99543	0.00072	0.2295	0.99369	·0.00074	0.2294	0.98936	0.00071	0.229
22	ssr74	1.00505	0.00068	0.079	1.00551	0.00066	0.0799	0.99858	0.00072	0.08
23	exp34	0.9875	0.00168	0.37762	0.98999	0.00154	0.37796	0.99406	0.00152	0.37363

Table 4.1-2. Mixed Oxide Fuel Pin Lattice Critical Experiments (Intermediate)

NOTE: Index numbers 1 through 6 carry TBV-1368, index numbers 7 through 10 carry TBV-1371, and index numbers 11 through 23 carry TBV-1359 and TBV-1368

Figure 4.1-2. Mixed Oxide Fuel Pin Lattice Critical Experiments (Intermediate)

ن ا	Casa	W	PO Select	ed		ENDF/B-V		ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	hct101	0.98849	0.00121	0.0793	0.98716	0.00118	0.0797	0.98784	0.00112	0.0783	
2	hct102	0.98532	0.00116	0.0799	0.98361	0.00115	0.0797	0.98632	0.00117	0.08	
3	hct103	0.99428	0.00127	0.0555	0.99328	0.00125	0.0557	0.98998	0.00117	0.0551	
4	hct104	0.99478	0.00119	0.0439	0.99468	0.00125	0.0431	0.99397	0.00126	0.0423	
5	hct105	0.99679	0.00115	0.0357	0.99734	0.00119	0.036	0.99568	0.00113	0.0358	
6	hct106	0.99644	0.00113	0.0359	0.99239	0.00121	0.0361	0.99419	0.00113	0.0358	
7	hct107	0.99679	0.00115	0.0357	0.99976	0.00105	0.0308	0.99841	0.00113	0.0307	
8	hct108	1.00263	0.00108	0.032	0.9991	0.00122	0.0315	0.99853	0.00121	0.0309	
9	hct109	0.99882	0.00113	0.0316	0.99777	0.00109	0.0314	0.99798	0.00116	0.031	
10	hct110	1.00461	0.00106	0.0288	1.00198	0.00104	0.0287	1.00261	0.00102	0.0282	
11	hct111	1.00002	0.00115	0.0285	0.99913	0.00109	0.0291	0.99882	0.00111	0.0283	
12	hct112	1.00103	0.00111	0.0262	1.00052	0.00105	0.0262	0.99642	0.00107	0.0257	
13	hct113	1.00366	0.00102	0.0252	1.00237	0.001	0.025	1.0006	0.001	0.0244	
14	hct114	1.00135	0.00114	0.0284	1.00112	0.00112	0.0281	0.99823	0.00113	0.028	
15	hct115	1.00368	0.00113	0.0288	1.00059	0.00113	0.0289	0.99844	0.00115	0.0286	
16	hct116	1.00594	0.00109	0.0282	1.00378	0.00114	0.0289	0.99892	0.00115	0.0281	
17	hct117	1.00448	0.00107	0.0286	1.00377	0.0011	0.0293	1.00117	0.00124	0.0281	
18	hct118	1.00267	0.00116	0.0288	1.0018	0.00117	0.0287	0.99989	0.0012	0.0283	
19	hct119	1.0037	0.00108	0.0296	1.00151	0.00105	0.0295	0.99935	0.00126	0.0294	
20	hct120	1.00489	0.00101	0.0229	1.0024	0.001	0.0234	1.00295	0.00096	0.0228	
21	hct121	1.00342	0.00115	0.0277	1.00416	0.0011	0.0278	1.0025	0.00111	0.0272	

Table 4.1-3. High Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal)

Figure 4.1-3. High Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal)

#	C	W	PO Select	ed		ENDF/B-V	/	ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k eff	σ	AENCF	
1	hci2-1	0.99627	0.00079	0.2422	0.99236	0.00081	0.2430	0.99933	0.00081	0.2354	
2	hci2-2	0.99614	0.00082	0.2413	0.99339	0.00107	0.2439	1.00136	0.00085	0.2357	
3	hci2-3	0.99871	0.00083	0.2381	0.99603	0.00101	0.2377	1.00422	0.00087	0.2313	
4	hci2-4	0.99892	0.00083	0.2376	0.99676	0.00101	0.2394	1.00469	0.00081	0.2312	
5	hci2-5	1.00059	0.00078	0.2376	0.99736	0.001	0.2391	1.00278	0.00081	0.2313	

Table 4.1-4. High Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate)

Figure 4.1-4. High Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate)

5

ш	0	W	PO Select	ed		ENDF/B-V	,		ENDF/B-V	1
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF
1	spert1	0.99792	0.00184	0.0147	0.99792	0.00184	0.0147	0.99727	0.00176	0.014
2	spert2	0.99952	0.0019	0.0126	0.99952	0.0019	0.0126	0.99732	0.00186	0.0125
3	spert3	1.00676	0.00114	0.0117	1.00676	0.00114	0.0117	1.00384	0.00095	0.0112
4	spert4	0.99542	0.00173	0.011	0.99542	0.00173	0.011	0.98908	0.00179	0.0113
5	spert5	1.00104	0.00162	0.0105	1.00104	0.00162	0.0105	1.00072	0.00183	0.011
6	spert6	1.00133	0.00168	0.0102	1.00133	0.00168	0.0102	0.99683	0.00152	0.0098
7	spert7	0.99923	0.00163	0.0097	0.99923	0.00163	0.0097	0.9952	0.00147	0.0104
8	spert8	0.99843	0.00154	0.0098	0.99843	0.00154	0.0098	0.99009	0.0015	0.0096
9	spert9	1.00003	0.00143	0.0099	1.00003	0.00143	0.0099	0.99697	0.00149	0.0098
10	spert10	1.00608	0.00177	0.0147	1.00608	0.00177	0.0147	1.00534	0.0019	0.014
11	spert11	1.00565	0.00163	0.0115	1.00565	0.00163	0.0115	1.00283	0.00171	0.0113
12	spert12	1.00676	0.00156	0.0101	1.00676	0.00156	0.0101	1.00466	0.00175	0.0102
13	spert13	1.03289	0.00181	0.0143	1.03289	0.00181	0.0143	1.02936	0.00189	0.0141
14	spert14	0.99451	0.00158	0.0106	0.99451	0.00158	0.0106	0.99427	0.00159	0.0107
15	spert15	0.99355	0.00107	0.0106	0.99355	0.00107	0.0106	0.99179	0.00103	0.0105
16	spert16	1.00791	0.00175	0.012	1.00791	0.00175	0.012	1.00549	0.00183	0.0118
17	spert17	1.00569	0.00188	0.0131	1.00569	0.00188	0.0131	1.00206	0.00179	0.0133
18	spert18	1.00028	0.00198	0.014	1.00028	0.00198	0.014	1.00615	0.00181	0.0135
19	spert19	0.99482	0.00148	0.0097	0.99482	0.00148	0.0097	0.98982	0.00158	0.009
20	spert20	0.99652	0.00158	0.0114	0.99652	0.00158	0.0114	0.99315	0.00166	0.0115
21	spert21	1.00113	0.00186	0.0124	1.00113	0.00186	0.0126	1.00086	0.00178	0.0127
22	spert22	1.00272	0.00194	0.0133	1.00272	0.00194	0.0133	0.9984	0.00175	0.0131
23	spert23	1.00695	0.0011	0.0133	1.00695	0.0011	0.0132	1.00426	0.00099	0.0131

Table 4.1-5. High Enriched Uranium Oxide Fuel Plate Lattice Critical Experiments (Thermal)

#	Case	W	PO Select	ed		ENDF/B-V		ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	hct4-1	0.98875	0.00126	0.0740	0.98756	0.00122	0.0744	0.99143	0.00122	0.0735	
2	hct4-2	0.98977	0.00124	0.0732	0.9889	0.0012	0.0736	0.99042	0.00123	0.0716	
3	hct4-3	0.99049	0.00123	0.0765	0.99157	0.00119	0.0756	0.99272	0.00121	0.0747	
4	hct4-4	0.99036	0.00118	0.0748	0.99116	0.00114	0.0742	0.98934	0.00122	0.0729	
5	hct5-2	0.98493	0.0018	0.0776	0.98455	0.00128	0.0764	0.98887	0.00115	0.0765	
6	hct6-t1	0.99034	0.00125	0.0715	0.98952	0.00137	0.0720	0.99212	0.00136	0.0718	
7	hct6-t2	1.01252	0.00127	0.0231	1.0104	0.0013	0.0232	1.00798	0.00128	0.0229	
8	hct6-t3	0.9993	0.001	0.0106	0.99557	0.00095	0.0104	0.99612	0.00099	0.0106	
9	hct7-4	1.00086	0.00149	0.0340	0.99932	0.00164	0.0339	0.99992	0.00148	0.0334	
10	hct7-5	0.99902	0.00164	0.0448	0.99492	0.00156	0.0458	0.99969	0.00152	0.0445	
11	hct7-6	0.99556	0.00154	0.0486	0.99487	0.00154	0.0475	0.99545	0.00159	0.0470	
12	hct8-1	0.98915	0.0011	0.0882	0.99042	0.00106	0.0882	0.99281	0.00108	0.0856	
13	hct8-2	0.99273	0.00108	0.0919	0.98954	0.00112	0.0922	0.99117	0.00116	0.0912	

Table 4.1-6. High Enriched Uranium Oxide Single-Zone Cruciform Rod Lattice Critical Experiments(Thermal)

