Non Q Design Analysis Cover Sheet

Complete only applicable items.

1.) QA: I Page: 1

N/A 2 94 V Of: 90

2. DESIGN ANALYSIS TITLE						
UCF Waste Package Criticality Analysis						
3. DOCUMENT IDENTIFIER (Including Rev. No.)		• 4. REV	. NO.	5. TOTAL PAGES		
BBAA00000-01717-0200-00005	5 REV 00	00		90		
6. TOTAL ATTACHMENTS	7. ATTACHMENT NUMBERS - NO. OF PAGES IN EA	ACH	8. SYSTEM ELEMENT			
418	See Section 9 - Total Attachment P	ages 11568	MGDS-WPD			
	Print Name	Sig	Signature			
9. Originator	J. W. Davis	Jan Dans		V3/97		
10. Checker	K. D. Wright	K.O. W	H	1/3/97		
11. Lead Design Engineer	T. W. Doering	1. W. D		1.3.97		
12. Department Manager	H. A. Benton	Hligh A	Bentin	1/3/97		

13. Remarks

All of the attachments for this document have been moved to the reference - Section 5.26 and are now located in the RPC (BATCH NO. MOY-970327-03). four 3/31/97 jth 3/31/97

CRWMS/M&O

(1.Page: 2

0f: 90

2. DESIGN ANALYSIS	TITLE			
UCF Waste Package	Criticality Analysis			
3. DOCUMENT IDENTI	FIER (Including Rev. No.)			
BBAA00000-01717-	0200-00005 REV 00			
4. Revision No.	5. Description of Revision			
00	Issued for Initial Release			
		r		
		•		
	$\alpha_{ij}e^{-i\omega_{ij}}$			
	· ·			
DAP 3.9 (Effective 01/03/96)	₩ ▲ ······	0487 (Rev. 12/14		

Page 3 of 90

Table of Contents:

Item		Page
1. Purpose		 5
2. Quality Assurance		 5
3. Method		 5
 4. Design Inputs 4.1 Design Parameters 4.1.1 PWR Mechanical Parameters 4.1.2 BWR Mechanical Parameters 4.2 Criteria 4.3 Assumptions 4.4 Codes and Standards 		
5. References	• • • • • • •	 11
6. Use of Computer Software		 13 13
 7. Design Analysis 7.1 Background 7.2 Design Details and Evaluation 7.3 Modeling 7.4 Large UCF Calculations 7.4.1 21 Assembly PWR 7.4.1.1 Standard Evaluation 7.4.1.2 Moderator Density Effects 7.4.1.3 Time Effects 7.4.1.4 Control Panel Loading 7.4.2.1 Standard Evaluation 7.4.2.3 Time Effects 7.4.2.4 Control Panel Loading 7.4.2.4 Control Panel Loading 7.4.2.4 Control Panel Loading 7.5 Small UCF Calculations 7.5.1.1 Standard Evaluation 7.5.1.2 Moderator Density Effects 		13 14 14 15 15 16 16 18 20 22 22 22 24 25 27 28 28 29 29

<u>Item</u>

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Table of Contents: Continued

7.5.1.3 Time Effects 7.5.1.4 Control Panel Loading 7.5.2 24 Assembly BWR 7.5.2.1 Standard Evaluation 7.5.2.2 Moderator Density Effects 7.5.2.3 Time Effects 7.5.2.4 Control Panel Loading 8. Conclusions

Page 4 of 90

Page

30

31

31

32

33

33

35

35

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 5 of 90

1. Purpose

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the UCF waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan^{5.1} for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objectives of this evaluation are 1) to show the reactivity worth of burnup credit, 2) to show to what extent the concept meets the regulatory requirements or indicate additional measures that are required for the intact waste package, 3) to demonstrate time effects on criticality potential, 4) to demonstrate the effects of varied boron concentration in the control panels on criticality potential, and 5) to provide input for separate shielding calculations.

2. Quality Assurance

This is a scoping analysis performed to assist in reducing the number of options to be considered in future analyses and is considered a non-quality affecting document. The NAP procedures for Non-Q Analysis will be followed.

All design inputs which are identified in this document are for preliminary designs; some or all of these design inputs will require subsequent qualification (or superseding inputs) as the waste package design proceeds. This document will not directly support any construction, fabrication, or procurement activity and therefore does not require formal TBV (to be verified) tracking.

3. Method

The multiplication factor (k_{eff}) of the disposal packages is determined using the Monte Carlo neutron transport technique implemented in the MCNP^{5.5} computer program. The combined average value of k_{eff} of the three estimates, as listed in the final generation summary in the MCNP output, is reported in this document.

Page 6 of 90

4. Design Inputs

All design inputs are for preliminary designs; some or all of these design inputs will require subsequent qualification (or superseding inputs) as the waste package design proceeds. The [unqualified] design inputs identified and documented in Section 4 have been identified as TBV; but, will not be used to directly support any construction, fabrication, or procurement activity and therefore does not require formal TBV tracking.

4.1 Design Parameters

4.1.1 PWR Mechanical Parameters

The PWR fuel assembly upon which this calculation is based is the B&W 15 x 15 fuel assembly. The mechanical parameters for this assembly type are shown in the table below.

					Radius	
Parameter	Value	Units	Metric	Units	(cm)	Ref
Fuel Rods	208	/assbly	208	/assbly		5.6
Fuel Rods on a Lattice Side	15	/side	15	/side		5.6
Guide Tubes	16	/assbly	16	/assbly		5.6
Instrumentation Tubes	1	/assbly	1	/assbly		5.6
Total Guide + Instrument Tubes	17	/assbly	17	/assbly		-
Clad/Tube Material	ZIRC-4		ZIRC-4			5.6
Fuel Pellet OD	0.3686	inches	0.936244	ст	0.468122	5.6
Fuel Stack Height	141.8	inches	360.172	cm		5.6
Mass of U	1023	lb	464	kg		5.7
Mass of UO ₂	1160.64	lb	526.38	kg		5.6
Percent of Theoretical Density	95	%	95	%		5.6
Fuel Clad OD	0.430	inches	1.0922	ст	0.5461	5.6
Clad Thickness	0.0265	inches	0.06731	cm		5.6
Fuel Clad ID [*]	0.377	inches	0.95758	cm	0.47879	-
Fuel Rod Pitch	0.568	inches	1.44272	cm		5.6
Guide Tube OD	0.530	inches	1.3462	cm	0.6731	5.6
Guide Tube Thickness	0.016	inches	0.04064	cm		5.6
Guide Tube ID [*]	0.498	inches	1.26492	cm	0.63246	-

Table 4.1-1 Mechanical Parameters of B&W 15x15 Fuel Assembly

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 7 of 90

Parameter	Value	Units	Metric	Units	Radius (cm)	Ref
Instrumentation Tube OD	0.493	inches	1.25222	cm	0.62611	5.6
Fuel Assembly Envelope	8.536	inches	21.6814	cm		5.6

The inner diameters (IDs) above are calculated by subtracting twice the thickness from the outer diameter (OD).

4.1.2 BWR Mechanical Parameters

The BWR fuel assembly upon which this calculation is based is the GE-5 8×8 fuel assembly. The mechanical parameters for this assembly type are shown in the table below.

Parameter	Value	Units	Metric	Units	Radius	Ref
					(cm)	
Fuel rods	62	/assbly	62	/assbly		5.7
Fuel rods on a lattice side	8	/side	8	/side		5.7
Clad/tube material	ZIRC-2		ZIRC-2			5.7
Fuel pellet OD	0.410	inches	1.0414	cm	0.5207	5.7
Fuel Stack height	150.0	inches	381.0	cm		5.7
Mass of U	403.45	lb	183	kgm		5.7
Percent of Theoretical Density	95	%	95	%		5.7
Fuel clad OD	0.483	inches	1.2268	cm	0.6134	5.7
Clad thickness	0.032	inches	0.08128	cm		5.7
Fuel clad ID	0.419	inches	1.0643	cm	0.53215	-
Fuel rod pitch	0.640	inches	1.6256	cm		5.7
Fuel assembly shroud thickness	0.10	inches	0.254	cm		5.8
Fuel assembly Shroud outside flat-to-flat	5.415	inches	13.7541	cm		5.8

Table 4.1.2-1 Mechanical Parameters of GE-5 8x8 Fuel Assembly

The inner diameters (IDs) above are calculated by subtracting twice the thickness from the outer diameter (OD).

4.2 Criteria

This design analysis provides the repository criticality control design criteria for UCF Waste Packages, based upon criteria from requirement documents. The criteria cited in requirement documents that have bearing on this analysis include:

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

From May 1995, Revision 01 of the MGDS-Requirements Document (RD)^{5.9}; "3.2.2.6 Criticality Protection

A. All systems for processing, transporting, handling, storing, retrieving, emplacing, and isolating radioactive waste shall be designed to ensure that a nuclear criticality accident is not possible unless at least two unlikely, independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety. Each system shall be designed for criticality safety under normal and accident conditions. The calculated effective multiplication factor (k_{eff}) must be sufficiently below unity to show at least a 5% margin, after allowance for the bias in the method of calculation and the uncertainty in the experiments used to validate the methods of calculation. [10CFR60.131(b)(7)]"

From September 21, 1994 Revision 00, ICN 1 of the Engineered Barrier Design (EBD)-RD^{5.10};

"3.2.2.6 CRITICALITY PROTECTION

A. The Engineered Barrier Segment shall be designed to ensure that a nuclear criticality accident is not possible unless at least two unlikely, independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety. Each system shall be designed for criticality safety under normal and accident conditions. The calculated effective multiplication factor must be sufficiently below unity to show at least a five percent margin, after allowance for the bias in the method of calculation and the uncertainty in the experiments used to validate the methods of calculation. [MGDS-RD 3.2.2.6.A][10CFR60.131(b)(7)]"

From September 21, 1994 Revision 00, ICN 1 of the Engineered Barrier Design (EBD)-RD^{5.10};

***3.7.1.3** INTERNAL STRUCTURE REQUIREMENTS

A. The internal structure shall provide separation of the waste forms such that nuclear criticality shall not be possible unless at least two unlikely, independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety. The calculated effective multiplication factor (k_{eff}) must be sufficiently below unity to show at least a five percent margin after allowance for the bias in the method of calculation and the uncertainty in the experiments used to validate the methods of calculation (TBD). [MGDS-RD 3.2.2.6.A][10CFR60.131(b)(7)]"

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

4.3 Assumptions

All assumptions identified in this section will require verification (or superseding assumptions) as the waste package design proceeds and should be treated as TBV items for preliminary design. For Pre-title II design (conceptual or preliminary), assumptions are identified and documented, but they are not subject to MGDS NLP-3-15.

- 4.3.1 Burnup credit is an acceptable criticality control mechanism for the waste package. (CDA Key 009)^{5.11}. This assumption is based up encouraging interactions with the NRC staff through the Burnup Credit Committee, chaired by DOE headquarters. This assumption is used throughout Section 7.
- 4.3.2 The waste package will be emplaced in-drift in a horizontal mode (CDA Key 011)^{5.11}. This assumption is based on a current program decision. This assumption is used throughout Section 7.
- 4.3.3 The design of the 21 PWR assembly UCF waste package is based on preliminary drawings BBA000000-01717-2100-15057^{5.12}, sheets 1 thru 4 (TBV). These drawings serve as the primary design control for the waste packages in WPDD. This assumption is used in Section 7.4.1.
- 4.3.4 The design of the 12 PWR assembly UCF waste package is based on preliminary drawings BBA000000-01717-2100-15022^{5.13}, sheets 1 thru 4 (TBV). These drawings serve as the primary design control for the waste packages in WPDD. This assumption is used in Section 7.5.1.
- 4.3.5 The design of the 44 BWR assembly UCF waste package is based on preliminary drawings BBA000000-01717-2100-15050^{5.14}, sheets 1 thru 4 (TBV). These drawings serve as the primary design control for the waste packages in WPDD. This assumption is used in Section 7.4.2.
- 4.3.6 The design of the 24 BWR assembly UCF waste package is based on preliminary drawings BBA000000-01717-2100-15029^{5.15}, sheets 1 thru 4 (TBV). These drawings serve as the primary design control for the waste packages in WPDD. This assumption is used in Section 7.5.2.
- 4.3.4 For SNF, the list of "Principal Isotopes" for long-term criticality control previously established^{5.16} was used. The 30 principal isotopes are shown in Table 4.3-1. This assumption is used throughout Section 7.
- 4.3.6 The reference BWR fuel assembly selected for conceptual UCF development is the GE 8x8 fuel type, which has been established as one of the more reactive BWR fuel designs under intact fuel assembly and fixed MPC geometry conditions^{5.17}. This assumption is used in Sections 7.4.2 and 7.5.2.
- 4.3.7 The reference PWR fuel assembly selected for conceptual UCF development is the B&W 15 x 15 fuel type, which has been established as one of the more reactive PWR fuel designs under intact fuel assembly and fixed MPC geometry conditions^{5.17}. This assumption is used in Sections 7.4.1 and 7.5.1.
- 4.3.8 The fueled length of the PWR assembly is modeled as 406.2 cm rather than the actual

,

201 1945 197

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

length of $360.172^{5.6}$ cm to conservatively cover most of the SNF inventory. This assumption is used in Sections 7.4.1 and 7.5.1.

- 4.3.9 The fresh fuel bias and uncertainty for MCNP is approximately 0.015^{5.18}. The preliminary SNF bias and uncertainty is approximately 0.06^{5.18}. These uncertainties were used in a prior unverified analysis. This assumption is used throughout Section 7.
- 4.3.10 The non-fuel material compositions are taken from a separate materials composition analysis^{5.19}. This analysis was performed to provide a single QA'ed reference for material compositions. This assumption is used throughout Section 7.
- 4.3.11 The design basis BWR SNF characteristics used are: 3.0% U-235 enrichment, 20 GWd/MTU burnup, as established by the M&O^{5.20}. This assumption is used in Sections 7.4.2 and 7.5.2.
- 4.3.12 The BWR SNF material compositions as a function of time are taken from a separate composition analysis^{5.21}. This analysis was performed to provide a single reference for BWR compositions to be used in all disposal packages. This assumption is used in Sections 7.4.2 and 7.5.2.
- 4.3.13 The design basis PWR SNF characterisitics used are: 3.0% U-235 enrichment, 20 GWd/MTU burnup, as established by the M&O^{5.20}. This assumption is used in Sections 7.4.1 and 7.5.1.
- 4.3.14 The PWR SNF material compositions as a function of time are taken from a separate composition analysis^{5.22}. This analysis was performed to provide a single QA'ed reference for PWR compositions to be used in all disposal packages. This assumption is used in Sections 7.4.1 and 7.5.1.
- 4.3.15 The BWR fuel assembly is modeled as an 8x8 array (64) of fuel pins. This assumption is a conservatism included in the calculation since 2 of the positions in the array are typically burnable absorber rods or water holes as indicated in Table 4.1.2-1. This assumption is used in Sections 7.4.2 and 7.5.2.
- 4.3.16 The UO_2 is modeled as 96% of theoretical density and no account of the pellet chamfer is taken resulting in an overprediction of the fuel mass in an assembly. This assumption is a conservatism included in the calculation. This assumption is used throughout Section 7.
- 4.3.17 The zinc weight percent contained in the aluminum 6063 material composition used in the MCNP models was transferred to the aluminum balance material in the composition due to the lack of cross-section data for zinc.
- 4.3.18 The borated stainless steel (316B6A) composition used in the MCNP model contained a 20 percent reduced boron fraction with respect to the referenced material composition. The weight percent of the boron isotopes in the 316B6A composition were reduced by 20 percent and the code was allowed to renormalize the remaining isotopes in the composition based on the engineering judgement that the renormalization effect was negligible.
- 4.3.19 The 44 and 24 BWR UCF WP radial dimensions are assumed to be the same as the 21 and 12 PWR UCF WP dimensions, respectively.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

#\ 1

Scoping Analysis

O-16	Mo-95	Ru-101	Tc-99	Rh-103
Ag-109	Nd-143	Nd-145	Sm-147	Sm-149
Sm-150	Sm-151	Sm-152	Eu-151	Eu-153
Gd-155	U-233	U-234	U-235	U-236
U-238	• Np-237	Pu-238	Pu-239	Pu-240
Pu-241	Pu-242	Am-241	Am-242m	Am-243

Table 4.3-1 Principal Long-Term Burnup Credit Isotopes

4.4 Codes and Standards

Not Applicable.

5. References

- 5.1 Yucca Mountain Site Characterization Project Waste Package Implementation Plan, YMP/92-11Q, REV 1.
- 5.2 Not Used.
- 5.3 Not Used.
- 5.4 Not Used.
- 5.5 Briesmeister, Judith F., Ed., "MCNP- A General Monte Carlo Code for Neutron and Photon Transport," LANL, LA-7396-M, Rev. 2, April 1991.
- 5.6 Preliminary Waste Form Characteristics Report Version 1.0, UCRL-ID-108314 Rev. 1, LLNL, page 2.1.2.2-6, December, 1994.
- 5.7 Characteristics of Potential Repository Wastes, DOE/RW-0184-R1, Volume 1, OCRWM, US Department of Energy, page 2A-8, July, 1992.
- 5.8 Primm, R. T. III, et al., *Reference Spent Fuel Characteristics for Plutonium Disposition Reactors*, Rev. 1, ORNL/MD/LTR-17, Oak Ridge National Laboratory, page 4, April, 1995.

