CRWMS/M&O

Design Analysis Cover Sheet

Complete only applicable items.

L

(1.) QA: Page: 1

Of: 52

2. DESIGN ANALYSIS TITLE					
Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package					
3. DOCUMENT IDENTIFIER (Inclue	ding Rev. No.)	4.	. TOTAL PAGES		
BBA000000-01717-0200-0005	6. ATTACHMENT NUMBERS - NO. O	F PAGES IN EACH	2		
10 Hard Conv. 2 Tapes	1.3 II.3 III.5 IV.8 V.10 VI.6 V	711-4 VIII-2 IX-6 X-3			
To Hald Copy, 2 Tapes	Printed Name	Signature	Date		
7. Originator	John W. Davis (Originator for REV 00 A. H. Wells)	John & Das	8/15/97		
8. Checker	John R. Massari	Au Mans	\$/15/97		
9. Lead Design Engineer	Thomas W. Doering	1. without	8.15.97		
10. Department Manager	Hugh A. Benton	Hugh A. Benton	8/15/97		
11. REMARKS					
			1		

CRWMS/M&O

Design Analysis Revision Record

Complete only applicable items.

1.

Page: 2

0f: 52

2. DESIGN ANALYSIS TITLE				
Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package				
3. DOCUMENT IDENTIFIER (Including Rev. No.)				
BBA000000-01717-	0200-00052 REV 01			
4. Revision No.	A. Revision No. 5. Description of Revision			
4. nevision ivo.	Initial Issue Revision 01 Issue Changes marked by vertical bar in left margin Added degradation sequence description in Section 7.1 Added Section 7.4 - Final Criticality Results Added Section 7.6 on Shielding Calculations Added Attachments IV through XDesign Review Copy - Incorporate Checker Comments - Changes marked by vertical bar in left margin Final Check Copy - Incorporate Reviewer Comments - Changes marked by vertical bar in left margin			

Waste Package Development		Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
	DHLW Waste Package	
Docum	ent Identifier: BBA000000-01717-0200-00052 REV 01	Page 3 of 52

Table of Contents:

<u>Item</u>

I

1.	Purpose
2.	Quality Assurance
3.	Method
4.	Design Inputs64.1 Design Parameters64.1.1 Massachusetts Institute of Technology (MIT) SNF64.1.2 Oak Ridge Research (ORR) SNF84.1.3 HLW Glass Pour Canisters94.1.4 Codisposal Canister94.1.5 DHLW Five-Pack Waste Package104.2 Criteria104.2.1 Criticality Control114.2.2 Shielding124.3 Assumptions124.4 Codes and Standards13
5.	References
6.	Use of Computer Software 17
7.	Design Analysis187.1 Background187.2 Criticality Models197.2.1 MIT Fuel Geometry237.2.2 ORR Fuel Element Geometry257.2.3 MIT Codisposal Basket Geometry267.2.4 ORR Codisposal Basket Geometry277.2.5 Codisposal Basket Neutron Absorber Materials277.2.6 Waste Package277.3 Initial Criticality Results297.3.1 MIT SNF Criticality297.3.2 ORR SNF Criticality327.4 Final Criticality Results337.4.1 Final MIT SNF Canister Criticality Calculations347.4.2 Final ORR SNF Canister Criticality Calculations37

	Was	te Package Development	Design Analysis
	Title:	Criticality Safety and Shielding Evaluations of the Codisposal C	Canister in the Five-Pack
	Docu	ment Identifier: BBA000000-01717-0200-00052 REV 01	Page 4 of 52
l		7.6 Shielding Analysis	
		7.6.1 Source Term Comparison	
I		7.6.2 Shielding Model	
I		7.6.3 Shielding Results	
	8. C	onclusions	
		8.1 MIT and ORR SNF Criticality	
		8.2 MIT SNF Shielding	
	9. A	ttachments	

	Wast	e Package Development	Desi	ign A	nal	ysis
1	Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister i	n the	Five	-Pack
		DHLW Waste Package				
	_			n	~	

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 5 of 52

1. Purpose

I

1

I

I

1

The objective of this analysis is to characterize a codisposal canister containing MIT or ORR fuel
in the Five-Pack defense high level waste (DHLW) waste package (WP) to demonstrate concept
viability related to use in the Mined Geologic Disposal System (MGDS) environment for the
postclosure time frame. The purpose of this analysis is to investigate the disposal criticality and
shielding issues for the DHLW WP and establish DHLW WP and codisposal canister compatibility
with the MGDS, and to provide criticality and shielding evaluations for the preliminary DHLW WP

2. Quality Assurance

The Quality Assurance (QA) program applies to this analysis. The work reported in this document is part of the preliminary Waste Package (WP) design analysis that will eventually support the License Application Design phase. This activity, when appropriately confirmed, can impact the proper functioning of the MGDS waste package; the waste package has been identified as an MGDS Q-List item important to safety and waste isolation (pp. 4, 15, Ref. 5.1). The waste package is on the Q-List by direct inclusion by the Department of Energy (DOE), without conducting a QAP-2-3 *Classification of Permanent Items* evaluation. The Waste Package Development Department responsible manager has evaluated this activity in accordance with QAP-2-0, *Conduct of Activities*. The DOE Spent Fuel Characterization (Ref. 5.3) activity evaluation has determined that work associated with the aluminum-based DOE Spent Fuel task is subject to *Quality Assurance Requirements and Description* (QARD; Ref 5.2) requirements. As specified in NLP-3-18, *Documentation of QA Controls on Drawings, Specifications, Design Analyses, and Technical Documents*, this activity is subject to QA controls.

Design inputs which are identified in this document are for the preliminary stage of the WP design process; all of these design inputs will require subsequent confirmation (or superseding inputs) as the waste package design proceeds. Consequently, use of any data from this analysis for input into documents supporting construction, fabrication, or procurement is required to be controlled as TBV in accordance with the appropriate procedures.

3. Method

The solution method is to use the Monte Carlo N-Particle Version 4A computer code (MCNP4A; CSCI: 30006 V4A) to calculate k-effective for criticality safety evaluations and to also to use MCNP4A to calculate neutron and gamma fluxes on the WP surface for dose rate evaluations. The SAS2H sequence of the SCALE 4.3 code package (CSCI: 30011 V4.3) is used to develop source terms for shielding (and thermal) evaluations. All calculations are performed with initial fresh fuel enrichment values; i.e., there is no credit for fuel burnup. (Assumption 4.3.1)

4. Design Inputs

All design parameters and assumptions which are identified in this document are for the preliminary stage of the WP design process and are considered unqualified; all of these design parameters and assumptions will require subsequent confirmation (or superseding inputs) as the waste package design proceeds. This document will not directly support any construction, fabrication, or procurement activity and therefore is not required to be procedurally controlled as TBV. In addition, the inputs associated with this analysis are not required to be procedurally controlled as TBV. However, use of any data from this analysis for input into documents supporting construction, fabrication, or procurement is required to be controlled as TBV in accordance with the appropriate procedures.

4.1 Design Parameters

Criticality evaluations of both Massachusetts Institute of Technology (MIT) Spent Nuclear Fuel (SNF) and Oak Ridge Research (ORR) SNF are performed to evaluate a range of fresh fuel enrichments from 93.5 weight percent to 20 weight percent. These enrichments are representative of the various enrichments which may be found in Al-based DOE-owned SNF as identified by Savannah River Site (SRS) (Ref. 5.4).

4.1.1 Massachusetts Institute of Technology (MIT) SNF

The details of the MIT fuel assembly were obtained from the MIT fuel Appendix A data and the MIT plate/assembly drawings (R3F-3-2, R3F-1-4) provided by SRS (Ref. 5.4)(TBV). The MIT fuel assembly is constructed from a collection of 15 flat plates tilted at a sixty degree angle so that the resulting assembly has a parallelogram cross-section instead of the more common square or hexagon shape. The MIT fuel length values used in these analyses are shorter than the original as-built length of the MIT assembly because the top and bottom ends of the assembly, which do not contain uranium materials, have been removed by cutting. The fuel plates consist of an aluminum cladding over an aluminum/uranium alloy. The maximum fuel mass for the MIT assembly are 514.25 grams of U-235 with an enrichment of 93.5 weight percent and one weight percent of U-234 (assumption 4.3.2). The amount of aluminum present in the U-AI, alloy is 30.5 weight percent. The

Wast	te Package Development	Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposa	l Canister in the Five-Pack
	DHLW Waste Package	
Docun	nent Identifier: BBA000000-01717-0200-00052 REV 01	Page 7 of 52

uranium/aluminum alloy has a significant void volume if distributed over the maximum dimensions, and thus can become waterlogged with a resultant increase in reactivity.

The conservative values on which burnup is based were taken from the MIT fuel Appendix A data 1 provided by SRS (Ref. 5.4). The maximum exposure for the MIT fuel is rounded up to 8100 MWD/MTU. The time in reactor (including down time) is rounded down to 2500 days and the power level is 9.68 MW/MTU.

Fuel Plates

L

1

The flat plates are 2.552 (+0.000, -0.002) inches wide, and 23 inches long. All 15 plates are the same and have a finned cladding surface with a thickness of 0.080 ±0.003 inches and a fin height of 0.010 ± 0.002 inches. The fuel alloy is 0.030 + 0.0, -0.002 inches thick, 2.177 + 0.000, -0.1875inches wide, and 22.375 ± 0.375 inches long.

Fuel Element

The aluminum outer shroud which encloses the 15 fuel plates on 4 sides is a 2.405 inch outside dimension rhomboid with two 0.044 inch thick walls parallel with the fuel plates and two 0.188 inch thick comb plates into which the fuel plates fit. The length (after cutting) is 23.368 inches. The fuel plates are evenly spaced within this rhomboid and angled 60 degrees off the comb plate. Drawing R3F-1-4 (Ref. 5.4)) shows a fuel plate center-to-center spacing of 0.158 inches, which is the spacing of the notches on the comb plates.

Waste Package Development		Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisp	oosal Canister in the Five-Pack
	DHLW Waste Package	
Docum	nent Identifier: BBA000000-01717-0200-00052 REV 01	Page 8 of 52

4.1.2 Oak Ridge Research (ORR) SNF

Details of the construction of the ORR fuel element are contained in drawings M-11495-OR-001 ("19 Plate Fuel Element Assy & Finish Machining", Ref. 5.4)(TBV), M-11495-OR-003 ("Misc. L L Details for ORR Fuel Element", Ref. 5.4)(TBV), and M-11495-OR-004 ("Fuel Plate Details", Ref. 5.4)(TBV). The element is constructed from 19 curved fuel plates which are held within a square 1 aluminum box by two opposing aluminum comb plates. The ORR fuel length values used in these L analyses are shorter than the original as-built length of the ORR assembly because the top and L bottom ends of the assembly, which do not contain uranium materials, have been removed by E cutting. The ORR fuel Appendix A (Ref. 8.3) contains the material information. The fuel plates consist of an aluminum cladding over an U-Si-Al fuel material. The maximum fuel mass for the ſ ORR assembly is 347 grams of U-235 with an enrichment of 20.56 weight percent. The uranium 1 present in the U-Si-Al alloy is 77.5 weight percent. There are 2 atoms of Si per 3 atoms of U, and Al fills out the bulk of the fuel material. I

Fuel Plates (Ref. 5.4)

The curved plates are 2.770 minimum (2.775 maximum) inches wide with a 5.5 inch inner radius of curvature. Seventeen of the plates are inner plates, with a thickness of 0.0494 to 0.0510 inches total with a 0.0105 inch minimum aluminum cladding on both sides of a 0.020 inch nominal fuel foil, which is assumed to have a tolerance of 0.005 inches since this is the default for the drawing. Two of the plates are outer plates, with a thickness of 0.063 to 0.066 inches, with a 0.018 inch minimum cladding on both sides of a 0.020 inch nominal fuel foil. The inner and outer fuel plates are manufactured as flat laminated sheets with a minimum width of 2.7925 inches (2.7955 maximum) that are formed to the 5.5 inch radius of curvature. The fuel foil is not as wide as the aluminum cladding, and an aluminum strip is used to close each side of the finished fuel plate. For the inner fuel plates, the width of the fuel foil allows a 0.126 to 0.200 inch inset from the edge of the plate on both sides. The overall length of the inner fuel plate is 24.620 to 24.630 inches and the fuel foil is centered within the plate longitudinally, with an inset at each end of 0.318 to 0.775 inches. For the outer fuel plates, the width of the fuel foil allows a 0.126 to 0.198 inch inset from the edge of the plate on both sides. The overall length of the outer fuel plate is 27.120 to 27.130 inches and the fuel foil is centered within the plate longitudinally, with an inset at each end of 1.574 to 2.011 inches. The top and bottom ends of the inner and outer fuel foils are chamfered, but this trimming of the fuel alloy will be neglected. The plates are fixed relative to each other by comb plates along two sides and by a comb strap across the top and bottom. Note that the upper and lower ends of each fuel plate (for a short length) are rolled slightly - this feature is neglected in the MCNP geometry model since the spacing of the plates is unaffected.

Fuel Element (Ref. 5.4)

The aluminum comb plates enclose the 19 fuel plates on 2 sides fixing the fuel plates and creating an approximately 3.25 inch by 3.00 inch outside dimension rectangle, with a nominal length (after

Wast	e Package Development	Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
	DHLW Waste Package	
Docun	nent Identifier: BBA000000-01717-0200-00052 REV 01	Page 9 of 52

cutting) of 27 1/8 inches. The fuel plates are centered within this box, and form a square fuel/water region with a 3.169 inch reference dimension (the longitudinal comb plate width). Drawing M-11495-OR-003 ("Misc. Details for ORR Fuel Element") shows a fuel plate edge-to-edge spacing of 0.166 inches, which is the spacing of the notches on the comb plates.

4.1.3 HLW Glass Pour Canisters

The Savannah River glass pour canister is a cylindrical stainless steel 304 can with a 609 mm outer diameter, a 9.525 mm wall thickness (Ref. 5.11, p. 3.3-4)(TBV), and a nominal length of 3 m. The canister inside volume is 0.736 m³ and the glass weight is 1682 kg (Ref. 5.11, p. 3.3-6). HLW glass (Ref. 5.11, p. 3.3-1) is poured into the canisters until 85% of the volume is filled. The nominal dimensions of the pour canister are used for these analyses. Glass neutron, gamma, and heat sources are provided in Reference 5.23 and are given in Tables 7.4-1 and 7.4-2. Savanah River HLW glass number densities were obtained from Reference 5.20, Attachment II.

4.1.4 Codisposal Canister

1

I

| | | |

The preliminary design (TBV) for the codisposal canister is a stainless steel 316L, right circular cylinder which contains a 316L basket. DOE-owned SNF is to be loaded into the basket. An initial conceptual design for the MIT SNF is described in Section 7.2.3 and for the ORR SNF, in Section 7.2.4. The initial dimensions for the codisposal canister are a 422 mm outer diameter and a 6.35 mm wall thickness. The length of the canister is defined for this analysis as the length of four stacked fuel assemblies plus tolerances plus between-layer (axial) separator plate thicknesses as required.
The codisposal canister contains 16 MIT or 10 ORR DOE-SNF fuel basket locations in four layers. Stainless steel/boron alloy (described in Section 7.2.5) is used to separate each layer from the adjacent layer within the canister.

I The design of the DOE-SNF canisters is modifed in this analysis in order to meet criticality requirements as discussed in Section 7.3 and in a companion structural (Ref. 5.27) analyses to meet structural requirements. The structural analysis indicated that 15 mm thick XM-19 is required for the DOE-SNF canister. The evaluation of the final design resulting from the preliminary criticality and structural analyses is presented in Section 7.4. A companion thermal analysis (Ref. 5.26) was also performed but required no additional changes to the design.

The composition of Type XM-19 stainless steel (Ref. 5.5) is shown in Table 4.1.4-1.

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 10 of 52

 	Element	Composition, Weight Percent
I	Carbon	0.06 Max
I	Manganese	4.00-6.00
I	Phosphorus	0.040 Max
1	Sulfur	0.030 Max
I	Silicon	0.75 Max
1	Chromium	20.50-23.50
	Nickel	11.50-13.50
I	Molybdenum	1.50-3.00
1	Nitrogen	0.20-0.40
1	Copper	0.0

Table 4.1.4-1 Type XM-19 Stainless Steel Composition

4.1.5 DHLW Five-Pack Waste Package

The DHLW Five-Pack waste package (TBV) consists of a double-walled waste package which can accept five canisters in a pentagonal array. The central region of the pentagonal array is an empty space, which can accept the codisposal canister. Dimensions for the DHLW Five-Pack waste
package are provided by the sketches included in Attachment I. The materials of construction selected for the DHLW WP are: corrosion allowance barrier - ASTM A 516 Gr 55, corrosion resistant barrier - ASTM B 443 ("Alloy 625") (Ref 5.24). The densities and isotopic contents of the materials of construction for the waste package are given in reference 5.22. Reference 5.22 does not contain a definition of the alloy 625 which is used for the inner barrier of the waste package, so the Alloy 825 definition is used instead since no discernible neutronic effect will result from this substitution.

4.2 Criteria

The Engineered Barrier Design Requirements Document (EBDRD; Ref. 5.9) contains several criteria which relate to criticality control or WP shielding. The "TBD" (to be determined) items identified in these criteria will not be carried to the conclusions of this analysis based on the rationale that the conclusions are for preliminary design, and will not be used as input in design documents supporting construction, fabrication, or procurement. A review of the EBDRD identified the following relevant requirements:

Waste Package Development		Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
	DHLW Waste Package	
Docum	nent Identifier: BBA000000-01717-0200-00052 REV 01	Page 11 of 52

Page 11 of 52

4.2.1 **Criticality Control**

The EBDRD requirements 3.2.2.6 and 3.7.1.3.A both indicate that a WP criticality shall not be possible unless at least two unlikely, independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety. These requirements also indicate that the design must provide for criticality safety under normal and accident conditions, and, that the calculated effective multiplication factor (k_{eff}) must be sufficiently below unity to show at least a five percent margin after allowance for the bias in the method of calculation and the uncertainty in the experiments used to validate the methods of calculation. The latter requirement contains a "TBD" at the end.

Controlled Design Assumptions document (CDA) assumption EBDRD 3.7.1.3.A (Ref. 5.10, p. 4-32) clarifies that the above requirement is applicable to only the preclosure phase of the MGDS, in accordance with the current DOE position on postclosure criticality. This assumption also indicates that for postclosure, the probability and consequences of a criticality provide reasonable assurance that the performance objective of 10CFR60.112 is met. While the Nuclear Regulatory Commission (NRC) has not yet endorsed any specific change for postclosure, they have indicated that they agree that one is necessary. [EBDRD 3.7.1.3.A]

Finally, EBDRD 3.3.1.G indicates that "The Engineered Barrier Segment design shall meet all relevant requirements imposed by 10CFR60." The NRC has recently revised several parts of 10CFR60 which relate to the identification and analysis of design basis events (Ref. 5.16) including the criticality control requirement, which was moved to 60.131(h). These changes are not reflected in the current versions of the EBDRD or the CDA. The change to the criticality requirement simply replaces the phrase "criticality safety under normal and accident conditions" with "criticality safety assuming design basis events."

This analysis contributes to satisfying the above requirements for preclosure by demonstrating that the intact codisposal canisters for MIT and ORR fuel will remain subcritical, given a five percent administrative margin (Ref. 5.16) and allowing for bias and uncertainty in the method of calculation, during the WP flooding event defined in the WP Design Basis Events analysis (Ref. 5.17). The misload events discussed in that analysis are not applicable in this case, as the codisposal canisters are specifically designed for the unique physical forms of the MIT and ORR fuel, and do not take credit for burnup. This analysis provides information which will be used in probabilistic analyses of postclosure criticality as part of Total System Performance Assessment (TSPA)-Viability Assessment (VA) to demonstrate compliance with the performance objective of §60.112 (or, as appropriate, other applicable performance objectives in effect or proposed by the NRC at the time the TSPA-VA analysis is performed).

DHLW Waste Package Document Identifier: BBA000000-01717-0200-00052 REV 01 4.2.2 Shielding EBDRD requirement 3.2.4.5 indicates that allocation of shielding requirements to the WP, if any, is TBD. The CDA has clarified this TBD in Key Assumption 031, by indicating that the WP shielding criteria should be as follows: WP containment barriers will provide sufficient shielding for protection of WP Α. materials from radiation enhanced corrosion, Β. Individual WPs will not provide any additional shielding for personnel protection, and, С. Additional shielding for personnel protection will be provided on the subsurface transporter and in surface and subsurface facilities. [EBDRD requirement 3.2.4.5]

Furthermore, EBDRD requirements 3.7.1.A, 3.7.1.B, and 3.7.1.2.G indicate that the design of the WP should be such that the nuclear properties of the contained waste not compromise the function of the WP, and that the design of the WP consider radiolysis effects.

This analysis contributes to satisfying the above criteria by demonstrating that the dose rate at the surface of the WP will not result in significant corrosion enhancement of the outer barrier due to radiolysis.

[EBDRD 3.7.1.A, 3.7.1.B, and 3.7.1.2.G]

4.3 Assumptions

- 4.3.1 It is assumed that all fuel is fresh and unburned for criticality analyses; i.e., there is no credit for burnup. The fresh fuel isotopic concentrations are used for all calculations. This assumption is used in Sections 3 and 4.1 and throughout Sections 7.2 and 7.3. The basis for this assumption is that it is conservative, because fresh fuel is more neutronically reactive than spent fuel.
- It is assumed that the MIT fuel contains one weight percent U-234. The basis for this 4.3.2 assumption is comparison to published information on other research reactor fuel of similar enrichment (Ref. 5.21). This assumption is used in Section 4.1.1.
 - 4.3.3 It is assumed that the codisposal canister contains 16 MIT or 10 ORR DOE-SNF assemblies per layer (4 layers total). MIT assemblies are representative of the many types of DOE-SNF which will be disposed of in codisposal waste packages since the enrichment and reactivity of these assemblies is larger than other fuel types. This assumption is used throughout Section 4.1 and throughout Section 7. The basis for this assumption is engineering

Waste Package Development Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack

Title:

Design Analysis

Page 12 of 52

1

I

I

1

1

Wast	e Package Development	Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposa	l Canister in the Five-Pack
	DHLW Waste Package	
Docum	ent Identifier: BBA000000-01717-0200-00052 REV 01	Page 13 of 52

judgement on the number of assemblies which will fit in the central space of the 5-pack DHLW WP with allowance for conceptual structural supports.

- 4.3.4 The waste package is assumed to be fully flooded with water for criticality calculations. The basis for this assumption is that it is conservative and is developed as a scenario in previous probabilistic analyses (Ref. 5.30). This assumption is used throughout Sections 7.2, 7.3 and 7.4.
- 4.3.5 The waste package is assumed to be filled with air for shielding calculations. The basis for this assumption is that the use of air or helium has no effect upon the calculated dose rate results due to the very low density of gases. This assumption is used throughout Section 7.6.
- 4.3.6 It is assumed that credit can be taken for only 75% of the B-10 in any boron neutron absorber. The basis for this assumption is that the NRC typically allows credit for only 75% of the boron, unless content and uniform coverage can be verified by measurement. This assumption is used throughout Section 7.
 - 4.3.7 The Savannah River pour canister is assumed to be representative for HLW canisters. Reference 5.11 specifies the geometry and materials of construction. Reference 5.23 provides the shielding source term. The basis for this assumption is that the specified reference is the best information available concerning the pour canister design. This assumption is used throughout Section 7.
 - 4.3.8 The emplacement time for MIT and ORR SNF is assumed to be based upon emplacement after a five year cool time has elapsed. The basis for this assumption is that five years is the minimum time for waste acceptance per 10CFR961 Appendix E. This assumption is used in Section 7.5.
 - 4.3.9 CDA assumptions Key 031 and EBDRD 3.7.1.3.A have been used to replace TBVs in requirements applicable to this document. These assumptions are used in Section 4.2. The bases for these assumptions are given in the CDA (Ref. 5.10).

4.4 Codes and Standards

1

I

Not Applicable. Neutronic design of the waste package is not controlled by codes and standards.

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

 Document Identifier:
 BBA000000-01717-0200-00052 REV 01
 Page 14 of 52

5. References

ł

- 5.1 Yucca Mountain Site Characterization Project Q-List, YMP/90-55Q, REV 4, Yucca Mountain Site Characterization Project.
- 5.2 Quality Assurance Requirements and Description, DOE/RW-0333P REV 7, U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).
- 5.3 *QAP-2-0 Activity Evaluations*, ID No. WP-30 Perform Criticality, Thermal, Structural, and
 Shielding Analyses as Required for DOE Spent Fuel Characterization, Dated 8/3/97,
 CRWMS M&O.
 - 5.4 Data Package from Savannah River Criticality Analysis of MIT and ORR SNF, (includes WSRC-TR-95-0302 Appendix A data sheets 59 and 217 for MIT and ORR fuel, as well as drawings R3F-3-2, R3F-1-4, M-11495-OR-001, 003, and 004), Records Batch # MOY-970605-02.
- 5.5 Standard Specification for Heat-Resisting Chromium and Chromium-Nickel
 Stainless Steel Plate, Sheet, and Strip for Pressure Vessels, ASTM A240/A240M
 REV91A, American Society for Testing and Materials, Philadelphia, PA.
- 5.6 Standard Review Plan for Spent Fuel Dry Storage Facilities, NUREG-1567, U.S. Nuclear
 Regulatory Commission, October 1996.
- 5.7 MCNP-A General Monte Carlo N-Particle Transport Code, Version 4A, LA-12625-M, Los
 Alamos National Laboratory, November 1993.
- 5.8 ANSI/ANS-6.1.1-1977, "American National Standard Neutron and Gamma-Ray
 Flux-to-Dose Rate Factors", American Nuclear Society, LaGrange Park, Illinois
 (1977).
 - 5.9 Engineered Barrier Design Requirements Document, YMP/CM-0024, REV 0, ICN 1, Yucca Mountain Site Characterization Project.
 - 5.10 Controlled Design Assumptions Document, Document Identifier (DI) Number: B00000000-01717-4600-00032 REV 04, ICN 01, Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O).
 - 5.11 Characteristics of Potential Repository Wastes, DOE/RW-0184-R1; Volume 1, U.S. DOE OCRWM.

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01 Page 15 of 52

- 5.12 Software Qualification Report for MCNP4A, CSCI: 30006 V4A, DI Number: 30006-2003 REV 02, CRWMS M&O.
- 5.13 Software Qualification Report for The SCALE Modular Code System Version 4.3, CSCI: 30011 V4.3, DI Number: 30011-2002 REV 01, CRWMS M&O.
- 5.14 *BW-2901Transportation Package*, USNRC Certificate of Compliance 71-9251.
- 5.15 American National Standard Neutron and Gamma-Ray Flux-to-Dose Rate Factors, ANSI/ANS-6.1.1-1977, American Nuclear Society, LaGrange Park, IL, 1977.
- 5.16 10CFR Part 60; Disposal of High-Level Radioactive Wastes in Geologic repositories; Design Basis Events; Final Rule, U.S. Nuclear Regulatory Commission, Federal Register, volume 61, Number 234, pp. 64257-64270, December 4, 1996.
- 5.17 Waste Package Design Basis Events, DI Number: BBA000000-01717-0200-00037 REV 00, CRWMS M&O.
- 5.18 Electronic Attachments for: BBA000000-01717-0200-00052 REV00, Criticality Safety & Shielding Evaluations of the Codisposal Canister in the 5 Pack DHLW Waste Package, Colorado BackupTape, RPC Batch Number MOY-970613-11, CRWMS M&O.
- 5.19 Ma, Benjamin M., Nuclear Reactor Materials & Applications, Van Nostrand Reinhold Company Inc., 1983.
- 5.20 DHLW Glass Waste Package Criticality Analysis, DI Number: BBAC00000-01717-0200-00001 REV 00, CRWMS M&O.
- 5.21 International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I, Volume II.b, Nuclear Energy Agency, Organization for Economic Co-operation and Development, November 4, 1996 update.
- 5.22 Material Compositions and Number Densities For Neutronics Calculations, DI Number: BBA000000-01717-0200-00002 REV 00, CRWMS M&O.
- 5.23 DHLW Canister Source Terms for Waste Package Design, DI Number: BBA000000-01717-0200-00025 REV 00, CRWMS M&O.
- 5.24 Waste Package Materials Selection Analysis, DI Number: BBA000000-01717-0200-00020 REV 00, CRWMS M&O.
- 5.25 Mined Geologic Disposal System Advanced Conceptual Design Report, DI Number:

	<u>Docun</u>	DHLW Waste Package nent Identifier: BBA000000-01717-0200-00052 REV 01	Page 16 of 52
		B0000000-01717-5705-00027 REV 00, CRWMS M&O.	
ļ	5.26	Thermal Evaluation of the Codisposal Canister in the 5-Pack DHLW Number: BBAA00000-01717-0200-00021 REV 01, CRWMS M&O.	Waste Package, DI
 	5.27	Structural Evaluation of the MIT SNF Codisposal Canister, DI Nur 01717-0200-00051 REV 00, CRWMS M&O.	nber: BBA000000-
	5.28	Weiss, N. L., ed., <i>SME Mineral Processing Handbook</i> , Volume I, Engineers, American Institute of Mining, Metallurgical, and Petroleum E York, 1985.	Society of Mining Engineers, Inc., New
	5.29	Summary of Information Exchange, Interoffice Communication From Per LV.WP.PG.08/97-172, CRWMS M&O.	eter Gottlieb to File,
	5.30	Second Waste Package Probabilistic Criticality Analysis: Generation Internal Criticality Configurations, DI Number: BBA000000-01717-02 CRWMS M&O.	and Evaluation of 200-00005 REV 00,
	5.31	Electronic Attachments for: BBA000000-01717-0200-00052 REV01, of Shielding Evaluations of the Codisposal Canister in the 5 Pack DHL Colorado BackupTape, RPC Batch Number MOY-970815-20, CRWM	Criticality Safety & W Waste Package, S M&O.