-#	Casa	W	PO Select	ed		ENDF/B-V		ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	hct3-1	0.99475	0.0015	0.0466	0.99381	0.00136	0.0467	0.99473	0.00138	0.0460	
2	hct3-2	0.99147	0.00152	0.0417	0.99746	0.00144	0.0404	0.9956	0.00144	0.0405	
3	hct3-3	0.99699	0.00132	0.0330	0.99637	0.00144	0.0337	0.99473	0.00149	0.0333	
4	hct3-4	1.00159	0.00141	0.0262	0.99796	0.00148	0.0259	0.99688	0.00148	0.0261	
5	hct3-5	1.00175	0.00146	0.0207	1.00253	0.00137	0.0202	1.0006	0.00151	0.0199	
6	hct3-6	1.00947	0.00153	0.0419	1.00616	0.00152	0.0405	1.00706	0.0016	0.0398	
7	hct3-7	1.01327	0.00144	0.0345	1.01132	0.00143	0.0339	1.009	0.00145	0.0339	
8	hct3-8	1.01001	0.0015	0.0342	1.00988	0.00155	0.0329	1.01081	0.00143	0.0334	
9	hct3-9	1.01332	0.00147	0.0265	1.01309	0.00154	0.0263	1.01355	0.00145	0.0260	
10	hct3-10	1.01014	0.00143	0.0202	1.00962	0.0014	0.0209	1.01004	0.00149	0.0200	
11	hct3-11	1.01347	0.00137	0.0177	1.0133	0.0014	0.0177	1.01317	0.00152	0.0173	
12	hct3-12	0.9933	0.00136	0.0263	0.98956	0.00133	0.0265	0.98921	0.00135	0.0265	
13	hct3-13	1.00022	0.00126	0.0140	0.99677	0.00119	0.0139	0.99588	0.00126	0.0133	
14	hct3-14	1.00853	0.00143	0.0305	1.005	0.00157	0.0300	1.00682	0.0015	0.0301	
15	hct3-15	1.00648	0.00128	0.0185	1.00775	0.00142	0.0183	1.003	0.00141	0.0179	

Table 4.1-7. High Enriched Uranium Oxide Dual-Zone Cruciform Rod Lattice Critical Experiments(Thermal)

Figure 4.1-7. High Enriched Uranium Oxide Dual-Zone Cruciform Rod Lattice Critical Experiments (Thermal)

Table 4, 1-0. Internetiate Enneried Oraniani Oxide Facir in Eather Oritical Experimenta (mornar
--

#	# Case	WPO Selected			ENDF/B-V			ENDF/B-VI			
#		k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	tri17	1.00897	0.00141	0.0236	1.00737	0.00129	0.0233	1.00740	0.00132	0.0236	
2	tri18	1.01314	0.00126	0.0240	1.00921	0.00132	0.0234	1.01195	0.00143	0.0238	

NOTE: Values in table carry TBV-1369

Figure 4.1-8. Intermediate Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal)

#	Casa	WPO Selected				ENDF/B-V		ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	exp18	1.00503	0.00167	0.08863	1.00192	0.00168	0.08861	0.99716	0.00169	0.08890	

Figure 4.1-9. Low Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Thermal)

	0	W	PO Select	ed		ENDF/B-V			ENDF/B-V	I
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF
1	core2	1.00058	0.00159	0.19988	1.00029	0.00147	0.19859	0.99441	0.00156	0.19779
2	core3	1.00019	0.00148	0.18078	0.99991	0.00147	0.18029	0.99389	0.00152	0.17831
3	core4	0.9948	0.0015	0.17908	0.99429	0.00157	0.18206	0.99094	0.00149	0.17962
4	core5	0.99445	0.00153	0.16919	0.99226	0.00149	0.16804	0.99118	0.00157	0.16845
5	core6	0.99556	0.00152	0.17216	0.9924	0.00152	0.17097	0.98847	0.00155	0.17213
6	core7	0.99463	0.00151	0.15963	0.99357	0.00153	0.16113	0.99004	0.00155	0.15992
7	core8	0.98895	0.00149	0.16496	0.99294	0.00158	0.16116	0.99107	0.00154	0.16043
8	core9	0.99298	0.00144	0.15528	0.9939	0.00152	0.15725	0.98803	0.00152	0.15449
9	core10	0.99511	0.00148	0.16036	0.99523	0.00147	0.1597	0.99204	0.00146	0.15896
10	core11	0.99699	0.00148	0.17893	0.99789	0.00153	0.17801	0.99693	0.00149	0.17822
11	core12	0.99549	0.00151	0.16671	0.99658	0.00155	0.1677	0.99442	0.00148	0.16679
12	core13	0.99933	0.00151	0.18075	0.99594	0.00159	0.17945	0.99702	0.00154	0.17772
13	core15	0.99107	0.00157	0.18348	0.98476	0.0015	0.18301	0.98498	0.00151	0.18146
14	core16	0.99041	0.0015	0.16952	0.98967	0.00154	0.1703	0.98719	0.00162	0.16862
15	core17	0.99365	0.00151	0.18187	0.99534	0.00148	0.18122	0.98957	0.00153	0.18184
16	core18	0.9947	0.0015	0.16855	0.9938	0.0016	0.16945	0.98602	0.00155	0.16933
17	core19	0.99383	0.00153	0.18354	0.99637	0.00146	0.18256	0.98955	0.00159	0.18185
18	core20	0.99392	0.00151	0.16933	0.99247	0.00157	0.17024	0.98777	0.00151	0.17006
19	core21	0.9916	0.0014	0.16225	0.99318	0.00146	0.16143	0.99135	0.00152	0.16011
20	exp1	1.00084	0.00088	0.12095	0.99958	0.00087	0.12037	0.99657	0.00093	0.12075
21	exp2	0.99842	0.00088	0.12469	0.99762	0.00086	0.12291	0.99351	0.00097	0.12334
22	exp3	0.99898	0.00089	0.12172	1.00103	0.00091	0.12005	0.99613	0.00095	0.12083
23	exp4	1.00104	0.00087	0.12003	1.00241	0.00091	0.12057	0.99582	0.0009	0.12186
24	exp5	1.00037	0.00107	0.27968	0.9969	0.00103	0.28386	0.99295	0.00104	0.28018
25	exp6	0.99675	0.00103	0.17662	0.99772	0.00105	0.17775	0.9944	0.00111	0.17643
26	exp7	0.99724	0.00111	0.1784	0.99821	0.0011	0.17822	0.99144	0.00105	0.1773
27	exp8	1.00719	0.0011	0.17735	1.007	0.00102	0.17807	1.0033	0.00105	0.17769
28	exp9	1.00827	0.00099	0.22171	1.00687	0.00109	0.22393	1.00496	0.00105	0.22242
29	exp10	1.0066	0.00174	0.2239	1.00499	0.00173	0.2225	1.00454	0.00182	0.22149
30	exp11	1.00358	0.00157	0.26643	1.00046	0.00177	0.26803	0.99995	0.00162	0.26652
31	exp12	1.00546	0.00108	0.19461	1.00113	0.00105	0.19577	1.00189	0.00111	0.19235
32	exp13	1.00371	0.00113	0.19421	1.00363	0.00109	0.19365	0.99936	0.00109	0.1936
33	exp14	0.99593	0.00099	0.20945	0.99534	0.00099	0.20881	0.98998	0.00099	0.20806
34	exp15	1.00074	0.00087	0.10984	1.00105	0.00088	0.10995	0.99603	0.00089	0.10902
35	exp1/	1.00218	0.00186	0.15637	0.99815	0.00173	0.15534	0.99216	0.00173	0.15603
30	ugui	1.00033	0.00143	0.20132	0.99717	0.0014	0.20069	0.99688	0.00149	0.19672
31	ugazu	1.00322	0.00153	0.20098	1.00179	0.00159	0.20624	0.9971	0.00155	0.20429
30	uguz	0.99945	0.00145	0.19020	0.99692	0.0015	0.20018	0.9947	0.00151	0.19858
39	ugus	1.00054	0.00147	0.19940	0.99040	0.00145	0.19730	0.99449	0.00151	0.19988
40	ugu4	0.00055	0.0015	0.19900	0.99911	0.00144	0.19744	0.00696	0.00149	0.1993
41	ugus	0.99955	0.00154	0.19732	0.99900	0.00147	0.20041	0.99000	0.0015	0.19042
42	uguo ugd7	1 0041	0.00132	0.19775	0.00229	0.00149	0.19097	0.9952	0.00154	0.19894
43	ugu7	0.00020	0.00148	0.19075	0.99607	0.00144	0.19090	0.99267	0.00147	0.19687
44	uguo ugdo	0.99929	0.00154	0.19750	1.00042	0.00151	0.19942	0.99722	0.00147	0.19633
40	ugu9	0.0070	0.00130	0.19073	1.00042	0.00139	0.19903	0.99743	0.00140	0.19051
40	ugu 10 ugd12	0.9979	0.00144	0.2011	1.00179	0.00145	0.20029	1.00124	0.00151	0.19095
41	uguiz	1 00040	0.00101	0.20900	0.00007	0.00140	0.20100	1.00134	0.00149	0.2000
40	uguis und14	1.00049	0.00100	0.20041	1.00060	0.00100	0.20937	0.00037	0.00140	0.2000
50	ugu 14	1 00158	0.00150	0.20410	<u>n aaa27</u>	0.00144	0.20000	0.00101	0.00103	0.20711
51	ugu15	1.00100	0.00151	0.2000	0.00021	0.00147	0.20000	0.00003	0.00100	0.20342
52	und17	0.99912	0.00151	0.20040	<u>n qaana</u>	0.00152	0.20572	0.00000	0.00100	0.20001
53		0.99876	0.0015	0.20851	0.00000	0.00155	0.20072	0.000	0.00149	0.2024
54	und10	1 00133	0.00153	0.21011	0.00741	0.00155	0.20757	1 00008	0.00155	0.20502
55	Case 1	0.99436	0.00167	0 1229	0.9987	0.00191	0 1239	0.99248	0.00153	0.1227
56	Case 2	0 99445	0.00158	0 1223	0.99557	0.00185	0.1208	0.9923	0.00161	0.121
<u> </u>		0.00 170	0.00100	0.1220	0.00001	0.00100	0.1200	0.0020	0.00101	0.121

Table 4.1-10. Low Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate)