Page 11 of 90

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 12 of 90

- 5.9 Office of Civilian Radioactive Waste Management Mined Geological Disposal System Requirements Document, DOE/RW-0404P, DI: B00000000-00811-1708-00002 REV 01 DCN01.
- 5.10 Yucca Mountain Site Characterization Project Engineered Barrier Design Requirements Document, YMP/CM-0024, Rev 0, ICN 1.
- 5.11 Controlled Design Assumptions (CDA) Document, DI#:B0000000-01717-4600-00032 REV 01, CRWMS M&O.
- 5.12 "Waste Package Tube Design (21-PWR)," DI#: BBA000000-01717-2100-15057 REV 0A, Sheets 1 4, CRWMS M&O.
- 5.13 "Waste Package Tube Design (12-PWR)," DI#: BBA000000-01717-2100-15022 REV 0A, Sheets 1 4, CRWMS M&O.
- 5.14 "Waste Package Tube Design (44-BWR)," DI#: BBA000000-01717-2100-15050 REV 0A, Sheets 1 4, CRWMS M&O.
- 5.15 "Waste Package Tube Design (24-BWR)," DI#: BBA000000-01717-2100-15029 REV 0A, Sheets 1 - 4, CRWMS M&O.
- 5.16 "Disposal Criticality Analysis Technical Report," B0000000-01717-5705-00020 Rev 00.
- 5.17 "Multi-Purpose Canister (MPC) Implementation Program Conceptual Design Phase Report, Volume II A - MPC Conceptual Design Report," DI# A20000000-00811-5705-00002 Final Draft, CRWMS M&O, Page II.A.3-35,September 1993.
- 5.18 Initial Summary Report for Repository/Waste Package Advanced Conceptual Design, DI#:B00000000-01717-5705-00015 REV 00, CRWMS M&O, pages 6-241, 6-203.
- 5.19 Thomas, D. A., "Material Compositions and Number Densities for Neutronic Calculations," DI# BBA000000-01717-0200-00002 Rev 00, CRWMS M&O.
- 5.20 Gottlieb, P., "Waste Package Design Basis Fuel Analysis," DI# B0000000-01717-0200-00121 Rev 01 Draft, CRWMS M&O.
- 5.21 IOC from J. W. Davis, "Incomplete BWR Compositions Analysis," LV.WP.JWD.01/97-003, CRWMS M&O.

., 1**4**

5.22 Davis, J. W., "SAS2H Generated Isotopic Concentrations for a B&W 15x15 PWR

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 13 of 90

Assembly," DI# BBA00000-01717-0200-00012 Rev 00, CRWMS M&O.

- 5.23 Office of Civilian Radioactive Waste Management Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages, DOE/RW-0472.
- 5.24 Davis, J. W., "21 PWR Assembly MPC Waste Package Criticality Analysis," DI# BBABB000-01717-0200-00004 Rev 00, CRWMS M&O.
- 5.25 Carpenter Neutrosorb Plus and Neutrosorb Borated Stainless Steels, Cartech, Carpenter Technology Corporation, 1993.
- 5.26 Records Package containing all the listed attachments on pages 36-56.
- 6. Use of Computer Suftware In the RPC (BATCH NO. MOY-970327.03) JNO 3/3/97 Hoto 3/3/197

6.1 Scientific and Engineering Software

MCNP 4.2 CSCI B0000000-01717-1200-30006 Rev 0. Hewlett Packard Apollo 9000, Series 735 Workstations

MCNP 4.2^{5.5} is an appropriate tool to be utilized to determine the criticality safety of fresh and spent lattices of PWR assemblies. This software has been validated and was previously obtained from the SCM in accordance with appropriate procedures. An associated continuous energy cross-section set based on ENDF/B-V is utilized by MCNP.

There are biases and uncertainties associated with a criticality calculation. How these biases and uncertainties are treated in criticality calculations is covered in the American National Standard on "Criticality Safety Criteria for the Handling, Storage, and Transportation of LWR Fuel Outside Reactors" (ANSI/ANS-8.17). The fresh fuel bias and uncertainty for MCNP is approximately 0.015^{5.18}. The preliminary SNF bias and uncertainty is approximately 0.06^{5.18}. The SNF bias and uncertainty is higher due to additional factors such as isotopics and axial effects.

7. Design Analysis

To better define the pre- and postclosure issues and the methodology for addressing them, a Three Phased Approach for disposal criticality control was developed. The three time phases associated with the approach are: the Preclosure/Operations Phase, the Postclosure/ Containment Phase, and the Postclosure/Isolation Phase. This analysis is performed for the Preclosure/Operations Phase and for time effects on isotopic composition for intact conditions. No criticality events external to the waste package or major internal geometry changes are evaluated.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 14 of 90

7.1 Background

The UCF container is designed to contain and store SNF and/or non-fuel-bearing hardware delivered from nuclear reactor sites to the repository. Non-fuel-bearing hardware is not of criticality concern and, therefore, is not considered in this report. The UCF is intended to handle intact or damaged SNF from both PWR and BWR reactor types shipped to the MGDS repository in transportation casks that are not MPC type containers. In addition, the UCF will handle fuel shipped in MPC type containers which does not meet disposal requirements as packaged in the MPC. The current analysis is limited to intact SNF.

The design of the UCF disposal container is performed by the M&O WPD. The UCF disposal container has different basket designs to handle PWR and BWR SNF.

7.2 Design Details and Evaluation

UCF conceptual designs incorporate boron neutron absorbers in the form of borated stainless steel (316B6A) control panels in fuel baskets to provide a criticality control function. The use of the borated stainless steel provides the capability to adjust the neutron absorber concentrations over a wide range to allow for variations in burnup, or it may be decreased for a basket intended to hold low enrichment first core fuel assemblies. The borated stainless steel is also corrosion resistant, allowing credit to be taken for it in criticality analyses for long time frames.

For the current analysis, credit is taken for the inherent neutron absorption capability of fixed structural components within the UCF internal basket array. No credit is taken for irradiated control rods or burnable poisons. Calculations are run with and without boron in the stainless steel and with and without the stainless steel basket material to demonstrate the reactivity worth of the materials. The duration of time that less than 25% of the stainless and/or boron is leached/corroded away is undetermined, and these results will allow evaluation in either case.

The criticality evaluations have been performed for a design basis SNF at 3.00% U-235 enrichment and 20 GWd/MTU burnup, as established by the M&O^{5.8} for both BWR and PWR SNF. The fuel isotopic burnup and decay compositions are taken from separate SAS2H analyses^{5.21, 5.22}. The assembly axial and radial burnup variations and differential loading effects have not been accounted for in the models. These effects could be significant for the BWR models and will be investigated in detail in the future. They are currently assumed to be covered in the applied bias and uncertainty.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Scoping Analysis

Page 15 of 90

7.3 Modeling

Each fuel assembly is treated as a heterogeneous system with the fuel pins, control rod guide tubes, and instrument guide tube modeled explicitly. The model consists of an array of pins and tubes placed into an assembly configuration. A cross-sectional view of a B&W 15x15 PWR assembly and a GE 8x8 assembly are shown in Figures 7.3-1 and 7.3-2, respectively. An array of these assemblies including the UCF SS basket is then placed into the UCF configuration. One-quarter of the UCF disposal container is modeled laterally and the assemblies and container are modeled from the centerline up (reflected on the centerline) axially. The fuel end fittings, water gaps, UCF WP spacers, and canister lids are modeled axially. Axial and radial cross-sectional views are included for each UCF configuration in their respective sections.

The "normal" condition in the repository, both within and surrounding the WP, is a dry environment. When an insufficient amount of water is present, insufficient neutrons are thermalized (slowed down to thermal energy levels) to bring a system critical. Values of k_{eff} for unmoderated canisters do not represent a criticality safety concern, but are needed for shielding calculations to account for subcritical multiplication of the spontaneous fission neutrons and alpha-n reactions.

The "accident" condition considers the repository and waste package as being flooded with water. Under flooded conditions, further detailed criticality evaluations of the system must be performed to determine k_{eff} . A waste package fully flooded with cool (1 g/cc) water is the standard waste package criticality evaluation condition. This is the condition assumed for most evaluations in this report.

A water reflector (air for "normal" case) 30 cm thick was placed above and around the outer barrier of the disposal container. Approximately 30 cm of water will isolate a package from any interaction with others. Based on mean free paths of neutrons in water, the 30 cm thickness provides the equivalent of an infinite reflector.

The volume of fuel assemblies and basket structure within the UCF WPs was modeled as being centered in the inner barrier of the waste package. The thicknesses of the gap between the inner and outer barrier lids were 0.5 cm for the 21 PWR UCF WP and 1.5 cm for the 12 PWR, 44 BWR, and 24 BWR UCF WPs.

7.4 Large UCF Calculations

This section provides the results of the analyses for PWR and BWR configurations. The 21 assembly PWR design requires both burnup credit and 316B6A control panels to meet acceptance criteria. The 44 assembly BWR design does meet acceptance criteria with burnup credit and 316B6A with a very low boron loading. The BWR design also meets acceptance

criteria with control panels alone (no burnup credit). The time period in which credit for the control panels can be taken must be defined.

7.4.1 21 Assembly PWR

The 21 PWR fuel assembly basket is formed by 21 tubes stacked in an irregular array on a nominal 23.35-cm (9.19 inches) center-to-center spacing. The fuel cell opening provided is 22.35 cm (8.80 inches). The fuel cell tubes are formed from 0.5-cm (0.20-inch) thick borated stainless steel plates (316B6A). The assembly array is interrupted by 4 aluminum thermal shunts 1.0 cm (0.39 inches) thick running on all 4 sides of the central assembly position across the inner diameter of the inner barrier (cruciform pattern). Checking of this analysis revealed that the iron weight percent of 60.245 in the SS316 (316B6A) material composition should have been input as 60.445 weight percent. Based on engineering judgement the effect of the reduced iron weight percent on the calculation is negligible.

The cross-sectional view in the X-Y plane (radial view) of the physical MCNP model for the intact geometry was generated with the MCNP plotting capability and is shown in Figure 7.4.1-1. The cross-sectional view in the X-Y plane of the physical MCNP model for the collapsed geometry is shown in Figure 7.4.1-2. An axial view of the intact geometry model is shown in Figure 7.4.1-3.

7.4.1.1 Standard Evaluation

Calculations were performed for intact and collapsed geometries, with and without boron in the stainless steel, for the fresh and design basis SNF (3.00% U-235 Enrichment, 20 GWd/MTU) at five years decay. The k_{eff} (±2 σ) values calculated for the different cases are listed below. The combined average value of k_{eff} of the three estimates, as listed in the final generation summary in the MCNP output, is reported in this document.

Design Basis SNF, Intact, No Boron	-	$1.0086 \pm .0034$
Fresh Fuel, Intact, No Boron	-	$1.1907 \pm .0029$
Design Basis SNF, Intact, With Boron	-	$0.8730 \pm .0037$
Fresh Fuel, Intact, With Boron	-	$1.0245 \pm .0041$
Design Basis SNF, Collapsed, No Boron	-	$1.0180 \pm .0037$
Fresh Fuel, Collapsed, No Boron	-	$1.2081 \pm .0029$
Design Basis SNF, Collapsed, With Boron	-	$0.8784 \pm .0033$
Fresh Fuel, Collapsed, With Boron	-	$1.0231 \pm .0043$

The burnup credit reactivity worth { $(k_2 - k_1) / (k_1 * k_2)$ } is shown below for the four sets of cases along with the reactivity worth for comparisons between sets with the design basis SNF.

Scoping Analysis

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Intact, No Boron	-	-0.152	± .004		
Intact, With Boron	-	-0.169	± .006		
Collapsed, No Boron	-	-0.155	$\pm .004$		
Collapsed, With Boron	-	-0.161	± .006		
Intact, Boron vs. No Boro	n		-	-0.154	± .006
Collapsed vs. Intact, No B	oron		-	0.009	± .005
Collapsed vs. Intact, With	Boron		-	0.007	± .006
Collapsed, Boron vs. No H	Boron		-	-0.156	± .006

Note that both boron and burnup credit are required in order to meet limits. With biases applied, (0.06) the two cases with boron and burnup credit narrowly meet the 0.95 value limit established in 10 CFR 60.131(b)(7). Burnup credit appears to be slightly enhanced with the addition of boron. The boron worth for the intact and the collapsed cases is the same within the 95% confidence interval ($\pm 2\sigma$). The worth of collapsing the array is the same within the 95% confidence interval whether or not boron is present.

To demonstrate the effect of fission products, two additional calculations were run corresponding to the intact, design basis SNF cases with and without boron for only actinides. The k_{eff} values for the Actinides Only cases are 1.0707 ± .0039 and 0.9274 ± .0045 for the no boron and boron cases, respectively. The corresponding reactivity worths for the Actinides Only cases are 0.058 ± .005 and 0.067 ± .007. To demonstrate the conservatism of the Actinide-Only Burnup Credit approach^{5.23}, two additional calculations were run with f_{BUC} 's applied. The k_{eff} values for the Actinides Only cases with f_{BUC} 's applied are 1.0996 ± .0046 and 0.9545 ± .0040 for the no boron and boron cases, respectively. The corresponding reactivity worths for the Actinides Only cases with f_{BUC} 's applied are 0.082 ± .005 and 0.098 ± .007.

Changes were made to the assumptions used and the calculation of isotopics between the MPC^{5.24} analysis and the UCF analysis. To indicate the reactivity change due to altering the isotopes included in the "Principal Isotopes" list (by using SAS2H rather than the CDB to provide isotopics and including the KIDMAN fission product isotopes) an intact, no boron case was run using the approach indicated in the MPC analysis^{5.24}. The k_{eff} value for this case is 1.0096 ± .0036, and the corresponding reactivity worth of the changes is less than the standard deviation in the results.

A minor error was foundⁱ in the model after most of the calculations were completed. This error involved dimensioning the thickness of the A516 outer barrier lid as 1 cm rather than the correct 11 cm. This axial dimension is not significant to the criticality calculations performed in this analysis, but would have affected shielding calculations performed using this model. A corrected case was run corresponding to the design basis SNF, intact geometry, with no boron providing a k_{eff} value of 1.0079 ± .0044, which is the same value calculated

Page 17 of 90

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 18 of 90

previously within the standard deviation of the results.

7.4.1.2 Moderator Density Effects

The reactivity effect of reducing the moderator density was investigated by running a series of cases and plotting the results. The intact, unborated stainless steel basket case was used as a base and 10 cases were fun with water densities ranging between 98% and 0%. The curve generated from these cases is shown in Figure 7.4.1.2-1. The values used to generate the curve are $k_{eff} + 2\sigma$. The k_{eff} is shown to drop with the moderator density. In order to demonstrate that borated stainless steel or collapsing of the array have no effect on this trend, the 98%, 95%, and 0% cases were repeated for the intact, borated case and the borated and unborated collapsed cases. The results are shown on the same curve and are identified on the legend. The k_{eff} (±2 σ) values calculated for the different cases are listed below. The 100% moderator density cases presented in the previous section were also plotted in Figure 7.4.1.2-1.

Design Basis SNF, Intact, No Boron, 98% Density	-	$1.0044 \pm .0034$
Design Basis SNF, Intact, No Boron, 95% Density	-	$0.9959 \pm .0044$
Design Basis SNF, Intact, No Boron, 90% Density	-	$0.9870 \pm .0055$
Design Basis SNF, Intact, No Boron, 80% Density	-	$0.9705 \pm .0056$
Design Basis SNF, Intact, No Boron, 60% Density	-	$0.9115 \pm .0042$
Design Basis SNF, Intact, No Boron, 40% Density	-	$0.8119 \pm .0039$
Design Basis SNF, Intact, No Boron, 20% Density	-	$0.6332 \pm .0051$
Design Basis SNF, Intact, No Boron, 10% Density	-	$0.4996 \pm .0028$
Design Basis SNF, Intact, No Boron, 5% Density	-	$0.4100 \pm .0030$
Design Basis SNF, Intact, No Boron, 1% Density	-	$0.3193 \pm .0024$
Design Basis SNF, Intact, No Boron, 0% Density	-	$0.2934 \pm .0017$
Design Basis SNF, Intact, With Boron, 98% Density	-	$0.8674 \pm .0045$
Design Basis SNF, Intact, With Boron, 95% Density	-	$0.8597 \pm .0034$
Design Basis SNF, Intact, With Boron, 0% Density	-	$0.2813 \pm .0015$
Design Basis SNF, Collapsed, No Boron, 98% Density	-	$1.0152 \pm .0030$
Design Basis SNF, Collapsed, No Boron, 95% Density	-	$1.0085 \pm .0042$
Design Basis SNF, Collapsed, No Boron, 0% Density	-	$0.2975 \pm .0014$
Design Basis SNF, Collapsed, With Boron, 98% Density	-	$0.8758 \pm .0040$
Design Basis SNF, Collapsed, With Boron, 95% Density	-	$0.8647 \pm .0052$
Design Basis SNF, Collapsed, With Boron, 0% Density	-	$0.2862 \pm .0016$

7.4.1.3 Time Effects

1

The long-term time effects on the criticality potential of SNF in a WP are a criticality concern unique to the MGDS. To calculate the time effect on criticality, isotopic composition information at different time steps was required. The required isotopic compositions for the

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Scoping Analysis

Page 19 of 90

fuel characteristics at 27 selected decay times were generated using the SAS2H sequence of SCALE4.2^{5.22}. Output of the isotopic composition of the fuel at the 27 times were then used to generate number densities that were entered into MCNP model input files. Each time step for the fuel characteristics represents an MCNP model input file. The results from the MCNP runs are consolidated to form a plot of the change in the criticality of the UCF WP (k_{eff}) over time. The results ($k_{eff} + 2\sigma$) are shown in Figures 7.4.1.3-1, -2, -3 and -4 for the 3.00% U-235 Enrichment, 20 GWd/MTU design basis fuel in the different models, as indicated in the titles. The k_{eff} (±2 σ) values calculated for the different cases are listed below in Table 7.4.1.3-1.