-

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack

Waste Package Development		Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
	DHLW Waste Package	
Docum	ent Identifier: BBA000000-01717-0200-00052 REV 01	Page 17 of 52

6. Use of Computer Software

L

The calculation of nuclear reactivity of fresh fuel configurations was performed with the MCNP4A computer code, CSCI: 30006 V4A. MCNP4A calculates k-effective for a variety of geometric configurations with neutron cross sections for elements and isotopes described in the Evaluated Nuclear Data File version B-V (ENDF-B/V). MCNP4A is appropriate for the fuel geometries and materials required for these analyses. The calculations using the MCNP4A software were executed on a Hewlett-Packard 9000 Series 735 workstation. The software qualification of the MCNP4A software, including problems related to calculation of k-effective for fissile systems, is summarized in the Software Qualification Report for the Monte Carlo N-Particle code (Ref. 5.12). The MCNP4A software used. Access to and use of the MCNP4A software for this analysis was granted by Software Configuration Management and performed in accordance with the QAP-SI series procedures. Inputs and outputs for the MCNP4A software are included as attachments (see Table 9-2) as described in the following design analysis.

The calculation of the neutron, gamma, and thermal sources in spent MIT fuel was performed with the SAS2H code sequence, which is a part of the SCALE 4.3 code system, CSCI: 30011 V4.3. SAS2H is designed for spent fuel depletion calculations to determine spent fuel isotopic content (including radioisotopes which produce alpha particles), decay heat rates, and radiation source terms. Thus, SAS2H is appropriate for the generation of thermal and radiation sources for the calculations of this analysis. The calculations using the SAS2H software were executed on a Hewlett-Packard 9000 Series 735 workstation. The software qualification of the SAS2H software, including benchmark problems related to generation of isotope contents, is summarized in the Software Qualification Report for the SCALE Modular Code system (Ref. 5.13). The SAS2H evaluations performed for this design are fully within the range of the validation for the SAS2H software used. The associated 238GROUPNDF5 cross section library was used for these calculations. Access to and use of the SAS2H software for this analysis was granted by Software Configuration Management and performed in accordance with the QAP-SI series procedures. Inputs and outputs for the SAS2H software are included as attachments (see Table 9-2) as described in the following design analysis.

The data interpolation for MIT SNF heat load and computation of number densities of intact and degraded states were performed with Microsoft Excel Version 5.0. Microsoft Excel 5.0 was executed on an IBM PC compatible personal computer. Microsoft Excel Version 5.0 was used simply to provide data manipulation for the analyses and is considered Computational Support Software. These files located in the attached tape, and are indicated in Table 9-2 with an "xls" extension.

Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack Title: **DHLW Waste Package**

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 18 of 52

7. Design Analysis

7.1 Background

As part of an engineered barrier system for the containment of radionuclides, the DHLW WP keffective must not exceed 0.95 during the pre-closure phase. Further, potential degradation of the aluminum clad, U-Al metal (or U-Si-Al) fuel plates must not cause the reactivity of the fuel to exceed 0.95 while it is contained within the codisposal canister. Degradation of the fuel will not occur while the WP is intact due to the inert helium fill gas; however, oxidation of the aluminum cladding and fuel alloy would occur at a much faster rate than degradation of the codisposal basket if the WP were breached. The codisposal baskets for MIT fuel and ORR are both evaluated in the intact configuration. In addition, enough degraded fuel cases are run to determine the amount and distribution of borated stainless steel required to be placed into the intact configuration to prevent criticality within the DOE-SNF codisposal canister.

The MIT and ORR fuel would be expected to degrade through oxidation within a few hundred years I of breach of the DOE-SNF canister. Uranium and aluminum oxides in water have been observed I to form hydrates with a gel-like appearance and an effective solid density of as low as 10% (Ref L F 5.28). Both floculent and gel-like forms of aluminum have been observed in association with test coupons at SRS (Ref. 5.29). The rate of formation of these hydrated oxides has not been quantified L and is not well understood. Because of this limitation, the Al-based fuel forms will conservatively L be assumed to degrade to a mix of hydrated Al and U oxides in water within the limits of the I available volume as a bounding condition. Development of detailed degradation scenarios is beyond the scope of Phase I of this work, but consideration of degraded fuel forms is necessary to evaluate L the DOE-SNF canister. The hydrated oxides and water mix is approximated by homogenizing the I Al-based fuel and water into the basket cell resulting in a solids density of down to 35% in this analysis. T I

The scenarios analyzed included:

Intact - Conceptual designs of baskets suitable for transport/storage (any transport design can be stored)/disposal. The intent was not to design a transport basket per se but rather to design a basket which would be representative of the types of transport basket which might be developed for DOE-SNF. A fully flooded condition is analyzed for both MIT and ORR fuel in their respective baskets within the waste package.

- Degraded within codisposal canister potential progressive degradation of fuel with all the degradation products remaining within the codisposal canister bounds. Optimum moderation I was evaluated by varying the water content of the fuel alloy and surrounding moderator volume.
- I The progressive degradation of the fuel was evaluated in stages as follows:

- 1. Homogenize fuel plates and inter-plate moderator volume
- 2. Homogenize entire assembly (fuel plates plus structural combs plus water)
- 3. Disperse homogenized material throughout basket free space

7.2 Criticality Models

Material number densities for the constituents of the MCNP4A models are provided for intact MIT SNF in Attachment II, for intact ORR SNF in Attachment III, and for other materials in Reference 5.22. The number densities for the various degraded MIT and ORR canister geometries are provided in the MITNUM.XLS (Attachement IV) and ORRNUM3.XLS (Attachment V) spreadsheets, respectively. The geometries of the MCNP4A models are described below. The MCNP4A models utilized the "worst case" dimensions from the range of values for each fuel assembly dimension. The procedure is to maximize the fuel volume and moderator volume by applying the minimum thicknesses of the aluminum cladding components and the maximum width and length extents of the fuel plates.

An allowance for calculational bias and experimental uncertainties in benchmark calculations must be made per the requirements listed in Section 4.2. Forty-seven benchmark calculations representative for MIT and ORR research reactor fuel were run based on reviewed experiments and MCNP models (Ref. 5.21). The sum of bias and uncertainty is less than 0.02 in k_{eff} for all cases. The cases run are shown below in Tables 7.2-1 and 7.2-2 with the benchmark identification number, their results and attachment number. Complete descriptions are provided in reference 5.21. The SPERT-D experiments reported in Table 7.2-1 utilize a Materials Test Reactor (MTR) type Al-based fuel element with 22 plates/element and a uranium U-235 enrichment of 93.17 wt% and have an experimental (measurement) uncertainty of less than ±0.004 in k_{eff} . The remaining experiments reported in Table 7.2-2 are based on a cross-shaped fuel rod composed of a coagulated mixture of UO₂ enriched to 80-90 wt% in U-235 and Cu powder and have an experimental (measurement) uncertainty of less than ±0.006 in k_{eff} for all cases.

Deel		A	1
Des	qn	Ana	IIVSIS

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01____

Page 20 of 52

Case Name	Description	$k_{eff} \pm 2\sigma$
SPERT1	4 X 3.77 lattice, 4.63 kg U-235, 0.0" spacing	0.9968 ±0.0037
SPERT2	4 X 3.16 lattice, 3.87 kg U-235, 0.25" spacing	0.9990 ±0.0035
SPERT3	4 X 3.09 lattice, 3.79 kg U-235, 0.50" spacing	1.0059 ±0.0021
SPERT4	Circular, 3.48 kg U-235, 0.50" spacing	0.9983 ±0.0037
SPERT5	4 X 3.16 lattice, 3.87 kg U-235, 0.75" spacing	1.0050 ±0.0038
SPERT6	4 X 3.70 lattice, 4.54 kg U-235, 1.00" spacing	1.0006 ±0.0033
SPERT7	5 X 4.03 lattice, 6.16 kg U-235, 1.25" spacing	1.0002 ±0.0035
SPERT8	6 X 5.34 lattice, 9.82 kg U-235, 1.50" spacing	0.9965 ±0.0032
SPERT9	7 X 6.68 lattice, 14.33 kg U-235, 1.60" spacing	0.9982 ±0.0030
SPERT10	4 X 3.2 X 3 lattice, 11.78 kg U-235, 0.0" spacing	1.0093 ±0.0037
SPERT11	3 X 3.36 X 3 lattice, 9.28 kg U-235, 0.50" spacing	1.0079 ±0.0038
SPERT12	4 X 4 X 3 lattice, 14.71 kg U-235, 1.25" spacing	1.0070 ±0.0036
SPERT13	slab 16 X 2.32, 11.37 kg U-235, 0.0" spacing	1.0293 ±0.0035
SPERT14	slab 16 X 3, 14.71 kg U-235, 0.50"/2.19" spacing	1.0017 ±0.0033
SPERT15	slab 16 X 4, 19.62 kg U-235, 0.50"/2.56" spacing	0.9938 ±0.0020
SPERT16	2 slabs 16 X 2, 19.62 kg U-235, 0.50"/0.50"/6.37" spacing	1.0058 ±0.0033
SPERT17	slab 4 X 5.04 w/ Cd, 6.19 kg U-235, 0.0"/0.75" spacing	1.0064 ±0.0040
SPERT18	slab 4 X 7.04 w/ Cd, 8.64 kg U-235, 0.0"/0.75" spacing	1.0016 ±0.0044

Calculational Results for Critical Experiments Using the SPERT-D Fuel in Water -Table 7.2-1. HUE-MET-THERM-006 (Ref. 5.21)

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 21 of 52

Case Name	Description	$k_{eff} \pm 2\sigma$
SPERT19	U Nitrate (3.99 g U-235/liter) & 3 X 3.09, 2.86 kg U-235, 0.5" spacing, 0.0 g B/liter	0.9961 ±0.0028
SPERT20	U Nitrate (3.99 g U-235/liter) & 4 X 4.20, 5.15 kg U-235, 0.5" spacing, 0.389 g B/liter	0.9946 ±0.0034
SPERT21	U Nitrate (3.99 g U-235/liter) & 5 X 4.41, 6.76 kg U-235, 0.5" spacing, 0.579 g B/liter	0.9978 ±0.0039
SPERT22	U Nitrate (3.99 g U-235/liter) & 6 X 4.96, 8.90 kg U-235, 0.5" spacing, 0.773 g B/liter	1.0023 ±0.0035
SPERT23	U Nitrate (3.99 g U-235/liter) & 6 X 5.55, 10.15 kg U-235, 0.5" spacing, 0.871 g B/liter	1.0079 ±0.0023

Table 7.2-2. Calculational Results for the Critical Experiments Using Cross-shaped Fuel Rods Composed of UO₂ Enriched to 80-90% in U-235 and Cu Powder - Kurchatov Institute (Ref. 5.21)

Case Name	Description	$k_{eff} \pm 2\sigma$
	HEU-COMP-THERM-003 2-Zone Critical Arrays with U(80%)O ₂ +Cu Fuel and Lightwater Moderator	
HCT3-1	Center Zone: 12.2 mm Pitch, 19 Rods Outer Zone: 6.1 mm Pitch, 1390 Rods	0.9949 ±0.0029
HCT3-2	Center Zone: 12.2 mm Pitch, 61 Rods Outer Zone: 6.1 mm Pitch, 1182 Rods	0.9953 ±0.0031
НСТЗ-З	Center Zone: 12.2 mm Pitch, 121 Rods Outer Zone: 6.1 mm Pitch, 897 Rods	0.9944 ±0.0029
HCT3-4	Center Zone: 12.2 mm Pitch, 199 Rods Outer Zone: 6.1 mm Pitch, 577 Rods	1.0001 ±0.0028
НСТЗ-5	Center Zone: 12.2 mm Pitch, 271 Rods Outer Zone: 6.1 mm Pitch, 325 Rods	1.0012 ±0.0029
НСТЗ-6	Center Zone: 6.1 mm Pitch, 1099 Rods Outer Zone: 12.2 mm Pitch, 167 Rods	1.0096 ±0.0030

Design Analysis

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack
DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 22 of 52

	Case Name	Description	$k_{eff} \pm 2\sigma$
	НСТ3-7	Center Zone: 6.1 mm Pitch, 793 Rods Outer Zone: 12.2 mm Pitch, 250 Rods	1.0121 ±0.0030
]	НСТ3-8	Center Zone: 6.1 mm Pitch, 757 Rods Outer Zone: 12.2 mm Pitch, 249 Rods	1.0114 ±0.0029
 	НСТ3-9	Center Zone: 6.1 mm Pitch, 445 Rods Outer Zone: 12.2 mm Pitch, 319 Rods	1.0101 ±0.0030
1	HCT3-10	Center Zone: 6.1 mm Pitch, 217 Rods Outer Zone: 12.2 mm Pitch, 372 Rods	1.0120 ±0.0029
	HCT3-11	Center Zone: 6.1 mm Pitch, 85 Rods Outer Zone: 12.2 mm Pitch, 415 Rods	1.0113 ±0.0030
1	HCT3-12	Center Zone: 18.3 mm Pitch, 121 Rods Outer Zone: 6.1 mm Pitch, 985 Rods	0.9896 ±0.0028
	HCT3-13	Center Zone: 18.3 mm Pitch, 301 Rods Outer Zone: 6.1 mm Pitch, 426 Rods	0.9963 ±0.0026
	HCT3-14	Center Zone: 6.1 mm Pitch, 763 Rods Outer Zone: 18.3 mm Pitch, 186 Rods	1.0074 ±0.0030
	НСТ3-15	Center Zone: 6.1 mm Pitch, 337 Rods Outer Zone: 18.3 mm Pitch, 325 Rods	1.0036 ±0.0026
		HEU-COMP-THERM-004 Water Moderator Hexagonally Pitched (5.3 mm) Lattices of $U(90\%)O_2+Cu$ Fuel With Gd or Sm Rods	
	HCT4-1	106 Gd Rods on 27.54 mm Pitch, 2760 Fuel Rods	0.9891 ±0.0024
	HCT4-2	55 Gd Rods on 36.72 mm Pitch, 2520 Fuel Rods	0.9902 ±0.0023
	HCT4-3	121 Sm Rods on 27.54 mm Pitch, 3198 Fuel Rods	0.9889 ±0.0024
	HCT4-4	58 Gd Rods on 36.72 mm Pitch, 2727 Fuel Rods	0.9928 ±0.0024

Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack Title: DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 23 of 52

Design Analysis

Case Name	Description	$k_{eff} \pm 2\sigma$
	HEU-COMP-THERM-006 Water Moderator Hexagonally Pitched Lattices of U(80%)O ₂ +Cu Fuel	
HCT6-T1	1819 Fuel Rods on a 5.6 mm Pitch	0.9893 ±0.0027
НСТ6-Т2	457 Fuel Rods on a 10.0 mm Pitch	1.0084 ±0.0026
НСТ6-Т3	554 Fuel Rods on a 21.13 mm Pitch	0.9987 ±0.0021
	HEU-COMP-THERM-008 Water Moderator Hexagonally Pitched(5.3 mm) Double Lattices of U(80%)O ₂ +Cu Fuel and Boron Carbide Rods	
HCT8-1	217 B_4C Rods (1.0 gm B/rod) on 21.2 mm Pitch, 3460 Fuel Rods	0.9892 ±0.0025
НСТ8-2	169 B_4C Rods (3.5 gm B/rod) on 26.5 mm Pitch, 4130 Fuel Rods	0.9888 ±0.0023

7.2.1 MIT Fuel Geometry

Explicit geometric models of the MIT fuel assembly were constructed. The fuel alloy and aluminum cladding were modeled as separate layers in close contact. The actual design spacing of the fuel plates within the assembly was used. The assemblies are shortened by removing the end fittings, and the resulting shorter length was modeled to permit the fuel zones to minimize their separation in the axial direction to maximize k-effective. A picture of the resulting MCNP4A model is shown below in Figure 7.2.1-1.

Design Analysis

 Waste Package Development
 Design Analysis

 Title:
 Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack
 DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 24 of 52

Figure 7.2.1-1. MIT Fuel Assemblies in Codisposal Basket

Waste Package Development D		Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposal C	Canister in the Five-Pack
	DHLW Waste Package	
Docum	ent Identifier: BBA000000-01717-0200-00052 REV 01	Page 25 of 52

7.2.2 ORR Fuel Element Geometry

The individual curved plates of the ORR fuel assembly were individually modeled, including the slightly different fuel alloy U-235 content of the plates at either end of the curved plate array. The aluminum cladding and the fuel alloy were individually as separate layers in close contact. The aluminum side plates of the fuel assembly were also modeled explicitly. A picture of the resulting MCNP4A geometry is show below in Figure 7.2.2-1.

Figure 7.2.2-1. ORR Fuel Assembly Geometry

Wast	Design Analysis	
Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
	DHLW Waste Package	
Docum	ent Identifier: BBA00000-01717-0200-00052 REV 01	Page 26 of 52

7.2.3 MIT Codisposal Basket Geometry

The MIT codisposal basket is a 4 layer by 16 assembly array. Each layer of the MIT codisposal basket consists of plates formed into parallelogram shaped slots in a steel disk that provide T structural support for the SNF. The round disk to which the basket plates are attached serves as a base for each layer of assemblies and as an between-layer (axial) separator between layers. The between-layer separator plates are composed of stainless steel/boron and are 10 mm thick. Slot 1 locations within the basket can accomodate one, two, or four MIT assemblies, and adjacent assemblies can be separated by 2.13 mm thick stainless steel or stainless steel/boron in-row separator I plates. Cases were run with and without boron in these plates to determine if boron is necessary. Similar plates fabricated from Boralyn® are used in the BW-2901 transport package (Ref. 5.14). Panels of stainless steel/boron 2.54 mm thick are attached to one side of each slot to provide neutron absorption between the slots (as viewed in Figure 7.2.3-1). A radial cross-sectional view 1 of the model is shown in Figure 7.2.3-1. The rhomboidal slots provide a 1.72 mm clearance around

the MIT assembly. The inner radius of the codisposal canister is 204.65 mm.

Figure 7.2.3-1 MIT SNF Codisposal Canister Conceptual Design

Waste Package Development		Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
	DHLW Waste Package	
Docum	nent Identifier: BBA000000-01717-0200-00052 REV 01	Page 27 of 52

7.2.4 ORR Codisposal Basket Geometry

- 1 The ORR SNF canister consists of a 4 layer by 10 assembly array. On each layer, the ORR conceptual basket design consists of ten square tubes aligned so that straight structural load paths progress from one side of the basket to the other. The tubes do not contain boron neutron absorber materials due to the moderate enrichment (20 weight percent U-235 initial) of the ORR fuel assemblies. Stainless steel/boron separator plates were used to isolate axial layers of ORR assemblies, as was done in the MIT codisposal basket design. This ensures that adequate neutron absorption is provided if the fuel were to degrade while still contained in the codisposal canister.
- 1 The thicknesses of the between-layer separator plates are similar to the MIT design, which is considered adequate given the relatively low reactivity of the ORR fuel basket compared to the MIT
- basket, even without the provision of any neutron absorber in the radial direction. A radial cross-
- 1 sectional view of the ORR codisposal fuel basket is shown below in Figure 7.2.4-1. Note that the center tube of the nine-tube square is offset relative to the center of the codisposal canister by 18.0
- 1 mm. This offset results from the asymmetry of the basket. The use of asymmetric baskets is an
- 1 accepted practice in the design of large storage and transport packages. A clearance of at least 2.54 mm is provided for the assembly in the basket.

7.2.5 Codisposal Basket Neutron Absorber Materials

Initially, neutron absorbers for both the MIT and ORR codisposal basket conceptual designs employed stainless steel/boron alloy SS316B2A (0.6 wt% boron), with credit taken for 100% of the boron content (Assumption 4.3.6). Current practice for commercial SNF package design is to take credit for only 75 percent of the actual minimum boron content. This practice is in accord with current NRC practice for transportation packages when 100 percent inspection of the neutron absorber panels has not been performed. The use of SS316B3A (0.87 wt% boron) stainless steel/boron alloy, which has a greater boron concentration, provides sufficient margin to accomodate
 the derating of boron effectiveness. The final design calculations are performed with SS316B3A

with 75% of the natural B-10 loading.

7.2.6 Waste Package

A simplified model of the waste package was constructed for the initial calculations discussed in Section 7.3 with the codisposal canister centered, and five HLW canisters (stainless steel canister walls omitted) arrayed about the codisposal canister. The waste package structural wall was modeled in the radial direction as a single layer of 82.55 mm thick Alloy 825; however, the ends of the waste package were simply modelled as water reflectors since details outside the DOE-SNF canister separated by more than 150 mm of water will have very little effect on the canister reactivity. A radial cross-sectional view of the orientation of the canisters and waste package barrier for the MIT fuel is shown in Figure 7.2.6-1.

A detailed model of the waste package and canisters in which all components were included was

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package Document Identifier: BBA000000-01717-0200-00052 REV 01 Page 28 of 52

| constructed for the final calculations discussed in Section 7.4.

Figure 7.2.4-1. ORR SNF Codisposal Canister Conceptual Design

Design Analysis

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 29 of 52

Figure 7.2.6-1 Simplified Waste Package Configuration

| 7.3 Initial Criticality Results

Criticality calculations based on the simplified waste package model described in Section 7.2.6 and
 the preliminary DOE-SNF canister designs are presented in this section. Only modifications needed
 to meet criticality requirements are investigated in this section. The k-effective values listed in the tables below are equal to the calculated value from MCNP4A plus two sigma plus the 0.02 bias allowance defined in Section 7.2.

7.3.1 MIT SNF Criticality

Intact

Results for the MIT fuel in the intact configuration are provided below in Table 7.3.1-1. The intact configuration was evaluated for varying amounts of water moderator by varying the density of H_2O

Waste P	Design Analysis	
Title: Cri	ticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
DH	ILW Waste Package	
Document	Page 30 of 52	

from zero to 100 percent (one gram per cubic centimeter density) within the fuel alloy. These calculations showed that the maximum reactivity is reached when the fuel alloy is waterlogged to
the maximum extent. Note that the in-row separater plates between assemblies shown in Figure
7.2.3-1 are unborated for these cases. Stainless steel boron (SS316B2A) is used in the between-slot

| plates and in the between-layer (axial) separator plates.

7.3.1-1.	7.3.1-1. MIT Mk2 Intact Fresh Fuel in Codisposal Canister Percent H2O*				
Case Name	in Fuel Alloy	k-calculated	sigma	k-effective	
ΜΙΤΑ	0	0.81181	0.00116	0.83413	
MITD	25	0.83265	0.00138	0.85541	
MITC	50	0.84897	0.00147	0.87191	
MITE	75	0.86581	0.00150	0.88881	
MITF	95	0.87857	0.00151	0.90159	
MITB	100	0.88019	0.00138	0.90295	
Percentage of a	maximum of 63.53 v	olume percent water	in fuel alloy.		

Waste Package	Development
---------------	-------------

Design Analysis

 Title:
 Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

 Duble of the Code o

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 31 of 52

Degraded-within-canister

1

|

1

I

I

| | |

I

The calculations for the degraded fuel, contained within the codisposal canister, for the various degradation stages described in Section 7.1, are summarized in Table 7.3.1-2. These calculations evaluate the reactivity of the MIT fuel as it degrades by modeling the fuel material and moderator with the codisposal basket components in succesive stages. Stainless steel boron (SS316B2A) is used in the between-slot plates and in the between-layer (axial) separator plates for all cases in Table 7.3.1-2. The first set of calculations, cases MITH through MITK1, show that the reactivity of the fuel is excessive if stainless steel alone is used to separate adjacent assemblies within a basket slot (inrow separator plates). The second set of calculations, cases MITL through MITO1, evaluate the fuel and codisposal basket with in-row separator plates fabricated from stainless steel/boron alloy SS316B2A. In all of these cases, k-effective remains below the 0.95 limit.

	7.3.1-2. MIT	Mk2 Degraded Fuel in (Codisposal Ca	nister	a ####################################
	Divider Plates	Degraded Fuel			
Case Name	Between Asbls	Geometry	k-calculated	sigma k	-effective
мітн	Stainless	Plate Array with Comb Teeth in Asbl. Envelope	0.92513	0.00170	0.94853
MITI	Stainless	Plate Array Homogenized	0.95879	0.00119	0.98117
MITJ	Stainless	Entire Assembly (including Side Plates)	0.95779	0.00133	0.98045
МІТК	Stainless	Entire Cell Homogenized	0.99362	0.00128	1.01618
ΜΙŢΚΊ	Stainless	High Boron (1.6 wt%) i Between-Row and Between Layer Separater Plates	n 0.95003 I-	0.00153	0.97309
MITL	SS316B2A	Plate Array with Comb Teeth in Asbl. Envelope	0.85351	0.00158	0.87667
MITM	SS316B2A	Plate Array Homogenized	0.88749	0.00130	0.91009
MITN	SS316B2A	Entire Assembly (including Side Plates)	0.88015	0.00154	0.90323
МІТО	SS316B2A	Entire Cell Homogenized	0.91901	0.00149	0.94199
MITO1	SS316B2A	Fuel Smeared into Basket Open Locations	0.79308	0.00149	0.81606

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 32 of 52_

7.3.2 ORR SNF Criticality

Intact

The criticality calculations in Table 7.3.2-1 below show that the ORR fuel remains subcritical regardless of the water content within the fuel alloy due to the moderate 20 percent initial enrichment. This is in spite of the lack of boron neutron absorber material within the basket structure in the radial direction. Between-layer axial separator plates of stainless steel/boron were provided similar to those developed for the MIT codisposal basket.

7.3.2-1.	ORR Intact I Percent H2O*	Fresh Fuel in	n Codispo:	sal Canister
Case Name	in Fuel Alloy	k-calculated	sigma	k-effective
ORR10E	0	0.84474	0.00147	0.86768
ORR10G	25	0.85567	0.00150	0.87867
ORR10H	50	0.85998	0.00154	0.88306
ORR10I	75	0.87018	0.00158	0.89334
ORR10J	95	0.87422	0.00146	0.89714
ORR10F	100	0.87446	0.00139	0.89724
* Percentage of	maximum of volu	me percent water	in fuel alloy. (40	0.64%)

Wast	e Package Development			Desig	n Anal	ysis
Title:	Criticality Safety and Shielding	Evaluations	of the Codispo	sal Canister in t	the Five	-Pack
	DHLW Waste Package					

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 33 of 52

Degraded-within-canister

1

I

T T

 The calculations for the degraded ORR fuel, contained within the codisposal canister, for the various degradation stages described in Section 7.1, are presented below in Table 7.3.2-2. These calculations evaluate the reactivity of the ORR fuel as it degrades by modeling the fuel material and moderator with the codisposal basket components in succesive stages. The first set of calculations, cases ORRHASBL and ORRHSAB1, show that the reactivity of the fuel is excessive if the four layers of assemblies contained within each basket tube are stacked directly on top of one another. The second set of calculations, cases ORR1 and ORR2, evaluate the fuel and codisposal basket with axial separator plates fabricated from stainless steel/boron alloy SS316B2A. In both of these cases, k-effective remains below the 0.95 limit. This analysis demonstrates the need for neutron-absorbing materials in the ORR fuel basket to accomodate degradation of fuel within the basket.

7.3.2	-2. ORR Degraded Fu	uel - In CoD	isposal E	Basket
No Axial Se	parater Plates	k-caculated	sigma	k-effective
ORRHASBL	Homogenized Assembly	0.92887	0.00149	0.95185
ORRHSAB1	Homogenized Water Gap	0.94404	0.00148	0.96700
Boron in Ax	ial Separater Plates			
ORR1	Homogenized Assembly	0.86127	0.00142	0.88411
ORR2	Homogenized Water Gap	0.88901	0.00140	0.91181

7.4 Final Criticality Results

The preliminary designs indicated in Sections 7.2 and 7.3 were used in companion thermal (Ref. T 5.26) and structural (Ref. 5.27) analyses. No changes to the design were required based on the 1 thermal analysis, but the structural analysis indicated that the material and thickness of the DOE-SNF 1 canister was required to be changed to XM-19 and 15 mm, respectively. This section is added in REV 01 of this document to include modifications to the DOE-SNF canister as required in the 1 structural analysis (Ref. 5.27) and to include all details of the HLW canisters and waste package in 1 the models. The effect of varying the orientation of HLW canisters with the DOE-SNF canister Ι from the loaded configuration to the probable orientation at the time the waste package and canisters would be penetrated and filled with water is also investigated. The k-effective values listed in the tables below are equal to the calculated value from MCNP4A plus two sigma plus the 0.02 bias allowance defined in Section 7.2.