-44	Casa	WPO Selected				ENDF/B-V	1	ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
57	Case_3	0.99982	0.00159	0.12	0.9957	0.00175	0.122	0.99637	0.00172	0.1221	
58	Case_4	0.99313	0.00161	0.1222	0.99907	0.00144	0.1208	0.98949	0.00156	0.1207	
59	Case_5	0.9931	0.00169	0.1204	0.99313	0.00157	0.1218	0.99429	0.00172	0.1187	
60	Case_6	0.99831	0.00158	0.1221	0.99882	0.00143	0.1208	0.99161	0.00158	0.1219	
61	Case_7	0.99261	0.00138	0.1211	0.99677	0.00143	0.1186	0.99578	0.00155	0.1176	
62	Case_8	0.99888	0.00151	0.1209	1.00246	0.00162	0.1201	0.99597	0.00149	0.1214	
63	subc2p8h	1.00887	0.0032	0.4085	1.0048	0.00294	0.4085	1.01057	0.00335	0.4005	
64	subc3p1h	1.0335	0.00287	0.3417	1.03902	0.00248	0.3516	1.04014	0.0031	0.3447	
65	subc3p4h	1.01929	0.00238	0.3153	1.02088	0.00277	0.3145	1.01971	0.00266	0.3165	
66	ssr83	0.99299	0.00074	0.18197	0.9928	0.00069	0.1821	0.98821	0.00073	0.18115	
67	ssr48	0.9939	0.00071	0.15568	0.99396	0.00074	0.1564	0.99136	0.00072	0.15464	
68	lct27-1	1.0157	0.0005	0.1025	1.0139	0.0005	0.1024	1.0102	0.0006	0.1023	

 Table 4.1-10.
 Low Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate)

NOTE: Index numbers 1 through 19 carry TBV-1357, index numbers 20 through 23 carry TBV-1362, index numbers 24 through 26 carry TBV-1363 and 1364, index numbers 27 through 30 carry TBV-1365, index numbers 31 and 32 carry TBV-1361, index numbers 33 and 34 carry TBV-1368, index numbers 36 through 54 carry TBV-1358, index numbers 63 through 65 carry TBV-1360, and index numbers 66 and 67 carry TBV-1359 and 1368

Figure 4.1-10. Low Enriched Uranium Oxide Fuel Pin Lattice Critical Experiments (Intermediate)

4.2 HOMOGENEOUS CRITICALS

This section tabulates the MCNP k_{eff} results for the LCEs from CRWMS M&O (1999b), CRWMS M&O (1999c), and CRWMS M&O (1999d) according to experimental similarities. Tables 4.2-1 through 4.2-12 and Figures 4.2-1 through 4.1-12 present the results for the LCEs according to the following distinct experimental classifications:

- Table and Figure 4.2-1: Homogeneous critical experiments using mixed Pu nitrate and U nitrate solutions (Thermal Systems)
- Table and Figure 4.2-2: Homogeneous critical experiments using Pu nitrate solutions (Thermal Systems)
- Table and Figure 4.2-3: Pu metal fast experiments (Fast Systems)
- Table and Figure 4.2-4: Homogeneous critical experiments using HEU nitrate solutions (Thermal Systems)
- Table and Figure 4.2-5: HEU metal fast experiments (Fast Systems)
- Table and Figure 4.2-6: Homogeneous critical experiments using IEU nitrate solutions (Thermal Systems)
- Table and Figure 4.2-7: Homogeneous critical experiments using IEU nitrate solutions (Intermediate Systems)
- Table and Figure 4.2-8: IEU metal fast experiments (Fast Systems)
- Table and Figure 4.2-9: Homogeneous critical experiments using LEU nitrate solutions (Thermal Systems)
- Table and Figure 4.2-10: Homogeneous critical experiments using LEU nitrate solutions (Intermediate Systems)
- Table and Figure 4.2-11: Homogeneous critical experiments using ²³³U fuel (Thermal Systems)
- Table and Figure 4.2-12: Homogeneous critical experiments using ²³³U fuel (Fast Systems)

The column identified as AENCF contains the average energy of the neutron causing fission. It is a measure of the energy spectrum of the neutrons and has units of MeV.

It should be noted that unaccepted data were used in the development of the results presented in Table 4.2-9 for the LEUJA cases. These values carry TBV-1370.

4	Casa	W	PO Select	ed		ENDF/B-V			ENDF/B-V	
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF
1	pnl3187	0.99821	0.00116	0.04158	0.99762	0.00116	0.04174	0.98843	0.00105	0.04181
2	pnl3391	0.99318	0.00112	0.04075	0.99425	0.00116	0.04105	0.98609	0.00104	0.0413
3	pnl3492	0.99619	0.00113	0.04386	0.99754	0.00116	0.04313	0.98923	0.00119	0.04361
4	pnl3593	0.99694	0.00121	0.04614	0.99727	0.00111	0.04586	0.99095	0.00108	0.04649
5	pnl3694	1.00275	0.00113	0.04483	1.00255	0.00118	0.04452	0.99364	0.00116	0.04427
6	pnl3795	1.00302	0.00117	0.03965	1.00166	0.00116	0.04	0.99703	0.00119	0.03983
7	pnl3808	1.00178	0.00095	0.02059	1.00195	0.00113	0.0213	0.9928	0.00107	0.02061
8	pnl3896	1.00263	0.0011	0.02357	1.00235	0.00124	0.02319	0.99527	0.00113	0.02353
9	pnl3897	1.00323	0.00125	0.01447	1.00449	0.00105	0.0142	0.99639	0.00104	0.01426
10	pnl3898	1.00297	0.00118	0.02973	1.00287	0.00104	0.02994	0.99728	0.00116	0.03
11	pnl3999	1.00707	0.00108	0.02933	1.00919	0.00107	0.02959	1.00133	0.00117	0.02906
12	pnl5300	1.0067	0.00105	0.02917	1.008	0.0011	0.02884	1.00106	0.00102	0.02891
13	pni1158	1.00686	0.00067	0.00393	1.00691	0.00065	0.00384	1.00301	0.00065	0.00386
14	pnl1159	1.00558	0.00064	0.0038	1.00735	0.00062	0.0037	1.00244	0.00069	0.0039
15	pnl1161	1.00751	0.00066	0.00597	1.0079	0.00067	0.00607	1.00033	0.0006	0.00605
16	awre1	1.01511	0.0012	0.03133	1.01469	0.00103	0.03153	1.00516	0.00127	0.03133
17	awre2	1.01167	0.00117	0.03206	1.01568	0.00115	0.03149	1.00467	0.00115	0.03199
18	awre3	1.01028	0.00114	0.03183	1.01203	0.0012	0.03197	1.00181	0.00117	0.03253
19	awre4	1.00486	0.00111	0.03228	1.0051	0.00118	0.03189	0.9984	0.0011	0.03207
20	awre5	1.00875	0.00101	0.01062	1.00847	0.001	0.01043	1.00019	0.00107	0.01028
21	awre6	1.01337	0.00108	0.01053	1.01067	0.00103	0.01035	1.00588	0.00107	0.01041
22	awre7	1.0064	0.00102	0.01089	1.00796	0.00099	0.0105	0.99924	0.00101	0.01046
23	awre8	1.01255	0.00091	0.00684	1.01284	0.00083	0.00686	1.00379	0.00079	0.00682
24	awre9	1.00977	0.00088	0.00684	1.0094	0.00092	0.00661	1.00207	0.00094	0.00692
25	awre10	1.00839	0.00081	0.00648	1.01024	0.00084	0.00662	1.00221	0.00088	0.00652
26	pnl1577	0.99645	0.00128	0.05956	0.99578	0.00122	0.05887	0.98992	0.00125	0.05858
27	pnl1678	0.99976	0.00115	0.05069	0.99735	0.00115	0.05044	0.98991	0.00125	0.05119
28	pnl1783	0.99976	0.00115	0.05386	0.99922	0.00118	0.05337	0.99258	0.00124	0.0533
29	pnl1868	1.00247	0.00119	0.03416	1.0039	0.00127	0.03434	0.99364	0.00127	0.0345
30	pnl1969	0.99967	0.00111	0.0336	1.00003	0.0012	0.0334	0.98934	0.00128	0.03334
31	pnl2070	0.99925	0.00115	0.03743	0.99956	0.00143	0.0377	0.99312	0.00133	0.03853
32	pnl2565	1.00363	0.00112	0.01295	1.00148	0.00123	0.01294	0.99786	0.00119	0.01298
33	pnl2666	1.00337	0.00105	0.0116	1.00179	0.00112	0.01169	0.99694	0.00109	0.01169
34	pnl2767	1.00629	0.00113	0.01197	1.00607	0.00113	0.0123	0.99664	0.00113	0.01216

Table 4.2-1. Homogeneous Critical Experiments Using Mixed Plutonium and Natural Uranium Nitrate Solutions (Thermal)

Figure 4.2-1. Homogeneous Critical Experiments Using Mixed Plutonium and Natural Uranium Nitrate Solutions (Thermal)