Each of the four curves generated have the same basic behavior. For the first ~200 years after discharge, the criticality potential of SNF decreases as the Pu-241 (13.2-year half-life) fissile material decays. From ~200 years to ~10,000 - 20,000 years, the criticality potential of the SNF increases as Pu-240 (6,580-year half-life) and the medium half-life neutron absorbers decay. After the ~20,000-year local peak, the criticality potential of the SNF decreases again as the Pu-239 (24,400-year half-life) fissile material decays. In all cases the reactivity at 5 years decay is conservatively higher than the reactivity at all later times.

TIME (Years)	Intact No B	Intact With B	Collapsed No B	Collapsed With B
1	$1.0211 \pm .0039$	$0.8844 \pm .0051$	$1.0372 \pm .0035$	$0.8907 \pm .0048$
5	$1.0086 \pm .0034$	$0.8730 \pm .0037$	$1.0180 \pm .0037$	0.8784 ± .0033
10	$0.9947 \pm .0042$	$0.8625 \pm .0040$	$1.0047 \pm .0028$	$0.8646 \pm .0031$
20	$0.9767 \pm .0033$	0.8469 ± .0029	$0.9914 \pm .0034$	$0.8515 \pm .0041$
50	$0.9616 \pm .0031$	$0.8299 \pm .0038$	0.9768 ± .0031	$0.8397 \pm .0040$
100	$0.9602 \pm .0033$	$0.8269 \pm .0038$	$0.9700 \pm .0041$	$0.8338 \pm .0038$
200	$0.9613 \pm .0027$	0.8347 ± .0037	0.9694 ± .0037	$0.8353 \pm .0032$
300	0.9606 ± .0033	$0.8348 \pm .0032$	$0.9711 \pm .0031$	$0.8417 \pm .0035$
400	$0.9673 \pm .0037$	0.8401 ± .0039	0.9733 ± .0033	0.8397 ± .0044
500	0.9646 ± .0039	0.8380 ± .0035	$0.9787 \pm .0041$	0.8447 ± .0037
1000	$0.9730 \pm .0027$	$0.8381 \pm .0032$	$0.9839 \pm .0043$	$0.8483 \pm .0034$
4000	$0.9775 \pm .0035$	0.8455± .0041	0.9934 ± .0036	0.8527 ± .0039

Table 7.4.1.3-1 Time Effects k_{eff} (±2 σ) Values for 21 PWR Assembly UCF WP in Different Configurations.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

	Pa	ade	20	of	90
--	----	-----	----	----	----

	<u>,</u>			
TIME (Years)	Intact No B	Intact With B	Collapsed No B	Collapsed With B
8000	0.9888 ± .0030	$0.8548 \pm .0034$	$0.9966 \pm .0032$	0.8556 ± .0043
10000	0.9849 ± .0045	$0.8521 \pm .0032$	$0.9965 \pm .0042$	$0.8565 \pm .0043$
14000	$0.9903 \pm .0032$	$0.8546 \pm .0036$	$1.0000 \pm .0036$	0.8557 ± .0046
18000	0.9902 ± .0034	$0.8482 \pm .0042$	0.9988 ± .0036	$0.8583 \pm .0036$
22000	0.9844 ± .0037	$0.8505 \pm .0037$	$1.0009 \pm .0034$	$0.8526 \pm .0032$
26000	$0.9834 \pm .0035$	$0.8485 \pm .0031$	$0.9980 \pm .0040$	$0.8535 \pm .0044$
30000	$0.9851 \pm .0032$	$0.8484 \pm .0037$	$0.9964 \pm .0032$	0.8496 ± .0036
36000	0.9794 ± .0033	$0.8430 \pm .0034$	$0.9935 \pm .0032$	$0.8426 \pm .0042$
45000	$0.9715 \pm .0031$	$0.8389 \pm .0035$	$0.9854 \pm .0032$	$0.8389 \pm .0034$
60000	$0.9640 \pm .0033$	$0.8276 \pm .0043$	$0.9786 \pm .0027$	0.8296 ± .0040
70000	$0.9603 \pm .0038$	$0.8263 \pm .0043$	$0.9763 \pm .0037$	$0.8293 \pm .0032$
100000	$0.9543 \pm .0034$	$0.8222 \pm .0041$	$0.9696 \pm .0031$	$0.8202 \pm .0034$
250000	$0.9545 \pm .0038$	$0.8171 \pm .0047$	$0.9649 \pm .0031$	$0.8188 \pm .0033$
500000	$0.9536 \pm .0027$	$0.8206 \pm .0034$	$0.9692 \pm .0031$	$0.8210 \pm .0044$
999999	$0.9555 \pm .0029$	$0.8182 \pm .0049$	$0.9720 \pm .0035$	$0.8212 \pm .0036$

7.4.1.4 Control Panel Loading

The stainless steel base used for fabrication of the baskets can contain up to 2.25 percent boron by weight in the stainless steel 316B (SS-B) material^{5.25}. To retain near peak mechanical properties, boron contents ≤ 1.75 weight percent are preferred. This corresponds to a 316B6A grade with a nominal boron weight percent of 1.6.

Without long-term material tests to confirm the removal rate of boron, some initial engineering estimates have been made for the loss rate of $B-10^{5.18}$. These evaluations indicate that ~20 percent of the B-10 could be removed from the 316B6A over the 10,000 years of disposal isolation. Based on this estimate and the materials considerations listed above, the previous calculations which contained 316B6A were performed with a nominal 1.6 weight percent loading minus 20% of the boron.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 21 of 90

In order to demonstrate the effect of changing the boron loading in the 316B6A, a series of calculations were performed varying the loading from 0.4 to 2.0 percent of natural boron using the intact array model. The curve generated from these results ($k_{eff} + 2\sigma$) is shown in Figure 7.4.1.4-1. The concentration indicated on the x-axis is the actual loading; these concentrations have not been reduced by the 20% loss factor for 10,000 years. The k_{eff} ($\pm 2\sigma$) values calculated for the different cases are listed below. Checking of the analysis revealed that the iron weight percent in the SS316 (316B4A) material of the 1.0 percent natural boron loaded case (input filename: ucb21b3; corresponding attachment: CXXXVIII) should have been 60.045 weight percent instead of 60.445 weight percent as input. Based on engineering judgement the effect of the increased iron weight percent on the calculation results is negligible.

The change in reactivity which can be determined from this curve would be equally applicable to the collapsed array cases, as indicated by the results presented in section 7.4.1.1. Based on this curve, approximately 1.2 weight percent natural boron is required in the stainless steel basket material for the collapsed array model to meet the 0.95 limit when the bias and uncertainty is applied. This indicates that a minimum initial boron loading of 1.5 weight percent is required for the 21 PWR assembly UCF waste package when the 20 percent loss margin is applied. Note that this analysis was performed for an intact 0.5 cm tube thickness (1 cm 316B6A between assemblies). Future analysis will need to account for loss of the stainless steel as well as the boron.

Design Basis SNF, Intact, 0.4 wt% B	-	$0.9213 \pm .0046$
Design Basis SNF, Intact, 0.87 wt% B	-	$0.8874 \pm .0051$
Design Basis SNF, Intact, 1.0 wt% B	-	$0.8833 \pm .0035$
Design Basis SNF, Intact, 1.2 wt% B	-	$0.8755 \pm .0042$
Design Basis SNF, Intact, 1.6 wt% B	-	$0.8655 \pm .0040$
Design Basis SNF; Intact, 2.0 wt% B	-	$0.8560 \pm .0033$

÷.,

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 22 of 90

Scoping Analysis

7.4.2 44 Assembly BWR

The 44 BWR fuel assembly basket is formed by 11 tubes stacked in a square array in each quarter of the waste package on a nominal 16.00-cm (6.30 inches) center-to-center spacing. The array is interrupted along the center line on the X and Y axes by an aluminum thermal shunt 2.0 cm (0.79 inches) thick. The fuel cell opening provided is 15.3 cm (6.02 inches). The fuel cell tubes are formed from 0.35-cm (0.14-inch) thick borated stainless steel plates (316B6A). Checking of this analysis revealed that the iron weight percent of 64.545 in the SS316L material composition should have been input as 65.545 weight percent. Based on engineering judgement the effect of the reduced iron weight percent on the calculation is negligible.

The cross-sectional view in the X-Y plane of the physical MCNP model was generated with the MCNP plotting capability and is shown in Figure 7.4.2-1. The cross-sectional view in the X-Y plane of the physical MCNP model for the collapsed geometry is shown in Figure 7.4.2-2. An axial view of the intact geometry model is shown in Figure 7.4.2-3.

The assembly axial and radial burnup variations and differential loading effects have not been accounted for in the models. These effects could be significant for the BWR models and will be thoroughly investigated in the future.

7.4.2.1 Standard Evaluation

۱ :

Calculations were performed for intact and collapsed geometries, with and without boron in the stainless steel, for the fresh fuel and design basis SNF (3.00% U-235 Enrichment, 20 GWd/MTU) at five years decay. The k_{eff} (±2 σ) values calculated for the different cases are as follow:

Design Basis SNF, Intact, No Boron	-	$0.8622 \pm .0033$
Fresh Fuel, Intact, No Boron	-	$1.0575 \pm .0032$
Design Basis SNF, Intact, With Boron	-	$0.6774 \pm .0039$
Fresh Fuel, Intact, With Boron	-	$0.8335 \pm .0048$
Design Basis SNF, Collapsed, No Boron	-	$0.9114 \pm .0024$
Fresh Fuel, Collapsed, No Boron	-	$1.1273 \pm .0038$
Design Basis SNF, Collapsed, With Boron	-	$0.6895 \pm .0043$
Fresh Fuel, Collapsed, With Boron	-	$0.8582 \pm .0043$

The burnup credit reactivity worth { $(k_2 - k_1) / (k_1 * k_2)$ } is shown below for the four sets of

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 23 of 90

cases along with the reactivity worth for comparisons between sets with the design basis SNF.

Intact, No Boron	-	$-0.214 \pm .00$	005	
Intact, With Boron	-	$-0.276 \pm .000$	011	
Collapsed, No Boron	-	$-0.210 \pm .00$	004	
Collapsed, With Boron	-	$-0.285 \pm .000$	011	
Intact, Boron vs. No Boro	n	-	-0.31	6 ± .010
Collapsed vs. Intact, No B	oron	-	0.06	63 ± .005
Collapsed vs. Intact, With	Boron	-	0.02	26 ± .012
Collapsed, Boron vs. No H	Boron	-	-0.35	53 ± .009

Note that some boron credit is required with burnup credit in order to meet limits for the collapsed arrays but only one or the other is required for intact arrays. Burnup credit is not required with full boron credit in either the intact or collapsed arrays. With biases applied, (0.06) the two cases with boron and burnup credit meet the 0.95 value limit established in 10 CFR 60.131(b)(7) by a significant margin. Burnup credit appears to be slightly enhanced with the addition of boron. Collapsing the array appears to slightly enhance the effectiveness of the boron. The worth of collapsing the array appears to be reduced by 50% with boron present and burnup credit.

The change in reactivity in going from the 21 PWR assembly to the 44 BWR assembly design for each of the four models with the design basis fuel (DBF) is indicated below.

Intact, No Boron	-	$-0.168 \pm .006$
Intact, With Boron	-	$-0.331 \pm .010$
Collapsed, No Boron	-	$-0.115 \pm .005$
Collapsed, With Boron	-	$-0.312 \pm .010$

To demonstrate the effect of fission products, two additional calculations were run corresponding to the intact, design basis SNF cases with and without boron for only actinides. The k_{eff} values for the Actinides Only cases are $0.9139 \pm .0035$ and $0.7122 \pm .0034$ for the no boron and boron cases, respectively. The corresponding reactivity values for the Actinides Only cases are $0.066 \pm .006$ and $0.072 \pm .011$.

The assembly shroud (Zircaloy-2) was included in the models. The reactivity effect of the shrouds was investigated by running a set of additional cases for the DBF at 5 years decay with the shrouds replaced by water. For the collapsed models with and without boron, an

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

additional case was run in which the basket was collapsed into the space which would normally be occupied by the shroud. The results for each of these cases is indicated below. Within the 95% confidence interval of the data, the results are essentially the same except for the intact, no boron case. The most significant difference is between the intact, no boron cases where the change in reactivity is approximately -1.5%.

Intact, No Boron	-	$0.8509 \pm .0031$
Intact, With Boron	-	$0.6753 \pm .0034$
Collapsed, No Boron	-	$0.9103 \pm .0027$
Collapsed, With Boron	-	0.6950 ± .0039
Collapsed, No Boron, extra collapse	-	$0.9134 \pm .0026$
Collapsed, With Boron, extra collapse	-	$0.6905 \pm .0044$

7.4.2.2 Moderator Density Effects

The reactivity effect of reducing the moderator density was investigated by running a series of cases and plotting the results. The intact, unborated stainless steel basket case was used as a base and 10 cases were run with water densities ranging between 98% and 0%. The curve generated from these cases is shown in Figure 7.4.2.2-1. The values used to generate the curve are $k_{eff} + 2\sigma$. The k_{eit} is shown to drop with the moderator density. In order to demonstrate that borated stainless steel or collapsing of the array have no effect on this trend, the 98%, 95%, and 0% cases were repeated for the intact, borated case and the borated and unborated collapsed cases. The results are shown on the same curve and are identified on the legend. The k_{eff} (±2 σ) values calculated for the different cases are listed below. The 100% moderator density cases presented in the previous section were also plotted in Figure 7.4.2.2-1.

Design Basis	SNF, Intact,	No Boron,	98% Density	-	$0.8576 \pm .0033$
Design Basis	SNF, Intact,	No Boron,	95% Density	-	$0.8541 \pm .0043$
Design Basis	SNF, Intact,	No Boron,	90% Density	-	$0.8551 \pm .0032$
Design Basis	SNF, Intact,	No Boron,	80% Density	-	$0.8436 \pm .0035$
Design Basis	SNF, Intact,	No Boron,	60% Density	-	$0.8092 \pm .0029$
Design Basis	SNF, Intact,	No Boron,	40% Density	-	$0.7424 \pm .0034$
Design Basis	SNF, Intact,	No Boron,	20% Density	-	$0.6029 \pm .0025$
Design Basis	SNF, Intact,	No Boron,	10% Density	-	$0.4695 \pm .0022$
Design Basis	SNF, Intact,	No Boron,	5% Density	-	$0.3746 \pm .0024$
Design Basis	SNF, Intact,	No Boron,	1% Density	-	$0.2904 \pm .0013$
Design Basis	SNF, Intact,	No Boron,	0% Density	-	$0.2749 \pm .0013$

Page 24 of 90

Page 25 of 90

Title: UCF V	Vaste Package	Criticality	Analysis	
Document Id	entifier: BBAA	400000-017	17-0200-00005	REV 00

Design Basis	SNF, Intact, With Boron, 98% Density	-	$0.6693 \pm .0033$
Design Basis	SNF, Intact, With Boron, 95% Density	-	$0.6660 \pm .0040$
Design Basis	SNF, Intact, With Boron, 0% Density	-	$0.2575 \pm .0012$
Design Basis	SNF, Collapsed, No Boron, 98% Density	-	$0.9091 \pm .0038$
Design Basis	SNF, Collapsed, No Boron, 95% Density	-	$0.9030 \pm .0031$
Design Basis	SNF, Collapsed, No Boron, 0% Density	-	$0.2854 \pm .0011$
Design Basis	SNF, Collapsed, With Boron, 98% Density	-	$0.6867 \pm .0041$
Design Basis	SNF, Collapsed, With Boron, 95% Density	-	$0.6803 \pm .0038$
Design Basis	SNF, Collapsed, With Boron, 0% Density	-	$0.2689 \pm .0013$

7.4.2.3 Time Effects

The long-term time effects for the design basis BWR fuel are similar to those described in Section 7.4.1.3 for the 21 PWR assembly UCF WP. The design basis U-235 enrichments and burnup are essentially the same, and only neutron spectrum effects will contribute to differences, producing slightly higher plutonium inventories in the BWR. The required isotopic compositions for the fuel characteristics at 27 selected decay times were generated using the SAS2H sequence of SCALE4.2^{5.21} and used in MCNP cases to generate the results. The results ($k_{eff} + 2\sigma$) are shown in Figures 7.4.2.3-1, -2, -3, and -4 for the 3.00% U-235 Enrichment, 20 GWd/MTU design basis fuel in the different models, as indicated in the titles. The k_{eff} ($\pm 2\sigma$) values calculated for the different cases are listed in Table 7.4.2.3-1.

Each of the four curves generated have the same basic behavior. For the first ~200 years after discharge, the criticality potential of SNF decreases as the Pu-241 (13.2-year half-life) fissile material decays. From ~200 years to ~10,000 years, the criticality potential of the SNF increases as Pu-240 (6,580-year half-life) and the medium half-life neutron absorbers decay. After the ~10,000-year local peak, the criticality potential of the SNF decreases again as the Pu-239 (24,400-year half-life) fissile material decays. In all cases the reactivity at 5 years decay is conservatively higher than the reactivity at all later times. The curves, in general, follow the trends identified for the 21 assembly PWR design with the exceptions of a narrower, slightly earlier, secondary peak and a slight rise in k_{eff} from 100,000 year out to 1,000,000 years. The troughs in the BWR curve are not as pronounced as those in the PWR curve. The BWR local peaks are slightly closer to the 5 year decay value than those for the PWR design.

٠,

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 26 of 90

Scoping Analysis

Table 7.4.2.3-1	Time Effects k_{eff} (±2 σ)	Values for 44 BWR	Assembly UCI	WP in Different
Configurations.				