1 l

1

I I

Design Analysis

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack **DHLW Waste Package**

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 34 of 52

7.4.1 Final MIT SNF Canister Criticality Calculations

The simplified waste package model used in Section 7.3 was modified to include all components and ł dimensions for the waste package and HLW canisters (including stainless steel canister walls). In I addition, the wall thickness of the the DOE-SNF canister was increased to 15 mm and the container 1 material was changed to XM-19 as required based on the structural analysis for this canister (Ref. 5.27). The stainless steel/boron in all separator plates was changed to SS316B3A with a 75% B-10 loading. The atom densities in the fuel were also modified to correct the minor error found in the 1 check of REV 00 as indicated in Attachment II. A radial cross-sectional view of the model for the loaded configuration is shown in Figure 7.4.1-1. The MIT configuration with 2.13 mm thick stainless steel/boron in-row separater plates and homogenized fuel cells, previously identified as most reactive in Section 7.3.1 (MITO), was rerun with this model and configuration (MITOZ1). I The result is shown in Table 7.4.1, and falls below the k-effective limit of 0.95. The spacing of the I canisters was modified to represent a probable configuration in the time frame that the waste packages would be penetrated and filled with water - shifted to the bottom and supported on the 1 I walls of the waste package and/or on other canisters. A radial cross-sectional view of this configuration is shown in Figure 7.4.1-2, and an axial cross-sectional view is shown in Figure 7.4.1-3. The result for this probable configuration (MITOZ3) is shown in Table 7.4.1-1. The previous cases with homogenized fuel did not extend the homogenization in the axial direction beyond the 1 length of the fuel assembly (radial only). An additional case in which the MIT assemblies were homogenized into the entire volume of the basket cells (MITOZ3A) was run corresponding to case 1 MITOZ3 with the result shown in Table 7.4.1-1. The result for this configuration still falls below the 0.95 limit on k-effective. The MIT canister configuration with intact waterlogged fuel (MITB) 1 with the addition of the in-row borated separater plates between assemblies was rerun in this model (MITBZ3) with the result shown in Table 7.4.1-1. Note that the homogenization of the fuel into the cell which represents a possible degradation configuration (MOTOZ cases) is much more reactive than intact fuel. 1

1

1

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 35 of 52

7	.4.1-1. MIT Mk2 Divider Plates	Fuel in Codisposal Canis Degraded Fuel	ter - Final Ca	alculations
Case Nam	e Between Asbls	Geometry	k-calculated	sigma k-effective
MITOZ1	SS316B3A(75%)	Entire Cell Homogenized, WP Loaded Configuration	0.91123	0.00156 0.93435
MITOZ3	SS316B3A(75%)	Entire Cell Homogenized, Probable WP Degraded Configuration	0.91602	0.00148 0.93898
MITOZ3A	SS316B3A(75%)	Entire Cell Homogenized to Fill Axial Space Between Separater Plates, Probable WP Degraded Configuration	0.92635	0.00149 0.94933
MITBZ3	SS316B3A(75%)	Intact Waterlogged Fuel, Probable WP Degraded Configuration	0.81013	0.00147 0.83307

07/29/97 14:48:33 MITEZ3 - MIT Mc2 Fuel in Basket with BSS Divider Plates, 1.5 cm XM-19 Canister probid = 07/29/97 14:35:07 basis: (1.000000, .000000, .000000) (.000000, 1.000000, .000000) origin: .00, .00, 5.00) 90.00, 90.00) extent = (

Figure 7.4.1-1 Radial Cross-Sectional View of the Waste Package Loaded Configuration - MIT SNF Canister

Design Analysis

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 36 of 52

07/20/57 13:07:35 MCNCORNTEED MTT CELL inc. WATER LATER, S/D Dividers, 1.5 cm 20-15, Dotailed probid = 07/20/57 13:07:23 basis: (1.000000, .000000, .000000) (.000000, .000000, .000000) origin: (.00, .00, 5.00) stent = (90.00, 50.00)

I

Figure 7.4.1-2 Radial Cross-Sectional View of the Waste Package Probable Degraded
 Configuration - MIT SNF Canister

```
Configuration - MITS

07/29/97 13/131

PCHOGENTIEED NTT CELL inc. WATER

LATER, S2M Dividers, 1.5 cm

probid - 07/29/97 13:07:05

basis:

( .000000, .000000, .000000)

origin:

( .00, -4.20, .00)

wright ( 100.00, 100.00)
```

81.			1. A.	121.11	-	1
<u>81</u>				·	- 180 B	110
22		: 1				
÷.				2	- 38	28
		26 I				
14	Constraints of the					
21	Charles	4 ()	1.0		100	22
3				1 (1) (1) (1)		-
2						1
38						
8		1.000 cood	CON ORCINE	100 States		17
						25
2		21. I		1	- 888	20
8		8 - I				1
		1	1			68
31				42 × ×		Ĕ
8				• AND	10 Mar	2
1	1.1.2.2.1.2.2.				9%	÷.
2			wa waite	1.241	22	100
ð			A	S		-20
ĕ .			1			200
81						R.L.
81.		24		.	002	2.0
8I .			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 98	R -
1	1	31 H	1			Ê~
18	1.2007 200 1					8 c.
38	and the second					
4		line min				18
ŝ.			Sec. 14. 1		- 1e	14. s
č.			1	1		
3						14
					. W	
15					200	
18					1	2
1	and the second			-82. Cz.:/	0 X	12
8I - I				Server Strating		
8		Sam and	···· ··· ·			12
	*** * ******		5.000	*****	18 (A C	100
1	e na sa da sa sa			e 4. a 4.	1.11	1
4	1					1

Figure 7.4.1-3 Axial Cross-Sectional View of the Waste Package Loaded Configuration - MIT

.

I SNF Canister
Waste Package Development

1

Design Analysis

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 37 of 52

7.4.2 Final ORR SNF Canister Criticality Calculations

The waste package model described in the in Section 7.4.1 for the probable degraded configuration ł was used with the ORR SNF canister. The stainless steel/boron in the between-row separator plates I was changed to SS316B3A with a 75% B-10 loading. A radial cross-sectional view of the model I for the probable degraded configuration is shown in Figure 7.4.2-1 and an axial cross-sectional view is shown in Figure 7.4.2-2. The ORR SNF canister configuration with homogenized fuel cells, previously identified as most reactive in Section 7.3.2 (ORR2), was rerun with this model and I configuration (ORROZ3F). The stainless steel structural members outside the basket are included I in this model. The result is shown in Table 7.4.2-1, and falls below the k-effective limit of 0.95. I The previous cases with homogenized fuel did not extend the homogenization in the axial direction beyond the length of the fuel assembly (radial only). An additional case in which the ORR assemblies were homogenized into the entire volume of the basket cells (ORROZ3A) was run with I the result shown in Table 7.4.2-1. The result for this configuration still falls below the 0.95 limit on I k-effective. The ORR SNF canister configuration with intact waterlogged fuel (ORR10F) was rerun I in this new model (ORROZ3F) with the result shown in Table 7.4.2-1. Note that the 1 homogenization of the fuel into the cell which represents a possible degradation configuration (ORROZ cases) is much more reactive than intact fuel. 1

> 00/06/97 15:25:43 orrow3 - MOMD OWR CELL inc. WATER LATER. 45/8 Dividers, 1.5 cm 20-19, Detailed probid = 00/06/97 15:24:07 basis: (1.000000, .000000, .000000) (.000000, 1.000000, .000000) origin: (.00, .00, 30.00) extent = (100.00, 100.00)

Figure 7.4.2-1 Radial Cross-Sectional View of the Waste Package Probable Degraded

Configuration - ORR SNF Canister

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack Title: DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 38 of 52

08/06/97 15:41:50 orrou3 - MOMD ORR CELL inc. WATER LATER, SS/B Dividers, 1.5 cm XH-19, Detailed probid = 08/06/97 15:24:47 basis: (1.000000, .000000, .000000) (.000000, .000000, 1.000000) origin: (9.00, -4.00, -10.00) extent = (200.00, 200.00)

I

ł

T

Figure 7.4.2-2 Axial Cross-Sectional View of the Waste Package Probable Degraded Configuration - ORR SNF Canister

	7.4.2-1. ORR Fi Between-row	uel in Codisposal Canist Degraded Fuel	er - Final Cal	culations
Case Name	Separator Plates	Geometry	k-calculated	sigma k-effective
ORROZ3F	SS316B3A(75%)	Entire Cell Homogenized Probable WP Degraded Configuration	, 0.88043 1	0.00133 0.90309
ORROZ3A	SS316B3A(75%)	Entire Cell Homogenized to Fill Axial Space Between Separater Plates, Probable WP Degraded Configuration	0.91441 9 9	0.00136 0.93713
ORR10FZ	SS316B3A(75%)	Intact Waterlogged Fuel Probable WP Degraded Configuration	, 0.86583 I	0.00126 0.88835

Waste Package	Development
---------------	-------------

Design Analysis

Title:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack
DHLW Waste PackageDocument Identifier:BBA000000-01717-0200-00052 REV 01Page 39 of 52

7.5 Source Terms

I

ł

A model using the SAS2H Sequence of SCALE4.3 (Ref. 5.13) was developed based on the burnup and decay data provided by SRS for MIT fuel. For the SAS2H calculation the maximum exposure 1 was rounded up to 8100 MWD/MTU and the time in reactor was rounded down to 2500 days, as I indicated in Section 4.1. The power level is 9.68 MW/MTU. Pool type reactors generally operate at 2 atmospheres pressures with coolant/moderator temperatures of less than boiling. For these 1 calculations the fuel and clad were modelled at 500 K and the coolant/moderator was modelled at I 400 K. The exposure time is calculated as $8100 \text{ MWD/MTU} \div 9.68 \text{ MW/MTU} = 836.8 \text{ days}$. The Ι down time is then calculated as 2500 days - 836.8 days = 1663.2 days. Actual operation would have been up and down on a day-to-day basis. For the SAS2H calculation the exposure time was divided into quarters with one-third the down time between each exposure step. This will provide a conservative estimate of the source term and decay heat. The exposure time and decay time used in each of the steps is thus 209.2 days and 554.4 days, respectively. A separate ORIGEN-S (also part of SCALE4.3) decay case was run to provide decay heat results at a variety of decay times. The I gamma and neutron sources for the MIT spent fuel (MITBURN.OUTPUT) are provided in Table 7.5-1 and 7.5-2, respectively for 5 years decay after removal from the reactor. The input and 1

summarized output are listed in Attachment VII. The sources for the glass pour canisters are provided in Tables 7.5-1 and 7.5-2 (Ref. 5.23, Attachment X and IX, respectively).

Upper Energy Boundary of Group	MIT F (pe	MIT Fuel Source (per MTU) (per Canister)		W Source Canister)
MeV	photons/sec	Fraction of Source	photons/sec	Fraction of Source
5.00e-2	5.69e+14	3.45e-01	1.3215e+15	3.60e-01
1.00e-1	1.69e+14	1.03e-01	3.9581e+14	1.08e-01
2.00e-1	1.22e+14	7.39e-02	3.0959e+14	8.42e-02
3.00e-1	3.58e+13	2.17e-02	8.7394e+13	2.38e-02
4.00e-1	2.62e+13	1.58e-02	6.3931e+13	1.74e-02
6.00e-1	2.61e+13	1.58e-02	8.8265e+13	2.40e-02
8.00e-1	6.94e+14	4.20e-01	1.3478e+15	3.67e-01
1.00	4.21e+12	2.55e-03	2.1344e+13	5.81e-03
1.33	2.71e+12	1.64e-03	2.9649e+13	8.07e-03

Fable	7.:	5-1.	Photon	Sources	for M	IT Fuel	and	HLW	Canisters

1

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 40 of 52

Upper Energy Boundary of Group	MIT F (pe	Fuel Source r MTU)	HLV (per	W Source Canister)
1.66	8.64e+11	5.23e-04	6.4161e+12	1.75e-03
2.00	1.49e+11	9.01e-05	5.1377e+11	1.40e-04
2.50	7.55e+11	4.57e-04	2.9370e+12	7.99e-04
3.00	4.46e+09	2.70e-06	2.0440e+10	5.56e-06
4.00	4.84e+08	2.93e-07	2.2835e+09	6.21e-07
5.00	1.69e+02	1.03e-13	5.2534e+05	1.43e-10
6.50	5.57e+01	3.37e-14	2.1058e+05	5.73e-11
8.00	8.76e+00	5.31e-15	4.1263e+04	1.12e-11
10.00	1.55e+00	9.37e-16	8.7544e+03	2.38e-12
TOTAL	1.65e+15	1.00e+00	3.6750e+15	1.00e+00

|--|

Upper Energy Boundary of Group	MIT Fue (per]	el Source MTU)	HLW Source (per Canister)	
MeV	neutrons/sec	Fraction of Source	neutrons/sec	Fraction of Source
4.00e-1	1.64e+02	4.89e-03	2.087e+06	2.54e-02
9.00e-1	9.96e+02	2.91e-02	6.34e+06	7.72e-02
1.40	2.93e+03	8.56e-02	6.92e+06	8.43e-02
1.85	5.02e+03	1.47e-01	6.12e+06	7.45e-02
3.00	1.84e+04	5.39e-01	2.61e+07	3.18e-01
6.43	6.64e+03	1.94e-01	3.42e+07	4.17e-01
20.00	1.90e+01	5.55e-04	3.07e+05	3.74e-03
TOTAL	3.42e+04	1.00e+00	8.21e+07	1.00e+00

Wast	e Package Development	Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
	DHLW Waste Package	
Docun	nent Identifier: BBA000000-01717-0200-00052 REV 01	Page 41 of 52

The heat load for an MIT assembly was also calculated by the SAS2H code and decayed to various
 times using ORIGEN-S (DECAYMIT.OUT). The heat generation per MIT assembly at various cool
 times is provided below, in Table 7.4-3. The cool time is time after discharge from the reactor, and
 the emplacement time is assumed to be based upon emplacement after a five year cool time has
 elapsed (Assumption 4.3.8).

Cool Time (yrs)	Emplacement Time (yrs)	Heat (Watts)
5	0	0.164
7	2	0.145
9	4	0.135
20	15	0.102
40	35	0.0637
60	55	0.0397
80	75	0.0250
100	95	0.0159

Table 7.4-3. MIT SNF Heat Load per Assembly

| 7.6 Shielding Analysis

| 7.6.1 Source Term Comparison

A comparison of the neutron and gamma sources for the MIT and HLW canisters presented in Section 7.4, indicates that the neutron source is insignificant to the total surface dose of the codisposal waste package considering that the total neutron source is at least 7 orders of magnitude lower than the photon source. The photon sources were normalized to the total in the waste package as indicated in Table 7.5-1. The MIT photon source was normalized to the mass of 64 assemblies which are present in the DOE-SNF canister; the HLW canister photon source was normalized to 5 canisters which reflects the total source in the waste package. Note that the MIT fuel source is over 2 orders of magnitude lower than that for the HLW canisters; for the energy groups above 4 MeV, the MIT fuel source is over 5 orders of magnitude lower. Given this much lower source and the fact that the DOE-SNF canister will reside in the center of the waste package with the waste package walls shielded by the bulk of the HLW canisters, the effect of the DOE-SNF canister on the total surface dose is insignificant. The overwhelming contribution to the waste package surface dose will be the HLW canisters.

Upper Energy Boundary of Group	MIT Fuel Source	HLW Source
MeV	photons/sec/Codispos al Canister	photons/sec/WP (5 HLW Canisters)
5.00e-2	2.00e+13	6.61e+15
1.00e-1	5.97e+12	1.98e+15
2.00e-1	4.30e+12	1.55e+15
3.00e-1	1.26e+12	4.37e+14
4.00e-1	9.21e+11	3.20e+14
6.00e-1	9.18e+11	4.41e+14
8.00e-1	2.44e+13	6.74e+15
1.00	1.48e+11	1.07e+14
1.33	9.54e+10	1.48e+14
1.66	3.04e+10	3.21e+13
2.00	5.23e+09	2.57e+12

Table 7.5-1 Normalized Photon Sources for MIT Fuel and HLW Canisters

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack
DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 43 of 52

Upper Energy Boundary of Group	MIT Fuel Source	HLW Source
2.50	2.66e+10	1.47e+13
3.00	1.57e+08	1.02e+11
4.00	1.70e+07	1.14e+10
5.00	5.96e+00	2.63e+06
6.50	1.96e+00	1.05e+06
8.00	3.08e-01	2.06e+05
10.00	5.44e-02	4.38e+04
TOTAL	5.81e+13	1.84e+16

Waste Package Development

Title:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack
DHLW Waste PackageDocument Identifier:BBA000000-01717-0200-00052 REV 01Page 44 of 52

7.6.2 Shielding Model

|

ł

T

I

T

1

The gamma and neutron sources were inserted into MCNP4A models which employed the geometry and isotopic material descriptions used for the criticality safety calculations for the MIT codisposal canister within a codisposal waste package in the loaded configuration. The basket and fuel assemblies were homoginized to fill the MIT SNF canister. A radial cross-sectional view of this model is shown in Figure 7.6.2-1. For the gamma dose cases only the gammas with energy of greater than 0.4 Mev were specified because lower energies will not contribute significantly to the dose rate outside the waste package (Ref. 5.6) and the remaining group contributions previously listed in Section 7.5 were renormalized. Because of the extremely low neutron source strength for the MIT SNF, no dose case is run for this source. The source for the three dose cases run, as specified in the MCNP models, are listed in Table 7.6.2-1. Tallies were set up in the model to determine the dose rates at various points including segments on the waste package outer surface for all energies. Flux-To-Dose conversion factors for gammas and neutrons are provided in the MCNP manual (Ref. 5.7, Appendix H) from ANSI/ANS-6.1.1-1977 (Ref. 5.8). These were used on the appropriate tally cards to convert the neutron and/or photon flux tallies to dose rate (rem/hr). The neutron and photon Flux-To-Dose conversion cards used in the tallies are listed in Table 7.6.2-2. The MCNP input file for the HLW gamma source case is shown in Attachment X (MITSLD1).

Figure 7.6.2-1 Radial Cross-Sectional View of the Waste Package Shielding Model

Waste Package Development	Design Analysis
Title: Criticality Safety and Shielding Evaluations of the Codisposal C	anister in the Five-Pack
Decument Identifier: BBA000000-01717-0200-00052 REV 01	Page 45 of 52
Table 7.6.2-1. MCNP Source Specifications for Shieldin	g Cases.
HLW Gamma Source	
SDEF POS=D1 RAD=D2 EXT=D3 ERG=D4 AXS=001	
SI1 L 0. 55. 0. 52. 17. 0. 3343.5 03343.5 052. 17. 0.	
SP1 .2.2.2.2.2	
SI2 0 29.527	
SI3 137.1	
SI4 H .40 .60 .80 1.00 1.33 1.66 2.00 2.50 3.00 4.00 5.00 6.50 8.00 1	.0.00
SP4 0. 5.90E-2 9.03E-1 1.43E-2 1.98E-2 4.30E-3 3.44E-4 1.97E-3 1.	37E-5
1.53E-6 3.52E-10 1.41E-10 2.75E-11 5.85E-12	
MIT Gamma Source	
SDEF POS=000RAD=D2EXT=D3ERG=D4AXS=001	
SI2 0 20.4	
SI3 129.9	,
SI4 H .40 .60 .80 1.00 1.33 1.66 2.00 2.50 3.00 4.00 5.00 6.50 8.00 1	0.00
SP4 0. 3.59E-2 9.53E-1 5.79E-3 3.72E-3 1.19E-3 2.04E-4 1.04E-3 6.	13E-6
6.65E-7 2.34E-13 7.65E-14 1.21E-14 2.13E-15	
HLW Neutron Source	
SDEF POS=D1 RAD=D2 EXT=D3 ERG=D4 AXS 0 0 1	
SI1 L 52.407 0. 0. 16.25 49.602 042.219 30.68 0.	
-42.219 -30.68 0. 16.2 -49.602 0.	
SP1 .2.2.2.2.2	
SI2 0 29.527	
SI3 I37.1 SI4 H 0 1 0 4 0 0 1 4 1 85 2 6 42 20	
SP4 \cap 0.2 54-2 7 72-2 8 43-2 7 45-2 3 18-1 4 17-1 3 74-3	
514 0.2.5427.7220.4527.4525.1014.1715.745	
Table 7.6.2-2. MCNP Tally Flux-To-Dose Conversion Factors for	Shielding Cases.
Photon Flux-To-Dose Conversion Factors	
DE2 .01 .03 .05 .07 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .8	
1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5.0 5.25 5.75 6.25	
6.75 7.5 9.0 11.0 13.0 15.0	
DF2 3.96-6 5.82-7 2.90-7 2.58-7 2.83-7 3.79-7 5.01-7 6.31-7 7.59-7	
8.78-7 9.85-7 1.08-6 1.17-6 1.27-6 1.36-6 1.44-6 1.52-6 1.68-6	
1.98-6 2.51-6 2.99-6 3.42-6 3.82-6 4.01-6 4.41-6 4.83-6 5.23-6	

5.60-6 5.80-6 6.01-6 6.37-6 6.74-6 7.11-6 7.66-6 8.77-6 1.03-5

1.18-5 1.33-5

1

|

Waste Package Development

Design Analysis

Title: Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package Document Identifier: BBA000000-01717-0200-00052 REV 01 **Page** 46 of 52

Neutron Flux-To-Dose Conversion Factors DE2 .001 .01 .1 .5 1. 2.5 5.0 7. 10. 14. 20. DF2 3.76-6 3.56-6 2.17-5 9.26-5 1.32-4 1.25-4 1.56-4 1.47-4 1.47-4 2.08-4 2.27-4

7.6.3 Shielding Results

I I

I

I I I ł

1

I

I

1

Ι 1

I

I I

1 I

1

T

1

1 I

The HLW gamma dose case (MITSLD1) provides the following results where the dose is reported as a value and its relative error (1 σ). The radial centerline dose rate is 9.3967 (0.0831) rem/hr based on a surface tally subdivision of the waste packages outer surface with a 100 mm tall ring about the centerline. The dose rate out the bottom of the waste package tallied over the outer barrier lid is 1.8450 (0.0854) rem/hr.

The MIT gamma dose case (MITSLD2) provides an average radial centerline dose rate of 5.4821E-3 I (0.2311) rem/hr based on a surface tally subdivision of the waste packages outer surface with a 100 I ł mm tall ring about the centerline. The peak radial centerline dose rate was calculated to be 3.6733E-2 (0.2515) rem/hr based on a surface tally subdivision of the waste packages outer surface with a 400 1 mm tall 100 mm wide segment about the centerline directly below the MIT SNF canister as shown in Figure 7.6.2-1. The area for this peak tally falls in a zone unshielded by the HLW canisters. The dose rate out the top of the waste package tallied over the outer barrier lid is 5.0199E-3 (0.0829) rem/hr.

The HLW neutron dose case (MITSLD3) provides a radial centerline neutron dose rate of 7.3501E-2 (0.0034) rem/hr and a gamma (N,gamma) dose rate of 1.7627E-4 (0.0133) rem/hr based on a surface tally subdivision of the waste packages outer surface with a 100 mm tall ring about the centerline. The dose rate out the bottom of the waste package tallied over the outer barrier lid is 3.5364E-2 (0.0019) rem/hr for neutrons and 7.6486E-5 (0.0083) rem/hr for gammas.

Inspection of the gamma shielding results shows that the MIT fuel in the codisposal canister contributes very little to the dose rate on the surface of the codisposal waste package. The neutron dose contribution from neutrons for either waste form is also insignificant. The dose rates on the exterior of the Codisposal waste package with the MIT codisposal canister is within acceptable limits for disposal.

T With regards to addressing the shielding requirement in Section 4.2.2 on increased corrosion due to radiolysis, Reference 5.25 (Vol. III, p. 8-4) indicates that for iron based materials in an air/steam I environment, a 100 R/hour dose rate results in a 5 times increase in corrosion rate at 250°C, and no 1 increase in corrosion rate at 150°C. Since the waste package surface dose rates are less than 10 R/hr. I and the thermal analysis (Ref. 5.26, p. 26) indicates that the codisposal WP peak surface temperature I is only 153°C, it is concluded that there will be no increase in corrosion due to radiolysis. 1

Was	te Package Development	Design Analysis
Title:	Criticality Safety and Shielding Evaluations of the Codisposal	Canister in the Five-Pack
	DHLW Waste Package	
Docur	nent Identifier: BBA000000-01717-0200-00052 REV 01	Page 47 of 52

8. Conclusions

8.1 MIT and ORR SNF Criticality

The criticality analyses performed for the MIT and ORR fuel show that the intact highly enriched MIT fuel can be safely disposed of within a codisposal canister in the DHLW Five-Pack waste package (both pre and postclosure) with stainless steel/boron absorber plates. Similarly, the intact moderately enriched ORR fuel is critically safe within the codisposal canister. The analyses show the need for a corrosion resistant neutron absorber material within the codisposal canister to accomodate the potential increase in reactivity which occurs as the fuel (MIT and ORR) and basket degrade, while remaining within the canister. They also indicate that further analysis of degraded canister configurations which consider the chemistry and physical configuration of the fuel and basket corrosion products will be required during Phase II. Evaluations of the neutronic behavior of the fuel materials outside the codisposal canister, both within the waste package and within the repository drifts, will be performed as part of Phase II.

8.2 MIT SNF Shielding

1 The source term comparison and shielding analysis performed for the MIT spent fuel and the HLW canisters show that the waste package surface dose rates would not be affected by the MIT spent fuel. The analyses show that the gamma radiation dose rate contribution from the codisposal canister fuel and the neutron radiation dose rate contributions, from both the fuel and HLW canisters, are not

significant relative to the much more intense canister gamma source. The overall dose rates on the

exterior of the codisposal waste package with the MIT codisposal canister is within acceptable limits

I for disposal and would not increase in corrosion due to radiolysis.

Waste Package Development

Design Analysis

 Title:
 Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

 Document Identifier:
 BBA000000-01717-0200-00052 REV 01
 Page 48 of 52

9. Attachments

I

|

1 The hardcopy attachments are listed in Table 9-1 below. Electronic attachments are provided on

Colorado Trakker® tapes and are listed in Table 9-2 below for REV 00 Cases (Ref. 5.18) and in
 Table 9-3 for REV 01 Cases (Ref.5.31).