		W	PO Select	ed		ENDF/B-V			ENDF/B-V	1
#	Case	k _{eff}	σ	AENCF	k eff	σ	AENCF	k _{eff}	σ	AENCF
1	pust1t1	1.00995	0.00102	0.01252	1.01064	0.00101	0.0126	1.00058	0.00102	0.01301
2	pust1t2	1.01109	0.001	0.01702	1.01278	0.001	0.01722	1.00408	0.00104	0.01715
3	pust1t3	1.01396	0.00094	0.02159	1.01447	0.00105	0.02086	1.00692	0.00106	0.02172
4	pust1t4	1.00643	0.00104	0.02397	1.00766	0.00105	0.02374	0.99921	0.00107	0.02405
5	pust1t5	1.01014	0.00101	0.02479	1.01107	0.00099	0.02464	1.00222	0.00103	0.02514
6	pust1t6	1.00831	0.00104	0.04809	1.01003	0.00104	0.04883	1.00585	0.00105	0.0481
7	pu003-1	1.00962	0.00091	0.00623	1.0089	0.0009	0.00634	1.00208	0.00095	0.00631
8	pu003-2	1.00885	0.00091	0.00651	1.00764	0.00091	0.00655	1.00029	0.00091	0.00664
9	pu003-3	1.01228	0.00092	0.00693	1.0116	0.00095	0.00696	1.00324	0.00097	0.00711
10	pu003-4	1.00965	0.00094	0.0072	1.01162	0.00097	0.00723	1.00401	0.00092	0.00731
11	pu003-5	1.01393	0.00092	0.00785	1.01162	0.00091	0.00772	1.00371	0.0009	0.00736
12	pu003-6	1.01214	0.00091	0.00845	1.01275	0.00097	0.00858	1.00425	0.00094	0.00863
13	pu003-7	1.01369	0.00093	0.00678	1.01438	0.00092	0.00669	1.00545	0.00092	0.00667
14	pu003-8	1.01175	0.00095	0.00703	1.01194	0.00093	0.00681	1.00196	0.00096	0.007
15	pu004-1	1.01134	0.00088	0.00524	1.01168	0.00086	0.00515	1.00302	0.00087	0.00521
16	pu004-2	1.00448	0.00082	0.00541	1.00671	0.00085	0.00534	0.99646	0.00095	0.00517
17	pu004-3	1.00916	0.00087	0.00538	1.0087	0.00091	0.00555	0.9994	0.00085	0.00542
18	pu004-4	1.00712	0.00086	0.00561	1.00559	0.0009	0.00563	0.99678	0.00094	0.00569
19	pu004-5	1.00753	0.00091	0.00543	1.00684	0.00088	0.00544	1.00082	0.00087	0.00538
20	pu004-6	1.00862	0.00087	0.00564	1.00867	0.00089	0.00572	1.00092	0.00088	0.00549
21	pu004-7	1.01248	0.0009	0.0056	1.01179	0.00086	0.00582	1.00513	0.00087	0.00582
22	pu004-8	1.00778	0.00086	0.0062	1.00786	0.00088	0.00593	0.99815	0.00089	0.00599
23	pu004-9	1.00965	0.00089	0.00619	1.0091	0.00087	0.00615	0.99749	0.00089	0.00643
24	pu005-1	1.0086	0.00088	0.00571	1.00871	0.00089	0.00568	1.00322	0.00087	0.00583
25	pu005-2	1.00908	0.00088	0.00589	1.01075	0.00091	0.00579	0.99995	0.00088	0.00587
26	pu005-3	1.01116	0.00091	0.0062	1.01227	0.00087	0.00622	1.00236	0.00092	0.00614
27	pu005-4	1.01197	0.00093	0.00664	1.01183	0.00088	0.00678	1.00279	0.00088	0.00665
28	pu005-5	1.01367	0.0009	0.00723	1.01254	0.00088	0.00725	1.00389	0.00093	0.00758
29	pu005-6	1.0102	0.00095	0.00766	1.01279	0.00092	0.0078	1.00338	0.00092	0.00771
30	pu005-7	1.01073	0.00094	0.00838	1.01031	0.00094	0.00837	1.00194	0.00093	0.00845
31	pu005-8	1.00799	0.00091	0.00593	1.00559	0.0009	0.00608	0.99915	0.00089	0.006
32	pu005-9	1.01023	0.00089	0.00631	1.00929	0.00086	0.00638	0.99937	0.00088	0.00618
33	pu007-2	1.01024	0.00102	0.04021	1.01358	0.00109	0.04098	1.00561	0.00106	0.0412
34	pu007-3	1.00591	0.00111	0.03928	1.00535	0.00104	0.03969	0.99948	0.00105	0.03932
35	pu007-5	1.01502	0.00106	0.01764	1.01438	0.00102	0.01754	1.00665	0.00104	0.01758
36	pu007-6	1.00873	0.00101	0.01799	1.00808	0.00106	0.01773	1.00134	0.001	0.01757
37	pu007-7	1.01053	0.00103	0.01783	1.01039	0.00105	0.0177	1.00333	0.00101	0.01747
38	pu007-8	1.00254	0.00103	0.0181	1.00512	0.00102	0.01796	0.99316	0.00105	0.01783
39	pu007-9	1.00327	0.00106	0.01815	1.00267	0.00108	0.01795	0.99427	0.00106	0.01774
40	pu04-10	1.00987	0.00092	0.00715	1.00979	0.00092	0.0072	1.00196	0.00093	0.00734
41	pu04-11	1.0095	0.00092	0.00805	1.00799	0.00096	0.00849	0.99716	0.00092	0.00836
42	pu04-12	1.01108	0.00087	0.00594	1.01028	0.00092	0.00573	1.0028	0.00087	0.00572
43	pu04-13	1.00856	0.00091	0.00579	1.00634	0.00089	0.00574	0.99942	0.00091	0.00585
44	pu07-10	1.00706	0.00104	0.01653	1.00643	0.00101	0.01711	0.99653	0.00106	0.0162
45	pu10091	1.02337	0.00101	0.01675	1.02188	0.00105	0.01658	1.01378	0.00102	0.01672
46	pu10092	1.02091	0.00097	0.01299	1.01932	0.00103	0.0127	1.01053	0.00097	0.01272
47	pu10093	1.01316	0.00097	0.00994	1.01428	0.00099	0.0093	1.00474	0.00096	0.00969
48	pu10111	1.01879	0.00099	0.01001	1.01833	0.00095	0.01026	1.01211	0.00102	0.00985
49	pu10112	1.01543	0.00098	0.00873	1.01691	0.00096	0.00888	1.00964	0.00097	0.00862
50	pu10113	1.01615	0.00092	0.00852	1.01378		0.00867	1.00701	0.00097	0.00876
51	pu10114	1.00903	0.00091	0.0079	1.00854	0.00093	0.00798	0.99799	0.00096	0.0081
52	pu10115	1.01069	0.00093	0.00755	1.01003	0.0009	0.00753	1.00213	0.00093	0.00734
53	pu10116	1.01992		0.01114	1.01922	0.001	0.01109	1.01027	0.00102	0.01128
54	pu10117	1.01140	0.00092	0.00879	1.009/3	0.001	0.00901	1.0005	0.00094	0.0092
00	pu10121	1.0155	0.00097	0.00896	1.01/26	0.00096	0.00892	1.008/6	0.00094	0.00896
1561	pu10122 1	1.01616	0.00095	0.00776	1.0153	+0.00098	-0.00795	1.0067	L 0.00096	0.00776

Table 4.2-2. Homogeneous Critical Experiments	Using Plutonium Nitrate Solutions (Thermal)
---	---

.

4	Casa	W	PO Select	ed		ENDF/B-V	,	ENDF/B-VI			
#	Case	k eff	σ	AENCF	k eff	σ	AENCF	k _{eff}	σ	AENCF	
57	pu10123	1.02352	0.00094	0.00691	1.02207	0.00095	0.00671	1.01591	0.00093	0.00699	
58	pu10124	1.01642	0.00087	0.0061	1.01695	0.00089	0.00594	1.00717	0.0009	0.00599	
59	pu11161	1.01661	0.00103	0.00738	1.01669	0.00101	0.00737	1.0111	0.001	0.00744	
60	pu11162	1.02377	0.00101	0.00777	1.02064	0.00103	0.00759	1.01343	0.00098	0.00773	
61	pu11163	1.02224	0.00101	0.00827	1.02545	0.001	0.00829	1.01656	0.00104	0.00794	
62	pu11164	1.01688	0.00105	0.00845	1.01704	0.00101	0.00851	1.00895	0.00101	0.00808	
63	pu11165	1.01338	0.00104	0.00973	1.01318	0.00104	0.00955	1.00576	0.00102	0.00988	
64	pu11181	1.00169	0.00089	0.00505	1.00317	0.00088	0.00501	0.99468	0.00091	0.00503	
65	pu11182	1.0068	0.00088	0.00549	1.00894	0.00091	0.00527	1.00073	0.00088	0.0051	
66	pu11183	1.00336	0.00097	0.00514	1.0051	0.00091	0.00528	0.99776	0.00092	0.00512	
67	pu11184	1.00285	0.00088	0.00547	1.00198	0.00088	0.00525	0.99428	0.00087	0.00545	
68	pu11185	1.01131	0.00093	0.00593	1.00964	0.00095	0.00588	1.0044	0.00089	0.00574	
69	pu11186	1.00796	0.00097	0.00633	1.00717	0.00094	0.00634	1.00011	0.00093	0.0062	
70	pu11187	1.00792	0.00088	0.00548	1.00729	0.00091	0.0054	0.99943	0.00087	0.00533	
71	pust9-1	1.01886	0.00088	0.00257	1.01992	0.00082	0.00294	1.01103	0.00074	0.00259	
72	pust9-2	1.0239	0.00089	0.00266	1.02331	0.00083	0.00262	1.01723	0.00078	0.00259	
73	pust9-3	1.02176	0.00089	0.00246	1.0209	0.00083	0.00251	1.01755	0.00076	0.00245	

Table 4.2-2. Homogeneous Critical Experiments Using Plutonium Nitrate Solutions (Thermal)

<u> </u>	C	W	PO Select	ed		ENDF/B-V	,	ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k eff	σ	AENCF	k _{eff}	σ	AENCF	
1	PMF20	0.99968	0.00065	1.8886	1.00085	0.00064	1.8895	0.99878	0.00062	1.8960	
2	PMF22	0.99459	0.00055	1.8932	0.99627	0.00057	1.8914	0.99707	0.00051	1.9004	
3	PMF23	0.99681	0.00058	1.8011	0.99742	0.00059	1.7988	0.99869	0.00061	1.8070	
4	PMF24	0.99756	0.00066	1.7421	0.99781	0.00065	1.7418	1.00122	0.00064	1.7414	
5	PMF25	0.99601	0.00057	1.8316	0.99835	0.00062	1.8293	0.9971	0.00064	1.8431	
6	PMF26	0.99551	0.00064	1.7318	1.00167	0.00059	1.7250	0.99754	0.00057	1.7407	
7	PMF27	1.00113	0.00076	1.4768	1.00178	0.00078	1.4726	1.00258	0.00073	1.4768	
8	PMF28	0.99739	0.00065	1.7166	1.00324	0.00063	1.7100	0.99891	0.0006	1.7229	
9	PMF29	0.9933	0.00055	1.9188	0.99309	0.00056	1.9154	0.99463	0.00058	1.9254	
10	PMF30	1.00129	0.00063	1.8152	1.00078	0.00066	1.8138	1.00176	0.00057	1.8213	
11	PMF31	1.00104	0.0007	1.6059	1.00208	0.00073	1.6057	1.00305	0.00074	1.6082	
12	PMF32	0.99667	0.00061	1.8192	0.99938	0.0006	1.8113	0.9964	0.00065	1.8263	