TIME (Years)	Intact No B	Intact With B	Collapsed No B	Collapsed With B
1	$0.8735 \pm .0040$	$0.6851 \pm .0033$	$0.9206 \pm .0035$	0.7029 ± .0045
5	$0.8622 \pm .0033$	0.6774 ± .0039	$0.9114 \pm .0024$	$0.6895 \pm .0043$
10	$0.8503 \pm .0037$	$0.6694 \pm .0032$	$0.8983 \pm .0043$	$0.6861 \pm .0033$
20	$0.8355 \pm .0035$	$0.6565 \pm .0033$	$0.8817 \pm .0028$	0.6708 ± .0036
50	$0.8269 \pm .0031$	$0.6476 \pm .0034$	0.8773 ± .0033	0.6640 ± .0035
100	$0.8214 \pm .0036$	$0.6423 \pm .0045$	$0.8739 \pm .0047$	$0.6637 \pm .0035$
200	$0.8251 \pm .0030$	$0.6481 \pm .0035$	$0.8712 \pm .0035$	$0.6666 \pm .0037$
300	$0.8290 \pm .0043$	$0.6509 \pm .0039$	$0.8789 \pm .0035$	$0.6650 \pm .0033$
400	$0.8292 \pm .0035$	$0.6538 \pm .0038$	$0.8769 \pm .0028$	$0.6656 \pm .0043$
500	$0.8373 \pm .0037$	$0.6565 \pm .0038$	$0.8808 \pm .0032$	$0.6667 \pm .0029$
1000	$0.8348 \pm .0033$	$0.6630 \pm .0037$	$0.8857 \pm .0037$	$0.6690 \pm .0036$
4000	$0.8434 \pm .0032$	$0.6589 \pm .0040$	$0.8874 \pm .0037$	$0.6760 \pm .0035$
8000	$0.8429 \pm .0037$	$0.6609 \pm .0041$	$0.8937 \pm .0034$	$0.6762 \pm .0041$
10000	$0.8463 \pm .0032$	$0.6584 \pm .0038$	$0.8920 \pm .0032$	$0.6760 \pm .0039$
14000	0.8444 ± .0025	$0.6615 \pm .0036$	$0.8959 \pm .0022$	$0.6698 \pm .0025$
18000	$0.8377 \pm .0034$	$0.6536 \pm .0029$	$0.8910 \pm .0039$	$0.6645 \pm .0035$
22000	$0.8326 \pm .0027$	$0.6494 \pm .0044$	$0.8895 \pm .0041$	$0.6620 \pm .0032$
26000	$0.8319 \pm .0042$	$0.6490 \pm .0038$	$0.8860 \pm .0032$	$0.6601 \pm .0038$
30000	$0.8314 \pm .0035$	$0.6466 \pm .0038$	$0.8834 \pm .0044$	$0.6589 \pm .0028$
36000	$0.8256 \pm .0036$	$0.6433 \pm .0031$	$0.8801 \pm .0028$	$0.6536 \pm .0031$
45000	$0.8140 \pm .0037$	$0.6331 \pm .0051$	0.8677 ± .0026	0.6474 ± .0040
60000	0.8106 ± .0041	0.6327 ± .0034	0.8657 ± .0029	$0.6418 \pm .0030$

Scoping Analysis

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 27 of 90

TIME (Years)	Intact No B	Intact With B	Collapsed No B	Collapsed With B
70000	$0.8106 \pm .0041$	$0.6301 \pm .0038$	$0.8637 \pm .0036$	$0.6400 \pm .0035$
100000	$0.8122 \pm .0036$	$0.6289 \pm .0028$	$0.8654 \pm .0028$	$0.6385 \pm .0041$
250000	$0.8108 \pm .0032$	$0.6294 \pm .0039$	$0.8663 \pm .0035$	$0.6398 \pm .0031$
500000	$0.8151 \pm .0034$	$0.6330 \pm .0030$	$0.8673 \pm .0031$	$0.6421 \pm .0036$
999999	$0.8143 \pm .0036$	$0.6337 \pm .0037$	$0.8670 \pm .0035$	$0.6440 \pm .0031$

7.4.2.4 Control Panel Loading

In order to demonstrate the effect of changing the boron loading in the 316B6A, a series of calculations were performed varying the loading from 0.4 to 2.0 percent of natural boron using the intact array model with DBF. The curve generated from these results ($k_{eff} + 2\sigma$) is shown in Figure 7.4.2.4-1. The concentration indicated on the x-axis is the actual loading; these concentrations have not been reduced by the 20% loss factor for 10,000 years. The k_{eff} ($\pm 2\sigma$) values calculated for the different cases are listed below. The change in reactivity which can be determined from this curve would be equally applicable to the collapsed array cases, as indicated by the results presented in section 7.4.2.1. Based on this curve, approximately 0.08 weight percent boron is required in the stainless steel basket material for the collapsed array model with DBF to meet the 0.95 limit when the bias and uncertainty is applied. This indicates that a minimum initial loading of 0.10 weight percent is required for the 44 BWR assembly UCF waste package when the 20 percent loss margin is applied. The 0.10 weight percent boron is less than 10% of that required for the 21 PWR design.

Design Ba	isis SNF, l	Intact, C).4 wt% B		-	$0.7353 \pm .0034$
Design Ba	isis SNF, I	Intact, C).87 wt%	В	-	$0.6965 \pm .0042$
Design Ba	sis SNF, I	Intact, 1	l.0 wt% B	5	-	$0.6878 \pm .0033$
Design Ba	isis SNF, I	Intact, I	1.2 wt% B	3	-	$0.6794 \pm .0039$
Design Ba	isis SNF, I	Intact, 1	1.6 wt% B	3	-	$0.6653 \pm .0037$
Design Ba	sis SNF, 1	Intact, 2	2.0 wt% E	3	-	$0.6521 \pm .0040$

: 4

Checking of the analysis revealed that the iron weight percent in the SS316 (316B4A) material of the 1.0 percent natural boron loaded case (input filename: ucb44b3; corresponding attachment: CCXC) should have been 60.045 weight percent instead of 60.445 weight percent as input. Based on engineering judgement the effect of the increased iron weight percent on the calculation results is negligible.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Scoping Analysis

Page 28 of 90

7.5 Small UCF Calculations

This section provides the results of the analyses for PWR and BWR configurations. The calculations performed for the small UCF designs are a subset of those for the large designs. The basket arrays and materials are the same between large and small design, so the size of the package is the most significant effect. Changes to parameters such as boron loading in the basket, control rods, moderator density, or burnup credit would cause a similar change in reactivity in both the large and small packages.

The 12 assembly PWR design does meet acceptance criteria without additional criticality control measures beyond burnup credit and 316B6A control panels. The 24 assembly BWR design, like the 44 assembly BWR design, meets acceptance criteria with control panels alone. Boron loading in the stainless steel control panels is not required to supplement burnup credit in order to meet acceptance criteria for the 24 BWR design. The reactivity worth in going from the large to the small package is approximately 4% and 5% for the PWR and BWR packages, respectively.

7.5.1 12 Assembly PWR

The 12 PWR fuel assembly basket is formed by 3 tubes stacked in a square array in each quarter of the waste package on a nominal 23.35-cm (9.19 inches) center-to-center spacing. The array is interrupted along the centerline on the X and Y axes by an aluminum thermal shunt 1.0 cm (0.39 inches) thick. Checking of this analysis revealed that the aluminum thermal shunt was modeled as 2.0 cm thick instead of 1.0 cm thick. Based on engineering judgement the extra thickness of the aluminum thermal shunt does not significantly effect the results of the calculation. The fuel cell opening provided is 22.35 cm (8.80 inches). The fuel cell tubes are formed from 0.5-cm (0.20 inch) thick borated stainless steel plates (316B6A). Checking of this analysis revealed that the iron weight percent of 60.245 in the SS316 (316B6A) material composition should have been input as 60.445 weight percent. Based on engineering judgement the effect of the reduced iron weight percent on the calculation is negligible.

The cross-sectional view in the X-Y plane of the physical MCNP model for the 12 assembly PWR UCF waste package was generated with the MCNP plotting capability and is shown in Figure 7.5.1-1. The cross-sectional view in the X-Y plane of the physical MCNP model for the collapsed geometry is shown in Figure 7.5.1-2. An axial view of the intact geometry model is shown in Figure 7.5.1-3.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 29 of 90

7.5.1.1 Standard Evaluation

Calculations were performed for intact and collapsed geometries, with and without boron in the stainless steel, for the design basis SNF (3.00% U-235 Enrichment, 20 GWd/MTU) at five years decay. The k_{eff} (±2 σ) values calculated for the different cases are as follow:

Design Basis SNF, Intact, No Boron	-	$0.9706 \pm .0037$
Design Basis SNF, Intact, With Boron	-	$0.8513 \pm .0048$
Design Basis SNF, Collapsed, No Boron	-	$0.9828 \pm .0039$
Design Basis SNF, Collapsed, With Boron	-	$0.8488 \pm .0056$

The reactivity worth { $(k_2 - k_1) / (k_1 * k_2)$ } for comparisons between sets is shown below.

Intact, Boron vs. No Boron	-	$-0.144 \pm .008$
Collapsed vs. Intact, No Boron	-	$0.013 \pm .006$
Collapsed vs. Intact, With Boron	-	$0.003 \pm .010$
Collapsed, Boron vs. No Boron	-	$-0.161 \pm .009$

With biases applied (0.06), the two cases with boron and burnup credit meet the 0.95 value limit established in 10 CFR 60.131(b)(7) by a significant margin. The boron worth for the intact and the collapsed cases is the same within the 95% confidence interval ($\pm 2\sigma$). The worth of collapsing the array is approximately the same whether or not boron is present. The reactivity worths indicated above are consistent with those presented for the 21 assembly PWR UCF waste package. The change in reactivity in going from the 21 assembly to the 12 assembly design for each of the four models is indicated in the values listed below.

Intact, No Boron	-	$-0.039 \pm .005$
Intact, With Boron	-	$-0.029 \pm .008$
Collapsed, No Boron	-	$-0.035 \pm .005$
Collapsed, With Boron	-	$-0.040 \pm .009$

7.5.1.2 Moderator Density Effects

- , -

1

The reactivity effect of reducing the moderator density was investigated for the 21 assembly UCF waste package in section 7.4.1.2. The results are applicable to the small package as well.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 30 of 90

7.5.1.3 Time Effects

The required isotopic compositions for the fuel characteristics at 16 selected decay times were obtained from the same SAS2H calculations^{5.22} used for the 21 assembly waste package analysis and were used in MCNP cases to generate the results. The results ($k_{eff} + 2\sigma$) are shown in Figures 7.5.1.3-1, -2, -3, and -4 for the 3.00% U-235 Enrichment, 20 GWd/MTU design basis fuel in the different models, as indicated in the titles. These curves are smoother than those presented for the 21 PWR assembly UCF design because fewer decay times were used for the 12 assembly design. The purpose of these curves is to demonstrate the same basic behavior shown for the larger UCF design. The k_{eff} (±2 σ) values calculated for the different cases are listed below in Table 7.5.1.3-1.

Each of the four curves generated have the same basic behavior. For the first ~200 years after discharge, the criticality potential of SNF decreases as the Pu-241 (13.2-year half-life) fissile material decays. From ~200 years to ~10,000 - 20,000 years, the criticality potential of the SNF increases as Pu-240 (6,580-year half-life) and the medium half-life neutron absorbers decay. After the ~20,000-year local peak, the criticality potential of the SNF decreases again as the Pu-239 (24,400-year half-life) fissile material decays. In all cases the reactivity at 5 years decay is conservatively higher than the reactivity at all later times.

TIME (Years)	Intact No B	Intact With B	Collapsed No B	Collapsed With B
1	$0.9853 \pm .0028$	0.8595 ± .0046	0.9999 ± .0034	$0.8617 \pm .0038$
5	$0.9706 \pm .0037$	$0.8513 \pm .0048$	$0.9828 \pm .0039$	0.8488 ± .0056
10	_	_	-	_
20	$0.9442 \pm .0034$	$0.8248 \pm .0031$	$0.9585 \pm .0031$	$0.8272 \pm .0050$
50	$0.9237 \pm .0037$	$0.8068 \pm .0036$	0.9387 ± .0039	$0.8079 \pm .0031$
100	$0.9246 \pm .0044$	$0.8043 \pm .0042$	0.9360 ± .0049	$0.8092 \pm .0040$
200	1.p. 	-	-	-
300	$0.9239 \pm .0033$	$0.8051 \pm .0035$	$0.9388 \pm .0041$	$0.8123 \pm .0037$
400	-	-	-	• _

Table 7.5.1.3-1 Time Effects k_{eff} (±2 σ) Values for 12 PWR Assembly UCF WP in Different Configurations.

14 -14

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

۲

Page 31 of 90

TIME (Years)	Intact No B	Intact With B	Collapsed No B	Collapsed With B
500	_	_	_	-
1000	0.9375 ± .0039	$0.8155 \pm .0042$	$0.9513 \pm .0036$	0.8197 ± .0038
4000	$0.9445 \pm .0038$	$0.8219 \pm .0033$	0.9590 ± .0035	$0.8293 \pm .0035$
8000	$0.9523 \pm .0048$	$0.8287 \pm .0045$	0.9661 ± .0039	$0.8255 \pm .0043$
10000	··· _	-	-	-
14000	0.9566 ± .0033	$0.8264 \pm .0040$	$0.9663 \pm .0033$	$0.8280 \pm .0050$
18000	-	-	-	-
22000	$0.9516 \pm .0040$	0.8266 ± .0036	$0.9690 \pm .0039$	$0.8262 \pm .0031$
26000	-	-	-	-
30000	_	-	-	-
36000	$0.9424 \pm .0040$	$0.8181 \pm .0031$	0.9599 ± .0035	$0.8196 \pm .0048$
45000	-	-	-	-
60000	0.9298 ± .0030	$0.8016 \pm .0045$	$0.9426 \pm .0040$	$0.8081 \pm .0037$
70000	_	-	-	-
100000	$0.9177 \pm .0035$	$0.7954 \pm .0038$	$0.9358 \pm .0039$	$0.7930 \pm .0035$
250000	$0.9166 \pm .0040$	$0.7917 \pm .0041$	$0.9359 \pm .0036$	0.7906 ± .0047
500000	-	-	-	-
999999	$0.9219 \pm .0033$	0.7972 ± .0037	$0.9346 \pm .0028$	$0.7965 \pm .0037$

7.5.1.4 Control Panel Loading

The use of control panels containing boron has a similar percentage effect on k_{eff} as that reported for the 21 assembly PWR UCF in Section 7.4.1.4, as shown in Figure 7.4.1.4-1.

7.5.2 24 Assembly BWR

, ′

The 24 BWR fuel assembly basket is formed by 6 tubes stacked in a square array in each quarter of the waste package on a nominal 16.00-cm (6.30 inches) center-to-center spacing.

Scoping Analysis

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00 Scoping Analysis

Page 32 of 90

The array is interrupted along the center line on the X and Y axes by an aluminum thermal shunt 1.0 cm (0.39 inches) thick. The fuel cell opening provided is 15.3 cm (6.02 inches). The fuel cell tubes are formed from 0.35-cm (0.14-inch) thick borated stainless steel plates (316B6A). Checking of this analysis revealed that the iron weight percent of 64.545 in the SS316L material composition should have been input as 65.545 weight percent. Based on engineering judgement the effect of the reduced iron weight percent on the calculation is negligible.

The cross-sectional view in the X-Y plane of the physical MCNP model for the 24 assembly BWR UCF waste package was generated with the MCNP plotting capability and is shown in Figure 7.5.2-1. The cross-sectional view in the X-Y plane of the physical MCNP model for the collapsed geometry is shown in Figure 7.5.2-2. An axial view of the intact geometry model is shown in Figure 7.5.2-3.

7.5.2.1 Standard Evaluation

Calculations were performed for intact and collapsed geometries, with and without boron in the stainless steel, for the design basis SNF (3.00% U-235 Enrichment, 20 GWd/MTU) at five years decay. The k_{eff} (±2 σ) values calculated for the different cases are as follow:

Design Basis SNF, Intact, No Boron	-	$0.8290 \pm .0028$
Design Basis SNF, Intact, With Boron	-	$0.6519 \pm .0042$
Design Basis SNF, Collapsed, No Boron	-	$0.8714 \pm .0031$
Design Basis SNF, Collapsed, With Boron	-	$0.6625 \pm .0038$

The reactivity worth { $(k_2 - k_1) / (k_1 * k_2)$ } for comparisons between sets is shown below.

Intact, Boron vs. No Boron	-	$-0.328 \pm .011$
Collapsed vs. Intact, No Boron	-	$0.059 \pm .006$
Collapsed vs. Intact, With Boron	-	$0.025 \pm .013$
Collapsed, Boron vs. No Boron	-	$-0.362 \pm .010$

With biases applied (0.06), all the cases with burnup credit meet the 0.95 value limit established in 10 CFR 60.131(b)(7) by a significant margin. The worth of collapsing the array appears to be higher with no boron in the stainless steel. The reactivity worths indicated above are consistent within 1.5 percent with those presented for the 44 assembly BWR UCF waste package. The change in reactivity in going from the 44 assembly to the 24 assembly design for each of the four models is indicated below. Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Intact, No Boron	-	-0.046 ± .006
Intact, With Boron		$-0.058 \pm .013$
Collapsed, No Boron	-	$-0.050 \pm .005$
Collapsed, With Boron	-	$-0.059 \pm .013$

7.5.2.2 Moderator Density Effects

The reactivity effect of reducing the moderator density was investigated for the 44 assembly UCF waste package in section 7.4.2.2. The results are applicable to the small package as well.

7.5.2.3 Time Effects

The required isotopic compositions for the fuel characteristics at 16 selected decay times were obtained from the SAS2H calculations used for the 44 assembly waste package analysis^{5.21} and were used in MCNP cases to generate the results. The results ($k_{eff} + 2\sigma$) are shown in Figures 7.5.2.3-1, -2, -3, and -4 for the 3.00% U-235 Enrichment, 20 GWd/MTU design basis fuel in the different models, as indicated in the titles. These curves are smoother than those presented for the 44 BWR assembly UCF design because fewer decay times were used for the 24 assembly design. The purpose of these curves is to demonstrate the same basic behavior shown for the larger UCF design. The k_{eff} (±2 σ) values calculated for the different cases are listed below in Table 7.5.2.3-1.