 Table 9-1. Attachments of Supporting Documentation for Codiposal Canister / Five-Pack

 DHLW WP Criticality and Shielding Analyses

Attachment Number	Description	Pages
Ι	DHLW Five-Pack Codisposal Waste Package Drawings	3
П	MIT Data for SRS Concurrence	3
Ш	ORR Data for SRS Concurrence	6
IV	Printout of MITNUM.XLS - Spreadsheet for Homogenized MIT Fuel Number Densities	8
V	Printout of ORRNUM3.XLS - Spreadsheet for Homogenized ORR Fuel Number Densities	10
VI	Printout of MCNP Input File MITOZ3 - MIT Homogenized Fuel in 15 mm Thick XM-19 Canister	6
VII	Printout of MCNP Input File ORROZ3F - ORR Homogenized Fuel in 15 mm Thick XM-19 Canister	4
VIII	Printout of MITBURN.INPUTSUM - SAS2H Input for MIT SNF Burnup and Decay with Summary Output	2
IX	Printout of DECAYMIT.INPUTSUM - ORIGEN-S Input for Decay Heat for MIT SNF and Summary Output	6
Х	Printout of MITSLD1 - MCNP Input File for HLW Gamma Dose Calculation	3

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 49 of 52

Table 9-2: At	ttachments of	Comput	er Outputs
for Codipos	al <u>Canister / F</u>	ive-Pack	DHLW WP
File Name	File Size File	e Date	File Time
	(Bytes)		of Day
HCT3-10O	353,000	6/4/97	11:17a
HCT3-11O	351,582	6/4/97	11:17a
HCT3-12O	353,273	6/4/97	11:17a
HCT3-13O	353,559	6/4/97	11:17a
HCT3-14O	416,988	6/4/97	11:16a
HCT3-15O	363,399	6/4/97	11:16a
HCT3-10	352,163	6/4/97	11:17a
HCT3-2O	372,095	6/4/97	11:16a
HCT3-3O	352,427	6/4/97	11:17a
HCT3-4O	352,653	6/4/97	11:17a
HCT3-5O	351,493	6/4/97	11:17a
HCT3-6O	352,954	6/4/97	11:17a
HCT3-7O	353,044	6/4/97	11:17a
HCT3-8O	353,141	6/4/97	11:17a
HCT3-9O	353,179	6/4/97	11:17a
HCT4-1O	529,144	6/4/97	11:10a
HCT4-2O	528,573	6/4/97	11:11a
HCT4-3O	528,321	6/4/97	11:11a
HCT4-40	528,415	6/4/97	11:11a
HCT6-T1O	530,866	6/4/97	11:10a
HCT6-T2O	435,196	6/4/97	11:11a
HCT6-T3O	437,330	6/4/97	11:11a
HCT8-1O	309,948	6/4/97	11:21a
HCT8-2O	310,514	6/4/97	11:17a
MITA	21,619	4/10/97	8:22a
MITA O	491,524	5/18/97	2:04p
MITB	21,609	4/6/97	7:15p
MITB O	448,982	4/6/97	11:39p
MITC	21,613	4/6/97	8:20p
MITC O	448,982	4/7/97	2:10a
MITD	21,614	4/6/97	8:20p
MITD O	449,293	4/7/97	5:31a
MITE	21,613	4/6/97	8:21p
MITE O	448,982	4/7/97	3:01a
MITF	21,613	4/6/97	8:22p
MITF O	449,045	4/7/97	6:16a

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 50 of 52

Table 9-2: A	ttachments of al Canister / F	f Comput	er Outputs
	(Continued)		
File Name	File Size Fil (Bytes)	e Date	File Time of Day
MITG	21,599	4/7/97	1:58p
MITG O	420,541	4/8/97	2:47p
мітн	21,841	4/17/97	11:46p
мітн о	454,378	4/18/97	5:01a
МІТІ	21,059	4/19/97	1:16p
MITI O	430,688	4/19/97	2:07p
MITJ	20,756	4/19/97	1:24p
MITJ O	425,515	4/19/97	3:30p
МІТК	20,426	4/19/97	1:35p
мітк о	449,919	5/18/97	2:04p
MITK1	20,500	4/28/97	9:26a
MITK1 O	422,268	4/28/97	12:29p
MITL	21,863	4/20/97	12:38a
MITL O	452,838	4/20/97	4:10a
МІТМ	21,055	4/20/97	12:39a
мітм о	459,322	5/18/97	2:04p
MITN	20,761	4/20/97	12:39a
MITN O	425,959	4/20/97	1:04a
MITNUM XLS	56,320	4/28/97	9:55a
MITO	20,490	4/22/97	11:07a
MITO O	422,110	4/20/97	2:22a
MITO1	20,371	4/28/97	11:10a
MITO1 O	434,567	4/28/97	2:02p
MITP	20,593	4/22/97	10:20p
MITP O	421,328	4/22/97	10:52p
MITQ	20,168	4/22/97	11:43p
MITQ O	413,666	4/23/97	12:24a
MITR	11,645	4/24/97	5:56p
MITR O	304,387	5/18/97	2:04p
orr1	8217	6/8/97	1:02p
orr1O	483230	6/9/97	6:53a
orr10e	27407	6/6/97	6:00p
orr10eO	741586	6/6/97	7:38p
orr10f	27595	6/6/97	6: 00 p
orr10fO	746550	6/7/97	3:05a

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack
DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 51 of 52

Table 9-2: Attachments of Computer Outputs							
for Codiposal Canist	er / Five-Pac	k DHLW WP					
(Contin	ued)						
File Name File Siz	e File Date	File Time					
(Bytes)		of Day					
orr10g 27!	587 6/6/97	7 5:31p					
orr10gO 7464	449 6/6/97	9:07 p					
orr10h 27	589 6/6/97	7 5:41p					
orr10hO 746	557 6/6/97	7 10:37p					
orr10i 275	590 6/6/97	7 5:52p					
orr10iO 7465	557 6/7/97	′ 1 2:07a					
orr10j 275	591 6/6/97	7 5:57p					
orr10jO 7466	6/7/97 6/7/97	7 1:37a					
orr2 81	151 6/8/97	/ 1:09 p					
orr2O 4822	280 6/9/97	6:53a					
orr3 84	191 6/8/97	′ 1:12p					
orr3O 4854	190 6/9/97	′ 6:53a					
orr4 83	303 6/11/97	′ 1:08p					
orr4O 4722	265 6/11/97	2:13p					
orrasblO 4589	95 6/9/97	6:53a					
orrhasbl 65	591 6/8/97	′ 1:02p					
orrhsab1 65	524 6/8/97	′ 1:09p					
orrhsab2 68	6/8/97	′ 1:12p					
orrhsab3 63	6/11/97	′ 1:12p					
orrsab1O 4581	27 6/9/97	6:53a					
orrsab2O 4624	53 6/9/97	6:53a					
orrsab3P 4426	6/11/97 6/11/97	2:02p					
orrnum3 XLS 52,2	24 6/11/97	1:32p					
SPERT10O 279,3	6/4/97	11:15a					
SPERT11O 271,9	35 6/4/97	11:15a					
SPERT12O 264,4	63 6/4/97	11:15a					
SPERT13O 274,9	67 6/4/97	11:15a					
SPERT14O 266,0	94 6/4/97	11:15a					
SPERT15O 273,9	25 6/4/97	11:15a					
SPERT15P 273,9	25 6/4/97	11:15a					
SPERT16O 269,8	35 6/4/97	11:15a					
SPERT17O 280,0	88 6/4/97	11: 15 a					
SPERT18O 284,3	25 6/4/97	11:15a					
SPERT19O 285,6	52 6/4/97	11:15a					
SPERT1O 273,8	39 6/4/97	11:15a					

I

Waste Package DevelopmentDesign AnalysisTitle:Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack
DHLW Waste Package

Document Identifier: BBA000000-01717-0200-00052 REV 01

Page 52 of 52

Table 9-2: Attachments of Computer Outputs							
for Codiposa	I Canister / F	ive-Pack	DHLW WP				
	(Continued)	<u>144944</u>					
File Name	File Size Fil	e Date	File Time				
	(Bytes)	anna a guinna guinn a an	of Day				
SPERT20O	289,792	6/4/97	11:15a				
SPERT210	278,727	6/4/97	11:15a				
SPERT22O	289,841	6/4/97	11:15a				
SPERT23O	284,129	6/4/97	11:15a				
SPERT23P	284,129	6/4/97	11:15a				
SPERT2O	281,752	6/4/97	11:15a				
SPERT3O	281,276	6/4/97	11:15a				
SPERT3P	281,276	6/4/97	11:15a				
SPERT4O	313,358	6/4/97	11:15a				
SPERT5O	281,768	6/4/97	11:15a				
SPERT6O	281,524	6/4/97	11 :15a				
SPERT7O	281,098	6/4/97	11:15a				
SPERT8O	281,635	6/4/97	11:15a				
SPERT9O	273,257	6/4/97	11:15a				
DECAYMIT OUT	620,977	6/4/97	5:10p				
MITBURN OUT	22,076,827	6/4/97	5:09p				

	REV 01	IIVG"FAGN	
File Name	File Size (Bytes)	File Date	File Time of Day
MITO.O	419900	8/11/97	7:21p
MITOZ1O	430419	8/11/97	7:21p
MITOZ3O	435754	8/11/97	7:21p
ΜΙΤΟΖ3ΑΟ	435666	8/11/97	7:21p
MITBZ3.O	460456	8/11/97	7:21p
ORROZ3FO	293381	8/11/97	7:21p
ORROZ3AO	293415	8/11/97	7:21p
ORR10FZO	569000	8/11/97	7:21p
MITSLD10	2971141	8/11/97	7:17p
MITSLD2O	2146722	8/11/97	7:17p
MITSLD3O	4843971	8/11/97	7:18p

BBA000000-01717-0200-00052 REV 01 Attachment I

I-1 of I-3

BBA000000-01717-0200-00052 REV 01 Attachment I

BBA000000-01717-0200-00052 REV 01

Attachment II - MIT FUEL ASSEMBLY CALCULATIONS

15 Plates/Assembly

From Drawing R3F-3-2

Max length of Fuel Alloy

23" - 2 X (2/16)"= 22.75" 22.75 inches (2.54 cm/inch) = 57.785 cm

Max width of Fuel Alloy

2.552" - 2 X (3/16)" = 2.177" 2.177" (2.54 cm/inch) = 5.52958 cm

Max thickness of Fuel Alloy

0.030"

.03''(2.54 cm/inch) = 0.0762 cm

Max Fuel Alloy Volume

 $57.785 \text{ cm X} 5.52958 \text{ cm X} 0.0762 \text{ cm} = 24.3479 \text{ cm}^3$

Max Mass U-235/Assembly = 514.25 g

93.5 wt% U-235 Assume ~ 1 wt% U-234

U-Al_x 69.5 wt% U Al wt% = 100 - 69.5 = 30.5 wt%

Mass & atom densities (in atoms/b-cm)

U-235 mass = 514.25 g

atom density = 514.25 g / (24.3479 cm³ X 15 plates) X 0.602252/235.043915

= 3.60787E-3 atoms/b-cm

U-234 mass = 514.25 g X 0.01/0.935 = 5.50 g

atom density = $5.50 \text{ g} / (24.3479 \text{ cm}^3 \text{ X} 15 \text{ plates}) \text{ X} 0.602252/234.040904$

= 3.87522E-5 atoms/b-cm

1

ļ

1

ł

I

U-238 mass = 514.25 g X 0.055/0.935 = 30.250 g

atom density = $30.250 \text{ g} / (24.3479 \text{ cm}^3 \text{ X} 15 \text{ plates}) \text{ X} 0.602252/238.05077$

= 2.09547E-4 atoms/b-cm

Al mass = $514.25 / 0.935 \times 0.315 / 0.695 = 249.28058 \text{ g}$ (241.36691 g)

atom density = $249.28058 \text{ g} / (24.3479 \text{ cm}^3 \text{ X} 15 \text{ plates}) \text{ X} 0.602252/26.9815389$

= 1.52352E-2 atoms/b-cm (1.4752E-2 atoms/b-cm)

(Note: during check of REV 00 it was discovered that the Al weight fraction was incorrectly specified as 0.315, rather than 0.305, in the above equation. If 0.305 had been used, the number densities for H and O in the fuel meat from water logging would have been 0.56% higher. Inspection of Table 7.3.1-1 reveals that an increase from 95% to 100% water in the fuel at the current volume fraction resulted only a 0.15% increase in k_{eff}. Therefore, this error will have a negligible impact on the calculated k_{eff}.) Corrected results are shown in parenthesis next to the original results.

Al atoms / U atoms = 1.52352E-2 / 3.85616E-3 = 3.9509 (3.8254)

 UAl_4 density = 6.0 g/cm³ (Ref. 5.19, p. 142)

Calculated Density = $514.25 \text{ g} + 5.50 \text{ g} + 30.25 \text{ g} + 249.28 \text{ g} / (24.3479 \text{ cm}^3 \text{ X} 15)$

 $= 2.188 \text{ g/cm}^3$ (2.167 g/cm³)

Void Space in Fuel Alloy = $1 - 2.188 \text{ g/cm}^3 / 6.0 \text{ g/cm}^3 = 0.63533$ (0.6389)

Water Logging

Water Atom Densities density = 1 g/cm^3

H 6.6878E-2 atoms/b-cm

O 3.3439E-2 atoms/b-cm

Max Water Atom Density in Water Logged Fuel

H = (6.6878E-2).6353 = 4.2490E-2 atoms/b-cm = (4.2726E-2 atoms/b-cm)

O(3.3439E-2).6353 = 2.1245E-2 (2.1363E-2 atoms/b-cm)

H/U-235 = 4.2490E-2/3.60787E-3 = 11.8 (11.8)

H/U-235 within Intact Assembly

I

Assume all regions are approximately same height - ratios based on width

Plate Cell Width (plate center-to-center spacing) = 0.158" X 2.54 cm/in = 0.40132 cm

Effective Plate Thickness (fins+clad-tolerances) = $[(0.06"-0.005") + (0.01"-0.002")] \times 2.54 \text{ cm/in} = 1.6002\text{E-1 cm}$

Fuel Thickness = 7.620E-02 cm Water Thickness = 0.40132 - 0.16002 = 0.2413 cm

Fuel Alloy Volume Fraction = 7.62E-2 / (7.62E-2 + 2.413E-1) = 0.24

H/U-235 ratio within Assembly = $6.6878E-2 \times 0.76 / (3.60787E-3 \times 0.24)$ = 58.7

BBA000000-01717-0200-00052 REV 01

Attachment III - ORR 20 wt% Enriched Fuel Density Calculations

Assembly Type:

MTR-type fuel with 19 plates, 17 inner and 2 outer curved plates

Initially enriched to 20.56 wt% U-235, with 77.5 wt% U in U-Al-Si alloy and a maximum weight of 347.0 grams per assembly.

Fuel plates are curved with a 5.5" inner radius of curvature. Active fuel length is 24"

Inner Fuel Plate (17 each):

Uranium alloy:

Length: derived as 24.63 in -2(.318 in)=23.994 in (60.945 cm, $\frac{1}{2}$ value = 30.472 cm) Width: derived as 2.775 in -2(.126 in)=2.523 inches (6.408 cm, $\frac{1}{2}$ value = 3.204 cm) Thickness: 0.020 inches nominal (0.051 cm), 0.025 maximum (0.064 cm)

Cladding:

Length: 24.63 in (62.56 cm, ¹/₂ value = 31.28 cm)

Width (between side plates): derived as 2.996 inches - 2(.187 inches) = 2.622 inches

(6.66 cm, ½ value = 3.330 cm) Thickness: Two layers of 0.0105 in (0.027 cm each) Curved on a 5.5 in (13.97 cm) inner radius

Uranium alloy:

Length: derived as 27.13 in -2(1.574 in)=23.982 in (60.914 cm, ½ value = 30.457 cm) *
Width: derived as 2.775 in -2(.126 in)=2.523 in derived (6.408 cm, ½ value = 3.204 cm)
Thickness: 0.020 in nominal (0.051 cm), 0.025 in maximum (0.064 cm)
* Essentially the same as inner plate, so inner plate values used in MCNP model.
<u>Cladding:</u>
Length: 27.130 inches nominal (68.910 cm, ½ value = 34.455 cm)
Width (between side plates): derived as 2.996 inches - 2(.187 inches) = 2.622 inches (6.66 cm, ½ value = 3.330 cm)
Thickness: two layers of 0.0180 inches (0.046 cm each)
Curved on a 5.5 in (13.97 cm) inner radius

Assembly:

Inner Fuel Plate Spacing: 0.166 inches (0.422 cm)

Outer-to-Inner Plate Spacing: 0.182 inches (0.462 cm)

References for Dimensions:

Drawings M-11495-OR-001E ("19 Plate Fuel Element Assy & Finish Machining"), M-11495-OR-003E ("Misc. Details for ORR Fuel Element"), and M-11495-OR-004E ("Fuel Plate Details") (Ref. 5.4).

Masses:

From "Nuclear Safety Data Sheet", each assembly contains a maximum of 347.0 grams of U-235. For 19 plates, this provides 18.263 g per plate, and at 20.56 wt% U-235 enrichment, the total uranium mass would be 88.829 g and the U-238 mass would be 70.566 g (neglecting U-234 and U-236). Since uranium is 77.5 percent of the total, the Al and Si contributions are 25.789 g. [The "Appendix A" data indicates that the chemical form of the fuel is U_3Si_2 with Al as a dispersing material.]

U-235: 18.263 g/plate

U-238: 70.566 g/plate

Si: 2/3(18.263g U-235/235.043915 amu + 70.566 g U-238/238.05077 amu) X 28.086 amu

= 7.005 g Si/plate

Al: 88.829 g/0.775 - 88.829 g - 7.005 g = 18.784 Al g/plate

Volumes:

Since the fuel plates are curved and the dimensions given are planar, additional information is required to calculate the volume of the fuel alloy. A graphical plot of the fuel alloy allows the included angle subtended by the fuel alloy to be measured as 26.478 degrees and the volume between the cladding layers to be calculated as follows:

Inner Plate Volume = $(26.478^{\circ} / 360^{\circ}) * Pi * (14.060^{2} - 13.997^{2}) * 60.945 = 24.9589 cm^{3}$

similarly,

Outer Plate Volume = $(26.478^{\circ} / 360^{\circ}) * Pi * (14.079^{2} - 14.016^{2}) * 60.914 = 24.9998 cm^{3}$

Densities:

Inner Plates:

Outer Plates:

ρ (U-235) = 18.263 g/24.9589 cm ³ = 0.7317 g/cm ³	ρ (U-235) = 0.7305 g/cm ³
ρ (U-238) = 70.566 g/24.9589 cm ³ = 2.8273 g/cm ³	ρ (U-238) = 2.8227 g/cm ³
ρ (Si) = 7.005 g/24.9589 cm ³ = 0.2807 g/cm ³	ρ (Si) = 0.2802 g/cm ³
ρ (Al) = 18.784 g/24.9589 cm ³ = 0.7526 g/cm ³	ρ (Al) = 0.7514 g/cm ³

Atom Densities (atoms/barn-cm):

Inner Plates:Outer Plates: $N_{25} = 0.7317 * 0.602252 / 235.043915 = 1.8749E-3$ $N_{25} = 1.8718E-3$ $N_{28} = 2.8273 * 0.602252 / 238.05077 = 7.1528E-3$ $N_{28} = 7.1411E-3$ $N_{5i} = 0.2807 * 0.602252 / 28.086 = 6.0183E-3$ $N_{5i} = 6.0084E-3$ $N_{A1} = 0.7526 * 0.602252 / 26.9815389 = 1.6799E-2$ $N_{A1} = 1.6771E-2$

Free Volume Calculation

Given:

U-235: 18.263 g/plate

U-238: 70.566 g/plate

Si: 7.005 g/plate

Al: 18.784 g/plate

 $Volume = 24.9589 \text{ cm}^3$

Uranium:

The total $U_3Si_2 = 18.263 + 70.566 + 7.005 = 95.834$ g

and at a theoretical density of $12.20g/cm^3$ (Ref. 5-19, p. 200), the displaced volume of the U₃Si₂ is $95.834/12.20 = 7.8552 cm^3$.

Aluminum:

Aluminum at 2.699 g/cm³ (Ref. 5.19, p. 584) and a mass of 18.784 g, has a displaced volume of 6.9596 cm^3

The total metal alloy volume is thus 7.8552 + 6.9596 = 14.8148 cm³, or 59.36 volume percent of the fuel alloy.

If all of the remaining 40.64 volume percent is treated as if it were flooded with water at 1.00 g/cm^3 , then the maximum effective density of the water spread over the fuel alloy volume is 0.4064 g/cm^3 . The number densities of hydrogen and oxygen which would then exist are

 $N_{\rm H} = (6.6878E-2)0.4064 = 2.7179E-2$ atoms/barn-cm

 $N_0 = (3.3439E-2)0.4064 = 1.3590E-2$ atoms/barn-cm

H/U-235 in fuel = 2.7179E-2 / 1.8749E-3 = 14.5

.

Volume Frac	tions		البريبية الماري بالكريمية المستقل	
Fuel	0.61554			
Water	0.16481	<u> </u>		
Steel	0.21965			
• ••	Water	SS316	Homogenized	Homogenized Cylinder
92234.50C			4.2203E-06	2.5977E-0
92235.50C		• • • • • • • • • • • • • • • • • • •	3.9292E-04	2.4186E-0
92238.50C	· - · · · · · · · · · · · · · · · · · ·		2.2821E-05	1.4047E-0
5010.50C			1.6021E-05	9.8618E-0
5011.56C	1		6.6379E-05	4.0859E-0
6000.50C	+	1.1883E-04	3.7099E-06	2.8384E-0
7014.50C		3.3977E-04	1.0608E-05	8.1159E-0
12000.50C	1	••••••••••••••••••••••••••••••••••••••	1.2644E-04	7.7832E-0
13027.50C			1.2810E-02	7.8851E-0
14000.50C		1.2705E-03	1.0532E-04	3.4389E-0
15031.50C		6.9123E-05	2.1580E-06	1.6511E-0
16032.50C		4.4643E-05	1.3937E-06	1.0664E-0
24000.50C		1.5556E-02	5.5757E-04	3.7600E-0
25055.50C	· · · · · · · · · · · · · · · · · · ·	1.7321E-03	5.4075E-05	4.1374E-0
26000.50C		5.5840E-02	1.6343E-03	1.3271E-0
28000.50C		9.7247E-03	3.4157E-04	2.3463E-
29000.50C			1.2091E-05	7.4422E-
1001.50C	6.6878E-02		4.8483E-02	4.0865E-0
8016.50C	3.3439E-02	, ·	2.4241E-02	2.0433E-0
42000.50C		1.2398E-03	3.8704E-05	2.9614E-
Totals:	1.0032E-01		8.8924E-02	9.0146E-
1				1

MIT Ba	ket Volume	Calculation	ns					
Codispor	al Tube:			+	i		1	
	Radius 20.465	Area 1315 740	<u>.</u>	÷	ļ	I		 .
	20.465	1315.749	<u>t</u>	1		-		+
Water-Fil	led Cells:							1
Cell 1	Half-Moon Sh Chord Length	ape Radial Base	Angle	Area	• - ·····		∤	Fraction
	13.471	19.303	39.191	13.222	•		l	0.0100
Cell 2	Half-Moon + 1	riangle	-	i Mana tera	Triana Lik	Tilenala Area	Tabal	Freekar
	Unord Length 10,719	19,745	_Angle 30.301	4.923	2.664	14,278	19.200	0.0145
	1	1	•	+			1	İ.
Cell 3	Triangle	Height	Aras		·			Freetion
	2.985	5 108	7.624	•	•	∔	i	0.0057
				÷ · ·	I			
	Same as Cell	3		• • • •	+· -	L	i	0.0057
		Ĺ		••••••• •••	•			
Cell 5	Half-Moon + T	riangle	<u>-</u>	+				Fraction 0.0145
				t				0.0140
Total Fra	ctions for TOP	Row		0.05082				
Cell 6	Half-Moon + T	rapezpid			(Trapezoid	al Area)	-	; 1
	Chord Length	Radial Base	Angle	Moon Area	Ave. Base	Height		Fraction
	7.069	20.134	19.881	1.499	7.270	1.426	11.866	0.0090
	<u>† </u>			· <u>· · · · · · · · · · · · · · · · · · </u>	Area:	10.36/02	·	
Cell 7	Triangle							· · · · · · · · · · · · · · · · · · ·
	Base 2 757	Height	Area 6 780	↓				Fraction
	2.7.57			_				0.0031
Cell B	Half-Moon + T	riangle			÷	-		
	Chord Length	20.139	Angle 18.924	Moon Area 1.649	1 riang. Ht. 2,227	Triangle Area 7.466	9,115	0.00693
Total Fra	ctions for UPPI	ER MIDDLE R	ow	0.02111				
Cell 9	Triangle							
	Base	Height	Area	· · · · · · · · · · · ·			·	Fraction
	2.826	4.879	6.894	·				0.00524
Cell 10	Triangle					· · · · · ·		
	Same as Cell	9						Fraction
								0.00524
	+							
MIT Bas	ket Volume	Calculation	15				-	
	(CONTINUED)							
Call 11	Triangle			L				
	Same as Cell S	······	· ·					Fraction
	· · · · · · · · · · · · · · · · · · ·				·			0.00524
Cell 12	Triangle						+	
	Same as Cell S	,		· · · ····			·	Fraction
Total Frac	tions for CEN	ER Row		0.02096				0.00524
Total Frac	tions for UPPE	R MIDDLE R	ow	0.02111				• • • • • • •
	1			1				
	· · ·	<u>.</u>						
Total Frac	tions for BOT	OM Row		0.05082				
			i		_		1	
GRA	ND TOTAL FRA	CTION FOR	ALL WATE	R CELLS:	0.16481		†	·····
			!					
uel-Filler	Cells:		Euel Area	50,1526A		Divider Area	0.93134	
			Area	Fraction				
op Row:	Two Fuel Cells	No Dividers	100.305	0.07623	·· · • • ••• • •••		· •· · · ‡	
Jpper-	Four Cells, Thre	ee Dividers	203.405	0.15459				
liddle				·····				
Central	Four Cells Tw	Dividers	202 473	0.15389	·			~
					ŀ		f	
ower-	Equal to Upper	Middle	203.405	0.15459				
NIDOIR		i		i				
Bottom	Equal to Top		100.305	0.07623		·· · ·↓		
CP 41	D TOTAL EDA			CEITE	A #12#4		T	
unAr	U IVIAL PRA		WELFUEL	·	0.01004			
	TOTAL FR	CTION FOR	STEEL BA	SKET:	0.21965	·	<u>+</u>	
		÷			ļ	. .		
					. i			

Homogenize	d MIT Fuel	Assembly							
Fuel Cell Plu	S SS316B2	A Divider	Plates	A at Marke					
Homogenization	OFFUELCEIL (Including Divi	der Plates) ar	Motor	Fuels Meter	CO1CD0A	Tatal		
L ongth	Fuel Meal	AI/ H2U	Fuel Plate	vvater	Fueldwaler	55316D2A	TOLAI	ļ	Π20/(AI+Π20)
Lengin	0 89000	0.035	50.42	0.00	04	0.01520	CO	ł	0.054000073
Number Densitis		U.UU9//	Juding Side D	0.08585	-	0.01538		Eucl Coll	Avial
Number Densite	Fuel Meat		Water	Dioto Array	Accombly		Dividera	Puer Ceir	Homogonization
02224 500	2 9752E 05	Aummun	waler	FIGLE ALLAY	E POODE OF		Dividers		
92234.500	3.6752E-03	• • •		5.3722E-00	5.6030E-06	4.9233E-00		4.7472E-00	4.2203E-00
92233.500	2.0079E-03	1	ii	3.3321E-04	3 1390E 05	4.0039E-04		9 5670E 05	3.9292E-04
5010 500	2.03336-04			3.4437 E-03	3.1300E-05	2.00242-00	5 11995 04	0 162/E 06	1 60215-05
5011.500		·					2 1208E 02	3.1034E-00	6 6270E 05
6000 500		· · · · · · · · · · · · · · · ·					1 1853E 04	+ 2 1210E 06	3 7000E_06
7014 50C							3 3801E-04	+ 6.0670E-06	+ <u>1.0608E-05</u>
12000 500		6 7211E-04		1 21575-04	1 70755-04	1 44875-04	3.30312-04	1 3068E-04	1.0000E-03
13027 500	1 5235E-02	5 0272E-02	· · · · · · · · · · · · · · · · · · ·	1.2107E-04	1.7075E-04	1.4407 -04	· · · · · · · · · · · · · · · · · · ·	1.33002-04	1 20105-02
14000 50C	1.52052.02	3 4898E-04		6.3123E-05	8.8657E-05	7 5220E-05	1 2673E-03	9 5214E-05	1.0532E-04
15031 50C			·	0.01202 00	0.0007 2.00	7.52202 05	6.8948E-05	+ 1 2343E-06	2 1580E-04
16032.50C		{ · ·				· · · · · · · · · · · · · · · · · · ·	4 4530E-05	+ 7 9716E-07	1.3937E-06
24000.50C		7.8542E-05		1.4207E-05	1.9953E-05	1.6929E-05	1.7342E-02	3.2677E-04	5.5757E-04
25055.50C			· · ·· ·				1.7277E-03	3.0929E-05	5.4075E-05
26000.50C							5.2215E-02	⁺ 9.3473E-04	1.6343E-03
28000.50C	······································	• · ·					1.0913E-02	1.9536E-04	3.4157E-04
29000.50C	1	6.4267E-05	- ·	1.1625E-05	1.6327E-05	1.3852E-05		1.3356E-05	1.2091E-05
1001.50C	4.2490E-02		6.6878E-02	5.0771E-02	4.6236E-02	4.9364E-02		4.7597E-02	4.8483E-02
8016.50C	2.1245E-02	[3.3439E-02	2.5385E-02	2.3118E-02	2.4682E-02	+ · · · · · · · · · · · · · · · · · · ·	2.3798E-02	2.4241E-02
42000.50C		· · · · · · · · · · · · · · · · · · ·					1.2366E-03	2.2137E-05	3.8704E-05
	t			· · · · · · · · · · · · · · · · · · ·		†		[
Totals:	8.2826E-02	6.0436E-02	1.0032E-01	9.0227E-02	8.7566E-02	8.9499E-02	8.7905E-02	8.7868E-02	8.8924E-02

	i ol Fuel Gell a	und Divider Pla	ates					
	Fuel Cell	Each Divider	Cell+Dividers	\$				
Width	7.64989	0.14203	7.93395					
Vol. Fraction	0.96420	0.01790						
Number Densiti	es in Homoge	nized Fuel inc	luding Side P	lates			SS316B2A	Fuel Cell
	Fuel Meat	Aluminum	Water	Plate Array	Assembly	Cell	Dividers	& Dividers
92234.50C	3.8752E-05			6.3722E-06	5.8030E-06	4.9235E-06		4.7472E-06
92235.50C	3.6079E-03			5.9327E-04	5.4027E-04	4.5839E-04	1	4.4198E-04
92238.50C	2.0955E-04			3.4457E-05	3.1380E-05	2.6624E-05		2.5670E-05
5010.50C							5.1188E-04	9.1634E-06
5011.56C							2.1208E-03	3.7966E-05
6000.50C							1.1853E-04	2.1219E-06
7014.50C							3.3891E-04	6.0670E-06
12000.50C		6.7211E-04		1.2157E-04	1.7075E-04	1.4487E-04		1.3968E-04
13027.50C	1.5235E-02	5.9272E-02		1.3226E-02	1.7339E-02	1.4711E-02		1.4185E-02
14000.50C		3.4898E-04		6.3123E-05	8.8657E-05	7.5220E-05	1.2673E-03	9.5214E-05
15031.50C							6.8948E-05	1.2343E-06
16032.50C							4.4530E-05	7.9716E-07
24000.50C		7.8542E-05		1.4207E-05	1.9953E-05	1.6929E-05	1.7342E-02	3.2677E-04
25055.50C							1.7277E-03	3.0929E-05
26000.50C							5.2215E-02	9.3473E-04
28000.50C	<u> </u>						1.0913E-02	1.9536E-04
29000.50C	L	6.4267E-05		1.1625E-05	1.6327E-05	1.3852E-05		1.3356E-05
1001.50C	4.2490E-02		6.6878E-02	5.0771E-02	4.6236E-02	4.9364E-02	·	4.7597E-02
8016.50C	2.1245E-02		3.3439E-02	2.5385E-02	2.3118E-02	2.4682E-02		2.3798E-02
42000.50C							1.2366E-03	2.2137E-05
Totals:	8.2826E-02	6.0436E-02	1.0032E-01	9.0227E-02	8.7566E-02	8.9499E-02	8.7905E-02	8.7868E-02

.