Table 4.2-3. Plutonium Metal Critical Experiments (Fast)

		W	PO Select	ed		ENDF/B-V	· · · · · · · · · · · · · · · · · · ·		ENDF/B-V	· · · · · · · · · · · · · · · · · · ·
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF
1	hest1-1	1.00187	0.00144	0.01576	1.00241	0.00131	0.01582	0.99683	0.00138	0.01567
2	hest110	0.99468	0.00178	0.00757	0.99468	0.00178	0.00757	0.98954	0.0018	0.00758
3	hest1-2	0.99948	0.00208	0.03857	0.99816	0.00209	0.03873	0.99891	0.00208	0.03779
4	hest1-3	1.00453	0.00199	0.01546	1.00453	0.00199	0.01546	1.00161	0.00194	0.01565
5	hest131	1.00138	0.00053	0.00265	1.00135	0.0005	0.00267	0.99705	0.00055	0.0026
6	hest132	1.0002	0.00057	0.00307	1.0002	0.00057	0.00307	0.99678	0.00056	0.00307
7	hest133	0.99521	0.0006	0.00361	0.99689	0.00065	0.00378	0.99282	0.0006	0.00354
8	hest134	0.99824	0.00066	0.00379	0.99777	0.00061	0.00374	0.99519	0.00062	0.00381
9	hest1-4	1.0013	0.00203	0.0405	1.0013	0.00203	0.0405	1.00107	0.00216	0.03945
10	hest141	0.99801	0.00121	0.00727	0.99854	0.00119	0.00716	0.99204	0.00126	0.00708
11	hest142	1.01252	0.00121	0.00737	1.01307	0.00115	0.0073	1.00965	0.00106	0.0071
12	hest143	1.02159	0.00102	0.00791	1.02137	0.00109	0.00775	1.01882	0.00109	0.00756
13	hest1-5	1.00361	0.00166	0.00651	1.00361	0.00166	0.00651	0.99849	0.00159	0.00619
14	hest151	1.0039	0.00136	0.01047	1.0058	0.00123	0.01056	0.99834	0.00128	0.01048
15	hest152	1.00000	0.00126	0.01009	0.99295	0.00125	0.00998	0.98944	0.00128	0.00992
10	hest153	1.00999	0.00127	0.01077	1.00874	0.0012	0.01127	1.00941	0.00121	0.01122
10	hest154	1.01000	0.00121	0.01077	1.01579	0.00115	0.0104	1.01103	0.00122	0.01032
10	hest155	1.01210	0.00104	0.00679	1.01277	0.00110	0.01133	1.01178	0.00112	0.01077
20	host161	0.00346	0.00187	0.00078	0 9922	0.00137	0.00078	0.08628	0.00177	0.00712
20	hest162	1 01032	0.00131	0.015	1 01008	0.00137	0.01515	1 01030	0.00123	0.01331
21	hest163	1.01032	0.00123	0.015	1.01030	0.00122	0.01559	1.01039	0.0013	0.01407
22	heet1-7	1.02235	0.00714	0.01501	1.02040	0.00113	0.01501	0.99985	0.00122	0.01526
20	hest171	0.9966	0.00132	0.0189	0.99352	0.00201	0.01892	0.9909	0.002	0.01885
25	hest172	0.98362	0.00126	0.02095	0.98387	0.0015	0.02097	0.97993	0.00126	0.02095
26	hest173	0.98345	0.00139	0.02004	0.98507	0.00134	0.01969	0.97985	0.00141	0.01969
27	hest174	1.00204	0.00132	0.01939	1.0036	0.00131	0.01947	1.0005	0.00134	0.01877
28	hest175	1.01159	0.00124	0.01994	1.01001	0.00121	0.01973	1.00821	0.00124	0.01927
29	hest176	1.00677	0.00127	0.02209	1.00653	0.00109	0.02183	1.00388	0.00138	0.02132
30	hest177	1.01209	0.00105	0.02045	1.01111	0.00121	0.02087	1.00984	0.00129	0.02007
31	hest178	1.00635	0.00123	0.02216	1.00409	0.00112	0.0221	1.00346	0.00122	0.02201
32	hest1-8	1.00505	0.00213	0.0161	1.00505	0.00213	0.0161	0.99318	0.0021	0.01608
33	hest181	0.99334	0.00136	0.02844	0.99364	0.00143	0.02846	0.9897	0.00125	0.02783
34	hest182	0.99132	0.00135	0.03152	0.99331	0.00142	0.03121	0.99139	0.00122	0.03053
35	hest183	0.99434	0.00143	0.0299	0.99025	0.00136	0.02976	0.98874	0.00132	0.02927
36	hest184	1.00191	0.00118	0.02895	1.00177	0.00133	0.02919	0.99834	0.00125	0.02829
37	hest185	0.99568	0.00142	0.03266	0.99727	0.00141	0.03274	0.9937	0.00142	0.03222
38	hest186	0.99667	0.00136	0.03066	0.99699	0.00129	0.03086	0.99258	0.00135	0.03063
39	hest187	1.01176	0.00134	0.02968	1.01204	0.00118	0.02988	1.00895	0.00119	0.02915
40	hest188	1.01178	0.00128	0.03335	1.01266	0.00117	0.03286	1.01154	0.00133	0.03256
41	hest189	1.00973	0.00118	0.03088	1.00855	0.00114	0.03109	1.00848	0.00127	0.03024
42	hest1-9	0.99973	0.00212	0.04099	0.99973	0.00212	0.04099	0.99817	0.00193	0.03977
43	hest191	1.0028	0.00121	0.04262	1.00102	0.00129	0.04249	1.00146	0.00133	0.04157
44	hest192	1.00401	0.00127	0.0392	1.00497	0.00116	0.03928	1.0043	0.00132	0.03851
45	hest193	0.99925	0.00111	0.04147	1.00044	0.00122	0.04166	0.99996	0.0012	0.04099
46	hest2-1	1.00513	0.00146	0.01551	1.00548	0.00148	0.01558	1.00211	0.00144	0.01534
47	nest210	1.00549	0.00185	0.0000	1.00937	0.00202	0.00663	0.99938	0.00196	0.006/4
48	nest211	1.00568	0.00224	0.01551	1.008/5	0.00211	0.01595	1.00142	0.00216	0.015//
49	hest212	1.0087	0.00235	0.01436	0.00000	0.00209	0.0148/	1.00489	0.00211	0.0148
00	hest213	1.00004	0.00234	0.03703	1.01060	0.00232	0.030/0	1.00223	0.0025	0.03059
51	hest214	1.00900	0.00238	0.03300	1.01002	0.00238	0.033/7	1.0051	0.00232	0.03303
52	hest2-2	1.01230	0.00218	0.01007	1.00773	0.00235	0.01010	0.00712	0.00237	0.01434
53	hest2 4	1.00300	0.00239	0.00007	1.00219	0.00242	0.0374	1.00926	0.00200	0.03039
54	hest2-4	1.01003	0.00219	0.0340	1 01040	0.00242	0.03041	1.00030	0.00213	0.03443
56	hest2-6	1 01719	0.00213	0.01460	1 00968	0.0023	0.01496	1 00976	0.00217	0.01000

Table 4.2-4. Homogenous Critical Experiments Using High Enriched Uranium Nitrate Solutions (Thermal)

. ...