Each of the four curves generated have the same basic behavior. For the first ~200 years after discharge, the criticality potential of SNF decreases as the Pu-241 (13.2-year half-life) fissile material decays. From ~200 years to ~10,000 - 20,000 years, the criticality potential of the SNF increases as Pu-240 (6,580-year half-life) and the medium half-life neutron absorbers decay. After the ~20,000-year local peak, the criticality potential of the SNF decreases again as the Pu-239 (24,400-year half-life) fissile material decays. In all cases the reactivity at 5 years decay is conservatively higher than the reactivity at all later times.

ь_ет. 4

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 34 of 90

Scoping Analysis

	24.				
Table 7.5.2.3-1	Time Effects k_{eff} (±2 σ)	Values for 24 BWR	Assembly	UCF WP in	n Different
Configurations.					

TIME (Years)	Intact No B	Intact With B	Collapsed No B	Collapsed With B
1	0.8390 ± .0040	0.6619 ± .0037	0.8839 ± .0037	0.6709 ± .0030
5	0.8290 ± .0028	$0.6519 \pm .0042$	$0.8714 \pm .0031$	$0.6625 \pm .0038$
10		-	_	-
20	$0.8019 \pm .0035$	$0.6331 \pm .0034$	0.8427 ± .0035	$0.6450 \pm .0034$
50	$0.7983 \pm .0037$	$0.6248 \pm .0044$	0.8392 ± .0035	$0.6338 \pm .0039$
100	0.7982 ± .0034	$0.6241 \pm .0040$	0.8369 ± .0032	$0.6372 \pm .0027$
200	-	-	-	-
300	0.7984 ± .0042	$0.6265 \pm .0040$	0.8404 ± .0040	$0.6400 \pm .0036$
400	-	-	-	-
500	년: <u>-</u>	-	-	-
1000	0.8085 ± .0036	$0.6342 \pm .0030$	0.8463 ± .0029	$0.6434 \pm .0032$
4000	$0.8108 \pm .0034$	$0.6359 \pm .0028$	$0.8535 \pm .0034$	$0.6443 \pm .0027$
8000	$0.8172 \pm .0041$	$0.6368 \pm .0037$	$0.8535 \pm .0032$	$0.6498 \pm .0035$
10000	-	-	-	_
14000	$0.8146 \pm .0034$	$0.6370 \pm .0039$	$0.8583 \pm .0036$	$0.6437 \pm .0033$
18000	-	-	-	
22000	$0.8035 \pm .0029$	$0.6291 \pm .0034$	$0.8490 \pm .0027$	$0.6369 \pm .0033$
26000	-	-	-	-
30000	-	-	-	-
36000	$0.7955 \pm .0029$	$0.6227 \pm .0035$	0.8401 ± .0035	0.6268 ± .0026
45000	-	-	-	_
60000	$0.7872 \pm .0038$	$0.6127 \pm .0040$	$0.8327 \pm .0030$	$0.6112 \pm .0028$

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 35 of 90

TIME (Years)	Intact No B	Intact With B	Collapsed No B	Collapsed With B
70000	_	-	_	-
100000	$0.7864 \pm .0031$	$0.6093 \pm .0033$	$0.8289 \pm .0031$	$0.6111 \pm .0033$
250000	0.7846 ± .0033	$0.6110 \pm .0029$	$0.8314 \pm .0033$	$0.6114 \pm .0028$
500000	-	-	-	-
999999	$0.7888 \pm .0030$	$0.6134 \pm .0031$	$0.8318 \pm .0035$	$0.6138 \pm .0033$

7.5.2.4 Control Panel Loading

The reactivity effects of varying the boron concentration in the control panels is expected to be similar to those discussed for the 44 BWR UCF disposal containers.

8. Conclusions

With burnup credit and intact 316B6A control panels, the 21 PWR assembly UCF waste package meets the 0.95 (0.89 with bias and uncertainty) value limit established in Title 10 CFR Part 60.131 (b)(7). The 44 BWR assembly waste package meets acceptance criteria with burnup credit and a very low boron loading (0.1 wt% B) in the control panels. The 44 BWR assembly waste package also meets acceptance criteria with highly loaded intact control panels and no burnup credit. The time period in which credit for the control panels can be taken must be defined through detailed probabalistic analyses. The burnup credit reactivity worth is -0.15 and -0.21 for the intact PWR and BWR design basis SNF, respectively. For both the PWR and BWR cases, full density moderation resulted in the highest k_{eff} calculated when varying moderator density.

The 12 assembly PWR design does meet acceptance criteria without additional criticality control measures beyond burnup credit and 316B6A control panels. The 24 assembly BWR design, like the 44 assembly BWR design, meets acceptance criteria with control panels alone. Boron loading in the stainless steel control panels is not required to supplement burnup credit in order to meet acceptance criteria for the 24 BWR design. The reactivity worth in going from the large to the small package is approximately 4% and 5% for the PWR and BWR packages, respectively.

The effect of collapsing the basket array is a positive increase in the values of k_{eff} . An extensive parametric analysis needs to be performed to determine the configuration which provides the highest value of k_{eff} in the waste package.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00B

Page 36 of 90

9. Attachments

The following attachments are case output files as listed. The name of the file is listed in parenthesis. There are a total of 418 MCNP case output files in these attachments. However, the total number of attachment identifiers is 423. The discrepancy between the 418 output files and the 423 attachment identifiers is that the attachment identifiers CCXXIV through CCXXVIII were omitted in the numbering sequence. The discontinuous attachment numbering was maintained with the 5 attachment identifiers omitted.

I.	21 PWR, DBF, Intact, No Boron (ucf21b.O) June 28, 1995; 29 pages
П.	21 PWR, 0 GWd/MTHM, Intact, No Boron (ucf21fro) October 2, 1995;
	27 pages
III.	21 PWR, DBF, Intact, With Boron (ucb21b.O) June 30, 1995; 30 pages
IV.	21 PWR, 0 GWd/MTHM, Intact, With Boron (ucb21fro) September 29, 1995;
	27 pages
V.	21 PWR, DBF, Collapsed, No Boron (ucx21b.O) June 28, 1995; 26 pages
VI.	21 PWR, 0 GWd/MTHM, Collapsed, No Boron (ucx21fro) October 2, 1995;
	24 pages
VII.	21 PWR, DBF, Collapsed, With Boron (ucy21b.O) July 3, 1995; 27 pages
VIII.	21 PWR, 0 GWd/MTHM, Collapsed, With Boron (ucy21fro) October 2, 1995;
	24 pages
IX.	21 PWR, DBF, Intact, With Boron, Actinide Only (ucb21baO) July 8, 1995;
	28 pages
Χ.	21 PWR, DBF, Intact, No Boron, Actinide Only (ucf21baO) July 9, 1995;
	28 pages
XI.	21 PWR, DBF, Intact, No Boron, CDB Based Isotopics (ucf21b.o.cdb)
	May 25, 1995; 29 pages
XII.	21 PWR, DBF, Intact, No Boron, 98% H ₂ O Density (u21ldk.O)
	October 4, 1995; 29 pages
XIII.	21 PWR, DBF, Intact, No Boron, 95% H_2O Density (u211da.O) June 26, 1995;
	29 pages
XIV.	21 PWR, DBF, Intact, No Boron, 90% H_2O Density (u211db.O) June 26, 1995;
	29 pages
XV.	21 PWR, DBF, Intact, No Boron, 80% H_2O Density (u211dc.O) June 26, 1995;
	29 pages
XVI.	21 PWR, DBF, Intact, No Boron, 60% H ₂ O Density (u211dd.O) June 26, 1995;
	29 pages
XVII.	21 PWR, DBF, Intact, No Boron, 40% H_2O Density (u211de.O) June 26, 1995;
Scoping Analysis

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

•

	29 pages
XVIII.	21 PWR, DBF, Intact, No Boron, 20% H_2O Density (u211df.O) June 27, 1995;
	29 pages
XIX.	21 PWR, DBF, Intact, No Boron, 10% H_2O Density (u211dg.O) June 27, 1995;
	29 pages
XX.	21 PWR, DBF, Intact, No Boron, 5% H_2O Density (u211dh.O) June 27, 1995;
	29 pages
XXI.	21 PWR, DBF, Intact, No Boron, 1% H_2O Density (u211di.O) June 27, 1995;
373711	29 pages
XXII.	21 PWR, DBF, Intact, No Boron, 0% H_2O Density (u211dj.O) June 27, 1995;
vvm	29 pages
	October 4, 1005: 30 pages
XXIV	21 PWR DBE Intact With Boron 95% H O Density (b211da O)
	October 4 1995: 30 pages
XXV.	21 PWR DBF Intact With Boron 0% H-O Density (b211di.O)
	October 4, 1995: 30 pages
XXVI.	21 PWR, DBF, Collapsed, No Boron, 98% H ₂ O Density (x21ldk,O)
	October 4, 1995; 26 pages
XXVII.	21 PWR, DBF, Collapsed, No Boron, 95% H ₂ O Density (x21lda.O)
	Ocotber 4, 1995; 26 pages
XXVIII.	21 PWR, DBF, Collapsed, No Boron, 0% H ₂ O Density (x211dj.O)
	October 4, 1995; 26 pages
XXIX.	21 PWR, DBF, Collapsed, With Boron, 98% H ₂ O Density (y211dk.O)
	October 4, 1995; 27 pages
XXX.	21 PWR, DBF, Collapsed, With Boron, 95% H_2O Density (y211da.O)
	October 4, 1995; 27 pages
XXXI.	21 PWR, DBF, Collapsed, With Boron, 0% H ₂ O Density (y211dj.O)
	October 4, 1995; 27 pages
XXXII.	21 PWR, 1 year decay, Intact, No Boron (uct21a.O) June 30, 1995; 29 pages
XXXIII.	21 PWR, 10 year decay, Intact, No Boron (ucf21c.O) June 28, 1995; 29 pages
XXXIV.	21 PWR, 20 year decay, Intact, No Boron (uct21d.O) June 28, 1995; 29 pages
XXXV.	21 PWR, 50 year decay, Intact, No Boron (uci21e.O) June 28, 1995; 29 pages 21 PWP 100 4 1005 20 mages
	21 PWR, 100 year decay, Intact, No Boron ($uc1211.0$) June 28, 1995; 29 pages
	21 PWR, 200 year decay, Intact, No Boron (uci21g.O) June 28, 1995; 29 pages
AAAVIII. VVVIV	21 FWR , 500 year decay, intact, No Boron (uci21n.O) june 28, 1995; 29 pages 21 PWP , 400 year decay, intact, No Boron (uci21n.O) june 28, 1995; 20 pages
ллліл. VI	21 F WK, 400 year decay, infact, No Boron (uci211.0) June 26, 1993; 29 pages 21 DWD, 500 year decay. Infact, No Boron (uci211.0) June 20, 1005; 20 pages
AL. VUI	21 PWD 1000 year decay, Intact, No Boron (uci21J.O) June 29, 1993, 29 pages
17771	21 1 m, 1000 year uccay, infact, no boron (ucr21k.0) june 23, 1933,

Page 37 of 90

Scoping Analysis

Page 38 of 90

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

	r 3
	29 pages
XLII.	21 PWR, 4000 year decay, Intact, No Boron (ucf211.0) June 29, 1995;
	29 pages
XLIII.	21 PWR, 8000 year decay, Intact, No Boron (ucf21m.O) June 29, 1995;
	29 pages
XLIV.	21 PWR, 10,000 year decay, Intact, No Boron (ucf21n.O) June 29, 1995;
	29 pages
XLV.	21 PWR, 14,000 year decay, Intact, No Boron (ucf210.O) June 29, 1995;
	29 pages
XLVI.	21 PWR, 18,000 year decay, Intact, No Boron (ucf21p.O) June 29, 1995;
	29 pages
XLVII.	21 PWR, 22,000 year decay, Intact, No Boron (ucf21q.O) June 29, 1995;
	29 pages
XLVIII.	21 PWR, 26,000 year decay, Intact, No Boron (ucf21r.O) June 29, 1995;
	29 pages
IL.	21 PWR, 30,000 year decay, Intact, No Boron (ucf21s.O) June 29, 1995;
_	29 pages
L.	21 PWR, 36,000 year decay, Intact, No Boron (ucf21t.O) June 29, 1995;
	29 pages 1
LI.	21 PWR, 45,000 year decay, Intact, No Boron (ucf21u.O) June 30, 1995;
	29 pages
LII.	21 PWR, 60,000 year decay, Intact, No Boron (uct21v.O) June 30, 1995;
T 111	29 pages 21 DWD 70 000
LIII.	21 PWR, 70,000 year decay, Intact, No Boron (uci21aaO) June 30, 1995;
1 137	29 pages 21 DWD 100 000 waar daawy Integt No Daron (waf21w O) June 20, 1005.
LIV.	21 PWR, 100,000 year decay, Intact, No Boron (uci21w.O) June 30, 1995;
τV	29 pages 21 DWD 250,000 year decay Intect No Poron (ucf21x O) June 30, 1005;
LY.	21 F WR, $250,000$ year decay, finact, NO BOIOR ($ucr21x.O$) Julie 50, 1995, 20 pages
IVI	27 pages 21 pWP 500 000 year decay. Intact No Boron (ucf21y O) June 30, 1005.
L V I.	20 nages
ιvπ	21 PWR 999 999 year decay Intact No Boron (ucf21z O) June 30 1995
	29 nages
LVIII.	21 PWR 1 year decay Intact With Boron (ucb21a,O) June 30, 1995; 30 pages
LIX.	21 PWR, 10 year decay, Intact, With Boron (ucb21a.c) June 30, 1995;
	30 pages
LX.	21 PWR, 20 year decay, Intact, With Boron (ucb21d.O) July 3, 1995: 30 pages
LXI.	21 PWR, 50 year decay, Intact, With Boron (ucb21e.O) July 1, 1995; 30 pages
LXII.	21 PWR, 100 year decay, Intact, With Boron (ucb21f.O) July 1, 1995;

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

	30 pages
LXIII.	21 PWR, 200 year decay, Intact, With Boron (ucb21g.O) July 1, 1995;
	30 pages
LAIV.	30 pages
LXV.	21 PWR, 400 year decay. Intact. With Boron (ucb21i.O) July 1, 1995; 30 pages
LXVI.	21 PWR, 500 year decay, Intact, With Boron (ucb21j.O) July 1, 1995; 30 pages
LXVII.	21 PWR, 1000 year decay, Intact, With Boron (ucb21k.O) July 1, 1995;
	30 pages
LXVIII.	21 PWR, 4000 year decay, Intact, With Boron (ucb211.0) July 1, 1995;
	30 pages
LXIX.	21 PWR, 8000 year decay, Intact, With Boron (ucb21m.O) July 1, 1995;
IYY	21 DWP 10,000 year decay Intact With Boron (uch21n ()) July 1, 1995.
LAA.	30 nages
LXXI.	21 PWR, 14.000 year decay. Intact. With Boron (ucb210.0) July 1, 1995;
	30 pages
LXXII.	21 PWR, 18,000 year decay, Intact, With Boron (ucb21p.O) July 1, 1995;
	30 pages
LXXIII.	21 PWR, 22,000 year decay, Intact, With Boron (ucb21q.O) July 1, 1995;
IXXIV	29 pages 21 DWP 26 000 year decay Intact With Boron (uch21r O) July 1 1095
LAAT V.	29 nages
LXXV.	21 PWR, 30,000 year decay, Intact, With Boron (ucb21s.O) July 1, 1995;
	29 pages
LXXVI.	21 PWR, 36,000 year decay, Intact, With Boron (ucb21t.O) July 1, 1995;
	29 pages
LXXVII.	21 PWR, 45,000 year decay, Intact, With Boron (ucb21u.O) July 1, 1995;
	29 pages 21 DWR 60.000 year decay Integt With Peron (uch21y O) July 2, 1005:
	21 F W R, 00,000 year decay, infact, with Boron ($ucd21v.O$) July 2, 1995, 29 pages
LXXIX.	21 PWR, 70,000 year decay, Intact, With Boron (ucb21aaO) June 30, 1995;
	29 pages
LXXX.	21 PWR, 100,000 year decay, Intact, With Boron (ucb21w.O) July 2, 1995;
	29 pages
LXXXI.	21 PWR, 250,000 year decay, Intact, With Boron (ucb21x.O) July 2, 1995;
	29 pages 21 DWD 500,000 year decay Intect With Perce (uch21y O) July 2, 1005
LAAAII.	21 r wrk, 500,000 year decay, intact, with Boton (ucd21y.O) July 2, 1995; 29 pages
	z> hazea

Page 39 of 90

Scoping Analysis

Page 40 of 90

Title: UCF Waste Package Criticality AnalysisDocument Identifier: BBAA00000-01717-0200-00005 REV 00

.