Homogenized MIT Fuel Assembly Homogenized Fuel + Water in Basket Holes								
Volume Fract	ions for Codis	oosal Basket						
Water	0.1648147							
Fuel	0.6155381							
Basket	0.2196472							
	-			· ••• · •••				
Number Dens	sities in Homog	enized Fuel	including Sic	le Plates				
· · · ·	,							
	Water	Cell	Cell+Basket					
92234.50C		4.923E-06	3.031E-06					
92235.50C		4.5839E-04	0.0002822					
92238.50C	- +	2.6624E-05	1.639E-05					
13027.50C	1	1.4711E-02	0.0090554					
14000.50C		7.5220E-05	4.63E-05					
24000.50C		1.6929E-05	1.042E-05					
12000.50C		1.4487E-04	8.917E-05					
29000.50C		1.3852E-05	8.527E-06					
1001.50C	6.6878E-02	4.9364E-02	0.0414081					
8016.50C	3.3439E-02	2.4682E-02	0.0207041					
Total:	1.0032E-01	8.9499E-02	7.1624E-02					

. .

•

Homogenize	d MIT Fuel	Assembly												
Fuel Plates	Moderato	r + Side Pla	ates + Sur	rounding V	Nater Laye	r								
	Fuel Plate H	lomogenizati	on Calculati	ons			Plate							
	Fuel Meat	Clad (Al)	Moderator	Cell				vf	density					
PX	0.03810	0.08001	0.23170				fuel	0.16444	2.188	g/cc	0.359784	g/cc	0.47619	1.041905
Thickness	0.07620	0.08382	0.30338	0.4634044			clad	0.18088	2.699	g/cc	0.488192	g/cc	0.52381	1.413762
Vol. Fractions	0.16444	0.18088	0.65469	1.00000			solid density	0.34531			0.847976	g/cc		2.455667
Addition o	of Side Plate	Aluminum int	o Homogen	ized Assemb	l	· ·					L			
	Plate Array		Side Plates		Top/Bottom	•••••••••••••••••••••••••••••••••••••••	Assembly	1				· · · · · ·		
Base	6.79562		0.12905	(Two each)	7.05372		Plate	0.91068	0.847976	g/cc	0.772231	g/cc		2.236315
Height	5.70230	1	5.70230	t ·	0.16510		AI Sides	0.08932	2.699	g/cc	0.241087	g/cc	•	0.241087
Area	38.75066		1.47176	1 ·	2.32914						1.013318	g/cc	1	2.477402
	Total Area o	f Side Plates:	3.80090			• • • • • • • •		• • •	t ·		1	1 ···	1	
	Total Area o	f Assembly:	42.55157											
Vol. Fractions	1	Plate Array:	0.91068	AL Sides:	0.08932					1		Ī		
		T				·······	Assembly + V	Vater Layer	t ·	1		1	1	
Addition of	Water Layer	Surrounding	Assembly t	o Homogenia	zed Assembl	y	Assembly	0.84844	1.013318		0.85974	g/cc	1	34.70%
	Assembly	T	Cell		Water Layer	•								
Base	7.05372		7.64989				Assembly + V	Vater Layer	+ B-SS					
Height	6.03250		6.55600				Assembly	0.964197	0.85974		0.828959	g/cc		
Area	42.55157		50.15268		7.60111		B-SS	0.017902	7.86		0.140706	g/cc		
Vol. Fractions	0.84844		1.00000		0.15156						0.969665	g/cc		
Number Densi	ties in Homo	genized Fuel	Including S	ide Plates		·		}	<u> </u>	+				+
	Fuel Meat	Aluminum	Water	Plate Array	Assembly	Cell]			
92234.50C	3.8752E-05			6.3722E-06	5.8030E-06	4.923E-06			f					Ţ
92235.50C	3.6079E-03			5.9327E-04	5.4027E-04	4.5839E-04		· · · · · · · · · · · · · · · · · · ·			T			
92238.50C	2.0955E-04	· · · · ·		3.4457E-05	3.1380E-05	2.6624E-05								
13027.50C	1.5235E-02	5.9272E-02		1.3226E-02	1.7339E-02	1.4711E-02								
14000.50C		3.4898E-04		6.3123E-05	8.8657E-05	7.5220E-05								
24000.50C		7.8542E-05		1.4207E-05	1.9953E-05	1.6929E-05								
12000.50C		6.7211E-04		1.2157E-04	1.7075E-04	1.4487E-04							1	
29000.50C		6.4267E-05		1.1625E-05	1.6327E-05	1.3852E-05		1	1					
1001.50C	4.2490E-02		6.6878E-02	5.0771E-02	4.6236E-02	4.9364E-02			l					
8016.50C	2.1245E-02		3.3439E-02	2.5385E-02	2.3118E-02	2.4682E-02								
			Totai:	9.0227E-02	8.7566E-02	8.9499E-02			l					· ·
N(Homogenized	d) = N(fuel)*V	.F.(fuel) + N(c	lad)*V.F.(clac]) + N(mod)*V	/.F.(mod)								·	
]						I		· · ·					
Effective-k	0.63481											1		

.

.

	Evel DI-4	om o # = = ! ! !	on Coloria					
	Fuel Mast Cled (Al) Medanter Cell							
				Cell	· · · · · · · · · · · · · · · · · · ·			
TA Thickness	0.03810	0.08001	0.23170	0.4624044				
Volumo Erection	0.07620	0.08382	0.30338	1 00000				
VOIUME FIACTION	0.10444	0.18088	0.00409	1.00000				
Addition of S	Side Plate Alur	ninum into F	lomogenized	Assembly				
	Plate Array		Side Plates		Top/Bottom			
Base	6.79562	••••••••••••••••••••••••••••••••••••••	0.12905	(Two each)	7.05372			
Height	5.70230		5.70230	· · · · · · · · · · · · · · · · · · ·	0.16510			
Area	38.75066		1.47176	t	2.32914			
	Total Area of	Side Plates:	3.80090					
	Total Area of	Assembly:	42.55157					
Volume Fractions	3	Plate Array:	0.91068	AL Sides:	0.08932			
Number Densitie	s in Homogen	ized Fuel inc	luding Side	Plates				
	Fuel Meat	Aluminum	Water	Plate Array	Assembly			
92234.50C	3.8752E-05		· · · · · · · · · · · · · · · · · · ·	6.3722E-06	5.8030E-06			
92235.50C	3.6079E-03			5.9327E-04	5.4027E-04			
92238.50C	2.0955E-04			3.4457E-05	3.1380E-05			
13027.50C	1.5235E-02	5.9272E-02		1.3226E-02	1.7339E-02			
14000.50C		3.4898E-04		6.3123E-05	8.8657E-05			
24000.50C		7.8542E-05		1.4207E-05	1.9953E-05			
12000.50C		6.7211E-04		1.2157E-04	1.7075E-04			
29000.50C		6.4267E-05		1.1625E-05	1.6327E-05			
1001.50C	4.2490E-02		6.6878E-02	5.0771E-02	4.6236E-02			
8016.50C	2.1245E-02		3.3439E-02	2.5385E-02	2.3118E-02			

-

Homogenized Fuel Plates + I	MIT Fuel As Moderator,	ssembly Intact Side	e Plates	
	Fuel Meat	Clad	Moderator	Cell
PX	0.03810	0.08001	0.23170	
Thickness	0.07620	0.08382	0.30338	0.4634044
Volume Fraction	0.16444	0.18088	0.65469	1.00000
Number Densitie	s in Homogen	ized Fuel/M	oderator Cel	
92234.50C	3.8752E-05		T	6.3722E-06
92235.50C	3.6079E-03		1	5.9327E-04
92238.50C	2.0955E-04			3.4457E-05
13027.50C	1.5235E-02	5.9272E-02		1.3226E-02
14000.50C		3.4898E-04	t · · · · · · · · · · · · · · · · · · ·	6.3123E-05
24000.50C		7.8542E-05	· · · · · · · · · · · · · · · · · · ·	1.4207E-05
12000.50C		6.7211E-04	· · · · · · · · · · · · · · · · · · ·	1.2157E-04
29000.50C	-	6.4267E-05		1.1625E-05
1001.50C	4.2490E-02		6.6878E-02	5.0771E-02
8016.50C	2.1245E-02		3.3439E-02	2.5385E-02
			Total:	9.0227E-02

- -- -

.

.

Homogenized	I ORR Fue	I Plates a	nd Water					
(Water-Logged	Fuel Meat)							
						Note: all lengths,	widths, an	id heights
Active Fuel Length	60.9450					are in cm, and a	ll volumes a	are in cm^3
Assembly OD	7.6100	8.357	(Width and He	eight)				
Assembly Volume	3875.9051							
Fuel Meat Volumes				Comb Plates	·	·		
Inner Meat Volume	24.9589	17	Each	Thickness	0.475			÷ I
Outer Meat Volume	24.9998	2	Each	Height	8.049			-
Total Meat Volume	474.3009	· ····································	· · · · · · · · · · · · · · · · · · ·	Total Volume	466.0189898	· · · · · · · · ·		
Clad/Meat Ratio	1.6000	(0.051020)/.0	020	Water			<u>.</u>	1
Total Clad Volume	758.88144			Total Volume	2176.7038			
Total Plate Volume	1233.1823			· ·			·	· · · ·
	Fuel Meat	Cladding	Comb Plate	Water	Assembly			
Volume Fractions	0.1224	0.1958	0.1202	0.5616	1.0000			
Number Densities					Assembly		· · · · · · · · ·	
indiniber Densides	Fuel Mest	Cladding	Comb Plate	Water	Homogenized			
11-235	1 875E-03	Clauding	Combriate	Trate:	2 294F-04			
11-238	7 153E-03	<u>ا</u>	ļ		8.753E-04		+	
AI	1.680E-02	6.022E-02	6.022E-02		2.109E-02			
Si	6.018E-03			<u> </u>	7.365E-04		<u> </u>	· • · · · · · · · · · · · · · · · · · ·
Н	2.718E-02	+		6.694E-02	4.092E-02		1	
0	1.359E-02	+		3.347E-02	2.046E-02		+	•
Number Densities	Assembly							
------------------	-------------							
	Homogenized							
92235.50C	2.294E-04							
92238.50C	8.753E-04							
13027.50C	2.109E-02							
14000.50C	7.365E-04							
1001.50C	4.092E-02							
8016.50C	2.046E-02							
	8.431E-02							

•

Homogenized	ORR Fue	I Cell										
(Water-Logged	Fuel Meat)											
Active Fuel Length	60.9450											
Assembly OD	7.6100	8.357	(Width and He	eight)								
Assembly Volume	3875.9051											
Fuel Meat Volumes	l			Comb Plates	· · · /	-			· - · · · · · · · · · · ·	· · · · · ·	······	
Inner Meat Volume	24.9589	17	Each	Thickness	0.475				···			
Outer Meat Volume	24.9998	2	Each	Height	8.049		•+					
Total Meat Volume	474.3009	· · · · · · · · · · · ·		Total Volume	466.0189898		-	- · ·	• •	-	-	
Clad/Meat Ratio	1.6000	(0.051020)/.	020	Water		-				 		- ·
Total Clad Volume	758.88144	• • · · · · · · · · · · · · · · · · · ·		Total Volume	2176.7038	· · ·	Ī		-			
Total Plate Volume	1233.1823	······		· · · · · · · · · · · · · · · · · · ·			1			-		
Assembly	Fuel Meat	Cladding	Comb Plate	Water	Assembly		-				····	
Volume Fractions	0.1224	0.1958	0.1202	0.5616	1.0000		. [.				·····	
Fuel Cell					· ·							
Width	8.1180	Height	8.8640	Volume	4385.4774	solids	v	f				
Water Layer Vol.	509.5722	x				meat		0.1082	7.8552	0.849561	0.279132	2.192635
Cell	Fuel Meat	Cladding	Comb Plate	Water	Assembly	cladding	1	0.1730	2.699	0.467046	0.446611	1.205402
Volume Fractions	0.1082	0.1730	0.1063	0.6125	1.0000	comb		0.1063	2.699	0.286807	0.274258	0.740221
								0.3875		1.603414	1	4.138259
Number Densities					Assembly							
	Fuel Meat	Cladding	Comb Plate	Water	Homogenized						38.75%	
U-235	1.875E-03				2.028E-04							
U-238	7.153E-03				7.736E-04							
AI	1.680E-02	6.022E-02	6.022E-02		1.864E-02							··
Si	6.018E-03				6.509E-04	·				· · · · · · · · · · · · · · · · · · ·		
Н	2.718E-02	+		6.694E-02	4.394E-02	·			l			·
0	1.359E-02		L	3.347E-02	2.197E-02							

.

.

.

Number Densit	Assembly
	Homogenized
92235.50C	2.028E-04
92238.50C	7.736E-04
13027.50C	1.864E-02
14000.50C	6.509E-04
1001.50C	4.394E-02
8016.50C	2.197E-02
	8.618E-02

-

Homogenized	ORR Bas	ket					
(Water-Logged	Fuel Meat)		_				
Active Fuel Length	60.9450						
Assembly OD	7.6100	8.357	(Width	and He	eight)		
Assembly Volume	3875.9051						
Fuel Meat Volumes					Comb Plates		
Inner Meat Volume	24 9589	17	Fach		Thickness	0.475	· · · · · · · · · · · · · · · · · · ·
Outer Meat Volume	24.0000		Fach		Height	8 049	
Total Meat Volume	474 3009	. .	Laun		Total Volume	466 0189898	
						100.0100000	
Clad/Meat Ratio	1.6000	(0.051020)/.0	020		Water		· · · · · · · · · ·
Total Clad Volume	758.88144				Total Volume	2176.7038	
Total Plate Volume	1233.1823						
Assembly	Fuel Meat	Cladding	Comb	Plate	water	Assembly	· · · · · · · · · · · · · · · · · · ·
volume Fractions	0.1224	0.1958		0.1202	0.5616	1.0000	
Fuel Cell							
Width	8.1180	Height		8.8640	Volume	4385.4774	
Water Layer Vol.	509.5722	· · · · · · · · · ·			• • • • • • • • • • • • • • • • • • •		
Steel Tube Wall	· · · · · · · · · · · · · · · · · · ·						
Width	8.3680	Height		9.1140	Volume	4648.0284	····
Steel Layer Vol.	262.5511				·····		
	Fuel Meat	Cladding	Comb	Plate	Wator	Packet Steel	Total
Volume Fractions	0 1020	0 1633	COMD	0 1003	0 5770	0.0565	1 0000
Volume Fractions	0.1020	0.1033		0.1003	0.3775	0.0303	1.0000
Number Deselder	···					Decket	Backet
Number Densides	Fuel Meet	Cladding	Comb	Diata	Wator	Structure	Homogonizod
02235 500	1 875E-03	Clauding	Como	FIALE	VValei	Structure	1 013F-04
92238 500	7 153E-03	· · · · ·			<u></u>	ł	7 299F-04
6000 50C	7.1002-00	·	{·			1 19E-04	6 712F-06
7014 50C		•····	}			3 40F-04	1.919E-05
13027 50C	1.680E-02	6.022F-02	6.0	22E-02		0.102 01	1.758E-02
14000.50C	6.018E-03					1.27E-03	6.859E-04
15031.50C	·	· ·	! ·		· · · · · · · · · · · · · · · · · · ·	6.91E-05	3.905E-06
16032.50C	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	l		[4.46E-05	2.522E-06
24000.50C						1.56E-02	8.787E-04
25055.50C			· · · · · · · · · · · · · · · · · · ·		I	1.73E-03	9.784E-05
26000.50C						5.58E-02	3.154E-03
28000.50C						9.72E-03	5.493E-04
42000.50C						1.24E-03	7.003E-05
1001.50C	2.718E-02				6.694E-02		4.146E-02
8016.50C	1.359E-02				3.347E-02		2.073E-02

-

-

. .

Number Densitie Basket					
	Homogenized				
92235.50C	1.913E-04				
92238.50C	7.299E-04				
6000.50C	6.712E-06				
7014.50C	1.919E-05				
13027.50C	1.758E-02				
14000.50C	6.859E-04				
15031.50C	3.905E-06				
16032.50C	2.522E-06				
24000.50C	8.787E-04				
25055.50C	9.784E-05				
26000.50C	3.154E-03				
28000.50C	5.493E-04				
42000.50C	7.003E-05				
1001.50C	4.146E-02				
8016.50C	2.073E-02				
··	8.616E-02				

-

Homogenized	ORR Cyl	inder							
(Water-Logged	Fuel Meat)							!	
Active Fuel Length	60 9450							· · · · · ·	
Assembly OD	7.6100	8.357	(Width and He	eight)			· - · · · ·	} !!	
Assembly Volume	3875.9051		(· · · · · · · · · · · · · · · · · · ·	• · · • • • • • • • • • •				
Fuel Meat Volumes) <u></u>		·	Comb Plates				• · · · · · · · · · · · · · · · · · · ·	· •
Inner Meat Volume	24,9589	17	Each	Thickness	0 475		· • • • •		
Outer Meat Volume	24,9998	2	Each	Height	8.049	· · · · · · · · · · · · · · · · · ·	· • •		
Total Meat Volume	474,3009			Total Volume	466.0189898	· · · · · · · · · · · · · · · · · · ·			
Clad/Meat Ratio	1,6000	(0.051020)/	020	Water					
Total Clad Volume	758.88144	,,		Total Volume	2176,7038		· · · · · · · · · ·	f == == · · ·	· · ·
Total Plate Volume	1233,1823	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					1	
Assembly	Fuel Meat	Cladding	Comb Plate	Water	Assembly			1	
Volume Fractions	0.1224	0,1958	0.1202	0.5616	1 0000			•	
		IIII				· · · ·		+	
Fuel Cell		İ				• · · · · · · · · · · · · · · · · · · ·		t	
Width	8.1180	Height	8.8640	Volume	4385.4774				
Water Laver Vol.	509.5722					· · · · · · · · · · · · · · · · · · ·	····•		
Steel Tube Wall	• · · · · · · · · · · · · · · · · · · ·	1	······		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	- i	ŧ · · - = ,	
Width	8.3680	Height	9.1140	Volume	4648.0284	· · · · · · ·		∳	1
Steel Layer Vol.	262.5511	t♥	Total Baske	t Volume	46480.28445	†			Ī
		+		· · · · · · · · · · · · · · · · · · ·			··· •·······	· · · · ·	
Water in Cylinder	†							1	
Cyl. Inner Radius	20.4650	•	Cylinder	Volume	80188.38345			•	+
Water Volume	33708.0990	• · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	1
	*	······································	· · · · · · · · · · · · · · · · · · ·						
Cell	Fuel Meat	Cladding	Comb Plate	Water	Basket Steel	Basket Supports			
Volume Fractions	0.0591	0.0946	0.0581	0.3350	0.0327	0.4204			
					Total =	1.0000		1	
							·	1	
Number Densities					Basket	Cylinder			
	Fuel Meat	Cladding	Comb Plate	Water	Structure	Homogenized]	
92235.50C	1.875E-03					1.109E-04	note that basket	1	
92238.50C	7.153E-03					4.231E-04	supports are assume	d to be	
6000.50C					1.19E-04	6.888E-06	6% of the volume out	side	
7014.50C		L			3.40E-04	1.969E-05	of the basket with the	remainder	
13027.50C	1.680E-02	6.022E-02	6.022E-02			1.019E-02	being water. this is b	ased on the	fact that
14000.50C	6.018E-03				1.27E-03	4.296E-04	5.6% of the homoger	nized basket	
15031.50C					6.91E-05	4.007E-06	volume was steel		
16032.50C					4.46E-05	2.588E-06			
24000.50C	[1.56E-02	9.017E-04			
25055.50C	L				1.73E-03	1.004E-04	· · ·		
26000.50C					5.58E-02	3.237E-03			
28000.50C					9.72E-03	5.637E-04			
42000.50C					1.24E-03	7.186E-05			
1001.50C	2.718E-02			6.694E-02		5.048E-02			
8016.50C	1.359E-02			3.347E-02		2.524E-02			
Note: Basket Supp	orts are assum	ed to be solid a	steel blocks su	rrounding bask	et tube array.				

Number Densities Cylinder			
	Homogenized		
92235.50C	1.109E-04		
92238.50C	4.231E-04		
6000.50C	6.888E-06		
7014.50C	1.969E-05		
13027.50C	1.019E-02		
14000.50C	4.296E-04		
15031.50C	4.007E-06		
16032.50C	2.588E-06		
24000.50C	9.017E-04		
25055.50C	1.004E-04		
26000.50C	3.237E-03		
28000.50C	5.637E-04		
42000.50C	7.186E-05		
1001.50C	5.048E-02		
8016.50C	2.524E-02		
	9.179E-02		

	7.3.2-1: (ORR Degraded Fuel	- In CoDisp	oosal Ba	sket
	NO BORON		k-caculated	sigma	k-effective
	ORRHASBL	Homogenized Assembly	0.84944	0.00138	0.87220
	ORRSAB1	Homogenized Water Gap	0.87496	0.00142	0.89780
	ORRSAB2	Homogenized Basket Steel	0.93429	0.00144	0.95717
	ORRSAB3	Homogenized Cylinder	0.41517	0.00108	0.43733
	Axial Boron	Divider Plates	······	· · · · ·	·····
	ORR1	Homogenized Assembly	0.77988	0.00139	0.80266
-	ORR2	Homogenized Water Gap	0.80703	0.00151	0.83005
	ORR3	Homogenized Basket Steel	0.87177	0.00153	0.89483
	ORR4	Homogenized Cylinder	0.38910	0.00098	0.41106

, .

7.3.2-1: ORR Intact Fresh Fuel in DHLW Five Pack Percent H2O*											
Case Name	Case Name in Fuel Me k-calculated sigma k-effect										
ORR10E	0	0.84389	0.00150	0.86689							
ORR10G	25	0.85397	0.00149	0.87695							
ORR10H	50	0.86274	0.00151	0.88576	•						
ORR10I	75	0.86317	0.00118	0.88553							
ORR10J	95	0.87276	0.00156	0.89588	-						
ORR10F	100	0.87355	0.00152	0.89659							
* Percentage of	Percentage of maximum of volume percent water in fuel meat.										

Jul 31 14:40 1997 File Name: mitoz3 BBA000000-01717-0200-00052 REV 01 ATTACHMENT VI - Page 1 HOMOGENIZED MIT CELL inc. WATER LAYER, SS/B Dividers, 1.5 cm XM-19, Detailed DHLW Canisters Dropped to Bottom С DHLW CANISTER С -1 -3 4 IMP:N=1 U=1 \$ DHLW GLASS 1 3 -2.85 5 -7.9 1 -3 4 IMP:N=1 U=1 \$ SS304L CANISTER WALL 2 5 -7.9 5 -7.9 IMP:N=1 U=1 \$ SS304L CANISTER TOP 3 3 4 -4 IMP:N=1 U=1 \$ SS304L CANISTER TOP GLASS LOGS С 1 1.0032-1 -2 -5 6 FILL=1 TRCL=(-8. 47.7 0) IMP:N=1 \$ DHLW GLASS 11 12 LIKE 11 BUT TRCL=(55.2 9. 0) LIKE 11 BUT TRCL=(30.5 -46.9 0) 13 LIKE 11 BUT TRCL=(-30.5 -46.9 0) 14 LIKE 11 BUT TRCL= $(-55.2 \ 9. \ 0)$ 15 С ARRAY OF PLATES IS HOMOGENIZED c С -80 81 -53 54 IMP:N=1 U=3 \$ HOMOGENIZED FUEL PLATES 20 2 8.9482-2 С 1 1.0032-1 IMP:N=1 U=3 \$ water above Assembly (Z) -80 81 53 21 1 1.0032-1 -80 81 -54 IMP:N=1 U=3 \$ Water below Assembly (Z) 22 C 23 8 8.8111-2 -81 IMP:N=1 U=3 \$ steel left Assembly 24 8 8.8111-2 80 IMP:N=1 U=3 \$ steel right Assembly С 25 9 8.5935-2 108 IMP:N=1 U=4 \$ Steel/water Universe for padding ends of arrays 1 1.0032-1 109 -108 IMP:N=1 U=4 26 9 8.5935-2 IMP:N=1 U=4 \$ Steel/water Universe for padding ends of arrays -109 27 С C С SET UP UNIVERSES CONTAINING FUEL ASSEMBLIES С 1 1.0032-1 -100 101 -40 41 u=5 imp:n=1 lat=1 28 \$ array for right group of two assemblies fill=-3:3 -1:1 -1:1 444444 4433444 444444 4444444 444444 444444 trcl=(6.20 0 0) \$ array for left group of two assemblies 29 LIKE 28 BUT TRCL=(-14.100 0 0) U=6 35 1 1.0032-1 -100 101 -40 41 u=7 imp:n=1 lat=1 \$ array for lower group of four assemblies fill=-3:3 -1:1 -1:1 444444 4333344 444444 444444 444444 444444 trcl=(-2.58 -7.654 0) LIKE 35 BUT TRCL=(-4.5 7.654 0) U=8 36 \$ array for upper group of four assemblies 37 LIKE 28 BUT TRCL=(-6.179 15.05 0) U=9 \$ array for TOP ROW - left C 38 LIKE 28 BUT TRCL=(6.179 14.92 0 -1 0 0 0 1 0 0 0 1) U=10 \$ array for TOP ROW - Right С 39 LIKE 28 BUT TRCL=(6.179 -15.06 0) U=11 \$ array for bottom group of TWO assemblies С 40 LIKE 28 BUT TRCL=(-6.179 -15.05 0 1 0 0 0 -1 0 0 0 1) U=12 \$ array for TOP group of TWO assemblies С C С THE FUEL ASSEMBLIES ARE CONSTRUCTED. NOW CONSTRUCT THE FUEL BASKET AND INSERT THE ASSEMBLIES С 41 0 -106 95 -102 103 -200 210 IMP:N=1 FILL=5 U=13 \$ Center right two assemblies C 107 -96 -102 103 -200 210 IMP:N=1 FILL=6 U=13 \$ Center left two assemblies 42 0 r

 9
 8.5935-2
 -95
 96
 -102
 103
 -200
 210

 9
 8.5935-2
 -300
 106
 -102
 103
 -200
 210

 9
 8.5935-2
 -300
 106
 -102
 103
 -200
 210

 9
 8.5935-2
 -300
 -107
 -102
 103
 -200
 210

 43 IMP:N=1 U=13 \$ Steel Divider between Center asbl groups IMP:N=1 U=13 \$ Steel to right of Center asbl groups 44 IMP:N=1 U=13 \$ Steel to left of Center asbl groups 46 Now insert steel above (X,Y) and below the central row of four assemblies С 9 8.5935-2 -300 -103 111 -200 210 IMP:N=1 U=13 \$ Steel plate Below Central Row of Four 54 55 8 8.8111-2 113 -114 -111 112 -200 210 IMP:N=1 U=13 \$ SS316B2A below steel plate 9 8.5935-2 114 -300 -111 112 -200 210 IMP:N=1 U=13 \$ Steel to right of SS316B2A 56 IMP:N=1 U=13 \$ Steel to left of SS316B2A 57 9 8.5935-2 -113 -300 -111 112 -200 210