		W	PO Select	ed		ENDF/B-V		ENDF/B-VI		ENDF/B-VI		
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF		
57	hest2-7	1.00383	0.00217	0.03659	1.00691	0.00224	0.03747	0.99994	0.00248	0.03548		
58	hest2-8	1.00883	0.00244	0.03423	1.01131	0.00206	0.03511	1.00552	0.0026	0.03454		
59	hest2-9	1.0027	0.00204	0.00707	1.00348	0.00209	0.00654	0.9992	0.00201	0.00658		
60	hest310	1.00102	0.00243	0.03817	1.00102	0.00243	0.03817	0.99709	0.00238	0.0381		
61	hest311	1.00606	0.00232	0.03566	1.00606	0.00232	0.03566	1.00244	0.00231	0.03476		
62	hest312	1.0074	0.00204	0.00651	1.0074	0.00204	0.00651	1.00061	0.00233	0.00715		
63	hest313	1.00045	0.00185	0.00654	1.00045	0.00185	0.00654	1.00074	0.00183	0.00634		
64	hest314	1.00822	0.00205	0.00704	1.00822	0.00205	0.00704	0.99809	0.00207	0.0068		
65	hest315	0.9962	0.00186	0.00718	0.99675	0.0015	0.00704	0.9936	0.00143	0.00712		
66	hest316	1.00356	0.00241	0.01593	1.00356	0.00241	0.01593	0.99192	0.00238	0.01574		
67	hest317	1.00604	0.00213	0.01498	1.00604	0.00213	0.01498	1.00364	0.00237	0.0149		
68	hest318	1.00007	0.00225	0.03842	1.00007	0.00225	0.03842	0.99356	0.00225	0.03806		
69	hest319	1.01306	0.00225	0.03414	1.01306	0.00225	0.03414	1.00837	0.00213	0.03313		
70	hest710	1.01186	0.00111	0.0086	1.01265	0.00111	0.00867	1.01111	0.00117	0.00848		
71	hest711	1.00896	0.00124	0.03513	1.00917	0.00132	0.03589	1.00973	0.00131	0.03483		
72	hest712	1.00746	0.00106	0.00855	1.00743	0.00111	0.00846	1.00327	0.0011	0.00844		
73	hest713	1.00897	0.0012	0.0352	1.01049	0.00129	0.03494	1.01233	0.0012	0.03392		
74	hest714	1.00811	0.00126	0.03617	1.00917	0.00132	0.03556	1.00837	0.00115	0.03517		
75	hest715	1.00388	0.00134	0.03574	1.00378	0.00134	0.03612	1.00836	0.00119	0.03536		
76	hest716	1.00658	0.00122	0.03632	1.00937	0.00129	0.0362	1.00585	0.00128	0.03589		
77	hest717	1.00756	0.00124	0.03583	1.00651	0.00133	0.0365	1.00785	0.00124	0.03556		
78	hest813	1.00616	0.0019	0.03558	1.00331	0.002	0.03616	1.00096	0.00098	0.03511		
79	heust31	1.00665	0.00211	0.00657	1.00638	0.00189	0.00676	0.99825	0.00196	0.00682		
80	heust32	1.00723	0.00206	0.00677	1.00635	0.002	0.00688	0.99973	0.00215	0.00702		
81	heust33	1.00774	0.0024	0.01628	1.00317	0.00235	0.0158	1.00172	0.00241	0.01538		
82	heust34	1.00491	0.00208	0.01539	1.00447	0.00249	0.01541	1.0022	0.00221	0.01494		
83	heust35	0.99683	0.0023	0.03804	1.00436	0.00221	0.03818	0.99927	0.00243	0.0367		
84	heust36	1.00523	0.0021	0.03538	1.00427	0.00241	0.03573	1.00274	0.00239	0.03419		
85	heust37	1.00585	0.00173	0.00685	1.00585	0.00173	0.00685	0.99568	0.00184	0.00651		
86	heust38	1.01086	0.00202	0.01639	1.01086	0.00202	0.01639	1.00251	0.00227	0.01597		
87	heust39	1.01063	0.00204	0.01512	1.01063	0.00204	0.01512	0.99982	0.00216	0.01501		
88	heust71	1.01399	0.00115	0.00703	1.01081	0.00101	0.00702	1.01043	0.00117	0.00708		
89	heust72	1.01391	0.00133	0.03607	1.01474	0.0013	0.03612	1.01458	0.00123	0.03545		
90	heust73	1.00773	0.00101	0.00713	1.00692	0.00107	0.00687	1.00283	0.00103	0.00687		
91	heust74	1.0125	0.00123	0.0351	1.01389	0.00125	0.0354	1.01277	0.00128	0.03466		
92	heust75	1.00867	0.00101	0.0084	1.00713	0.00115	0.00836	1.00215	0.00111	0.00815		
93	heust76	1.00684	0.00136	0.03767	1.00493	0.00146	0.03792	1.00446	0.00129	0.0372		
94	heust77	1.00792	0.0011	0.00843	1.00635	0.00103	0.00829	1.00006	0.00117	0.00811		
95	heust78	1.00333	0.00128	0.03825	1.00478	0.00135	0.03823	1.0032	0.00134	0.03757		
96	heust79	1.00834	0.00114	0.00899	1.00519	0.00123	0.00883	1.00464	0.00129	0.00855		
97	heust81	1.00193	0.00138	0.00666	1.00316	0.00134	0.00661	0.99928	0.0012	0.00651		
98	heust83	0.9973	0.0019	0.00644	0.9973	0.0019	0.00644	0.99185	0.00116	0.00642		
99	heust86	1.0089	0.00221	0.03785	1.00969	0.0023	0.03669	1.00546	0.00215	0.03642		
100	heust89	1.00274	0.00129	0.00643	1.00373	0.00116	0.0066	0.9977	0.00115	0.0061		
101	hst1810	1.02605	0.00121	0.03443	1.02526	0.00114	0.03464	1.02652	0.00132	0.03392		
102	hst1811	1.0288	0.00115	0.03182	1.02814	0.00115	0.03203	1.02612	0.00102	0.03183		
103	hst1812	1.01997	0.00093	0.03276	1.01861	0.00101	0.03353	1.02152	0.00115	0.03246		
104	hst121	1.0035	0.0004	0.0027	1.0035	0.0004	0.0027	0.9993	0.0004	0.0027		
105	hst321	0.9991	0.0003	0.0022	0.9996	0.0003	0.0021	0.9972	0.0003	0.0021		

Table 4.2-4. Homogenous Critical Experiments Using High Enriched Uranium Nitrate Solutions (Thermal)

Figure 4.2-4. Homogenous Critical Experiments Using High Enriched Uranium Nitrate Solutions (Thermal)

ш	C	W	PO Select	ed		ENDF/B-V	,	ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	HMF1G	0.9986	0.0004	1.5681	0.9986	0.0004	1.5681	0.9970	0.0004	1.4893	
2	HMF3Ni	1.0036	0.0005	1.3649	1.0145	0.0005	1.3555	1.0045	0.0005	1.2964	
3	HMF8	0.99477	0.00059	1.5503	0.9951	0.00058	1.5501	0.99281	0.00059	1.4766	
4	HMF11	0.99264	0.00078	1.1620	0.99348	0.00079	1.1607	0.99717	0.00081	1.1026	
5	HMF12	0.99446	0.00044	1.5222	0.99399	0.00043	1.5237	0.9944	0.00043	1.4486	
6	HMF13	0.9962	0.00061	1.4860	0.99997	0.00061	1.4838	0.99478	0.00063	1.4155	
7	HMF14	0.99773	0.00058	1.5443	0.99831	0.00062	1.5465	0.99501	0.00063	1.4893	
8	HMF15	0.9936	0.00062	1.5808	0.99263	0.00056	1.5813	0.99172	0.00061	1.5000	
9	HMF18	0.9978	0.00056	1.5522	0.99805	0.00056	1.5515	0.99837	0.00058	1.4753	
10	HMF19	1.00306	0.0006	1.4765	1.00277	0.0006	1.4793	1.00328	0.0006	1.4018	
11	HMF20	0.99643	0.0006	1.4333	0.99574	0.00061	1.4341	0.99839	0.00069	1.3635	
12	HMF21	0.99727	0.0006	1.4481	1.00192	0.0006	1.4431	0.99463	0.00061	1.3807	
13	HMF22	0.99252	0.00064	1.5039	0.99272	0.0006	1.5049	0.99188	0.0006	1.4299	
14	HMF24	0.99401	0.00108	1.2504	0.99521	0.00109	1.2553	0.99443	0.00109	1.1917	
15	HMF28	1.0040	0.0005	1.5979	1.0040	0.0005	1.5979	1.0026	0.0005	1.5498	

Table 4.2-5. High Enriched Uranium Metal Critical Experiments (Fast)

Figure 4.2-5. High Enriched Uranium Metal Critical Experiments (Fast)

4	Casa	W	PO Select	ed	ENDF/B-V			ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	IECT104	0.99735	0.00105	0.07405	0.99735	0.00105	0.07405	1.00316	0.00102	0.07270	
2	IECT105	1.00847	0.00091	0.04552	1.00847	0.00091	0.04552	1.00785	0.00082	0.04520	
3	IECT113	0.99674	0.00103	0.07430	0.99674	0.00103	0.07430	1.00295	0.00096	0.07350	
4	IECT114	0.99787	0.00094	0.07375	0.99787	0.00094	0.07375	1.00358	0.00098	0.07261	
5	IECT115	0.99811	0.00099	0.07400	0.99811	0.00099	0.07400	1.00365	0.001	0.07309	
6	IECT116	1.0021	0.00093	0.05547	1.0021	0.00093	0.05547	1.00414	0.00092	0.05435	
7	IECT119	1.00255	0.00089	0.06026	1.0045	0.00101	0.06114	1.00479	0.00096	0.06006	
8	IECT125	0.99874	0.0009	0.05992	0.99874	0.0009	0.05992	1.00527	0.00096	0.05891	
9	IECT126	1.0057	0.00099	0.05695	1.00443	0.00095	0.05663	1.00838	0.00089	0.05559	
10	IECT127	1.00328	0.00084	0.05616	1.0032	0.00086	0.05633	1.00637	0.00094	0.05607	

Table 4.2-6. Homogenous Critical Experiments Using Intermediate Enriched Uranium Fuel (Thermal)

	C	W	PO Select	ed		ENDF/B-V	,	ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	IECT101	0.99735	0.00092	0.21679	0.99735	0.00092	0.2168	1.01062	0.00088	0.21085	
2	IECT102	0.99601	0.00092	0.15817	0.99601	0.00092	0.15817	1.00748	0.00097	0.15427	
3	IECT103	0.99305	0.00104	0.10412	0.99305	0.00104	0.10412	1.0024	0.00103	0.10243	
4	IECT106	1.00026	0.00103	0.10793	1.00026	0.00103	0.10793	1.00871	0.00099	0.10467	
5	IECT107	0.998	0.00101	0.11064	0.998	0.00101	0.11064	1.00645	0.00099	0.10997	
6	IECT108	0.99604	0.00101	0.11867	0.99604	0.00101	0.11867	1.00358	0.00088	0.11611	
7	IECT109	1.00043	0.00084	0.1679	1.00043	0.00084	0.1679	1.01287	0.00094	0.16326	
8	IECT110	0.99672	0.00099	0.15756	0.99672	0.00099	0.15756	1.00845	0.00097	0.15359	
9	IECT111	0.99579	0.00096	0.15732	0.99579	0.00096	0.15732	1.00818	0.00105	0.15255	
10	IECT112	0.99642	0.00101	0.15568	0.99642	0.00101	0.15568	1.00601	0.00095	0.15347	
11	IECT117	0.99503	0.00113	0.20838	0.99651	0.00102	0.20814	1.01029	0.00102	0.20117	
12	IECT118	0.99852	0.00104	0.13376	0.99756	0.00113	0.13428	1.00986	0.00106	0.13125	
13	IECT120	1.0005	0.00094	0.15539	1.0005	0.00094	0.15539	1.01303	0.00101	0.15118	
14	IECT121	0.99884	0.00087	0.21334	0.99884	0.00087	0.21334	1.01392	0.00088	0.20757	
15	IECT122	0.999	0.00109	0.19772	0.999	0.00109	0.19772	1.01168	0.00102	0.19125	
16	IECT123	0.99516	0.00107	0.12826	0.99516	0.00107	0.12826	1.00429	0.00111	0.12582	
17	IECT124	1.00036	0.00105	0.13305	1.00036	0.00105	0.13305	1.0123	0.001	0.12898	
18	IECT128	1.00637	0.00095	0.1583	1.00506	0.00091	0.15824	1.01497	0.00092	0.1536	
19	IECT129	1.00472	0.001	0.15103	1.00123	0.00099	0.15184	1.01219	0.00098	0.1472	
20	ist1-1 ^a	0.98509	0.00111	0.015	0.98074	0.00108	0.0149	0.97915	0.00106	0.0146	
21	ist1-2ª	0.97695	0.0012	0.0209	0.97596	0.00121	0.0207	0.97348	0.00118	0.0208	
22	ist1-3 ^a	0.97306	0.00113	0.0207	0.97222	0.00119	0.0205	0.97079	0.00117	0.0208	
23	ist1-4 ^a	0.97124	0.00126	0.0273	0.97105	0.00124	0.0275	0.96757	0.00126	0.0271	