LXXXIII.	21 PWR, 999,999 year decay, Intact, With Boron (ucb21z.O) July 2, 1995;
LXXXIV.	29 pages 21 PWR, 1 year decay, Collapsed, No Boron (ucx21a.O) July 3, 1995;
LXXXV.	26 pages 21 PWR, 10 year decay, Collapsed, No Boron (ucx21c.O) July 3, 1995;
LXXXVI.	26 pages 21 PWR, 20 year decay, Collapsed, No Boron (ucx21d.O) July 3, 1995;
LXXXVII.	26 pages 21 PWR, 50 year decay, Collapsed, No Boron (ucx21e.O) July 3, 1995;
IXXXVIII	26 pages 21 PWR 100 year decay Collapsed No Boron (ucx21f O) July 3, 1995
	26 pages 21 PWR, 200 year decay, Collarsed, No Boron (uev21a O) July 4, 1005;
	26 pages
XC.	21 PWR, 300 year decay, Collapsed, No Boron (ucx21h.O) July 4, 1995; 26 pages
XCI.	21 PWR, 400 year decay, Collapsed, No Boron (ucx21i.O) July 4, 1995; 26 pages
XCII.	21 PWR, 500 year decay, Collapsed, No Boron (ucx21j.O) July 4, 1995; 26 pages
XCIII.	21 PWR, 1000 year decay, Collapsed, No Boron (ucx21k.O) July 4, 1995;
XCIV.	20 pages 21 PWR, 4000 year decay, Collapsed, No Boron (ucx211.0) July 4, 1995;
XCV.	26 pages 21 PWR, 8000 year decay, Collapsed, No Boron (ucx21m.O) July 4, 1995;
XCVI.	26 pages 21 PWR, 10,000 year decay, Collapsed, No Boron (ucx21n.O) July 5, 1995;
XCVП.	26 pages 21 PWR, 14,000 year decay, Collapsed, No Boron (ucx210.0) July 5, 1995;
XCVIII	26 pages
IC	26 pages 21 PWR 22,000 year decay, Collapsed, No Boron (ucx21a O) July 5, 1995;
іс. С	26 pages 21 PWR, 22,000 year decay, Conapsed, No Boron (dex214.0) July 5, 1995, 26 pages
C.	21 PWR, 26,000 year decay, Collapsed, No Boron (ucx21r.O) July 5, 1995; 26 pages
CI.	21 PWR, 30,000 year decay, Collapsed, No Boron (ucx21s.O) July 6, 1995; 26 pages
CII.	21 PWR, 36,000 year decay, Collapsed, No Boron (ucx21t.O) July 6, 1995;

.

Page 41 of 90

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

I.

۰,

	26
CIII	20 pages 21 DWD 45 000 year decay. Callenged No Deren (yex21y O) July 5, 1005
CIII.	21 PWR, 45,000 year decay, Conapsed, No Boron (ucx210.0) July 5, 1995;
CIV	20 pages 21 DWD 60.000 year decay. Colleged No Peren (yex21y O) July 7, 1005.
CIV.	21 F WR, 60,000 year decay, Conapsed, No Boron (ucx21v.O) July 7, 1995, 26 pages
CV	20 pages 21 PWP 70.000 year decay. Collapsed. No Boron (ucx21aaO) July 7, 1005:
CV.	26 pages 14
CVI	21 PWR 100 000 year decay Collapsed No Boron (ucx21w O) July 5 1995:
C 11.	26 nages
CVII	21 PWR 250,000 year decay. Collapsed. No Boron (ucx21x O) July 7, 1995.
C + M .	26 nages
CVIII.	21 PWR, 500 000 year decay. Collapsed, No Boron (ucx21y.O) July 6, 1995
	26 pages
CIX.	21 PWR, 999,999 year decay, Collapsed, No Boron (ucx21z.O) July 7, 1995:
	26 pages
CX.	21 PWR., 1 year decay, Collapsed, With Boron (ucy21a.O) July 3, 1995;
2	7 26 Dages
CXI.	21 PWR, 10 year decay, Collapsed, With Boron (ucv21c.O) July 4, 1995;
	27 pages
CXII.	21 PWR, 20 year decay, Collapsed, With Boron (ucy21d.O) July 4, 1995 27/2005
CXIII.	21 PWR, 50 year decay, Collapsed, With Boron (ucy21e.O) July 4, 1995;
	27 pages
CXIV.	21 PWR, 100 year decay, Collapsed, With Boron (ucy21f.O) July 4, 1995;
	27 pages
CXV.	21 PWR, 200 year decay, Collapsed, With Boron (ucy21g.O) July 4, 1995;
	27 pages
CXVI.	21 PWR, 300 year decay, Collapsed, With Boron (ucy21h.O) July 4, 1995;
	27 pages
CXVII.	21 PWR, 400 year decay, Collapsed, With Boron (ucy21i.O) July 4, 1995;
	27 pages
CXVIII.	21 PWR, 500 year decay, Collapsed, With Boron (ucy21j.O) July 4, 1995;
	27 pages
CXIX.	21 PWR, 1000 year decay, Collapsed, With Boron (ucy21k.O) July 5, 1995;
	27 pages
CXX.	21 PWR, 4000 year decay, Collapsed, With Boron (ucy211.0) July 5, 1995;
	27 pages
CXXI.	21 PWR, 8000 year decay, Collapsed, With Boron (ucy21m.O) July 5, 1995;
	27 pages
CXXII.	21 PWR, 10,000 year decay, Collapsed, With Boron (ucy21n.O) July 5, 1995;

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 42 of 90

	27 pages
CXXIII.	21 PWR, 14,000 year decay, Collapsed, With Boron (ucy210.0) July 5, 1995;
	26 pages
CXXIV.	21 PWR, 18,000 year decay, Collapsed, With Boron (ucy21p.O) July 5, 1995;
	26 pages
CXXV.	21 PWR, 22,000 year decay, Collapsed, With Boron (ucy21q.O) July 5, 1995;
	26 pages
CXXVI.	21 PWR, 26,000 year decay, Collapsed, With Boron (ucv21r.O) July 6, 1995;
	26 pages
CXXVII.	21 PWR, 30,000 year decay, Collapsed, With Boron (ucy21s.O) July 6, 1995;
	26 pages
CXXVIII.	21 PWR, 36,000 year decay, Collapsed, With Boron (ucy21t.O) July 6, 1995;
	26 pages
CXXIX.	21 PWR, 45,000 year decay, Collapsed, With Boron (ucy21u.O) July 6, 1995;
	26 pages
CXXX.	21 PWR, 60,000 year decay, Collapsed, With Boron (ucy21v.O) July 6, 1995;
	26 pages
CXXXI.	21 PWR, 70,000 year decay, Collapsed, With Boron (ucy21aaO) July 7, 1995;
	26 pages
CXXXII.	21 PWR, 100,000 year decay, Collapsed, With Boron (ucy21w.O) July 6, 1995;
	26 pages
CXXXIII.	21 PWR, 250,000 year decay, Collapsed, With Boron (ucy21x.O) July 6, 1995;
	26 pages
CXXXIV.	21 PWR, 500,000 year decay, Collapsed, With Boron (ucy21y.O) July 6, 1995;
	26 pages
CXXXV.	21 PWR, 999,999 year decay, Collapsed, With Boron (ucy21z.O) July 6, 1995;
	26 pages
CXXXVI.	21 PWR, DBF, Intact, 0.4 wt% B (ucb21b1O) July 7, 1995; 30 pages
CXXXVII.	21 PWR, DBF, Intact, 0.87 wt% B (ucb21b2O) July 7, 1995; 30 pages
CXXXVIII.	21 PWR, DBF, Intact, 1.0 wt% B (ucb21b3O) July 8, 1995; 30 pages
CXXXIX.	21 PWR, DBF, Intact, 1.2 wt% B (ucb21b4O) July 8, 1995; 30 pages
CXL.	21 PWR, DBF, Intact, 1.6 wt% B (ucb21b5O) July 8, 1995; 30 pages
CXLI.	21 PWR, DBF, Intact, 2.0 wt% B (ucb21b6O) July 8, 1995; 30 pages
CXLII.	21 PWR, DBF, Intact, No Boron, Axial Correction (ucf21b.O.check)
	July 9, 1995; 29 pages
CXLIII.	44 BWR, DBF, Intact, No Boron (ucf44b.O) July 13, 1995; 28 pages

Page 43 of 90

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

,

CXLIV.	44 BWR, 0 GWd/MTHM, Intact, No Boron (ucf44fro) October 3, 1995;
CVI V	20 pages
CXLV.	44 BWR, DBF, Intact, With Boron (ucb44b.O) July 17, 1995; 29 pages
CXLVI.	44 BWR, 0 GWd/MTHM, Intact, With Boron (ucb44fro) October 2, 1995;
CVIVII	20 pages 28 AND Vare
CXLVII.	44 BWR, DBF, Collapsed, No Boron (ucx440.0) October 5, 1995, 28 pages
CALVIII.	$\frac{44}{22}$ $\frac{1}{10}$
CIL.	44 BWR, DBF, Collapsed, With Boron (ucy44b.O) October 5, 1995; 28 pages
CL.	44 BWR, 0 GWd/MTHM, Collapsed, With Boron (ucy44fro) October 3, 1995;
	26 pages
CLI.	44 BWR, DBF, Intact, No Boron, Actinide Only (ucf44bbO) October 5, 1995;
	27 pages
CLII.	44 BWR, DBF, Intact, With Boron, Actinide Only (ucb44bbO)
	October 5, 1995; 27 pages
CLIII .	44 BWR, DBF, Intact, No Boron, No Shroud (ucf44bsO) July 22, 1995;
	28 pages
CLIV.	44 BWR, DBF, Intact, With Boron, No Shroud (ucb44bsO) July 22, 1995;
	28 pages
CLV.	44 BWR, DBF, Collapsed, No Boron, No Shroud (ucx44bsO) October 5, 1995;
	27 pages
CLVI.	44 BWR, DBF, Collapsed, With Boron, No Shroud (ucy44bsO)
	October 5, 1995; 28 pages
CLVII.	44 BWR, DBF, Collapsed, No Boron, No Shroud, Extra Collapse (ucx44bxO)
	October 5, 1995; 26 pages
CLVIII.	44 BWR, DBF, Collapsed, With Boron, No Shroud, Extra Collapse
	(ucy44bxO) October 5, 1995; 27 pages
CLIX.	44 BWR, DBF, Intact, No Boron, 98% H ₂ O Density (f441da.O) July 18, 1995;
	28 pages
CLX.	44 BWR, DBF, Intact, No Boron, 95% H_2O Density (f44ldb.O) July 18, 1995;
	28 pages .
CLXI.	44 BWR, DBF, Intact, No Boron, 90% H_2O Density (f44ldc.O) July 19, 1995;
	28 pages
CLXII.	44 BWR, DBF, Intact, No Boron, 80% H ₂ O Density (f44ldd.O) July 19, 1995;
	28 pages
CLXIII.	44 BWR, DBF, Intact, No Boron, 60% H ₂ O Density (f44lde.O) July 19, 1995;
	28 pages
CLXIV.	44 BWR, DBF, Intact, No Boron, 40% H ₂ O Density (f44ldf.O) July 19, 1995;
	28 pages

Page 44 of 90

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

CLXV. 44 BWR, DBF, Intact, No Boron, 20% H₂O Density (f44ldg.O) July 19, 1995; 28 pages CLXVI. 44 BWR, DBF, Intact, No Boron, 10% H₂O Density (f44ldh.O) July 19, 1995; 28 pages CLXVII. 44 BWR, DBF, Intact, No Boron, 5% H₂O Density (f44ldi.O) July 20, 1995; 28 pages CLXVIII. 44 BWR, DBF, Intact, No Boron, 1% H₂O Density (f44ldj.O) July 20, 1995; 28 pages CLXIX. 44 BWR, DBF, Intact, No Boron, 0% H₂O Density (f44ldk.O) July 20, 1995; 28 pages CLXX. 44 BWR, DBF, Intact, With Boron, 98% H₂O Density (b44lda.O) July 18, 1995; 28 pages CLXXI. 44 BWR, DBF, Intact, With Boron, 95% H₂O Density (b44ldb.O) July 18, 1995; 28 pages CLXXII. 44 BWR, DBF, Intact, With Boron, 0% H₂O Density (b44ldk.O) July 21, 1995; 29 pages CLXXIII. 44 BWR, DBF, Collapsed, No Boron, 98% H₂O Density (x44lda.O) October 5: 1995; 28 pages CLXXIV. 44 BWR, DBF, Collapsed, No Boron, 95% H₂O Density (x44ldb.O) October 5, 1995; 28 pages CLXXV. 44 BWR, DBF, Collapsed, No Boron, 0% H₂O Density (x44ldk.O) October 5, 1995; 28 pages CLXXVI. 44 BWR, DBF, Collapsed, With Boron, 98% H₂O Density (y44lda.O) October 5, 1995; 28 pages CLXXVII. 44 BWR, DBF, Collapsed, With Boron, 95% H₂O Density (y44ldb.O) October 5, 1995; 28 pages CLXXVIII. 44 BWR, DBF, Collapsed, With Boron, 0% H₂O Density (y44ldk.O) October 5, 1995; 28 pages CLXXIX. 44 BWR, 1 year decay, Intact, No Boron (ucf44a.O) July 13, 1995; 28 pages CLXXX. 44 BWR, 10 year decay, Intact, No Boron (ucf44c.O) July 13, 1995; 28 pages CLXXXI. 44 BWR, 20 year decay, Intact, No Boron (ucf44d.O) July 13, 1995; 28 pages CLXXXII. 44 BWR, 50 year decay, Intact, No Boron (ucf44e.O) July 14, 1995; 28 pages ,1 CLXXXIII. 44 BWR, 100 year decay, Intact, No Boron (ucf44f.O) July 14, 1995; 28 pages CLXXXIV. 44 BWR, 200 year decay, Intact, No Boron (ucf44g.O) July 14, 1995;

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

	B BBAA00000-01/1/-0200-00003 REV 00	rage 43 01
	28 pages	
CLXXXV.	44 BWR, 300 year decay, Intact, No Boron (ucf44h.O) July 14,	1995;
	28 pages	
CLXXXVI.	44 BWR, 400 year decay, Intact, No Boron (ucf44i.O) July 14, 1	.995;
	28 pages	
CLXXXVII.	44 BWR, 500 year decay, Intact, No Boron (ucf44j.O) July 14, 1	995;
	28 pages	
CLXXXVIII.	44 BWR, 1000 year decay, Intact, No Boron (ucf44k.O) July 15,	, 1995;
	28 pages	
CLXXXIX.	44 BWR, 4000 year decay, Intact, No Boron (ucf441.O) July 15,	1995;
	28 pages	
CXC.	44 BWR, 8000 year decay, Intact, No Boron (ucf44m.O) July 15	5, 1995;
	28 pages	
CXCI.	44 BWR, 10,000 year decay, Intact, No Boron (ucf44n.O) July 1	5, 1995;
	28 pages	
CXCII.	44 BWR, 14,000 year decay, Intact, No Boron (ucf440.O) July 1	5, 1995;
	28 pages	
CXCIII.	44 BWR, 18,000 year decay, Intact, No Boron (ucf44p.O) July 1	5, 1995;
	28 pages	
CXCIV.	44 BWR, 22,000 year decay, Intact, No Boron (ucf44q.O) July	15, 1995;
	28 pages	
CXCV.	44 BWR, 26,000 year decay, Intact, No Boron (ucf44r.O) July 1	5, 1995;
	28 pages	

CXCVI.	44 BWR, 30,000 year decay, Intact, No Boron (ucf44s.O) July 15	, 1995;
	28 pages	

CXCVII.	44 BWR,	36,000 y	ear decay,	Intact,	No Boron	(ucf44t.	O) July	16,	1995;
	28 pages	ţ							

44 BWK,	45,000	year de	ecay, I	Intact,	INO	Boron	(uc144u.)	j) juij	10,	1995;
28 pages										
	28 pages	14 BWR, 45,000 j 28 pages	14 BWR, 45,000 year de 28 pages	14 BWR, 45,000 year decay, 28 pages	14 BWR, 45,000 year decay, Intact, 28 pages	14 BWR, 45,000 year decay, Intact, No 28 pages	28 pages	14 BWR, 45,000 year decay, Intact, No Boron (ucl44u.) 28 pages	14 BWR, 45,000 year decay, Intact, No Boron (uci44u.O) July 28 pages	14 BWR, 45,000 year decay, Intact, No Boron (uci44u.O) July 16, 28 pages

CIC.	44 BWR,	60,000	year	decay,	Intact,	No	Boron	(ucf44v.O)	July	16,	1995;
	28 pages		•								

CC. 44 BWR, 70,000 year decay, Intact, No Boron (ucf44aaO) July 17, 1995; 28 pages CCI. 44 BWR, 100,000 year decay, Intact, No Boron (ucf44w.O) July 16, 1995;

28 pages CCII. 44 BWR, 250,000 year decay, Intact, No Boron (ucf44x.O) July 16, 1995; 28 pages

CCIII. 44 BWR, 500,000 year decay, Intact, No Boron (ucf44y.O) July 16, 1995; 28 pages

Dana 15 of 90

ada Dovalanment Waste

Title: UCI Document Identifier: BBAA00000-01717-0200-00005 REV 00

i

Раскад	e Deve	elopment
F Waste	Package	Criticality Analysis

CCIV.	44 BWR, 999,999 year decay, Intact, No Boron (ucf44z.O) July 20, 1995;
CCV.	44 BWR, 1 year decay, Intact, With Boron (ucb44a.O) July 17, 1995;
CCVI.	44 BWR, 10 year decay, Intact, With Boron (ucb44c.O) July 17, 1995;
CCVII.	28 pages 44 BWR, 20 year decay, Intact, With Boron (ucb44d.O) July 17, 1995;
CCVIII.	29 pages 44 BWR, 50 year decay, Intact, With Boron (ucb44e.O) July 17, 1995;
CCIX.	28 pages 44 BWR, 100 year decay, Intact, With Boron (ucb44f.O) July 17, 1995;
CCX.	28 pages 44 BWR, 200 year decay, Intact, With Boron (ucb44g.O) July 17, 1995;
CCXI.	28 pages 44 BWR, 300 year decay, Intact, With Boron (ucb44h.O) July 17, 1995;
CCXII.	29 pages 44 BWR, 400 year decay, Intact, With Boron (ucb44i.O) July 17, 1995;
CCXIII.	28 pages 44 BWR, 500 year decay, Intact, With Boron (ucb44j.O) July 18, 1995;
CCXIV.	28 pages 44 BWR, 1000 year decay, Intact, With Boron (ucb44k.O) July 18, 1995;
CCXV.	29 pages 44 BWR, 4000 year decay, Intact, With Boron (ucb441.0) July 18, 1995;
CCXVI.	28 pages 44 BWR, 8000 year decay, Intact, With Boron (ucb44m.O) July 18, 1995;
CCXVII.	29 pages 44 BWR, 10.000 year decay. Intact. With Boron (ucb44n.O) July 18, 1995:
CCXVIII	29 pages 44 BWR 14 000 year decay Intact With Boron (ucb440 O) July 18, 1995.
CCXIX	28 pages 44 BWR 18 000 year decay. Intact, With Boron (ucb44n O) July 18, 1995;
CCXX	28 pages 44 BWR, 18,000 year decay, Intact, With Boron (ucb44p.O) July 18, 1995;
	44 BWR, 22,000 year decay, Intact, With Boron (ucb44q.O) July 18, 1995, 28 pages
CCXXI.	44 BWR, 26,000 year decay, Intact, With Boron (ucb44r.O) July 18, 1995; 28 pages
CCXXII.	44 BWR, 30,000 year decay, Intact, With Boron (ucb44s.O) July 18, 1995; 28 pages
CCXXIII.	44 BWR, 36,000 year decay, Intact, With Boron (ucb44t.O) July 18, 1995;