С 9 8.5935-2 -300 102 -120 -200 210 IMP:N=1 U=13 \$ Steel plate Above Central Row of Four 60 The lower middle row of four assemblies are separated by a thin steel plate 104 -300 -112 115 -200 210 IMP:N=1 FILL=7 U=13 \$ Lower Middle Row С 104 -300 -112 115 -200 210 70 Ω 8.5935-2 105 -104 -300 -112 115 -200 210 IMP:N=1 U=13 \$ Steel vertical bar to left of lower middle row 0 71 1 1.0032-1 -300 -105 -112 115 -200 210 IMP:N=1 U=13 \$ Water to left of Steel vertical bar 72 C 9 8.5935-2 -300 -115 116 -200 210 IMP:N=1 U=13 \$ Steel below Lower Middle Row 75 С С The instructions below describe the boron stainless plate above the center row of assemblies С 8 8.8111-2 123 -124 120 -122 -200 210 IMP:N=1 U=13 \$ SS316B2A above steel plate 81 IMP:N=1 U=13 \$ Steel to right of SS316B2A IMP:N=1 U=13 \$ Steel to left of SS316B2A 9 8.5935-2 124 -300 120 -122 -200 210 82 9 8.5935-2 -123 -300 120 -122 -200 210 83 The upper middle row of four assemblies are created below С -130 -300 122 -125 -200 210 IMP:N=1 FILL=8 U=13 \$ Upper Middle Row 90 0 8.5935-2 130 -131 -300 122 -125 -200 210 IMP:N=1 U=13 \$ Steel vertical bar to right of upper middle row 1.0032-1 -300 131 122 -125 -200 210 IMP:N=1 U=13 \$ Water to right of Steel vertical bar 8.5935-2 91 9 92 1 IMP:N=1 U=13 \$ Steel above Upper Middle Row 9 8.5935-2 -300 125 -126 -200 210 95 С С The cell cards below construct the uppermost row of two assemblies С 9 8.5935-2 96 -95 126 -147 -200 210 IMP:N=1 U=13 \$ Steel center bar 100 -141 126 -140 -200 210 IMP:N=1 U=13 \$ Steel on right side 9 8.5935-2 95 101 8 8,8111-2 141 -142 126 -140 -200 210 IMP:N=1 U=13 \$ SS316B2A 102 9 8.5935-2 142 -300 126 -140 -200 210 IMP:N=1 U=13 \$ Steel on right side 103 9 8.5935-2 -96 143 126 -140 -200 210 IMP:N=1 U=13 \$ Steel on left side 104 IMP:N=1 U=13 \$ SS316B2A 144 126 -140 -200 210 8 8.8111-2 -143 105 9 8.5935-2 -144 -300 126 -140 -200 210 IMP:N=1 U=13 \$ Steel on left side 106 С The following cell cards construct the steel angles to left and right of the center bar С -96 -145 140 -147 -200 210 IMP:N=1 U=13 \$ Water to left of Steel vertical bar 145 -146 140 -147 -200 210 IMP:N=1 U=13 \$ Steel to left of center 107 1 1.0032-1 9 8.5935-2 -96 108 95 -149 140 -147 -200 210 IMP:N=1 U=13 \$ Water to right of Steel vertical bar 149 -150 140 -147 -200 210 IMP:N=1 U=13 \$ Steel to right of center 110 1 1.0032-1 9 8.5935-2 95 111 С 151 -152 140 -147 -200 210 IMP:N=1 U=13 \$ Steel at left side 112 9 8.5935-2 -96 152 -300 140 -147 -200 210 IMP:N=1 U=13 \$ Water at left 153 -154 140 -147 -200 210 IMP:N=1 U=13 \$ Steel at right 154 -300 140 -147 -200 210 IMP:N=1 U=13 \$ Water at right 1 1.0032-1 -96 113 9 8.5935-2 95 114 1 1.0032-1 95 115 С Left Top Assembly С -96 146 -151 140 -147 -200 210 IMP:N=1 FILL=9 U=13 \$ Center left assembly 120 0 95 150 -153 140 -147 -200 210 IMP:N=1 FILL=10 U=13 \$ Center right assembly 121 0 С 147 -148 -200 210 IMP:N=1 U=13 \$ Horizontal Steel Above Top Row 129 9 8.5935-2 -300 C 1 1.0032-1 -300 148 -200 210 IMP:N=1 U=13 \$ Water above Upper Middle Row 130 С The cell cards below construct the bottommost row of two assemblies C 9 8.5935-2 96 -95 -116 177 -200 210 IMP:N=1 U=13 \$ Steel center bar 140 IMP:N=1 U=13 \$ Steel on right side -171 -116 170 -200 210 141 9 8.5935-2 95 IMP:N=1 U=13 \$ SS316B2A 8 8,8111-2 171 -172 -116 170 -200 210 142 9 8.5935-2 172 -300 -116 170 -200 210 IMP:N=1 U=13 \$ Steel on right side 143 9 8.5935-2 -96 8 8.8111-2 -173 IMP:N=1 U=13 \$ Steel on left side IMP:N=1 U=13 \$ SS316B2A 173 - 116 170 - 200 210 144 174 - 116 170 - 200 210 145 9 8.5935-2 -174 -300 -116 170 -200 210 IMP:N=1 U=13 \$ Steel on left side 146 С The following cell cards construct the steel angles to left and right of the center bar С -96 175 -170 177 -200 210 IMP:N=1 U=13 \$ Water to left of Steel vertical bar -175 176 -170 177 -200 210 IMP:N=1 U=13 \$ Steel to left of center 147 1 1.0032-1 148 9 8.5935-2 -96 179 -170 177 -200 210 IMP:N=1 U=13 \$ Water to right of Steel vertical bar 180 -170 177 -200 210 IMP:N=1 U=13 \$ Steel to right of center 95 150 1 1.0032-1 9 8.5935-2 -179 180 -170 177 151 95 С 9 8.5935-2 -96 -181 182 -170 177 -200 210 IMP:N=1 U=13 \$ Steel at left side 152 -200 210 IMP:N=1 U=13 \$ Water at left 1 1.0032-1 -96 -182 -300 -170 177 153 -183 184 -170 177 -200 210 IMP:N=1 U=13 \$ Steel at right 154 9 8.5935-2 95 95 -184 -300 -170 177 -200 210 IMP:N=1 U=13 \$ Water at right 1 1.0032-1 155 С

C Bottom Assemblies

Jul 31 14:40 1997 File Name: mitoz3 BBA000000-01717-0200-00052 REV 01 ATTACHMENT VI - Page 3 -96 -176 181 -170 177 -200 210 IMP:N=1 FILL=12 U=13 \$ Center left assembly 95 -180 183 -170 177 -200 210 IMP:N=1 FILL=11 U=13 \$ Center right assembly 160 0 161 0 С 169 -177 178 -200 210 9 8.5935-2 -300 IMP:N=1 U=13 \$ Horizontal Steel Above Top Row С 1 1.0032-1 -300 -178 -200 210 170 IMP:N=1 U=13 \$ Water above Upper Middle Row С C С 200 8 8.8111-2 -300 200 -220 IMP:N=1 U=13 \$ SS316B2A above Assemblies in Z-direction IMP:N=1 U=13 \$ SS316B2A above Assemblies (Z) 8 8.8111-2 -300 -210 230 201 210 1 1.0032-1 -300 220 IMP:N=1 U=13 \$ Water above IMP:N=1 U=13 \$ Water above 1 1.0032-1 -300 -230 211 С С 0 -320 321 -322 323 -225 235 LAT=1 U=14 IMP:N=1 250 FILL=0:0 0:0 -3:3 13 13 13 13 13 13 13 13 TRCL=(0 0 32.5) \$ Stack of fuel basket segments C C 300 0 -36 -24 25 U=2 FILL=14 IMP:N=1 \$ FUEL ASSEMBLIES & BASKET С 301 6 -7.88 36 -24 25 U=2 IMP:N=1 \$ Steel Codisposal Tube Wall 24 U=2 IMP:N=1 -25 U=2 IMP:N=1 \$ Steel Codisposal Tube Wall
\$ Steel Codisposal Tube Wall 302 6 -7.88 303 6 -7.88 -37 -26 27 FILL=2 TRCL=(0 -4.2 0) IMP:N=1 \$ Codisposal Canister 305 0 С INSIDE CONTAINER 1 1.0032-1 -10 -14 15 #11 #12 #13 #14 #15 #305 IMP:N=1 360 С WΡ -8.4425 10 -11 -14 15 IMP:N=1 \$ INNER BARRIER SIDE 361 - 4 -11 14 -16 IMP:N=1 \$ INNER BARRIER TOP -11 -15 17 IMP:N=1 \$ INNER BARRIER BOTTOM 11 -12 -16 17 IMP:N=1 \$ OUTER BARRIER SIDE 362 -8.4425 -8.4425 363 4 364 7 -7.832 -7.832 -12 16 -18 IMP:N=1 \$ OUTER BARRIER TOP -7.832 -12 -17 19 IMP:N=1 \$ OUTER BARRIER BOTTOM 365 7 7 366 1 1.0032-1 12 -13 -18 19 IMP:N=1 \$ REFLECTOR SIDE 1 1.0032-1 -13 18 -20 IMP:N=1 \$ REFLECTOR TOP 1 1.0032-1 -13 -19 21 IMP:N=1 \$ REFLECTOR BOTTOM 367 368 369 OUTSIDE WORLD С 0 13:20:-21 IMP:N=0 381 C SURFACE SPECIFICATIONS 1 CZ 29.528 2 CZ 30.48 3 PZ 137.13 PZ -137.13 PZ 138.7175 4 5 PZ -138.7175 6 С CELL FILL CARDS 7 CZ 31 8 PZ 140 PZ -140 9 CZ 86.5 CZ 88.5 10 \$ IR of WP \$ OUTSIDE OF WASTE INNER BARRIER WALL 11 CZ 98.5 \$ OUTSIDE OF WASTE OUTER BARRIER WALL 12 CZ 113.5 PZ 152 **\$** AIR REFLECTOR OUTSIDE CONTAINER 13 14 **\$ INNER HEIGHT OF CONTAINER** PZ -152 15 16 PZ 154.5 \$ TOP OF INNER BARRIER LID 17 PZ -154.5 PZ 165.5 18 \$ TOP OF OUTER BARRIER LID PZ -165.5 19 PZ 180.5 \$ TOP OF AIR REFLECTOR 20 21 PZ -180.5 С 24 PZ 129.9 \$ TOP OF STACK OF FOUR ASSEMBLIES 25 PZ -129.9 \$ TOP OF STACK OF FOUR ASSEMBLIES PZ 131.4 \$ TOP OF CANISTER LID 26 PZ -131.4 \$ TOP OF CANISTER LID 27 С 36 CZ 20.465 \$ Inner Radius of Codisposal Tube Wall

Jul 31 14:40 1997 File Name: mitoz3 BBA000000-01717-0200-00052 REV 01 ATTACHMENT VI - Page 4 37 CZ 21.965 \$ Outer Radius of Codisposal Tube Wall С С PY 3.278 \$ Top of Assembly Array (INCLUDING WATER LAYER) 40 PY -3.278 \$ Bottom of Assembly Array 41 Fuel Plate Dimensions С PZ 28.8925 \$ Max Length of Fuel 51 PZ -28.8925 52 PZ 29.2100 \$ Fuel Plate Length 53 PZ -29.2100 54 55 PY 2.76479 \$ Max Width of Fuel PY -2.76479 56 57 PY 4. \$ Fuel Plate Width 3.24104 actual 58 PY -4. PX 0.03810 \$ Max Fuel Thickness 59 PX -0.03810 60 PX 0.08001 \$ Minimum Clad Thickness 61 PX -0.08001 62 P -1.732051 1. 0. -0.40132 \$ Water Gap 0.20066 translated 63 P -1.732051 1. 0. 0.40132 64 Assembly Dimensions С PLATE DIMENSIONS FIRST С P -0.57735 1. 0. -2.931473 \$ Slot gap P -0.57735 1. 0. 2.931473 70 71 72 PY 2.85115 \$ Top of Array PY -2.85115 \$ Bottom of Array 73 PY 3.01625 \$ Top of Assembly 74 PY -3.01625 \$ Bottom of Assembly 75 PLATE ARRAY DIMENSIONS С P -1.732051 1. 0. 5.88518 \$ right Side of Plate Array 76 P -1.732051 1. 0. -5.88518 \$ left Side of Plate Array P -1.732051 1. 0. 6.1087 \$ right Side of Assembly 77 78 P -1.732051 1. 0. -6.1087 \$ left Side of Assembly 79 P -1.732051 1. 0. 6.6250 \$ right Inside of steel divider plate 80 81 P -1.732051 1. 0. -6.6250 \$ left Inside of steel divider plate С Assembly Array С \$ Right side of vertical bar between groups of two assemblies 95 PX .452 PX -.452 \$ Left side of vertical bar 96 С 100 P -1.732051 1. 0. 6.871 \$ right Side of Assembly Array 101 P -1.732051 1. 0. -6.871 \$ left Side of Assembly Array 102 PY 3.278 \$ Top of Assembly Array (INCLUDING WATER LAYER) 103 PY -3.278 \$ Bottom of Assembly Array С \$ Right side of vertical bar to left of Lower Middle Assembly array 104 PX -16.634 \$ Left Side of vertical bar 105 PX -17.600 С 106 PX 19.605 \$ right Side steel of middle assembly layer 107 PX -19.605 \$ left Side steel 108 P -1.732051 1. 0. 5.00 \$ right Side of steel filler block 109 P -1.732051 1. 0. -5.00 \$ left Side of steel filler block С 111 PY -4.13 \$ Lower Boundary of steel plate below central row of four assemblies 112 PY -4.384 \$ Lower Boundary of boron stainless (thickness= 0.100 inches or 2.54 mm) 113 PX -12.19 \$ LEFT corner of boron stainless plate 18.904 \$ RIGHT corner of boron stainless plate (yes, it is offset) 114 PX -10.940 \$ Bottom of lower middle layer of four fuel assemblies 115 PY -11.665 \$ Bottom of steel below middle layer of four fuel assemblies 116 PY С 120 PY 4.13 \$ Upper Boundary of steel plate below central row of four assemblies С 4.384 \$ Boundary of boron stainless (thickness= 0.100 inches or 2.54 mm) 122 PY -18.19 \$ LEFT corner of boron stainless plate 123 PX 124 PX 12,980 \$ RIGHT corner of boron stainless plate (yes, it is offset) 10.940 \$ Top of upper middle layer of four fuel assemblies 125 PY 126 PY 11.665 \$ Top of steel above upper middle layer of four fuel assemblies \$ Left side of vertical bar to right of Upper Middle Assembly array 130 PX 16.634 131 PX 17.600 \$ Right Side of vertical bar

Jul 31 14:40 1997 File Name: mitoz3 BBA000000-01717-0200-00052 REV 01 ATTACHMENT VI - Page 5

С The following surfaces are related to the top and bottom rows of two each С 140 PY 11.919 \$ Top of stainless/boron layer 141 PX 4.45 \$ Left corner of ss/b for right side \$ Right corner of ss/b for right side 142 PX 11.4 143 PX -4.45 144 PX -11.4 \$ Left corner of ss/b for right side \$ Right corner of ss/b for right side 145 P -1.732051 1. 0. 17.345 \$ Left Side Central Bar - inner edge 146 P -1.732051 1. 0. 18.940 \$ Left Side Central Bar - outer edge 147 PY 18.275 \$ Bottom Edge of Horizontal Steel for upper row of two assemblies \$ Upper Edge of Horizontal Steel for upper row of assemblies 148 PY 19.275 149 P 1.732051 1. 0. 17.345 \$ Right Side Central Bar - inner edge 150 P 1.732051 1. 0. 18.940 \$ Right Side Central Bar- outer edge С

 151
 P
 -1.732051
 1.
 0.
 32.222
 \$ Left Side Steel - inner edge

 152
 P
 -1.732051
 1.
 0.
 33.707
 \$ Left Side Steel - outer edge

 153
 P
 1.732051
 1.
 0.
 32.222
 \$ Right Side Steel - inner edge

 154
 P
 1.732051
 1.
 0.
 33.707
 \$ Right Side Steel - outer edge

 С С The following surfaces are related to the top and bottom rows of two each С 170 PY -11.919 \$ Top of stainless/boron layer **\$** Left corner of ss/b for right side 171 PX 4.45 172 PX 11.4 173 PX -4.45 **\$** Right corner of ss/b for right side **\$** Left corner of ss/b for right side \$ Right corner of ss/b for right side 174 PX -11.4 175 P 1.732051 1. 0. -17.345 \$ Left Side Central Bar - inner edge 176 P 1.732051 1. 0. -18.940 \$ Left Side Central Bar - outer edge 177 PY -18.275 \$ Bottom Edge of Horizontal Steel for upper row of two assemblies 178 PY -19.275 \$ Upper Edge of Horizontal Steel for upper row of assemblies 179 P -1.732051 1. 0. -17.345 \$ Right Side Central Bar - inner edge 180 P -1.732051 1. 0. -18.940 \$ Right Side Central Bar- outer edge C

 181
 P
 1.732051
 1.
 0.
 -32.222
 \$ Left Side Steel - inner edge

 182
 P
 1.732051
 1.
 0.
 -33.707
 \$ Left Side Steel - outer edge

 183
 P
 -1.732051
 1.
 0.
 -32.222
 \$ Right Side Steel - inner edge

 184
 P
 -1.732051
 1.
 0.
 -33.707
 \$ Right Side Steel - outer edge

 С C TOP AND BOTTOM ENDS OF A MIT FUEL ASBL AND THE BASKET SEGMENT С 200 PZ 32 \$ Boundary of water layer above fuel 210 PZ -32 \$ Boundary of water layer below fuel 220 PZ 33. \$ Reflected Halfway through SS316B2A plate 225 PZ 32.5 \$ Reflected Halfway through SS316B2A plate 230 PZ -33. \$ Reflected Halfway through SS316B2A plate 235 PZ -32.5 \$ Reflected Halfway through SS316B2A plate С 300 CZ 25. \$ DUMMY Inner Radius of Codisposal Tube Wall for universe nesting C PX 30. \$ DUMMY COORDINATES FOR AXIAL STACKING 320 321 PX -30. PY 30. 322 323 PY -30. MODE N KCODE 3500 1.0 20 120 SDEF RAD=D1 EXT=D2 ERG=D3 AXS 0 0 1 С SI1 0. 20.4 SI2 129. C С SP3 -3 С C MATERIAL SPECIFICATIONS С 1001.50C 6.6878-2 \$ WATER м1 8016.50C 3.3439-2 LWTR.01T MT1 4.9235-06 \$ Homogenized Fuel (INCLUDING Side Plates) 92234.50C M2 4.5839-04 92235.50C 92238.50C 2.6624-05 13027.50C 1.4650-02 7.5220-05 14000.50C

	24000.500 1.6929-05	
	12000.50C 1.4487-04	
	29000.50C 1.3852-05	
	1001.50C 4.9394-02	
	8016.50C 2.4697-02	
MT2	LWTR.01T	
С	DHLW Glass	
M3	3006.50C -1.080-1 3007.55C -1.332 5010.50C -6.234-1 \$ DHLW GLASS	
	5011.56C -2.509 8016.50C -4.4102+1 9019.50C -3.108-2	
	11023.50C -8.233 12000.50C -8.046-1 13027.50C -2.057	
	14000.50C -2.1967+1 16032.50C -1.263-1 19000.50C -2.916	
	20000.50C -6.458-1 22000.50C -5.823-1 25055.50C -1.520	
	26000.55C -7.211 28000.50C -7.170-1 15031.50C -1.372-2	
	24000.500 -8.055-2 29000.500 -1.489-1 47109.500 -4.906-2	
	56138.50C -8.083-2 82000.50C -5.948-2 17000.50C -1.131-1	
	90232.50C -1.811-1 62149.50C -4.411-4 92233.50C -9.727-9	
	92234 500 -3.261-4 92236 500 -1.036-3 93237 550 -7.509-4	
	92235.50C -1.734-2 92238.50C -3.674 94238.50C -5.153-3	
	94239.556 -1.234-2 94240.506 -2.265-3 94241.506 -9.631-4	
	94242.50C -1.906-4 95241.50C -1.908-4 95242.50C -8.847-8	
	95243.50C -1.725-6 96245.35C -2.325-9	
С	INCOLOY ALLOY 825	
M4	6000.50C -0.05 13027.50C -0.20 14000.50C -0.50	
	16032.50C -0.03 22000.50C -0.90 24000.50C -21.50	
	25055.50C -1.00 26000.55C -28.57 28000.50C -42.00	
	29000.50C -2.25 42000.50C -3.00	
С	SS304L D=7.9 G/CC	
M5	6000.50C -0.030 7014.50C -0.100 14000.50C -0.75	
	15031.50C -0.045 16032.50C -0.030 24000.50C -19.000	
	25055.50C -2.000 26000.55C -68.045 28000.50C -10.000	
M6	6000.50C06 7014.50C3 14000.50C75 \$ XM-19 SS	
	15031.50C04 16032.50C03 24000.50C -22	
	25055.50C -5. 26000.55C -57.07 28000.50C -12.5	
	42000.50C -2.25	
С	A 516 CARBON STEEL	
M7	6000.50C -0.22 25055.50C -0.90 14000.50C -0.275 \$ A516	
	16032.50C -0.035 15031.50C -0.035 26000.55C -98.535 \$ 7.832 g/cc	
M8	5010.50C 5.5313-4 5011.56C 3.0557-3 \$ Borated Stainless SS316B3A@75%B-1	0
	6000.50C 1.1778-4 7014.50C 3.3676-4 14000.50C 1.2592-3	
	15031.50C 6.8511-5 16032.50C 4.4248-5 24000.50C 1.7232-2	
	25055.50C 1.7167-3 26000.55C 5.1655-2 28000.50C 1.0843-2	
	42000.50C 1.2388-3	
M9	6000.50C 1.1883-4 7014.50C 3.3977-4 14000.50C 1.2705-3 \$ 316L SS	
	15031.50C 6.9123-5 16032.50C 4.4643-5 24000.50C 1.5556-2	
	25055.50C 1.7321-3 26000.55C 5.5840-2 28000.50C 9.7247-3	
	42000.50C 1.2398-3	
C -		
С		

PRINT

.

,

Jul 31 14:47 1997 File Name: orroz3f BBA000000-01717-0200-00052 REV 01 ATTACHMENT VII - Page 1 orroz3 - HOMO ORR CELL inc. WATER LAYER, SS/B Dividers, 1.5 cm XM-19, Detailed DHLW Canisters Dropped to Bottom С DHLW CANISTER С 3 -2.85 -1 -3 4 IMP:N=1 U=1 \$ DHLW GLASS 5 -7.9 1 -3 4 IMP:N=1 U=1 \$ SS304L CANIST 1 1 -3 4 IMP:N=1 U=1 \$ SS304L CANISTER WALL 3 IMP:N=1 U=1 \$ SS304L CANISTER TOP 2 5 -7.9 3 -4 IMP:N=1 U=1 \$ SS304L CANISTER TOP 5 -7.9 4 GLASS LOGS С 1 1.0032-1 -2 -5 6 FILL=1 TRCL=(-8. 47.7 0) IMP:N=1 \$ DHLW GLASS 11 12 LIKE 11 BUT TRCL=(55.2 9. 0) LIKE 11 BUT TRCL=(30.5 -46.9 0) 13 LIKE 11 BUT TRCL=(-30.5 -46.9 0) 14 LIKE 11 BUT TRCL=(-55.2 9. 0) 15 С HOMOGENIZED CELL SPECIFICATIONS С C 2 8.618-2 -141 142 -143 144 190 -191 IMP:N=1 U=3 \$ HOMOG. FUEL 1 1.0032-1 -141 142 -143 144 -190 192 IMP:N=1 U=3 \$ Water Below FUEL 100 101 1.0032-1 -141 142 -143 144 -190 172 IMP:N=1 U=3 \$ Water Below FUEL 102 1 С 9 -7.9497 (141:-142:143:-144) 192 -193 IMP:N=1 U=3 \$ STEEL Basket 103 С 8 8.8111-2 -192 IMP:N=1 U=3 \$ STEEL/BORON BOTTOM 8 8.8111-2 193 IMP:N=1 U=3 \$ STEEL/BORON TOP 104 105 С 1.0032-1 -141 142 -143 144 192 -193 IMP:N≈1 U=2 \$ WATER 110 1 -7.9497 (141:-142:143:-144) 192 -193 IMP:N=1 U=2 \$ More Water 9 111 С 8 8.8111-2 -192 IMP:N=1 U=2 \$ STEEL/BORON BOTTOM 8 8.8111-2 193 IMP:N=1 U=2 \$ STEEL/BORON TOP 112 113 С С С 0 -151 +152 -153 +154 194 -195 IMP:N=1 LAT=1 150 TRCL=(-1.80 0.295 35.4489) U=14 FILL -3:3 -2:2 -2:3 2222222 22222222 22222222 22222222 2222222 2222222 2233322 2233332 . • 2233322 2222222 2222222 2233322 2 2 3 3 3 3 2 2233322 2222222 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2233332 2233322 2222222 22222222 2233322 2 2 3 3 3 3 2 2233322 2222222 2222222 2222222 2222222 22222222 22222222 C С С 300 0 -36 -24 25 U=4 FILL=14 IMP:N=1 \$ FUEL ASSEMBLIES & BASKET

С 36 -24 25 U=4 IMP:N=1 \$ Steel Codisposal Tube Wall 301 6 -7.88 24 U=4 IMP:N=1 \$ Steel Codisposal Tube Wall 6 -7.88 302 -25 U=4 IMP:N=1 \$ Steel Codisposal Tube Wall 303 6 -7.88 305 -37 -26 27 FILL=4 TRCL=(0 -4.2 0) IMP:N=1 \$ Codisposal Canister 0 INSIDE CONTAINER С 1.0032-1 -10 -14 15 #11 #12 #13 #14 #15 #305 IMP:N=1 360 1 WP С -8.4425 10 -11 -14 15 IMP:N=1 \$ INNER BARRIER SIDE 361 4 -11 14 -16 IMP:N=1 \$ INNER BARRIER TOP -11 -15 17 IMP:N=1 \$ INNER BARRIER BOTTOM 11 -12 -16 17 IMP:N=1 \$ OUTER BARRIER SIDE -8.4425 -11 14 -16 IMP:N=1 362 4 -8.4425 363 4 364 7 -7.832 -7.832 -12 16 -18 IMP:N=1 \$ OUTER BARRIER TOP -7.832 -12 -17 19 IMP:N=1 \$ OUTER BARRIER BOTTOM 365 7 -7.832 366 7 1.0032-1 12 -13 -18 19 IMP:N=1 \$ REFLECTOR SIDE 1.0032-1 -13 18 -20 IMP:N=1 \$ REFLECTOR TOP 367 1 368 1 1 1.0032-1 -13 -19 21 IMP:N=1 \$ REFLECTOR BOTTOM 369 OUTSIDE WORLD С 381 0 13:20:-21 IMP:N=0 С SURFACE SPECIFICATIONS CZ 29.528 1 CZ 30.48 2 PZ 137.13 3 PZ -137.13 4 PZ 138.7175 PZ -138.7175 5 6 CELL FILL CARDS C 7 CZ 31 8 PZ 140 PZ -140 9 \$ IR of WP 10 CZ 86.5 CZ 88.5 CZ 98.5 **\$** OUTSIDE OF WASTE INNER BARRIER WALL 11 \$ OUTSIDE OF WASTE OUTER BARRIER WALL 12 CZ 113.5 **\$** AIR REFLECTOR OUTSIDE CONTAINER 13 PZ 152 **\$** INNER HEIGHT OF CONTAINER 14 15 PZ -152 PZ 154.5 \$ TOP OF INNER BARRIER LID 16 PZ -154.5 17 PZ 165.5 \$ TOP OF OUTER BARRIER LID 18 PZ -165.5 19 PZ 180.5 \$ TOP OF AIR REFLECTOR 20 21 PZ -180.5 С PZ 143.297 \$ TOP OF STACK OF FOUR ASSEMBLIES 24 PZ -143.795 \$ TOP OF STACK OF FOUR ASSEMBLIES 25 PZ 144.8 \$ TOP OF CANISTER LID 26 27 PZ -145.3 \$ BOTTOM OF CANISTER LID С CZ 20.465 \$ Inner Radius of Codisposal Tube Wall CZ 21.965 \$ Outer Radius of Codisposal Tube Wall 36 37 С С ASSEMBLY OUTER DIMENSIONS С PX 3.805 \$ RIGHT COMB PLATE OD (2.996" from Appendix A) 131 \$ LEFT COMB PLATE OD 132 PX -3.805 \$ TOP OF COMB PLATE (center -0.422 cm) (3.29") 133 ΡY 3.756 PY -4.600 \$ BOTTOM OF COMB PLATE (center +0.422 cm) 134 С C WATER GAP SURROUNDING FUEL ELEMENT PX 4.059 \$ RIGHT WATER LAYER (2.996"+0.200" outer boundary) 141 \$ LEFT WATER LAYER (0.100" on a side) PX -4.059 142 4.137 \$ TOP WATER LAYER (center -0.422 cm-.127) (3.29"+0.200") 143 PY PY -4.727 \$ BOTTOM WATER LAYER (center +0.422 cm -.127) 144 С C \$ RIGHT STEEL ID (STEEL IS 5 mm TOTAL THICKNESS) 4.309 151 PX PX -4.309 \$ LEFT STEEL ID (SO ADD 2.5 mm TO OUTER EDGES) 152 4.387 \$ TOP OF STEEL ID 153 PY PY -4.977 \$ BOTTOM OF STEEL 154

Jul 31 14:47 1997 File Name: orroz3f BBA000000-01717-0200-00052 REV 01 ATTACHMENT VII - Page 2

С Core Boundaries С C 190 PZ -34.449 \$ BOTTOM OF FUEL ELEMENT PZ 34.449 \$ TOP OF FUEL ELEMENT PZ -35.449 \$ Water Below Fuel 191 192 PZ 35.449 \$ Water Above Fuel 193 PZ -35.949 \$ Water Below Fuel PZ 35.949 \$ Water Above Fuel 104 195 С MODE N KCODE 3500 1.0 20 120 SDEF RAD=D1 EXT=D2 ERG=D3 AXS 0 0 1 С SI1 0. 20.4 SI2 129. SP3 -3 С С С С MATERIAL SPECIFICATIONS С M1 1001.50C 6.6878-2 \$ WATER 8016.50C 3.3439-2 MT1 LWTR.01T 20. w/o URANIUM ALUMINUM ALLOY Homogenized C 2.028E-04 92235.50C M2 92238.500 7.736E-04 13027.50C 1.864E-02 6.509E-04 14000.50C 1001.50C 4.394E-02 2.197E-02 8016.50C LWTR.01T MT2 DHLW Glass C 3006.50C -1.080-1 3007.55C -1.332 5010.50C -6.234-1 4 5011.56C -2.509 8016.50C -4.4102+1 9019.50C -3.108-2 11023.50C -8.233 12000.50C -8.046-1 13027.50C -2.057 5010.50C -6.234-1 \$ DHLW GLASS MЗ 14000.50C -2.1967+1 16032.50C -1.263-1 19000.50C -2.916 20000.50C -6.458-1 22000.50C -5.823-1 25055.50C -1.520 26000.55C -7.211 28000.50C -7.170-1 15031.50C -1.372-2 24000.50C -8.055-2 29000.50C -1.489-1 47109.50C -4.906-2

 24000.30C
 -8.033-2
 29000.30C
 -1.439-1
 47109.30C
 -4.905-2

 56138.50C
 -8.083-2
 82000.50C
 -5.948-2
 17000.50C
 -1.131-1

 90232.50C
 -1.811-1
 62149.50C
 -4.411-4
 92233.50C
 -9.727-9

 92234.50C
 -3.261-4
 92236.50C
 -1.036-3
 93237.55C
 -7.509-4

 92235.50C
 -1.734-2
 92238.50C
 -3.674
 94238.50C
 -5.153-3

 94239.55C -1.234-2 94240.50C -2.265-3 94241.50C -9.631-4 94242.50C -1.906-4 95241.50C -1.908-4 95242.50C -8.847-8 95243.50C -1.725-6 96245.35C -2.325-9 INCOLOY ALLOY 825 С 6000.50C -0.05 13027.50C -0.20 14000.50C -0.50 16032.50C -0.03 22000.50C -0.90 24000.50C -21.50 25055.50C -1.00 26000.55C -28.57 28000.50C -42.00 29000.50C -2.25 42000.50C -3.00 MA SS304L D=7.9 G/CC С 6000.50C -0.030 7014.50C -0.100 14000.50C -0.75 15031.50C -0.045 16032.50C -0.030 24000.50C -19.000 M5 25055.50C -2.000 26000.55C -68.045 28000.50C -10.000 6000.50C -.06 7014.50C -.3 14000.50C -.75 \$ XM-19 SS 15031.50C -.04 16032.50C -.03 24000.50C -22 M6 25055.50C -5. 26000.55C -57.07 28000.50C -12.5 42000.50C -2.25 A 516 CARBON STEEL £ 6000.50C -0.22 25055.50C -0.90 14000.50C -0.275 \$ A516 16032.50C -0.035 15031.50C -0.035 26000.55C -98.535 \$ 7.832 g/cc M7 5010.50C 5.5313-4 5011.56C 3.0557-3 \$ Borated Stainless SS316B3A@75%B-10 MR 6000.50c 1.1778-4 7014.50c 3.3676-4 14000.50c 1.2592-3 15031.50c 6.8511-5 16032.50c 4.4248-5 24000.50c 1.7232-2 25055.50c 1.7167-3 26000.55c 5.1655-2 28000.50c 1.0843-2 42000.50c 1.2388-3 6000.50C 1.1883-4 7014.50C 3.3977-4 14000.50C 1.2705-3 \$ 316L ss 15031.50C 6.9123-5 16032.50C 4.4643-5 24000.50C 1.5556-2 25055.50C 1.7321-3 26000.55C 5.5840-2 28000.50C 9.7247-3 M9 42000.50c 1.2398-3

C C Print

-

.