Table 4.2-7. Homogenous Critical Experiments Using Intermediate Enriched Uranium Fuel (Intermediate)

NOTE: a Cases ist1-1 through ist1-4 were homogenous critical experiments using uranyl-sulphate solutions

#	C	W	PO Select	ed	ENDF/B-V			ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	imf1-1	1.00183	0.00028	1.4395	1.00224	0.00029	1.4394	0.99714	0.00028	1.3910	
2	imf1-2	1.00254	0.00028	1.4403	1.00225	0.00028	1.4398	0.99666	0.00027	1.3919	
3	imf1-3	1.004	0.00027	1.3862	1.00401	0.00029	1.3860	0.9986	0.00028	1.3515	
4	imf1-4	1.00459	0.00028	1.3848	1.00477	0.00028	1.3859	0.999	0.00026	1.3495	
5	imf2-1	1.00594	0.0006	1.2784	1.00594	0.0006	1.2784	1.00327	0.00056	1.2650	
6	imf3-1	1.00096	0.0008	1.3526	0.99925	0.00076	1.3502	0.99539	0.00076	1.3242	
7	imf4-1	1.00884	0.00078	1.3076	1.01048	0.00084	1.3071	1.00446	0.00081	1.2768	
8	imf5-1	1.00632	0.00082	1.2872	1.00881	0.00079	1.2852	1.00053	0.00081	1.2597	
9	imf6-1	0.99727	0.00083	1.2915	0.99597	0.00081	1.2892	0.99173	0.00083	1.2610	
10	imf8-1	1.00845	0.00079	1.3639	1.0087	0.00084	1.3650	1.0038	0.00081	1.3337	

Table 4.2-8. Intermediate Enriched Uranium Metal Critical Experiments (Fast)

#	Casa	W	PO Select	ed	,	ENDF/B-V	, <u> </u>	ENDF/B-VI			
#	Case	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	
1	leuja01	1.00425	0.00085	0.01896	1.00354	0.00076	0.01899	0.99826	0.00091	0.01905	
2	leuja14	0.99755	0.00094	0.02001	0.99809	0.00094	0.01991	0.9941	0.0009	0.01939	
3	leuja29	1.00377	0.00082	0.01806	1.00452	0.00087	0.01811	0.99854	0.00081	0.0176	
4	leuja30	0.99885	0.00086	0.01881	1.00084	0.00083	0.0187	0.99687	0.00091	0.01845	
5	leuja32	1.00143	0.00086	0.01757	0.9992	0.00088	0.0177	0.99529	0.00088	0.01733	
6	leuja33	0.99961	0.0009	0.01662	1.00169	0.00084	0.01681	0.99687	0.00077	0.01661	
7	leuja34	1.0029	0.00079	0.0159	1.00277	0.00092	0.01607	1.00017	0.00069	0.01602	
8	leuja36	1.00185	0.00084	0.01665	1.00081	0.0008	0.01651	0.99742	0.0008	0.0164	
9	leuja46	1.00311	0.0008	0.01535	1.00433	0.00081	0.01556	0.99972	0.00073	0.01536	
10	leuja49	0.99875	0.00078	0.01593	0.99861	0.00072	0.0159	0.9957	0.00084	0.01554	
11	leuja51	1.00279	0.0007	0.01479	1.00337	0.00071	0.01493	0.99795	0.00078	0.01461	
12	leuja54	1.00246	0.00072	0.0144	1.00101	0.00067	0.01417	0.99904	0.00064	0.01428	
13	leust21	0.99892	0.00053	0.02487	0.99855	0.00058	0.02513	0.99532	0.00056	0.02492	
14	leust22	0.99469	0.00061	0.02832	0.99659	0.00064	0.0283	0.991	0.00067	0.02802	
15	leust23	1.00078	0.00057	0.02665	1.0009	0.0006	0.02684	0.99624	0.00058	0.02615	
16	lst1-1	1.01069	0.00085	0.0523	1.01182	0.00101	0.05186	1.00714	0.00092	0.0514	
17	lst3-1	0.99784	0.00069	0.0185	0.9993	0.0004	0.0186	0.99274	0.00067	0.0186	
18	lst3-2	0.99898	0.00068	0.0165	0.99705	0.00038	0.0166	0.99335	0.00066	0.0165	
19	lst3-3	1.00141	0.00066	0.0164	1.00151	0.00037	0.0164	0.99701	0.00065	0.0161	
20	lst3-4	0.99406	0.00061	0.016	0.99536	0.00038	0.0162	0.98964	0.00063	0.0161	
21	lst3-5	0.99799	0.00056	0.0131	0.99897	0.00031	0.0133	0.99468	0.00056	0.0128	
22	lst3-6	0.99935	0.00053	0.013	0.99924	0.0003	0.0129	0.99507	0.00053	0.0126	
23	lst3-7	0.99917	0.0005	0.0126	0.99716	0.0003	0.0127	0.99397	0.00051	0.0124	
24	lst3-8	1.00116	0.00044	0.0115	1.00079	0.00025	0.0114	0.99637	0.00045	0.0113	
25	lst3-9	0.99779	0.00048	0.0114	0.99732	0.00025	0.0114	0.99603	0.00041	0.0112	

Table 4.2-9. Homogenous Critical Experiments Using Low Enriched Uranium Nitrate Solutions (Thermal)

4		W	PO Select	ed		ENDF/B-V		ENDF/B-VI			
#	Case	k∞	σ	AENCF	k∞	σ	AENCF	k∞	σ	AENCF	
1	sphu9a	0.99004	0.00249	0.2541	0.99004	0.00249	0.2541	0.98665	0.00293	0.2562	
2	sphu9b	0.99269	0.00249	0.2163	0.99269	0.00249	0.2163	0.98518	0.00271	0.2155	
3	sphu9c	0.97871	0.00256	0.1883	0.97871	0.00256	0.1883	0.97958	0.0019	0.1839	
4	sphu9d	0.97914	0.00242	0.1737	0.97914	0.00242	0.1737	0.97132	0.00233	0.1740	
5	sphu9e	0.96607	0.00163	0.1591	0.96607	0.00163	0.1591	0.96429	0.00221	0.1660	
6	sphu9f	1.00952	0.00261	0.2511	1.00952	0.00261	0.2511	1.00009	0.00306	0.2543	
7	sphu9g	1.0136	0.00246	0.1839	1.0136	0.00246	0.1839	1.00763	0.00235	0.1906	
8	sphu9h	0.99713	0.00198	0.1651	0.99713	0.00198	0.1651	0.99364	0.00224	0.1642	
9	sphu9i	1.03372	0.00274	0.2495	1.03372	0.00274	0.2495	1.03156	0.00233	0.2499	
10	sphu9j	1.04207	0.00224	0.1783	1.04207	0.00224	0.1783	1.03178	0.0024	0.1760	
11	sphu9k	1.02951	0.00216	0.1661	1.02951	0.00216	0.1661	1.02122	0.00206	0.1670	
12	sphu9l	1.02281	0.0021	0.1549	1.02281	0.0021	0.1549	1.0191	0.00237	0.1545	

Table 4.2-10. Homogenous Critical Experiments Using Low Enriched Uranium Solutions (Intermediate)

Figure 4.2-10. Homogenous Critical Experiments Using Low Enriched Uranium Solutions (Intermediate)

ш	Case	WPO Selected			ENDF/B-V			ENDF/B-VI			
#	Case	k∞	σ	AENCF	k∞	σ	AENCF	k∞	σ	AENCF	
1	u233s1	1.00153	0.00037	0.03738	1.00179	0.00039	0.00371	0.99824	0.00038	0.00367	
2	u233s2	1.00029	0.00038	0.00390	1.00069	0.00038	0.00398	0.99773	0.00038	0.00404	
3	u233s3	1.00045	0.00040	0.00402	1.00007	0.00039	0.00416	0.9969	0.00038	0.00413	
4	u233s4	0.99951	0.00040	0.00432	0.99987	0.00039	0.00422	0.99667	0.0004	0.00423	
5	u233s5	0.99856	0.00039	0.00435	0.99998	0.00041	0.00440	0.99524	0.00041	0.00437	
6	u233s6	0.99826	0.00027	0.00301	0.99911	0.00025	0.00309	0.99534	0.00026	0.00311	

Table 4.2-11. Homogenous Critical Experiments Using Uranium-233 Fuel (Thermal)

Figure 4.2-11. Homogenous Critical Experiments Using Uranium-233 Fuel (Thermal)

#	Case	WPO Selected			ENDF/B-V			ENDF/B-VI		
		k∞	σ	AENCF	k∞	σ	AENCF	k∞	σ	AENCF
1	u2331a	0.99297	0.00038	1.77385	0.99297	0.00038	1.77385	0.99354	0.00038	1.77170
2	u2332a	0.99547	0.00038	1.73702	0.99547	0.00038	1.73702	0.99609	0.0004	1.72533
3	u2332b	0.99807	0.00039	1.70789	0.99807	0.00039	1.70789	0.99764	0.00039	1.68809
4	u2333a	0.99583	0.00041	1.74832	0.99583	0.00041	1.74832	0.99645	0.0004	1.74824
5	u2333b	0.99771	0.00041	1.76231	0.99771	0.00041	1.76231	0.99738	0.00042	1.76086
6	u2334a1	1.00380	0.00041	1.61187	1.00356	0.00041	1.61336	1.00278	0.00043	1.61505
7	u2334b1	1.00705	0.00042	1.51777	1.00637	0.00043	1.51775	1.00564	0.00044	1.52050
8	u2335a	0.99351	0.00043	1.61950	0.99351	0.00043	1.61950	0.99452	0.00042	1.61670
9	u2335b	0.99681	0.00045	1.51871	0.99681	0.00045	1.51871	0.99707	0.00045	1.51252
10	u2336a	1.00057	0.00045	1.77403	1.00057	0.00045	1.77403	1.00122	0.00047	1.77535

Table 4.2-12. Homogenous Critical Experiments Using Uranium-233 Fuel (Fast)

.