Page 46 of 90

.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 47 of 90

÷

CONSTRUCT	28 pages
CCXXIV thro	ugh CCXXVIII are omitted.
CCXXIX.	44 BWR, 45,000 year decay, Intact, With Boron (ucb44u.O) July 19, 1995; 28 pages
CCXXX.	44 BWR, 60,000 year decay, Intact, With Boron (ucb44v.O) July 19, 1995;
CCXXXI.	44 BWR, 70,000 year decay, Intact, With Boron (ucb44aaO) July 17, 1995;
CCXXXII.	28 pages 44 BWR; 100,000 year decay, Intact, With Boron (ucb44w.O) July 19, 1995;
CCXXXIII	28 pages 44 BWR 250,000 year decay Intact With Boron (ucb44x O) July 19, 1995
	28 pages
CCXXXIV.	44 BWR, 500,000 year decay, Infact, With Boron (ucb44y.O) July 19, 1995; 28 pages
CCXXXV.	44 BWR, 999,999 year decay, Intact, With Boron (ucb44z.O) July 19, 1995; 28 pages
CCXXXVI.	44 BWR, 1 year decay, Collapsed, No Boron (ucx44a.O) October 5, 1995;
CCXXXVII.	44 BWR, 10 year decay, Collapsed, No Boron (ucx44c.O) October 5, 1995;
CCXXXVIII.	28 pages 44 BWR, 20 year decay, Collapsed, No Boron (ucx44d.O) October 5, 1995;
CCXXXIX	28 pages 44 BWR 50 year decay Collapsed No Boron (ucx44e O) October 5, 1995
	28 pages
CCXL.	44 BWR, 100 year decay, Collapsed, No Boron (ucx44f.O) October 5, 1995; 28 pages
CCXLI.	44 BWR, 200 year decay, Collapsed, No Boron (ucx44g.O) October 5, 1995; 28 pages
CCXLII.	44 BWR, 300 year decay, Collapsed, No Boron (ucx44h.O) October 5, 1995; 28 pages
CCXLIII.	44 BWR, 400 year decay, Collapsed, No Boron (ucx44i.O) October 5, 1995;
CCXLIV.	44 BWR, 500 year decay, Collapsed, No Boron (ucx44j.O) 28 Poses October 5,1995
CCXLV.	44 BWR, 1000 year decay, Collapsed, No Boron (ucx44k.O) October 5, 1995; 28 pages
CCXLVI.	44 BWR, 4000 year decay, Collapsed, No Boron (ucx441.0) October 5, 1995;
CCXLVII.	44 BWR, 8000 year decay, Collapsed, No Boron (ucx44m.O) October 5, 1995; 28 pages

Scoping Analysis

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

-

CCXLVIII.	44 BWR, 10,000 year decay, Collapsed, No Boron (ucx44n.O)
CCXLIX.	44 BWR, 14,000 year decay, Collapsed, No Boron (ucx440.0)
CCL.	44 BWR, 18,000 year decay, Collapsed, No Boron (ucx44p.O)
CCLI.	44 BWR, 22,000 year decay, Collapsed, No Boron (ucx44q.O) October 5, 1995; 27 pages
CCLII.	44 BWR, 26,000 year decay, Collapsed, No Boron (ucx44r.O) October 5, 1995; 27 pages
CCLIII.	44 BWR, 30,000 year decay, Collapsed, No Boron (ucx44s.O) October 5, 1995; 27 pages
CCLIV.	44 BWR, 36,000 year decay, Collapsed, No Boron (ucx44t.O) October 5, 1995; 27 pages
CCLV.	44 BWR, 45,000 year decay, Collapsed, No Boron (ucx44u.O) October 5, 1995: 27 pages
CCLVI.	44 BWR, 60,000 year decay, Collapsed, No Boron (ucx44v.O) October 5, 1995; 27 pages
CCLVII.	44 BWR, 70,000 year decay, Collapsed, No Boron (ucx44aaO) October 5, 1995; 27 pages
CCLVIII.	44 BWR, 100,000 year decay, Collapsed, No Boron (ucx44w.O)
CCLIX.	44 BWR, 250,000 year decay, Collapsed, No Boron (ucx44x.O)
CCLX.	44 BWR, 500,000 year decay, Collapsed, No Boron (ucx44y.O)
CCLXI.	44 BWR, 999,999 year decay, Collapsed, No Boron (ucx44z.O)
CCLXII.	44 BWR, 1 year decay, Collapsed, With Boron (ucy44a.O) October 5, 1995;
CCLXIII.	44 BWR, 10 year decay, Collapsed, With Boron (ucy44c.O) October 5, 1995;
CCLXIV.	44 BWR, 20 year decay, Collapsed, With Boron (ucy44d.O) October 5, 1995;
CCLXV.	44 BWR, 50 year decay, Collapsed, With Boron (ucy44e.O) October 5, 1995;
CCLXVI.	44 BWR, 100 year decay, Collapsed, With Boron (ucy44f.O) October 5, 1995;
CCLXVII.	28 pages44 BWR, 200 year decay, Collapsed, With Boron (ucy44g.O) October 5, 1995;

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

	28 pages
CCLXVIII.	44 BWR, 300 year decay, Collapsed, With Boron (ucy44h.O) October 5, 1995;
	28 pages
CCLXIX.	44 BWR, 400 year decay, Collapsed, With Boron (ucy44i.O) October 5, 1995;
	28 pages
CCLXX.	44 BWR, 500 year decay, Collapsed, With Boron (ucy44i,O) October 5, 1995;
	28 pages
CCLXXL	44 BWR, 1000 year decay, Collapsed, With Boron (ucy44k,O)
	October 5, 1995: 28 pages
CCLXXIL	44 BWR, 4000 year decay, Collapsed, With Boron (ucv44LO) October 5, 1995:
e e dan mai	28 nages
CCLXXIII	44 BWR 8000 year decay Collapsed With Boron (ucy44m O)
CCLIMIN.	October 5 1995: 28 pages
CCLXXIV	44 BWR 10,000 year decay Collapsed With Boron (ucy44n O)
CCDAINT.	October 5 1995: 28 pages
CCI XXV	44 BWB 14 000 year decay Collapsed With Boron (ucy440 O)
CCLARY.	October 5 1995: 28 pages
CCI XXVI	44 BWB 18 000 year decay Collansed With Boron (ucy44n O)
CCLAAVI.	October 5 1995: 28 pages
CCI XXVII	44 BWP 22,000 year decay Collanced With Boron (ucy/4a O)
CCLAAVII.	October 5, 1005: 28 pages
	44 BWB 26 000 year doory Collapsed With Peron (yeu/4r O)
CCLAA VIII.	October 5, 1005: 28 pages
CCI XXIX	44 PWP 20,000 year deepy Collanged With Peren (usy44: O)
CCLANIA.	October 5, 1005: 28 pages
CCLXXX	44 BWP 36 000 year decay Collapsed With Boron (usy44t O)
CCLAAA.	October 5 1005: 28 pages
CCI XXXI	44 PWP 45 000 year deepy Collapsed With Peren (yey44y O)
CCLAAAI.	October 5, 1005; 28 pages
	44 DWD 60,000 year deepy Collarsod With Poren (yey44y O)
CCLAAAII.	October 5 1005: 29 pages
	44 DWD 70 000 year decay Collarsod With Poren (usu44aaO)
CCLAAAIII.	October 5 1005: 28 pages
CCI XXXIV	44 PWP 100,000 year decay. Collarsed With Porce (year 44 yr O)
CCLAAAIV.	October 5, 1005; 28 pages
CCI XXXV	44 PWP 250,000 year decay Collarsed With Peron (new44x O)
CCLAAA V.	October 5, 1005: 28 pages
	44 RWD 500 000 year decay Colleged With Peron (year 44 O)
ULLAAA VI.	October 5, 1005, 27 pages
	October 5, 1995; 27 pages

Scoping Analysis

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

CCLXXXVII.	44 BWR, 999,999 year decay, Collapsed, With Boron (ucy44z.O)
	October 5, 1995; 27 pages
CCLXXXVIII	. 44 BWR, DBF, Intact, 0.4 wt% B (ucb44b10) October 5, 1995; 29 pages
CCLXXXIX.	44 BWR, DBF, Intact, 0.87 wt% B (ucb44b2O) October 5, 1995; 28 pages
CCXC.	44 BWR, DBF, Intact, 1.0 wt% B (ucb44b3O) October 5, 1995; 29 pages
CCXCI.	44 BWR, DBF, Intact, 1.2 wt% B (ucb44b4O) October 5, 1995; 29 pages
CCXCII.	44 BWR, DBF, Intact, 1.6 wt% B (ucb44b5O) October 5, 1995; 29 pages
CCXCIII.	44 BWR, DBF, Intact, 2.0 wt% B (ucb44b6O) October 5, 1995; 28 pages
CCXCIV.	12 PWR, DBF, Intact, No Boron (ucf12b.O) October 11, 1995; 29 pages
CCXCV.	12 PWR, DBF, Intact, With Boron (ucb12b.O) October 11, 1995; 29 pages
CCXCVI.	12 PWR, DBF, Collapsed, No Boron (ucx12b.O) July 7, 1995; 26 pages
CCXCVII.	12 PWR, DBF, Collapsed, With Boron (ucy12b.O) July 9, 1995; 26 pages
CCXCVIII.	12 PWR, 1 year decay, Intact, No Boron (ucf12a.O) October 11, 1995;
	29 pages
CCIC.	12 PWR, 20 year decay, Intact, No Boron (ucf12d.O) October 11, 1995;
	29 pages
CCC	12 PWR, 50 year decay, Intact, No Boron (ucf12e O) October 11, 1995:
000	29 nages
CCCI	12 PWR 100 year decay Intact No Boron (ucf12f O) October 11 1995
0001.	79 nages
CCCII	12 PWR 300 year decay Intact No Boron (ucf12h O) October 11 1995
eccii.	79 nages
CCCIII	12 PWR 1000 year decay Intact No Boron (ucf12k O) October 11 1995
eccm.	70 pages
CCCIV	12 PWP 4000 year decay Intact No Boron (ucf1210) October 11 1005:
CCCIV.	72 T WK, 4000 year decay, mact, NO Boron (derr21.0) October 11, 1993,
CCCV	12 PWP 2000 year decay Intect No Boron (ucf12m O) October 11 1995:
CCCV.	20 pages
CCCVI	12 DWP 14,000 year decay Integt No Peron (ucf120 O) October 11, 1005
	12 PWK, 14,000 year decay, infact, No Boton (del120.0) October 11, 1995,
CCCVII	12 DWD 12 000 year doory Intent No Peron (upf12: O) Optober 11, 1005
	12 PWR, 22,000 year decay, Intact, No Boron (dc1124.0) October 11, 1995,
CCCVIII	28 pages
CCCVIII.	12 PWR, 36,000 year decay, intact, No Boron (uci121.0) October 11, 1995;
COCIV	28 pages
CCCIX.	12 PWR, 60,000 year decay, Intact, No Boron (uct120.0) October 11, 1995;
CCCV	28 pages
LLLA.	12 PWK, 100,000 year decay, Intact, No Boron (uci12w.O) October 11, 1995;
00077	28 pages
UUUXI.	12 PWR, 250,000 year decay, Intact, No Boron (uct12x.0) October 11, 1995;

Page 50 of 90

. .

Scoping Analysis

Page 51 of 90

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

	28 pages
CCCXII.	12 PWR, 999,999 year decay, Intact, No Boron (ucf12z.O) October 11, 1995;
CCCXIII.	12 PWR, 1 year decay, Intact, With Boron (ucb12a.O) October 11, 1995;
CCCXIV.	29 pages 12 PWR, 20 year decay, Intact, With Boron (ucb12d.O) October 11, 1995;
CCCVV	29 pages 12 DWD 50 year decay Intest With Decar (yeb 12s O) October 11, 1005;
CULAV.	29 pages
CCCXVI.	12 PWR, 100 year decay, Intact, With Boron (ucb12f.O) October 11, 1995; 29 pages
CCCXVII.	12 PWR, 300 year decay, Intact, With Boron (ucb12h.O) October 11, 1995;
CCCXVIII.	12 PWR, 1000 year decay, Intact, With Boron (ucb12k.O) October 11, 1995;
CCCXIX.	29 pages (2) 12 PWR, 4000 year decay, Intact, With Boron (ucb121.0) October 11, 1995;
CCCXX	29 pages 12 PWR 8000 year decay Intact With Boron (ucb12m.O) October 11, 1995:
	29 pages
CUCXXI.	29 pages
CCCXXII.	12 PWR, 22,000 year decay, Intact, With Boron (ucb12q.O) October 11, 1995; 29 pages
CCCXXIII.	12 PWR, 36,000 year decay, Intact, With Boron (ucb12t.O) October 11, 1995;
CCCXXIV.	12 PWR, 60,000 year decay, Intact, With Boron (ucb12v.O) October 11, 1995;
CCCXXV.	29 pages 12 PWR, 100,000 year decay, Intact, With Boron (ucb12w.O)
CCCXXVI	October 11, 1995; 29 pages 12 PWP 250,000 year decay. Intact. With Boron (uch12x O)
CCCAAVI.	October 11, 1995; 29 pages
CCCXXVII.	12 PWR, 999,999 year decay, Intact, With Boron (ucb12z.O) October 11, 1995; 29 pages
CCCXXVIII.	12 PWR, 1 year decay, Collapsed, No Boron (ucx12a.O) July 7, 1995;
CCCXXIX.	12 PWR, 20 year decay, Collapsed, No Boron (ucx12d.O) July 8, 1995;
CCCXXX.	26 pages 12 PWR, 50 year decay, Collapsed, No Boron (ucx12e.O) July 8, 1995; 26 pages
	20 pages

.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

· . .

CCCXXXI.	12 PWR, 100 year decay, Collapsed, No Boron (ucx12f.O) July 8, 1995;
CCCYYYII	26 pages , 12 PWP 300 year decay Collapsed No Boron (ucv12h O) July 8, 1995
CCCAAAII.	26 pages
CCCXXXIII.	12 PWR, 1000 year decay, Collapsed, No Boron (ucx12k.O) July 8, 1995;
	26 pages
CCCXXXIV.	12 PWR, 4000 year decay, Collapsed, No Boron (ucx12I.O) July 8, 1995;
CCCXXXV.	12 PWR, 8000 year decay, Collapsed, No Boron (ucx12m.O) July 8, 1995;
CCCXXXVI.	12 pages 12 PWR, 14,000 year decay, Collapsed, No Boron (ucx120.0) July 8, 1995;
CCOVVVVV	26 pages
CCCXXXVII.	12 PWR, 22,000 year decay, Collapsed, No Boron (ucx12q.O) July 9, 1995;
CCCXXXVIII	20 pages [12 PWR 36 000 year decay Collapsed No Boron (ucx12t O) July 9, 1995
eccinit in	26 pages
CCCXXXIX.	12 PWR, 60,000 year decay, Collapsed, No Boron (ucx12v.O) July 9, 1995;
	26 pages
CCCXL.	12 PWR, 100,000 year decay, Collapsed, No Boron (ucx12w.O) July 9, 1995;
CCCXLI.	12 PWR, 250,000 year decay, Collapsed, No Boron (ucx12x.O) July 9, 1995;
CCCVIII	26 pages $\frac{1}{2}$
CCCALII.	12 PWR, 999,999 year decay, Collapsed, No Bolon (dex122.0) July 9, 1995, 26 pages
CCCXLIII.	12 PWR, 1 year decay, Collapsed, With Boron (ucy12a.O) July 9, 1995;
	26 pages
CCCXLIV.	12 PWR, 20 year decay, Collapsed, With Boron (ucy12d.O) July 9, 1995;
CCCXLV.	12 PWR, 50 year decay, Collapsed, With Boron (ucy12e,O) July 9, 1995:
000112	26 pages
CCCXLVI.	12 PWR, 100 year decay, Collapsed, With Boron (ucy12f.O) July 9, 1995;
	26 pages
CCCXLVII.	12 PWR, 300 year decay, Collapsed, with Boron (ucy12n.O) July 9, 1995;
CCCXLVIII.	12 PWR, 1000 year decay, Collapsed, With Boron (ucy12k.O) July 9, 1995;
	26 pages
CCCIL.	12 PWR, 4000 year decay, Collapsed, With Boron (ucy121.0) July 9, 1995;
CCCL.	26 pages 12 PWR, 8000 year decay, Collapsed, With Boron (ucy12m.O) July 10, 1995;