Aug 11 14:50 1997 File Name: mitburn.inputsum BBA000000-01717-0200-00052 REV 01 ATTACHMENT VIII - Page 1

```
=sas2h parm='skipshipdata'
MII 36.8 g U235/Plate, UAlx Fuel 8100 MWD/MTU, 5 Year Decay
238group latticecell
' mixtures of fuel-plate-unit-cell:
arbmualx 2.188 4 0 1 0 92235 0.935 92234 0.01 92238 0.055
 13027 3.9509 1 1 500 end
arbmal 2.64 1 0 0 0 13027 100. 2 1 500 end
h2o
            3 den=1. 1 400 end
end comp
1 -
                     ,
/ fuel-plate-cell geometry:
symmslabcell 0.40132 0.0762 1 3 0.16002 2 end
                       - - - - - - - - - - - -
                                                             .
/ assembly and cycle parameters:
' volume normalized to provide 8100 MWD/MTU
ncycles=4 nlib/cyc=4 npin/assm=1 fuelngth=57.785
printlevel=6 lightel=0 volfueltot=6.64E+5 end
power=9.68 burn=209.2 down=554.4 end
power=9.68 burn=209.2 down=554.4 end
power=9.68 burn=209.2 down=554.4 end
power=9.68 burn=209.2 down=1826.25 end
end
1
                               gamma source spectrum for gamma lines (sas2)
0
                                                          1826.25 day time of the requested nuclides
0
                                      energy interval in mev
                                                                          photons / second mev / second
0
```

00000

1

1.0000E-02 to	5.0000E-02	5.6907E+14	1.7072E+13
5.0000E-02 to	1.0000E-01	1.6948E+14	1.2711E+13
1.0000E-01 to	2.0000E-01	1.2203E+14	1.8304E+13
2.0000E-01 to	3.0000E-01	3.5823E+13	8.9557E+12
3.0000E-01 to	4.0000E-01	2.6161E+13	9.1564E+12
4.0000E-01 to	6.0000E-01	2.6078E+13	1.3039E+13
5.0000E-01 to	8.0000E-01	6.9410E+14	4.8587E+14
3.0000E-01 to	1.0000E+00	4.2129F+12	3.7916E+12
1.0000E+00 to	1.3300E+00	2.7098E+12	3.1570F+12
1.3300E+00 to	1.6600E+00	8.6390E+11	1 2915F+12
1.6600E+00 to	2.0000F+00	1.4871F+11	2.7214F+11
0000E+00 to	2 5000E+00	7 5465F+11	1 6980E+12
5000E+00 to	3 0000E+00	4 4580F+09	1 22506+10
0000E+00 to	4 0000E+00	4 8433E+08	1 60526+00
0000E+00 to	5 0000E+00	1 6027E+02	7 61716+02
0000E+00 to	6 5000E+00	5 54535+01	3 20015+02
5000E+00 to	8 00005+00	8 74135+00	4 7520E+01
0000E+00 to	1 000000000	1 5//75.00	1 70205-01
	1.00000000	1.340/2+00	1.39202701
totals		1.05146+15	5./333E+14
otal energy from	nuclides with	spectrum data =	5 75336+14
total energy from	nuclides with	no spectrum data -	1 07/45+08
ivial cheryy from	I HULLIUES WITH		1.76406700

total (alpha-n plus spon. fission) neutron source spectrum as a function of time

page 176

Aug 11 14:50 1997 File Name: mitburn.inputsum BBA000000-01717-0200-00052 REV 01 ATTACHMENT VIII - Page 2

(using reaction spectra for uranium dioxide)

mit 36.8 g u235/plate, ualx fuel 8100 mwd/mtu, 5 year decay neutron spectra, neutrons/sec/basis basis = single reactor assembly

:

.

	boundaries, mev	initial	304.4 d	608.8 d	913.1 d	1217.5 d	1521.9 d	1826.3 d
1 6	5.43E+00 - 2.00E+01	1.903E+01	1.899F+01	1.898E+01	1.898F+01	1 898E+01	1 898F+01	1 898F+01
2 3	3.00E+00 - 6.43E+00	6.871E+03	6.704E+03	6.657E+03	6.644F+03	6.640F+03	6.639E+03	6.639E+03
3 7	1.85E+00 - 3.00E+00	1.837E+04	1.842E+04	1.844E+04	1.844E+04	1.844F+04	1.844F+04	1.844F+04
- 4 [*]	1.40E+00 - 1.85E+00	4.940E+03	4.998E+03	5.015E+03	5.019E+03	5.021E+03	5.021E+03	5.021E+03
5 9	9.00E-01 - 1.40E+00	2.870E+03	2.912E+03	2.924E+03	2.927E+03	2.928E+03	2.928E+03	2.928E+03
64	4.00E-01 - 9.00E-01	9.767E+02	9.905E+02	9.944E+02	9.955E+02	9.958E+02	9.959E+02	9.959E+02
7 '	1.00E-01 - 4.00E-01	1.609E+02	1.629E+02	1.635E+02	1.637E+02	1.637E+02	1.637E+02	1.637E+02
8 '	1.70E-02 - 1.00E-01	.000E+00						
. 9	3.00E-03 - 1.70E-02	.000E+00						
10	5.50E-04 - 3.00E-03	.000E+00						
11	1.00E-04 - 5.50E-04	.000E+00						
12	5.00E-05 - 1.00E-04	.000E+00						
15	1.00E-05 - 3.00E-05	.000E+00						
14	S.USE-06 - 1.00E-05	.000E+00						
15	1.(/E-U0 - 3.U5E-U6	.000E+00						
10	1.3UE-U6 - 1.77E-U6	.000E+00						
10	1.13E-00 - 1.30E-00	.0002+00	000E+00	000E+00	.000E+00	.000E+00	.000E+00	.000E+00
10	1.00E-00 - 1.15E-00	.UUUE+UU	.000E+00	.000E+00	.000E+00	.000E+00	.000E+00	.000E+00
19 0	0.000 - 07 - 0.000 - 07	.000E+00	.UUUE+UU	.UUUE+UU	.000E+00	.000E+00	.000E+00	.000E+00
20 4	4.00E-07 - 0.00E-07	.000E+00	.0002+00	.000E+00	.000E+00	000E+00	.000E+00	.000E+00
52	2 255-07 - 4.00E-07	.000E+00	.000E+00	.0002+00	.UUUE+UU	.000E+00	.UUUE+UU	.000E+00
22	1 000 - 07 - 2 250 - 07	.0002+00	.00000000	00000000	.00000000	.000E+00	.000E+00	.0002+00
24	5 00E-08 - 1 00E-07	000000000	00000000	00000000	.00000000	00000000	.00000000	.000E+00
25 3	3.00F-08 - 5.00F-08	.000E+00	.000E+00	0005+00	0005+00	000000000	00000000	0006+00
26 7	1.00E-08 - 3.00E-08	.000F+00	.000F+00	000F+00	0005+00	0005+00	000000000	0005+00
27 '	1.00E-11 - 1.00E-08	.000F+00	.000F+00	000F+00	0005+00	0005+00	0005+00	00000000
0		3.421E+04	3.421E+04	3.421E+04	3.421E+04	3.421E+04	3.421E+04	3.421E+04
1								

0

.

Aug 11 15:30 1997 File Name: decaymit.inputsum BBA000000-01717-0200-00052 REV 01 ATTACHMENT IX - Page 1

=origens 0\$\$ a8 26 a11 71 e 1\$\$ 1 1t MIT 36.8 g U235/Plate, UAlx Fuel 8100 MWD/MTU 3\$\$ 21 0 1 e 21 35\$\$ 0 t 56\$\$ 0 10 a13 -1 5 3 0 4 e 5t Part B MIT 36.8 g U235/Plate, UAlx Fuel 8100 MWD/MTU per MTU (for per assembly divide by 1818.18) 60** .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 65\$\$ a12 1 a33 1 a54 1 e 6t 56\$\$ 0 10 a10 10 a14 5 a17 4 e 57** 1. e 5t 60** 2 3 4 5 6 7 8 9 10 20 65\$\$ a12 1 a33 1 a54 1 e 56\$\$ 0 10 a10 10 a14 5 a17 4 e 57** 20 e 5t 60** 30 40 50 60 70 80 90 100 200 300 65\$\$ a12 1 a33 1 a54 1 e 6t 56\$\$ 0 10 a10 10 a14 5 a17 4 e 57** 300 e 5t 60** 400 500 600 700 800 900 1+3 2+3 5+3 1+4 65\$\$ a12 1 a33 1 a54 1 e 6t 56**\$\$** f0 t end Part B MIT 36.8 g U235/Plate, UAlx Fuel 8100 MWD/MTU light elements 15 page Ω element thermal power, watts basis =per MTU (for per assembly divide by 1818 charge discharge .2 yr .4 yr .6 yr .8 yr 1.0 yr 2.69E-07 2.69E-07 2.66E-07 2.63E-07 2.60E-07 2.57E-07 2.55E-07 1.17E+01 1.17E+01 7.28E-20 6.90E-20 6.54E-20 6.20E-20 5.88E-20 h na 2.23E+01 2.23E+01 .00E+00 .00E+00 .00E+00 mg .00E+00 .00E+00

 1.62E+03
 1.62E+03
 .00E+00
 .00E+00
 .00E+00
 .00E+00
 .00E+00

 1.43E-15
 1.43E-15
 5.50E-28
 5.50E-28
 5.49E-28
 5.49E-28
 5.49E-28

 1.81E-21
 1.81E-21
 5.20E-23
 1.50E-24
 4.83E-26
 6.77E-27
 5.58E-27

 1.65E+03
 1.65E+03
 2.66E-07
 2.63E-07
 2.60E-07
 2.57E-07
 2.55E-07

 al si P totals Part B MIT 36.8 g U235/Plate, UAlx Fuel 8100 MWD/MTU actinides page 19 element thermal power, watts basis =per MTU (for per assembly divide by 1818 charge discharge .2 yr .4 yr .6 yr .8 yr 1.0 yr 1.73E-06 1.73E-06 1.88E-06 2.02E-06 2.15E-06 2.27E-06 2.39E-06 4.79E-07 4.79E-07 5.18E-07 5.55E-07 5.91E-07 6.24E-07 6.55E-07 ٥ tl pb 4.52E-06 4.89E-06 5.23E-06 5.56E-06 5.87E-06 6.17E-06 1.64E-05 1.79E-05 1.92E-05 2.04E-05 2.16E-05 2.26E-05 bi 4.52E-06 1.64E-05 ро 8.81E-11 8.81E-11 8.40E-11 8.78E-11 8.83E-06 8.83E-06 9.57E-06 1.03E-05 9.24E-11 9.70E-11 1.02E-10 at 1.09E-05 1.15E-05 1.21E-05 гn 7.92E-06 7.92E-06 8.59E-06 9.22E-06 9.80E-06 1.36E-09 1.43E-09 fr 1.04E-05 1.09E-05 га 7.92E-06 8.59E-06 9.22E-06 9.80E-08 1.48E-08 1.56E-08 1.65E-08 1.74E-08 3.02E-03 2.31E-03 2.31E-03 2.31E-03 2.99E-04 1.03E-04 1.03E-04 1.04E-04 8.90E+01 1.84E+00 1.83E+00 1.83E+00 7.86E+01 1.53E-05 1.53E-05 1.53E-05 6.42E-02 6.45E-02 6.45E-02 6.45E-02 9.99E-06 1.01E-05 1.13E-05 1.26E-05 4.52E-02 6.45E-02 6.45E-02 1.84E-08 1.93E-08 2.32E-03 2.32E-03 1.48E-08 ac 3.02E-03 th 1.04E-04 1.04E-04 pa 2.99E-04 1.83E+00 1.83E+00 U. 8.90E+01 np 7.86E+01 1.53E-05 1.53E-05 6.45E-02 6.45E-02 6.42E-02 pu 9.99E-06 1.38E-05 1.50E-05 am 1.53E-05 1.13E-05 8.30E-06 6.09E-06 4.47E-06 3.28E-06 1.53E-05 сm 7.37E-32 7.37E-32 4.08E-32 3.49E-32 2.98E-32 2.54E-32 2.18E-32 bk 5,95E-33 5,95E-33 9.47E-33 1.19E-32 1.45E-32 1.62E-32 1.80E-32 cf

. . .

	·	totala	1 495+03	1 405+00	1 005.00	1 005.00	1.005.00	1 005.00			
	0	totats	1.000+02	element	thermal r	OWER. Watt	1.90E+00	1.90E+00	1.902+00		
				basis =	per MTU (f	or per ass	embly divi	de by 1818			
			charge	discharge	2 yr	<u>4 уг</u>	<u>6 yr</u>	<u>.8 yr</u>	1.0 yr		
		h	3.26E-03 9.04E-10	3.26E-03	3.23E-03	3.19E-03	3.15E-03	3.12E-03	3.08E-03		
		De	8 835-10	8 835.00	8 835-00	8.90E-10 9.935-00	8.96E-10 9.975-00	8.96E-10 9.975.00	8.96E-10		
		nĭ	9.68E-02	9.68E-02	2.18E-17	4.72E-27	_00F+00	.00F+00	00F+00		
		cu	1.68E+00	1.68E+00	6.07E-16	7.23E-25	1.89E-33	.00E+00	.00E+00		
		zn	2.42E+01	2.42E+01	1.53E-14	6.84E-26	.00E+00	.00E+00	.00E+00		,
		ga	2.19E+02	2.19E+02	2.77E-13	1.23E-24	.00E+00	.00E+00	.00E+00		
		ge	7.91E+02 3 56E+03	7.912+02 3 56F+03	2 775-14	2.21E-19 7 10E-28	2.046-21	3.15E-23	3.76E-25		
		se	8.20E+03	8.20E+03	5.59E-06	5.59E-06	5.59F-06	5.59E-06	5.59E-06		
		br	2.44E+04	2.44E+04	1.42E-16	1.60E-31	.00E+00	.00E+00	.00E+00		
		kr	3.21E+04	3.21E+04	3.95E+00	3.90E+00	3.85E+00	3.80E+00	3.75E+00		
		ГЪ	6.26E+U4	6.26E+04	7.72E-04	5.10E-05	3.37E-06	2.26E-07	1.81E-08		
		v	6.69F+04	6 69E+04	3.10E+U2 8.32E+02	2.09E+02 4 31E+02	9.52E+U1 2 62E+02	5.33E+01 1 00E+02	3./9E+01 1 60E+02		
		zŕ	2.89E+04	2.89E+04	1.11E+03	5.04E+02	2.28E+02	1.04E+02	4.70E+01		
		nb	5.17E+04	5.17E+04	1.61E+03	8.87E+02	4.39E+02	2.08E+02	9.63E+01		
		mo	1.44E+04	1.44E+04	2.02E-05	2.01E-13	1.99E-21	1.97E-29	.00E+00		
		tc	1.53E+04	1.55E+04	1.97E-03	1.96E-03	1.96E-03	1.96E-03	1.96E-03		
		rh	6.26E+02	6 26F+02	1 345+02	1 08F+02	0 106+01	7.22E+UU 7.05E+01	1./3E+UU 6 07E+01		
		pd	7.62E+01	7.62E+01	1.58E-07	1.58E-07	1.58E-07	1.58E-07	1.58E-07		
		ag	1.66E+02	1.66E+02	6.82E-03	2.14E-03	1.74E-03	1.42E-03	1.16E-03		
		çd	1.48E+02	1.48E+02	4.69E-02	1.66E-02	6.87E-03	3.72E-03	2.69E-03		
		10	1.24E+U3 6 36E+03	1.24E+U3	5.60E-06	1.92E-06	6.57E-07	2.26E-07	7.81E-08		
		sb	1.81F+04	1.81F+04	2.15F+00	2 04F+00	9.00E-U2 1 94E+00	0.00E-U2 1 84E+00	4.45E-02 1 75E+00		,
		te	2.25E+04	2.25E+04	1.21E+01	3.45E+00	1.28E+00	6.38E-01	3.94E-01		
		i	5.10E+04	5.10E+04	1.54E+00	2.83E-03	8.17E-06	2.98E-06	2.97E-06		
		xe	2.8/E+04	2.8/E+04	1.47E-01	1.57E-03	2.24E-05	3.18E-07	4.51E-09	•	
		ba	2.77F+04	2.77E+04	1 24F+02	2.99E+01 0 51E+01	2.902+01	2.94E+U1 0 37E+01	2.92E+01		
		la	4.60E+04	4.60E+04	1.92E+02	3.62E+00	6.83E-02	1.29E-03	2.43E-05		
		ce	1.07E+04	1.07E+04	2.66E+02	1.30E+02	8.95E+01	7.08E+01	5.84E+01		
		pŗ	1.36E+04	1.36E+04	1.35E+03	1.11E+03	9.31E+02	7.79E+02	6.52E+02		
		na	7 635+03	1.46E+U3	4.53E+00	4.50E-02	4.47E-04	4.44E-06	4.41E-08		
		SM	4.60E+01	4.60E+01	6.61F-02	6.605-02	6.59E-02	6 585-02	1.30E+U1 6 57E-02		
		eu	1.89E+01	1.89E+01	9.75E-01	5.37E-01	5.08E-01	4.95E-01	4.82E-01		
		gd	2.38E-01	2.38E-01	7.90E-06	6.40E-06	5.19E-06	4.21E-06	3.41E-06		
		tb	3.53E-02	3.53E-02	4.03E-04	1.97E-04	9.77E-05	4.85E-05	2.41E-05		
		bo	3.032-04	3.030-04	3.39E-12 0.04E-10	0 785.10	3.94t-25 0 78c-10	1.34E-31 0.79E-10	.UUE+UU		
		er	2.79E-07	2.79E-07	3.40F-11	1.56F-13	7.125-16	3 26F-18	1 495-20		
		tm	1.96E-07	1.96E-07	1.57E-09	1.46E-09	1.36E-09	1.26E-09	1.17E-09		
		totals	6.31E+05	6.31E+05	6.44E+03	3.60E+03	2.30E+03	1.64E+03	1.27E+03		
	0	Part B	MIT 36.8 g	U235/Plat	e, UAlx Fu	iel 8100 MW	ID/MTU				light elem
-	U			element basis =	tnermal p per MTU (f	ower, watt	S Ambly divi	do by 1919			
			initial	3.0 yr	5.0 vr	7.0 vr	9.0 vr	20.0 vr			
		h	2.55E-07	2.27E-07	2.03E-07	1.82E-07	1.62E-07	8.75E-08			
		na	5.88E-20	3.45E-20	2.03E-20	1.19E-20	6.98E-21	3.72E-22			
		S1	5.49E-28 5.58E-37	5.44E-28	5.4UE-28	5.35E-28	2.31E-28	5.08E-28			
		totals	2.55E-07	2.27E-07	2.03F-07	1.82F-07	1 625-07	3.132-2/ 8 75F-08			
		Part B	MIT 36.8 g	U235/Plat	e, UAlx Fu	el 8100 พพ	D/MTU	0.752 00			actin
			-		•						

light elements page 52

actinīdes

-

~

page 56

0

0

-

tl poi pot fr ach pu am cm bcf totals	initial 2.39E-06 6.55E-07 6.17E-06 2.26E-05 1.02E-10 1.21E-05 1.43E-09 1.09E-05 1.93E-08 2.32E-03 1.04E-04 1.83E+00 1.53E-05 6.45E-02 1.50E-05 3.28E-06 2.18E-32 1.80E-32 1.90E+00	element basis = 3.0 yrf 3.18E - 06 9.04E - 07 8.60E - 05 1.50E - 10 1.50E - 10 1.50E - 10 2.22E - 09 1.48E - 05 2.99E - 08 2.36E - 03 1.07E - 04 1.53E - 05 2.63E - 05 1.63E - 07 2.63E - 07 2.63E - 02 2.63E - 05 1.63E - 07 2.63E - 05 1.53E - 05 1.55E - 05 2.95E - 05 1.55E - 05 2.95E - 05E - 05 2.95E - 05E - 0	thermal p per MTU (f 5.0 yr 1.07E-06 1.07E-06 1.03E-05 3.49E-05 1.97E-10 1.92E-05 3.13E-09 1.71E-05 4.24E-08 2.39E-03 1.09E-04 1.83E+00 1.53E-05 2.32E-08 9.47E-34 2.72E-32 1.90E+00	ower, watt or per yass 7.0 yr 1.21E-06 1.21E-06 1.21E-05 3.78E-05 2.43E-10 2.11E-05 4.16E-09 1.88E-05 5.66E-08 2.43E-03 1.12E-04 1.83E+00 1.53E-05 6.45E-02 4.59E-05 1.69E-05 1.69E-03 1.35E-34 2.72E-32 1.90E+00	s embly divi 9.0 yrf 1.34E-06 1.34E-05 4.01E-05 2.89E-10 2.28E-05 5.31E-09 2.03E-05 7.25E-08 2.46E-03 1.14E-04 1.83E+00 1.53E-05 6.44E-02 5.43E-05 1.64E-08 2.72E-32 1.90E+00	de by 1818 20.0 yr 4.27E-06 2.18E-06 2.27E-05 5.31E-05 5.31E-05 1.34E-08 2.90E-05 1.85E-07 2.64E-03 1.29E-04 1.83E+00 1.53E-05 6.44E-02 8.78E-05 1.55E-08 2.00E+00 2.64E+32 1.90E+00	
Part B	MIT 36.8 g	U235/Plat	e, UAlx Fu	el 8100 MW	D/MTU		
		element	thermal p	ower, watt	s		
h e c e e krbr yrnb c u h dg din n b e i e s r x c b c yr c yr c yr c yr c yr c yr c yr	initial 3.08E-03 8.96E-10 8.83E-09 3.76E-25 5.59E-00 1.81E-08 3.79E+01 1.60E+02 4.70E+01 9.63E+01 1.96E-03 1.73E+00 3.92E+01 1.58E-07 1.16E-03 2.69E-03 7.81E-08 4.45E-02 1.75E+00 3.94E-01 2.97E-06 4.51E-09 2.92E+01 9.32E+01 9.32E+01 1.25E-0	element basis = 3.0 yr 2.76E - 03 8.96E - 10 8.82E - 09 .00E+00 3.42E - 09 2.76E + 00 3.42E - 09 2.76E + 00 1.32E + 01 1.32E + 02 1.96E - 03 1.10E + 01 1.77E + 01 1.53E - 07 1.53E - 04 2.01E - 03 2.16E - 12 1.17E - 03 1.05E + 00 2.97E - 06 1.32E - 19 2.73E + 01 8.00E + 01	thermal per MTU (f 2.46E-07 8.96E-10 8.96E-10 8.82E-09 2.66E-09 3.42E-09 2.63E+00 2.90E+00 3.42E-09 2.63E+00 1.25E-05 1.25E-05 1.26E-05 1.58E-07 2.81E-02 4.53E+00 1.58E-01 4.12E-03 3.00E-15 2.59E-04 4.12E-02 2.58E+01 4.12E-02 2.58E+01	ower, waitt or per yrass 7.0 yr 2.20E-03 8.96E-10 8.82E-09 .559E-06 2.55E+00 3.42E-09 2.55E+00 3.42E-09 2.55E+00 3.42E-09 2.55E+01 1.19E+02 4.13E-05 1.96E-03 1.16E+00 1.58E-07 2.98E-01 2.98E-01 2.99E-04 3.82E-01 2.97E-06 1.09E-31 2.45E+01	s embly divi 9.0 yr 1.97E-03 8.96E-10 8.82E-09 .00E+00 5.59E-06 2.24E+00 3.42E-09 2.38E+01 1.14E+02 4.13E-05 2.60E-03 1.84E-03 2.97E-01 1.58E-07 3.53E-07 3.53E-07 2.30E-15 2.23E-04 2.30E-01 1.49E-02 2.97E-06 .00E+00 2.33E+01 77EE+01	de by 1818 20.0 yr 1.06E-03 8.96E-10 8.81E-09 .00E+00 5.59E-06 1.10E+00 3.42E-09 1.82E+01 8.66E+01 4.13E-05 4.00E-05 1.96E-03 1.66E-04 1.58E-07 3.79E-09 8.72E-04 2.93E-15 2.06E-04 1.28-04 2.97E-06 .00E+00 1.80E+01 4.00E+01 1.40E-01	
ba la ce pr nd pm sm eu gd tb	9.32E+01 2.43E-05 5.84E+01 6.52E+02 4.41E-08 1.58E+01 6.57E-02 4.82E-01 3.41E-06 2.41E-05	3.27E-13 9.83E+00 1.10E+02 3.88E-12 9.30E+00 6.47E-02 3.70E-01 4.20E-07 2.19E-08	3.27E-13 1.66E+00 1.87E+01 3.93E-12 5.49E+00 6.37E-02 2.86E-01 5.16E-08 1.99E-11	8. 12E+01 3. 27E - 13 2. 81E - 01 3. 16E+00 3. 94E - 12 3. 23E+00 6. 27E - 02 2. 22E - 01 6. 34E - 09 1. 81E - 14	7.75E+01 3.27E-13 4.76E-02 5.34E-01 3.94E-12 1.91E+00 6.18E-02 1.73E-01 7.79E-10 1.64E-17	0.01E+01 3.27E-13 2.71E-06 3.04E-05 3.94E-12 1.04E-01 5.67E-02 4.83E-02 1.07E-14 4.06E-34	

fission products

.