5. CONCLUSIONS

The data reported herein not identified with TBVs are acceptable for quality affecting activities and for use in analyses affecting procurement, construction, or fabrication. TBV data specified in Section 4 will require the release of TBVs-1357 through 1371 prior to its use in quality affecting activities and for use in analyses affecting procurement, construction, or fabrication. Table 5-1 provides a summary listing of the average calculated values of k_{eff} for the LCEs with each library set. The values listed in Table 5-1 are based on unaccepted data, if the data from Table 5-1 are used as input into documents directly relied upon for radiological safety or waste isolation issues, then they are required to be identified and tracked as TBV in accordance with appropriate procedures.

Type of System	Number	Average k _{eff} / Standard Deviation					
Type of System	of Cases	WPO Selected	ENDF/B-V	ENDF/B-VI			
Lattices							
Mixed oxide	18	1.0007 / 0.0044	1.0002 / 0.0049	0.9944 / 0.0038			
HEU	77	1.0004 / 0.0076	0.9995 / 0.0076	0.9990 / 0.0071			
IEU	2	1.0111 / 0.0029	1.0083 / 0.0013	1.0097 / 0.0032			
LEU	65	0.9984 / 0.0043	0.9979 / 0.0039	0.9947 / 0.0045			
Homogeneous Systems							
Mixed Pu and natural U nitrate	34	1.0043 / 0.0053	1.0045 / 0.0056	0.9970 / 0.0055			
Pu nitrate	73	1.0117 / 0.0053	1.0117 / 0.0051	1.0036 / 0.0056			
Pu metal fast	12	0.9976 / 0.0027	0.9994 / 0.0029	0.9990 / 0.0026			
HEU nitrate	105	1.0055 / 0.0075	1.0054 / 0.0073	1.0020 / 0.0082			
HEU metal fast	15	0.9971 / 0.0038	0.9985 / 0.0057	0.9967 / 0.0040			
IEU	33	0.9965 / 0.0085	0.9962 / 0.0087	1.0036 / 0.0122			
IEU metal fast	10	1.0041 / 0.0036	1.0042 / 0.0045	0.9991 / 0.0041			
LEU nitrate	25	1.0004 / 0.0034	1.0005 / 0.0034	0.9963 / 0.0034			
LEU	12	1.0046 / 0.0243	1.0046 / 0.0243	0.9993 / 0.0230			
²³³ U	16	0.9988 / 0.0036	0.9989 / 0.0035	0.9977 / 0.0031			

Table 5-1. Average Values for keff from LCE Results

Based upon examinations of the average k_{eff} values presented in Table 5-1 it can be seen that the ENDF/B-V and WPO Selected library sets produce k_{eff} values that are closer to unity than the ENDF/B-VI library values for the lattice LCEs. For the homogenous systems, most of the ENDF/B-VI library results were closer to unity than the ENDF/B-V and WPO Selected library sets.

6. REFERENCES

Baldwin, M.N.; Hoovler, G.S.; Eng, R.L.; and Welfare, F.G. 1979. *Critical Experiments* Supporting Close Proximity Water Storage of Power Reactor Fuel. BAW-1484-7. Lynchburg, Virginia: Babcock & Wilcox (B&W). TIC: 245055

Bierman, S.R. 1990. Criticality Experiments with Neutron Flux Traps Containing Voids. PNL-7167. Richland, Washington: PNL. TIC: 205600

Bierman, S.R.; Clayton, E.D.; and Durst, B.M. 1977. Critical Separation Between Subcritical Clusters of 2.35 Wt%²³⁵U Enriched UO₂ Rods in Water with Fixed Neutron Poisons. PNL-2438. Richland, Washington: PNL. TIC: 223644

Bierman, S.R.; Durst, B.M.; and Clayton, E.D. 1981. Criticality Experiments with Subcritical Clusters of 2.35 Wt% and 4.31 Wt%²³⁵U Enriched UO₂ Rods in Water with Uranium or Lead Reflecting Walls. PNL-3926. Richland, Washington: PNL. TIC: 232754

Bierman, S.R. and Clayton, E.D. 1981. Criticality Experiments with Subcritical Clusters of 2.35 Wt% and 4.31 Wt% ²³⁵U Enriched UO₂ Rods in Water with Steel Reflecting Walls. PNL-3602. Richland, Washington: PNL. TIC: 232871

Bierman, S.R.; Durst, B.M.; Clayton, E.D.; Scherpelz, R.I.; Kerr, H.T. 1979. "Critical Experiments with Fast Test Reactor Fuel Pins in Water." *Nuclear Technology*, 44, 141-151. American Nuclear Society (ANS). TIC: 239579

Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; and Keay, R.T. 1984. Criticality Experiments with Low Enriched UO₂ Fuel Rods in Water Containing Dissolved Gadolinium. PNL-4976. Richland, Washington: PNL. TIC: 222973

Briesmeister, Judith F., ed. 1997. *MCNP—A General Monte Carlo N-Particle Transport Code*. User Manual, Report Number: LA-12625-M, Version 4B. Los Alamos, New Mexico: Los Alamos National Laboratory. TIC: 241044

Brown, C.L.; Lloyd, R.C.; Bierman, S.R.; Clayton, E.D. 1965. *Exponential Experiments and Neutron Multiplication Measurements with 1.25 wt% Enriched N-Reactor Fuel Elements in Light Water*. BNWL-52. Richland, Washington: PNL. TIC: 241005

DeHart, M.D. and Bowman, S.M. 1995. *Analysis of Fresh Fuel Critical Experiments Appropriate for Burnup Credit Validation*. ORNL/TM-12959. Oak Ridge, Tennessee: Oak Ridge National Laboratory (ORNL). TIC: 240899

Durst, B.M.; Bierman, S.R.; and Clayton, E.D. 1982. *Critical Experiments with 4.31 Wt%*²³⁵U *Enriched UO*₂ *Rods in Highly Borated Water Lattices*. PNL-4267. Richland, Washington: PNL. TIC: 232755

September 1999

Mele, I.; Ravnik, M.; Trkov, A. 1994. "TRIGA Mark II Benchmark Experiment, Part I: Steady-State Operation." *Nuclear Technology*, 105, 37-51. American Nuclear Society. TIC: 240865

Miyoshi, Y.; Umano, T.; Tonoike, K.; Izawa, N.; Sugikawa, S.; and Okazaki, S. 1997. "Critical Experiments on 10% Enriched Uranyl Nitrate Solution using a 60-cm Diameter Cylindrical Core." *Nuclear Technology*, 118, 69-82. Hinsdale, Illinois: American Nuclear Society (ANS). TIC: 244153

Newman, L.W. 1984. Urania-Gadolinia: Nuclear Model Development and Critical Experiment Benchmark. BAW-1810. Lynchburg, Virginia: B&W. TIC: 233536

Organization for Economic Cooperation and Development-Nuclear Energy Agency (OECD-NEA) 1998. International Handbook of Evaluated Criticality Safety Benchmark Experiments. NEA/NSC/DOC(95)03, September 1998 Edition. Paris, France: Nuclear Energy Agency. TIC: 243013

Radulescu, G. and Abdurrahman, N.M. 1997. "MCNP Criticality Benchmark Calculations of the Saxton Plutonium Program Experiments." *Transactions of the American Nuclear Society*, 76, 231-232. ISSN: 0003-018X. La Grange Park, Illinois: ANS. TIC: 242666

Taylor, E.G. 1965. Saxton Plutonium Program Critical Experiments for the Saxton Partial Plutonium Core. EURAEC1493, WCAP-3385-54. Pittsburg, Pennsylvania: Westinghouse Electric Corporation. TIC: 223286

Wittekind, W.D. 1992. *K Basin Criticality Evaluation for Irradiated Fuel Canisters in Sludge*. WHC-SD-NR-CSER-001 Rev. 0. Richland, Washington: Westinghouse Hanford Company. TIC: 240971

Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) 1998. *Quality Assurance Requirements and Description*. DOE/RW-0333P, REV 8. Washington, D.C.: DOE OCRWM. ACC: MOL.19980601.0022

DOE 1999. DOE Letter "Accepted Data Call", from R. E. Spence to J. L. Younker, July 27, 1999. North Las Vegas, Nevada: DOE OCRWM Yucca Mountain Site Characterization Office. ACC: MOL.19990811.0170

Civilian Radioactive Waste Management System (CRWMS) Management & Operating Contractor (M&O) 1998a . *Disposal Criticality Analysis Methodology Topical Report*. B0000000-01717-5705-00095 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980918.0005

CRWMS M&O 1998b. Software Qualification Report for MCNP Version 4B2, A General Monte Carlo N-Particle Transport Code. 30033-2003 REV 01; CSCI: 30033 V4B2LV. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980622.0637

CRWMS M&O 1998c. Selection of MCNP Cross Section Libraries. B00000000-01717-5705-00099 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980722.0042

CRWMS M&O 1999a. Classification of the Preliminary MGDS Repository Design. B0000000-01717-0200-00134 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19981103.0546

CRWMS M&O 1999b. Laboratory Critical Experiment Reactivity Calculations. B00000000-01717-0210-00018 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990526.0294

CRWMS M&O 1999c. *LCE for Research Reactor Benchmark Calculations*. B00000000-01717-0210-00034 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990329.0394

CRWMS M&O 1999d. LCEs for Naval Reactor Benchmark Calculations. B0000000-01717-0210-00087 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990819.0239

CRWMS M&O 1999e. QAP-2-0 Activity Evaluation. *Neutronics Methodology – SR, 1101 2380 M1*. Las Vegas, Nevada: CRMWS M&O. ACC: MOL.19990318.0037