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

	26 pages
CCCLI.	12 PWR, 14,000 year decay, Collapsed, With Boron (ucy120.0) July 10, 1995;
	26 pages
CCCLII.	12 PWR, 22,000 year decay, Collapsed, With Boron (ucy12q.O) July 10, 1995;
	26 pages
CCCLIII.	12 PWR, 36,000 year decay, Collapsed, With Boron (ucy12t.O) July 10, 1995;
	26 pages
CCCLIV.	12 PWR, 60,000 year decay, Collapsed, With Boron (ucy12v.O) July 10, 1995;
	26 pages
CCCLV.	12 PWR, 100,000 year decay, Collapsed, With Boron (ucy12w.O)
	July 10, 1995; 26 pages
CCCLVI.	12 PWR, 250,000 year decay, Collapsed, With Boron (ucy12x.O)
	July 10, 1995; 26 pages
CCCLVII.	12 PWR, 999,999 year decay, Collapsed, With Boron (ucy12z.O)
	July 10, 1995; 26 pages
CCCLVIII.	24 BWR, DBF, Intact, No Boron (ucf24b.O) July 21, 1995; 29 pages
CCCLIX.	24 BWR, DBF, Intact, With Boron (ucb24b.O) October 17, 1995; 29 pages
CCCLX.	24 BWR, DBF, Collapsed, No Boron (ucx24b.O) October 5, 1995; 27 pages
CCCLXI.	24 BWR, DBF, Collapsed, With Boron (ucy24b.O) October 5, 1995; 28 pages
CCCLXII.	24 BWR, 1 year decay, Intact, No Boron (ucf24a.O) July 21, 1995; 29 pages
CCCLXIII.	24 BWR, 20 year decay, Intact, No Boron (ucf24d.O) July 21, 1995; 29 pages
CCCLXIV.	24 BWR, 50 year decay, Intact, No Boron (ucf24e.O) July 21, 1995; 29 pages
CCCLXV.	24 BWR, 100 year decay, Intact, No Boron (ucf24f.O) July 21, 1995; 29 pages
CCCLXVI.	24 BWR, 300 year decay, Intact, No Boron (ucf24h.O) July 21, 1995 29 pages
CCCLXVII.	24 BWR, 1000 year decay, Intact, No Boron (ucf24k.O)
	October 5, 1995; 29 pages
CCCLXVIII.	24 BWR, 4000 year decay, Intact, No Boron (ucf241.0)
	July 21, 1995; 29 pages
CCCLXIX.	24 BWR, 8000 year decay, Intact, No Boron (ucf24m.O)
	July21, 1995; 29 pages
CCCLXX.	24 BWR, 14,000 year decay, Intact, No Boron (ucf240.0) October 5, 1995;
	28 pages
CCCLXXI.	24 BWR, 22,000 year decay, Intact, No Boron (uct24q.O) July 21, 1995;
	28 pages
CCCLXXII.	24 BWR, 36,000 year decay, Intact, No Boron (ucf24t.O) July 22, 1995;
	28 pages
CCCLXXIII.	24 BWR, $60,000$ year decay, Intact, No Boron (ucf24v.O) July 22, 1995;
CCCLXXIV.	24 BWR, 100,000 year decay, Intact, No Boron (uct24w.O) July 22, 1995;

28 pages

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 54 of 90

28 pages CCCLXXV. 24 BWR, 250,000 year decay, Intact, No Boron (ucf24x.O) July 22, 1995; 28 pages CCCLXXVI. 24 BWR, 999,999 year decay, Intact, No Boron (ucf24z.O) July 22, 1995; 28 pages CCCLXXVII. 24 BWR, 1 year decay, Intact, With Boron (ucb24a.O) October 17, 1995; 29 pages CCCLXXVIII. 24 BWR, 20 year decay, Intact, With Boron (ucb24d.O) October 17, 1995; 29 pages CCCLXXIX. 24 BWR, 50 year decay, Intact, With Boron (ucb24e.O) October 17, 1995; 29 pages CCCLXXX. 24 BWR, 100 year decay, Intact, With Boron (ucb24f.O) October 17, 1995; 29 pages CCCLXXXI. 24 BWR, 300 year decay, Intact, With Boron (ucb24h.O) October 17, 1995; 29 pages CCCLXXXII. 24 BWR, 1000 year decay, Intact, With Boron (ucb24k.O) October 17, 1995; 29 pages CCCLXXXIII. 24 BWR, 4000 year decay, Intact, With Boron (ucb241.0) October 17, 1995; 29 pages CCCLXXXIV. 24 BWR, 8000 year decay, Intact, With Boron (ucb24m.O) October 17, 1995; 29 pages CCCLXXXV. 24 BWR, 14,000 year decay, Intact, With Boron (ucb240.0) October 17, 1995; 28 pages CCCLXXXVI. 24 BWR, 22,000 year decay, Intact, With Boron (ucb24q.O) October 17, 1995; 29 pages CCCLXXXVII. 24 BWR, 36,000 year decay, Intact, With Boron (ucb24t.O) October 17, 1995; 29 pages CCCLXXXVIII. 24 BWR, 60,000 year decay, Intact, With Boron (ucb24v.O) October 17, 1995; 29 pages CCCLXXXIX. 24 BWR, 100,000 year decay, Intact, With Boron (ucb24w.O) October 17, 1995; 29 pages 24 BWR, 250,000 year decay, Intact, With Boron (ucb24x.O) CCCXC. October 17, 1995; 29 pages CCCXCI. 24 BWR, 999,999 year decay, Intact, With Boron (ucb24z.O) October 17, 1995; 28 pages CCCXCII. 24 BWR, 1 year decay, Collapsed, No Boron (ucx24a.O) October 5, 1995; 28 pages 24 BWR, 20 year decay, Collapsed, No Boron (ucx24d.O) October 5, 1995; CCCXCIII.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

>

• ;

•

24 BWR, 50 year decay, Collapsed, No Boron (ucx24e.O) October 5, 1995;
28 pages
24 BWR, 100 year decay, Collapsed, No Boron (ucx24f.O) October 5, 1995;
28 pages
24 BWR, 300 year decay, Collapsed, No Boron (ucx24n.O) October 5, 1995;
20 pages - 24 RWP 1000 year decay. Colleged No Boron (yex24k O) October 5, 1005;
24 BWR, 1000 year decay, Conapsed, No Boron (ucx24k.O) October 5, 1995,
24 BWR 4000 year decay Collapsed No Boron (ucy241 O) October 5, 1995:
24 DWR, 4000 year decay, conapsed, no bolon (dex241.0) October 3, 1993, 28 nages
24 BWR 8000 year decay Collapsed No Boron (ucx24m O) October 5 1995
28 nages
24 BWR, 14,000 year decay, Collapsed, No Boron (ucx240,O)
October 5, 1995; 27 pages
24 BWR, 22,000 year decay, Collapsed, No Boron (ucx24q.O)
October 5, 1995; 27 pages
24 BWR, 36,000 year decay, Collapsed, No Boron (ucx24t.O) October 5, 1995;
27 pages
24 BWR, 60,000 year decay, Collapsed, No Boron (ucx24v.O)
October 5, 1995; 27 pages
24 BWR, 100,000 year decay, Collapsed, No Boron (ucx24w.O)
October 5, 1995; 27 pages
24 BWR, 250,000 year decay, Collapsed, No Boron (ucx24x.O)
October 5, 1995; 27 pages
24 BWR, 999,999 year decay, Collapsed, No Boron (ucx24z.O)
October 5, 1995; 27 pages
24 BWR, 1 year decay, Collapsed, With Boron (ucy24a.O) October 5, 1995;
28 pages
24 BWR, 20 year decay, Collapsed, With Boron (ucy24d.O) October 5, 1995;
28 pages 24 DWD 50 year decay Callenard With Boron (yey24a O) October 5, 1005;
24 BWR, 50 year decay, Conapsed, with Boron (ucy24e.0) October 5, 1995;
20 pages 24 BWP (100 year decay, Collapsed, With Boron (ucy24f O) October 5, 1995;
24 DWR, 100 year decay, conapsed, whit Boron (dey241.0) October 5, 1995, 28 pages
24 BWR 300 year decay Collansed With Boron (ucy24h O) October 5 1995
28 nages
24 BWR, 1000 year decay, Collapsed, With Boron (ucv24k,O)
October 5, 1995; 28 pages
24 BWR, 4000 year decay, Collapsed, With Boron (ucy241.0) October 5, 1995;

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 56 of 90

	28 pages
CDXIV.	24 BWR, 8000 year decay, Collapsed, With Boron (ucy24m.O)
	October 5, 1995; 28 pages
CDXV.	24 BWR, 14,000 year decay, Collapsed, With Boron (ucy240.0)
	October 5, 1995; 27 pages
CDXVI.	24 BWR, 22,000 year decay, Collapsed, With Boron (ucy24q.O)
	October 5, 1995; 28 pages
CDXVII.	24 BWR, 36,000 year decay, Collapsed, With Boron (ucy24t.O)
	October 5. 1995; 28 pages
CDXVIII.	24 BWR, 60,000 year decay, Collapsed, With Boron (ucy24v.O)
	October 5, 1995; 27 pages
CDXIX.	24 BWR, 100,000 year decay, Collapsed, With Boron (ucy24w.O)
	October 5, 1995; 28 pages
CDXX.	24 BWR, 250,000 year decay, Collapsed, With Boron (ucy24x.O)
	October 5, 1995; 28 pages
CDXXI.	24 BWR, 999,999 year decay, Collapsed, With Boron (ucy24z.O)
	October 5, 1995; 27 pages
CDXXII.	21 PWR, DBF, Intact, No Boron, Actinide Only with f _{BUC} 's (ucf21bvO)
	July 9, 1995; 28 pages
CDXXIII.	21 PWR, DBF, Intact, With Boron, Actinide Only with f_{BUC} 's (ucb21bvO)
	July 8, 1995; 28 pages

.

۰.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 8

Scoping Analysis

Page 57 of 90

ASSEMBLY 3.00%/20 GWD/5 year probid = 11/01/95 07:36:29 (1.000000, .000000, .000000) Ō (.000000, 1.000000, .000000) 5.00) 14.67) 00000 \bigcirc

Figure 7.3-1. MCNP Cross-Sectional View of a B&W 15x15 PWR Fuel Assembly in the UCF Basket.

11/01/95 07:38:25 UCF - B&W 15x15 FUEL, 21

23. 81, 23. 85,

extent = (14.67.

(ucf21b) sas2h

basis:

origin:

1

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Scoping Analysis

06/29/95 14:56:37 GE-5 BWR 8x8 FUEL, 44 ASSEMBLY 3.00%/21 GWD/MTU/5 year (ucf44b) No Boron probid = 06/29/95 14:41:14 basis: (1.000000, .000000, .000000) (.000000, 1.000000, .000000) origin: (10.25; 10. 25. 25.00) extent = (10.61, 10.61)

•

Figure 7.3-2. MCNP Cross-Sectional View of a GE 8x8 BWR Fuel Assembly in the UCF Basket.

.

.

Scoping Analysis

(ucf21b)

basis:

origin:

extent = (

49.00,

1

1.44

Scoping Analysis

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 60 of 90

sas2h

origin:

1

75.00,

probid 🖉 basis:

the second

+

Scoping Analysis

11/01/95 08:06:29 UCF - BAN 15x15 FUEL, 21 ASSEMBLY 3.00%/20 GWD/5 year (ucf21b) sas2h probid = 11/01/95 08:03:12 basis: (1.000000, .000000, .000000) (.000000, .000000, 1.000000) origin: (100.00, . 10, 175.00) extent = (100.00, 100.00)

Figure 7.4.1.2-1. Moderator Density Effect on Criticality Potential for the 21 PWR Assembly UCF WP.

Waste Package Development

Title: UCF Waste Package Criticality Analysis

Figure 7.4.1.3-1. Time Effects on Criticality Potential, 21 PWR UCF WP, Intact Array, SS Panels.

Figure 7.4.1.3-2. Time Effects on Criticality Potential, 21 PWR UCF WP, Intact Array, 316B6A Panels.

Figure 7.4.1.3-3. Time Effects on Criticality Potential, 21 PWR UCF WP, Collapsed Array, SS Panels.

Figure 7.4.1.3-4. Time Effects on Criticality Potential, 21 PWR UCF WP, Collapsed Array, 316B6A Panels.

Title: UCF Waste Package Criticality Analysis
Document Identifier: BBAA00000-01717-0200-00005 REV 00

Scoping Analysis

Page 67 of 90

Scoping Analysis

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 68 of 90

Figure 7.4.2-1. MCNP Cross-Sectional View of the 44 BWR Assembly UCF WP.

06/29/95 14:34:49 GE-5 EMR 8x8 FUEL, 44 ASSEMBLY 3.00%/21 GHD/HTU/5 year (ucf44b) No Boron probid = 06/29/95 14:34:19

(1.000000, .000000, .000000) (.000000, 1.000000, .000000)

49.00,

50.00,

5.00) 50.00)

basis:

origin: (49.00,

extent = (

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 69 of 90

Scoping Analysis

basis:

origin:

1

Š

+

Scoping Analysis

Figure 7.4.2-3. MCNP Axial View of the 44 BWR Assembly UCF WP.

11/01/95 08:43:21 GE-5 BWR 8x8 FUEL, 44 ASSEMBLY 3.00%/20 GND/HTU/5 year (ucf44b) No Boron sas2h probid = 11/01/95 08:42:40

extent = (100.00,

(1.000000, .000000, .000000) (.000000, .000000, 1.000000)

5.00,

175.00)

100.00)

basis:

origin:

(100.00.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Scoping Analysis

Page 71 of 90

Moderator Density Effect on Criticality Potential

44 BWR UCF Waste Package Design

Intact, w/ B

Δ

+

0.95

0.85

1

Intact, w/o B

0

Collapsed, w/o B

٥

Collapsed, w/ B

0 00

Figure 7.4.2.3-1. Time Effects on Criticality Potential, 44 BWR UCF WP, Intact Array, SS Panels.

Waste Package Development

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00 Title: UCF Waste Package

Figure 7.4.2.3-2. Time Effects on Criticality Potential, 44 BWR UCF WP, Intact Array, 316B6A Panels.

Figure 7.4.2.3-3. Time Effects on Criticality Potential, 44 BWR UCF WP, Collapsed Array, SS Panels.

Figure 7.4.2.3-4. Time Effects on Criticality Potential, 44 BWR UCF WP, Collapsed Array, 316B6A Panels.

Waste Package Development

Scoping Analysis

 Title: UCF Waste Package Criticality Analysis

 Document Identifier: BBAA(0000-01717-0200-00005 REV 00
Title: UCF Waste Package

Page 76 of 90

Figure 7.4.2.4-1. Control Panel Boron Loading Effect on Criticality Potential, 44 BWR UCF WP.

Scoping Analysis

Figure 7.5.1-1. MCNP Cross-Sectional View of the 12 PWR Assembly UCF WP.

07/05/95 14:22:04

(ucfl2b) sas2h

extent = (36.00,

basis:

origin: (35.00,

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 8

Page 78 of 90

07/06/95 09:02:31 UCF - B&W 15x15, 12 ASSEMBLT 3.00%/20 GWD/5 year (uc:x12b) sas2h probid = 07/06/95 08:50:21 basis: (1.000000, .000000, .000000) (.000000, 1.000000, .000000) origin: (50.00, .00, 5.00) extent = (60.00, 60.00)

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Page 79 of 90

Figure 7.5.1.3-1. Time Effects on Criticality Potential, 12 PWR UCF WP, Intact Array, SS Panels.

Figure 7.5.1.3-2. Time Effects on Criticality Potential, 12 PWR UCF WP, Intact Array, 316B6A Panels.

Figure 7.5.1.3-3. Time Effects on Criticality Potential, 12 PWR UCF WP, Collapsed Array, SS Panels.

Figure 7.5.1.3-4. Time Effects on Criticality Potential, 12 PWR UCF WP, Collapsed Array, 316B6A Panels.

Title: UCF Waste Package Criticality Analysis Document Identifier: BBAA00000-01717-0200-00005 REV 00

Scoping Analysis

Page 84 of 90

07/06/95 16:10:44 GE-5 BWR 8x8 FUEL, 24 ASSEMBLY 3.00%/21 GWD/MTU/5 year (ucf24b) No Boran probid - 07/06/95 16:07:37

(1.000000, .000000, .000000) (.000000, 1.000000, .000000)

basis:

origin: 35.00,

extent = (

1

Scoping Analysis

Figure 7.5.2-2. MCNP Cross-Sectional View of the 24 BWR Assembly Collapsed Array UCF WP.

07/07/95 08:34:16

basis:

origin: (50

extent = (

50.00,

GE-5 BNR 8x8, 24 ASBELY 3.00%/21 GND/HTU/5 year (ucx24b) collapsed /no shunts probid = 07/07/95 08:32:04

(1.000000, .000000, .000000) (.000000, 1.000000, .000000)

. 00,

60.00,

5.00)

60.00)

Scoping Analysis

11/01/95 09:25:20 OE-5 BWR 8x8 FUEL, 24 ASSEMBLY 3. 00%/20 GMD/MTU/5 year (ucf24b) No Borom probid = 11/01/95 09:24:08 basis: (1.000000, .000000, .000000) (.000000, .000000, 1.000000) origin: 1 80.00. 4.00. axtani

Figure 7.5.2.3-1. Time Effects on Criticality Potential, 24 BWR UCF WP, Intact Array, SS Panels.

Figure 7.5.2.3-2. Time Effects on Criticality Potential, 24 BWR UCF WP, Intact Array, 316B6A Panels.

Waste Package Development

Figure 7.5.2.3-3. Time Effects on Criticality Potential, 24 BWR UCF WP, Collapsed Array, SS Panels.

Figure 7.5.2.3-4. Time Effects on Criticality Potential, 24 BWR UCF WP, Collapsed Array, 316B6A Panels.

Waste Package Development