.

page 74

	ho	9.78E-10 9.77E-10	9.76E-10 9.74E-10	9.73E-10	9.67E-10				
	er	1.49E-20 .00E+00	.00E+00 .00E+00	.00E+00	.00E+00				
	TM totale	1.1/E-U9 5./UE-10 1 1.27E+03 / 28E+02	2.//E-10 1.35E-10 2.975+02 2.415+02	6.54E-11	1.23E-12				
	Part	3 MIT 36.8 g U235/Plate	. UALX Fuel 8100 MW	D/MTU	1.045702		light elements	page	89
0		element	thermal power, watt	S			tight crements	page	0,
		basis =p	er MTU (for per ass	embly divi	de by 1818				
	h	8.75F-08 2 84F-08	9 23E-09 3 00E-09	0 74F-10	300.0 Yr 1 276-14				
	na	3.72E-22 1.81E-24	8.76E-27 4.25E-29	2.06E-31	.00E+00				
	si	5.08E-28 4.69E-28	4.32E-28 3.99E-28	3.68E-28	1.64E-28				
	totals	5.13E-27 4.74E-27 (8.75E-08 2.84E-08 (4.3/E-2/ 4.03E-2/ 9.335-00 3.005-00	3.72E-27	1.66E-27	•			
	Part	3 MIT 36.8 g U235/Plate	. UALX Fuel 8100 MW	9.74E-10	1.2/6-14		actinides	Dade	07
0		element	thermal power, watt	s			accinitacs	page	,,,
		basis =p	er MTU (for per ass	embly divi	de_by_1818		-		
	+1	1n1t1al 40.0 yr 4 275-04 5 435-04	60.0 Yr 80.0 yr 7 045-06 8 035-06	100.0 yr	300.0 yr 3 445-05				
	dq	2.18E-06 4.45E-06	7.46E-06 1.10E-05	1.50E-05	7.37E-05				
	bi	2.27E-05 4.74E-05	7.86E-05 1.14E-04	1.52E-04	6.27E-04				
	ро	5.31E-05 9.14E-05	1.46E-04 2.16E-04	2.98E-04	1.72E-03				
	at	3 30E-05 6 07E-09	0 71E-05 1 /0E-0/	2.43E-U9 1.875-04	7.32E-09 8.505-04				
	fr	1.34E-08 3.35E-08	5.78E-08 8.43E-08	1.12E-07	3.99E-07				
	га	2.90E-05 5.27E-05	8.39E-05 1.21E-04	1.61E-04	7.34E-04				
	ac +5	1.85E-07 4.68E-07 2	8.10E-07 1.18E-06	1.57E-06	5.63E-06				
	Da	1.29E-04 1.54F-04	1.80F-04 2.06F-04	4.02E-03	4 87F-04				
	- u	1.83E+00 1.83E+00	1.83E+00 1.83E+00	1.83E+00	1.83E+00				
	np	1.53E-05 1.53E-05	1.53E-05 1.53E-05	1.53E-05	1.53E-05				
	pu am	8.78F-05 1 15F-04	0.41E-02 0.40E-02 1 23E-04 1 23E-04	0.39E-02 1 21E-04	6.33E-02 8 88E-05	·		•	•
	cm	1.55E-08 1.40E-08	1.27E-08 1.15E-08	1.05E-08	3.91E-09				
	cf	2.64E-32 2.46E-32	2.38E-32 2.30E-32	2.22E-32	1.45E-32				
	totals Part	1.90E+00 1.90E+00 3 MIT 36 8 g H235/Plata	1.90E+00 1.90E+00	1.90E+00	1.91E+00		ficcion producto		4 4 4
0	rait	element	thermal power, watt	S			rission products	page	111
		basis =p	er MTU (for per ass	embly divi	de by 1818				
	ь.	initial 40.0 yr	60.0 YF 80.0 YF	100.0 yr	300.0 yr				
	he	8-96F-10 8 96F-10	8 96F-10 8 96F-10	8 96F-10	1.74E-10 8 96E-10				
	C C	8.81E-09 8.79E-09	8.76E-09 8.74E-09	8.72E-09	8.51E-09				
	se	5.59E-06 5.59E-06	5.59E-06 5.59E-06	5.59E-06	5.598-06				
	Kr rb	1.10E+00 3.01E-01 4 3.42E-00 3.42E-00	8.2/E-U2 2.2/E-U2 3.425-00 3.425-00	6.23E-03	1.51E-08				
	SL	1.82E+01 1.11E+01	6.78E+00 4.15E+00	2.53E+00	1.84E-02				
	У	8.66E+01 5.29E+01	3.23E+01 1.98E+01	1.21E+01	8.77E-02				
	Zr	4.13E-05 4.13E-05	4.13E-05 4.13E-05	4.13E-05	4.13E-05				
	tc	1.96E-03 1.96F-03	1.96F-03 1.96F-03	0.23E-05	0.51E-05 1 96E-03				
	ru	1.02E-06 1.24E-12	1.50E-18 1.81E-24	2.19E-30	.00E+00	-			
	rh	1.66E-04 6.12E-09	4.97E-11 4.17E-13	3.50E-15	.00E+00	•			
	pa	3 70F-00 3 30F-00	1.58E-07 1.58E-07 3 04E-09 2 73E-09	1.58E-U/ 2 /5E-00	1.58E-07 8 215-10				
	cd	8.72E-04 3.26E-04	1.22E-04 4.57E-05	1.71E-05	9.18E-10				
	in	2.93E-15 2.93E-15	2.93E-15 2.93E-15	2.93E-15	2.93E-15				
	SN sh	2.06E-04 1.80E-04	1.60E-04 1.44E-04	1.32E-04	9.34E-05				
	te	9.12E-04 5.68E-06	3.54E-08 2.20E-10	1.37F-12	3.65F-22				
	ī	2.97E-06 2.97E-06	2.97E-06 2.97E-06	2.97E-06	2.97E-06				

-

	cs		1.80E+01	<u>1.13E+01</u>	7.14E+00	4.50E+00	2.84E+00	2.80E-02
	ba		6.01E+01	3.79E+01	2.38E+01	1.50E+01	9.46E+00	9.31E-02
			2 715-06	5.27E-13	0 03F-22	1 00F-20	3.27E-13 DDE+00	3.27E-13 00E+00
	Dr		3.04E-05	5.82E-13	1.11E-20	2.13E-28	.00F+00	.00F+00
	nd		3.94E-12	3.94E-12	3.94E-12	3.94E-12	3.94E-12	3.94E-12
	pm		1.04E-01	5.28E-04	2.69E-06	1.71E-08	1.44E-09	5.21E-13
	SM		5.67E-02	4.86E-02	4.17E-02	3.57E-02	3.06E-02	6.57E-03
	eu		4.83E-02	7.51E-03	1.76E-03	4.99E-04	1.54E-04	3.89E-09
	ga		0 675-14	3.33E-13	3.44E-13 0 / EE-10	3.485-15	3.49E-15	5.00E-10
	10		1 235-12	9 02F-16	6 60F-19	4 83F-22	3 545-25	0.232-10
	totals		1.84E+02	1.14E+02	7.03E+01	4.35E+01	2.70E+01	2.37E-01
	Part	В	MIT 36.8 g	U235/Plat	e, UALX F	uel 8100 MN	JD/MTU	
0				element	thermal	power, wat	ts	
			Intatal	basis =	per MTU (for per as:	sembly divi	de by 1818
	ь		1 275-14	1 K7E-10	2 18E-24	2 855-20	2000.0 yri	0000.0 yr
	s i		1 64F-28	7 35F-20	3 285-29	1 476-29	-1 74F-31	005+00
	P		1.66E-27	7.42E-28	3.32E-28	1.48E-28	1.76E-30	.00E+00
	totals		1.27E-14	1.67E-19	2.18E-24	1.91E-28	1.94E-30	.00E+00
-	Part	В	MIT 36.8 g	U235/Plat	e, UAlx F	uel 8100 MI	ND/MTU	
0				element	thermal	power, wati	ts	J. L. 1010
			initial	500 0 Vr	700 0 ve	onn n vr	2000 0 vr1	0000 0 Vr
	tl		3.44F-05	5.88F-05	8.34F-05	1.08F-04	2.44F-04	1.125-03
	pb		7.37E-05	1.62E-04	2.78E-04	4.19E-04	1.55E-03	1.56E-02
	bi		6.27E-04	1.23E-03	1.96E-03	2.79E-03	8.98E-03	7.83E-02
	po		1.72E-03	4.15E-03	7.48E-03	1.16E-02	4.67E-02	4.95E-01
	at		7.32E-09	1.25E-08	1.79E-08	2.35E-08	5.88E-08	4.78E-07
	fr		3 00E-04	1.00E-03	0 73E-07	4.401-03	1.39E-02 2.86E-06	1.346-01
	ra		7.34E-04	1.56E-03	-2.61E-03	3.87E-03	1.38E-02	1.34E-01
	ac		5.63E-06	9.69E-06	1.37E-05	1.78E-05	4.02E-05	1.85E-04
	th		7.51E-03	1.10E-02	1.45E-02	1.79E-02	3.69E-02	1.67E-01
	pa		4.87E-04	7.42E-04	9.96E-04	1.25E-03	2.62E-03	1.17E-02
	u nn		1.032+00	1.836+00	1.852+00	1.836+00	1.822+00	1.786+00
	np DU		6.33E-02	6.29F-02	6.25E-02	6.21E-02	6.01E-02	4 74F-02
	am		8.88E-05	6.44E-05	4.68E-05	3.39E-05	5.82E-06	2.028-11
	сп		3.91E-09	1.46E-09	5.47E-10	2.05E-10	9.18E-13	8.76E-19
	cf		1.45E-32	1.01E-32	6.76E-33	4.19E-33	8.12E-34	.00E+00
	totals		1.91E+00	1.92E+00	1.92E+00	1.93E+00	2.01E+00	2.89E+00
Λ	Part	в	MII 20.0 g	U235/Plat	e, UAIX r thormal	DOUAL DIV M	NU/MIU te	
v				basis =	per MTU (for per as:	sembly divi	de by 1818
			initial	500.0 yr	700.0 yr	900.0 yr	2000.0 yr1	0000.0 yr
	h		1.54E-10	2.02E-15	2.64E-20	3.46E-25	.00E+00	.00E+00
	be		8.96E-10	8.96E-10	8.96E-10	8.96E-10	8.95E-10	8.92E-10
	c		8.51E-09	8.31E-09	8.11E-09	7.92E-09	6.93E-09	2.63E-09
	se kr		1 516-08	3.39E-00	3 036-13	3.302-00	3.026-13	2 Q465-13
	rb		3.42E-09	3.42E-09	3.42E-09	3.42E-09	3.42F-09	3.42E-09
	Sr		1.84E-02	1.34E-04	9.69E-07	7.04E-09	1.21E-20	.00E+00
	У		8.77E-02	6.37E-04	4.62E-06	3.36E-08	5.77E-20	.00E+00
	Zr		4.13E-05	4.13E-05	4.13E-05	4.13E-05	4.12E-05	4.11E-05
	nb to		0.31E-U5	0.312-05	0.51E-05	0.30E-05	0.3UE-U5	0.286-05
	nd		1 58F-07	1 58F-07	1 586-03	1.586-07	1.58F-07	1.702-03
	ag		8.21E-10	2.76E-10	9.25E-11	3.10E-11	7.67E-14	8.25E-33

light	elements	page	126
		F - Q -	

-

.

.

actinides

page 130

fission products

page 148

. . .

-

•

.

9.18E-10	4.94E-14	8.77E-17	8.50E-17	8.50E-17	8.50E-17	
2.93E-15	2.93E-15	2.93E-15	2.93E-15	2.93E-15	2.93E-15	
9.34E-05	9.02E-05	8.98E-05	8.97E-05	8.90E-05	8.42E-05	
8.98E-04	8.97E-04	8.95E-04	8.94E-04	8.87E-04	8.40E-04	
3.65E-22	3.65E-22	3.65E-22	3.65E-22	3.65E-22	3.65E-22	• •
2.97E-06	2.97E-06	2.97E-06	2.97E-06	2.97E-06	2.97E-06	
2.80E-02	3.96E-04	1.24E-04	1.22E-04	1.22E-04	1.21E-04	
9.31E-02	9.16E-04	9.01E-06	8.87E-08	8.10E-19	.00E+00	
3.27E-13	3.27E-13	3.27E-13	3.27E-13	3.27E-13	3.27E-13	
3.94E-12	3.94E-12	3.94E-12	3.94E-12	3.94E-12	3.94E-12	
5.21E-13	2.07E-16	8.20E-20	3.25E-23	.00E+00	.00E+00	
6.57E-03	1.41E-03	3.01E-04	6.46E-05	5.21E-08	3.86E-08	
3.89E-09	1.00E-12	1.84E-14	3.83E-16	2.16E-25	.00E+00	
3.50E-15	3.50E-15	3.50E-15	3.50E-15	3.50E-15	3.50E-15	
8.23E-10	7.33E-10	6.53E-10	5.82E-10	3.08È-10	3.03E-12	
2.37E-01	6.55E-03	3.50E-03	3.24E-03	3.16E-03	3.06E-03	
	9.18E-10 2.93E-15 9.34E-05 8.98E-04 3.65E-22 2.97E-06 2.80E-02 9.31E-02 3.27E-13 3.94E-12 5.21E-13 3.89E-09 3.50E-15 8.23E-10 2.37E-01	9.18E-10 4.94E-14 2.93E-15 2.93E-15 9.34E-05 9.02E-05 8.98E-04 8.97E-04 3.65E-22 3.65E-22 2.97E-06 2.97E-06 2.80E-02 3.96E-04 9.31E-02 9.16E-04 3.27E-13 3.27E-13 3.94E-12 3.94E-12 5.21E-13 2.07E-16 6.57E-03 1.41E-03 3.89E-09 1.00E-12 3.50E-15 3.50E-15 8.23E-10 7.33E-10 2.37E-01 6.55E-03	9.18E-10 4.94E-14 8.77E-17 2.93E-15 2.93E-15 2.93E-15 9.34E-05 9.02E-05 8.98E-05 8.98E-04 8.97E-04 8.95E-04 3.65E-22 3.65E-22 3.65E-22 2.97E-06 2.97E-06 2.97E-06 2.80E-02 3.96E-04 1.24E-04 9.31E-02 9.16E-04 9.01E-06 3.27E-13 3.27E-13 3.27E-13 3.94E-12 3.94E-12 3.94E-12 5.21E-13 2.07E-16 8.20E-20 6.57E-03 1.41E-03 3.01E-04 3.89E-09 1.00E-12 1.84E-14 3.50E-15 3.50E-15 3.50E-15 8.23E-10 7.33E-10 6.53E-10 2.37E-01 6.55E-03 3.50E-03	9.18E-10 4.94E-14 8.77E-17 8.50E-17 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 9.34E-05 9.02E-05 8.98E-05 8.98E-05 8.98E-04 3.65E-22 3.65E-22 3.65E-22 3.65E-22 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.89E-02 3.96E-04 1.24E-04 1.22E-04 9.31E-02 9.16E-04 9.01E-06 8.87E-08 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.94E-12 3.94E-12 3.94E-12 3.94E-12 5.21E-13 2.07E-16 8.20E-20 3.25E-23 6.57E-03 1.41E-03 3.01E-04 6.46E-05 3.89E-09 1.00E-12 1.84E-14 3.83E-16 3.50E-15 3.50E-15 3.50E-15 3.50E-15 8.23E-10 7.33E-10 6.53E-10 5.82E-10 2.37E-01 6.55E-03 3.50E-03 3.24E-03	9.18E-10 4.94E-14 8.77E-17 8.50E-17 8.50E-17 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 9.34E-05 9.02E-05 8.98E-05 8.97E-05 8.90E-05 8.97E-04 8.90E-05 8.98E-04 8.97E-04 8.95E-04 8.94E-04 8.87E-04 3.65E-22 3.65E-22 3.65E-22 3.65E-22 3.65E-22 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.80E-02 3.65E-22 3.65E-22 3.65E-22 3.65E-22 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.80E-02 3.96E-04 1.22E-04 1.22E-04 1.22E-04 9.31E-02 9.16E-04 9.01E-06 8.87E-08 8.10E-19 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 5.21E-13 2.07E-16 8.20E-20 3.25E-23 .00E+00 6.57E-03 1.41E-03 3.01E-04 6.46E-05 5.21E-08 <t< td=""><td>9.18E-10 4.94E-14 8.77E-17 8.50E-17 8.50E-17 8.50E-17 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 9.34E-05 9.02E-05 8.98E-04 8.97E-05 8.90E-05 8.42E-05 8.98E-04 8.97E-04 8.95E-04 8.94E-04 8.87E-04 8.40E-04 3.65E-22 3.65E-22 3.65E-22 3.65E-22 3.65E-22 3.65E-22 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.80E-02 3.96E-04 1.24E-04 1.22E-04 1.22E-04 1.21E-04 9.31E-02 9.16E-04 9.01E-06 8.87E-08 8.10E-19 .00E+00 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 5.21E-13 2.07E-16 8.20E-20 3.25E-23 .00E+00 .00E+00 6.57E-03 1.41E-03</td></t<>	9.18E-10 4.94E-14 8.77E-17 8.50E-17 8.50E-17 8.50E-17 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 2.93E-15 9.34E-05 9.02E-05 8.98E-04 8.97E-05 8.90E-05 8.42E-05 8.98E-04 8.97E-04 8.95E-04 8.94E-04 8.87E-04 8.40E-04 3.65E-22 3.65E-22 3.65E-22 3.65E-22 3.65E-22 3.65E-22 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.97E-06 2.80E-02 3.96E-04 1.24E-04 1.22E-04 1.22E-04 1.21E-04 9.31E-02 9.16E-04 9.01E-06 8.87E-08 8.10E-19 .00E+00 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.27E-13 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 3.94E-12 5.21E-13 2.07E-16 8.20E-20 3.25E-23 .00E+00 .00E+00 6.57E-03 1.41E-03

.

•

.

GLASS, Homogenized MIT Cylinder, Shielding Model, Source in Glass Logs Only DHLW CANISTER C. -1 -3 4 IMP:P=1 U=1 \$ DHLW GLASS 3 -2.85 1 1 -2 -3 4 IMP:P=1 U=1 \$ SS304L CANISTER WALL 2 5 -7.9 -5 3 -2 IMP:P=1 U=1 \$ SS304L CANISTER TOP 6 -4 -2 IMP:P=1 U=1 \$ SS304L CANISTER TOP -7.9 3 5 5 -7.9 4 1 5.1373-5 2 -5 6 IMP:P=1 U=1 \$ AIR AROUND CANISTER 1 5.1373-5 5 IMP:P=1 U=1 \$ AIR ABOVE CANISTER 1 5.1373-5 -6 IMP:P=1 U=1 \$ AIR ABOVE CANISTER 5 6 7 GLASS LOGS С -7 -8 9 FILL=1 TRCL=(0 55 0) IMP:P=1 \$ DHLW GLASS 1 5.1373-5 41 42 LIKE 41 BUT TRCL=(52. 17. 0) LIKE 41 BUT TRCL=(33 -43.5 0) 43 44 LIKE 41 BUT TRCL=(-33 -43.5 0) LIKE 41 BUT TRCL=(-52, 17, 0) 45 EVERYTHING IN CODISPOSAL CYLINDER IS HOMOGENIZED C С \$ HOMOGENIZED FUELCYLINDER 2 2.885-02 -36 -24 25 U=2 IMP:P=1 50 С 6 -7.88 36 -24 25 U=2 IMP:P=1 \$ Steel Codisposal Tube Wall 51 \$ Steel Codisposal Tube Wall U=2 IMP:P=1 52 6 -7.88 24 -25 U=2 IMP:P=1 53 6 -7.88 \$ Steel Codisposal Tube Wall -37 -26 27 FILL=2 IMP:P=1 \$ Steel Codisposal Tube Wall 55 0 С INSIDE CONTAINER 1 5.1373-5 -10 -14 15 #41 #42 #43 #44 #45 #55 IMP:P=1 60 С WP -8.4425 10 -11 -14 15 IMP:P=1 \$ INNER BARRIER SIDE 61 4 -11 14 -16 IMP:P=1 \$ INNER BARRIER TOP -11 -15 17 IMP:P=1 \$ INNER BARRIER BOTTOM 11 -12 -16 17 IMP:P=1 \$ OUTER BARRIER SIDE 62 4 -8.4425 63 4 -8.4425 -7.832 7 64 -12 16 -18 IMP:P=1 \$ OUTER BARRIER TOP -7.832 65 7 -12 -17 19 IMP:P=1 \$ OUTER BARRIER BOTTOM -7.832 66 7 12 -13 -18 19 IMP:P=1 \$ REFLECTOR SIDE 5.1373-5 67 1 5.1373-5 -13 18 -20 IMP:P=1 \$ REFLECTOR TOP 68 1 -13 -19 21 IMP:P=1 \$ REFLECTOR BOTTOM 69 5.1373-5 1 OUTSIDE WORLD С 0 13:20:-21 IMP:P=0 81 SURFACE SPECIFICATIONS С 1 CZ 29.528 CZ 30.48 2 3 PZ 137.13 PZ -137.13 4 5 PZ 138.7175 PZ -138.7175 6 С CELL FILL CARDS 7 CZ 31 8 PZ 140 PZ -140 0 10 CZ 86.5 \$ IR of WP CZ 88.5 \$ OUTSIDE OF WASTE INNER BARRIER WALL 11 **\$** OUTSIDE OF WASTE OUTER BARRIER WALL 12 CZ 98.5 **\$** AIR REFLECTOR OUTSIDE CONTAINER 13 CZ 113.5 PZ 152 **\$ INNER HEIGHT OF CONTAINER** 14 15 PZ -152 PZ 154.5 \$ TOP OF INNER BARRIER LID 16 17 PZ -154.5 PZ 165.5 \$ TOP OF OUTER BARRIER LID 18 19 PZ -165.5 20 PZ 180.5 \$ TOP OF AIR REFLECTOR 21 PZ -180.5 С PZ 129.9 \$ TOP OF STACK OF FOUR ASSEMBLIES 24 PZ -129.9 \$ TOP OF STACK OF FOUR ASSEMBLIES PZ 131.4 \$ TOP OF CANISTER LID 25 26 PZ -131.4 \$ TOP OF CANISTER LID 27 C CZ 20.465 \$ Inner Radius of Codisposal Tube Wall 36 37 CZ 21.965 \$ Outer Radius of Codisposal Tube Wall

Tally Segmenting Surfaces C 361 PZ 5 362 PZ -5 363 PZ 10 364 PZ -10 365 PZ 20 366 PZ -20 367 PZ 40 368 PZ -40 369 PZ 80 370 PZ -80 380 PX 5 381 PX -5 382 PY 0 MODE P SOURCE С POS=D1 RAD=D2 EXT=D3 ERG=D4 AXS= 0 0 1 SDEF Glass Log Gamma Source С L 0. 55. 0. 52. 17. 0. 33. -43.5 0. -33. -43.5 0. -52. 17. 0. SI1 .2 .2 .2 .2 .2 SP1 S12 0 29.527 137.1 SI3 H .40 .60 .80 1.00 1.33 1.66 2.00 2.50 **SI4** 3.00 4.00 5.00 6.50 8.00 10.00 0. 5.90E-2 9.03E-1 1.43E-2 1.98E-2 4.30E-3 3.44E-4 1.97E-3 1.37E-5 SP4 1.53E-6 3.52E-10 1.41E-10 2.75E-11 5.85E-12 TALLY SPECIFICATIONS C F2:P 11 12 16 17 18 19 FM2 7.5E15 FC2 Normalized and flux-to-dose conversion factor applied .01 .03 .05 .07 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5.0 5.25 5.75 6.25 DE2 6.75 7.5 9.0 11.0 13.0 15.0 3.96-6 5.82-7 2.90-7 2.58-7 2.83-7 3.79-7 5.01-7 6.31-7 7.59-7 8.78-7 9.85-7 1.08-6 1.17-6 1.27-6 1.36-6 1.44-6 1.52-6 1.68-6 DF2 1.98-6 2.51-6 2.99-6 3.42-6 3.82-6 4.01-6 4.41-6 4.83-6 5.23-6 5.60-6 5.80-6 6.01-6 6.37-6 6.74-6 7.11-6 7.66-6 8.77-6 1.03-5 1.18-5 1.33-5 (2 < 41) (2 < 42) (2 < 43) (2 < 44) (2 < 45) F12:P FS12 369 - 370 367 - 368 365 - 366 363 - 364 361 - 362 T F22:P 12 FM22 7.5E15 Normalized and flux-to-dose conversion factor applied FC22 .01 .03 .05 .07 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5.0 5.25 5.75 6.25 **DF22** 6.75 7.5 9.0 11.0 13.0 15.0 DF22 3.96-6 5.82-7 2.90-7 2.58-7 2.83-7 3.79-7 5.01-7 6.31-7 7.59-7 8.78-7 9.85-7 1.08-6 1.17-6 1.27-6 1.36-6 1.44-6 1.52-6 1.68-6 1.98-6 2.51-6 2.99-6 3.42-6 3.82-6 4.01-6 4.41-6 4.83-6 5.23-6 5.60-6 5.80-6 6.01-6 6.37-6 6.74-6 7.11-6 7.66-6 8.77-6 1.03-5 1.18-5 1.33-5 369 - 370 367 - 368 365 - 366 363 - 364 361 - 362 T FS22 F32:P 12 367 - 368 - 382 380 - 381 T FS32 7.7674+4 7.7674+4 2.4756+4 1.1978+4 1.1978+4 8.0060+2 2.04853+5 SD32 FM32 7.5E15 Normalized and flux-to-dose conversion factor applied FC32 .01 .03 .05 .07 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5.0 5.25 5.75 6.25 **DE32** 6.75 7.5 9.0 11.0 13.0 15.0 DF32 3.96-6 5.82-7 2.90-7 2.58-7 2.83-7 3.79-7 5.01-7 6.31-7 7.59-7 8.78-7 9.85-7 1.08-6 1.17-6 1.27-6 1.36-6 1.44-6 1.52-6 1.68-6 1.98-6 2.51-6 2.99-6 3.42-6 3.82-6 4.01-6 4.41-6 4.83-6 5.23-6 5.60-6 5.80-6 6.01-6 6.37-6 6.74-6 7.11-6 7.66-6 8.77-6 1.03-5 1.18-5 1.33-5 ED:P 0.4 0.6 0.8 1.0 1.33 1.66 2.0 2.5 3.0 4.0 5.0 6.5 8.00 10.00 T

С MATERIAL SPECIFICATIONS

С

.

-

M1	7000.01P	4.2148-5 \$ AIR
	8000.01P	9.2249-6
M2	92000.01P	2.585-4 \$ homogenized fuel, water removed
	5000.01P	5.072-5
	6000.01P	2.838-05
	7000.01P	8.116-05
	12000.01P	7.783-05
	13000.01P	7,885-03
	14000.01P	3.439-04
	15000.01P	1.651-05
	16000.01P	1.066-05
	24000.01P	3.760-03
	25000.01P	4.137-04
	26000.01P	1.327-02
	28000.01P	2.346-03
	29000.01P	7.442-06
	42000.01P	2.961-04
С	DHLW Glass	
M3	3000.01P	-1.44 5000.01P -3.132 \$ DHLW GLASS
	8000.01P	-4.4102+1 9000.01P -3.108-2
	11000.01P	-8.233 12000.01P -8.046-1 13000.01P -2.057
	14000.01P	-2.1967+1 16000.01P -1.263-1 19000.01P -2.916
	20000.01P	-6.458-1 22000.01P -5.823-1 25000.01P -1.520
	26000.01P	-7.211 28000.01P -7.170-1 15000.01P -1.372-2
	24000.01P	-8.055-2 29000.01P -1.489-1 47000.01P -4.906-2
	56000.01P	-8.083-2 82000.01P -5.948-2 17000.01P -1.131-1
	90000.01P	-1.811-1 62000.01P -4.411-4 92000.01P -3.693
	94000.01P	-2.091-2
C	INCOLO	Y ALLOY 825
M4	6000.01P	-0.05 13000.01P -0.20 14000.01P -0.50 \$ Alloy 825
	16000.01P	-0.03 22000.01P -0.90 24000.01P -21.50 \$ 8.14 g/cc
	25000.01P	-1.00 26000.01P -28.57 28000.01P -42.00
_	29000.01P	-2.25 42000.01P -3.00
C	SS304L	
MS	6000.01P	-0.050 /014.01P -0.100 14000.01P -0.75
-	15051.01P	-0.045 16052.01P -0.050 24000.01P -19.000
	20000.01P	-2.000 20000.01P *08.045 20000.01P *10.000
MO	6000.01P	UB /U14.U1P5 14000.U1P75 \$ XM-17 55
	15051.01P	04 0002.01P05 24000.01P -22
	23033.01P	-3. 20000.01P -37.07 20000.01P -12.3
c	42000.01P	TEL
с м7	A 510 1	_0.22 \$/000.010 _0.275 15031.010 _0.035
m7	16032 010	-0.22 14000.01P -0.273 13031.01P 0.033
	26000 01p	-08 535
c	20000.018	
NPS	30000000	
PRIN	F	
PRDM	2000000	

•