								DOC.200	30825.0001
. (DCRWM	DESIG	SN CA	LCUL	ATION OR A	NALYSIS CO	VER SHEET	1. QA: QA 2. Page 1	
					- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	an a	· · · ·		
3. Syste	m					4. Document Id	entifier	·····	
Uncan	istered Spent Nucle	ar Fuel		-		CAL-DSU-N	J-000002 REV 0	0A	
5. Title									
Limeri	ck Unit I Radioche	mical Assay	/ Compa	irisons t	o SAS2H Calcula	itions			
6. Grou	p								
Risk &	Criticality				·				
7. Docu	iment Status Designal	lion							
			Prelimi	narv	Final				
8 Note	s/Comments	دع		,					
0									
							~		·
				Attac	hments			Total N	umber of Pages
1						···	· · · · · · · · · · · · · · · · · · ·		3
	<u> </u>			.,					
<u> </u>			<u> </u>				· · ·		2
(1)							· · · · · ·	C1	D-ROM
				*****	RECORD OF REV	ISIONS	· · · · · · · · · · · · · · · · · · ·		
q	10		11.	12.	13.	14.	15.	16.	17
No.	Reason For Re	evision	Total #	Last	Originator (Print/Sign/Date)	Checker (Print/Sign/Date)	QER (Print/Sign/Date)	Approved/Acce	pted Date
00.4	Initial Issue		42	F9.#	(Finite Significate)	(Finitosignitoate)	Demell K. Svolsted	Abdathalim A	lcand (
UUA	initial issue		-+2	11-2			Darren K. Svastau		0 8/14/03
					Hoyia K. Facher	C Dury lector	Harryes &	wasae	a
					8/11/2003	AH.W.	8/13/03	-114/03	
						alizbro3	010100	8/171	
						Uqin			
			1						
							•		
			-						
					-				

CONTENTS

1	PURPOSE	5
1. 2	METHOD	
2. 3	A SCI MDTIONS	
J. ⊿	LISE OF COMPLITED SOFTWARE AND MODELS	/
4.	4.1 SOFTWARE ADDOVED FOR OA WORK	0 0
	4.1 SOFTWARE APPROVED FOR QA WORK	ð
	4.1.1 SA52H	٥ð
_	4.1.2 MCNP	8
5.		9
	5.1 CALCULATION METHOD.	9
	5.1.1 SAS2H Fuel Depletion Description	9
	5.2 SAMPLE DESCRIPTION	10
	5.3 FUEL ASSEMBLY DESIGN AND OPERATING PARAMETERS	13
	5.3.1 SAS2H Material Specifications	14
	5.3.2 SAS2H Operating History Specifications	16
	5.4 SAS2H PATH B REPRESENTATIONS	23
	5.5 MCNP SPECIFICATIONS	25
6.	RESULTS	
	6.1 SAMPLE RESULTS FROM ASSEMBLY YJ1433	
	6.2 MCNP CALCULATION RESULTS	
7.	REFERENCES	
	7.1 DOCUMENTS CITED	
	72 CODES STANDARDS REGULATIONS AND PROCEDURES	35
	73 SOURCE DATA LISTED BY DATA TRACKING NUMBER	36
	74 SOFTWARE CODES	
8	ATTACHMENTS	
о.		····· / C

Page 2 of 37

Page

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 3 of 37
FIGURES	
	Page

5-1. SAS2H General Path B Model used for Assembly YJ1433......24

Page 4 of 37

Calculation

TABLES

Page

5-1. Fuel Sample Characteristic Parameters	
5-2. Measured Concentrations for Assembly YJ1433 Samples	
5-3. YJ1433 Fuel Assembly Geometric and Material Information	
5-4. Nominal Characteristics of Sampled Fuel Rods	
5-5. Trace Isotopes Specified in Fresh Fuel Compositions	
5-6. Zircaloy-2 and Zircaloy-4 Compositions	
5-7. SAS2H Compositions Specific to Assembly YJ1433	
5-8. Constants for Fuel Temperature Calculations	
5-9. Operating History Information for Assembly YJ1433	
5-10. Material Specifications for SB-575 N06022	
5-11. Material Specifications for SS316NG	
5-12. Material Specifications for Neutronit A978 with 1.62 wt% Boron	
5-13. Material Specifications for Al 6061	
5-14. Material Specifications for Grade 70 A516 Carbon Steel	
5-15. Material Specifications for Zircaloy-2	
5-16. Material Specifications for Zircaloy-4	
6-1. SAS2H Calculated Isotopic Concentrations for Assembly YJ1433 Samples	
6-2. Assembly YJ1433 Sample Percent Differences	
6-3. MCNP Results for Fresh Nuclear Fuel	
6-4. MCNP Results for Spent Nuclear Fuel Samples	

 $D_{a} = 5 = f \cdot 27$

Calculation

Page 5 of 37

1. PURPOSE

The objective of the *Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations* is to determine the accuracy of the SAS2H control module of the baselined modular code system SCALE, Version 4.4A (STN: 10129-4.4A-00), in predicting the isotopic concentrations of spent fuel, and to quantify the overall effect that the differences between the calculated and measured isotopic concentrations have on the system reactivity. The scope of this calculation covers eight different spent fuel samples from a fuel assembly that was irradiated in the Limerick Unit 1 boiling water reactor (BWR). The spent fuel samples evaluated are from a three-cycle burn period, representing burnups from 37.02 GWd/MTU through 65.54 GWd/MTU (Reager 2003).

This report is an engineering calculation supporting the development of validation reports to be used for License Application of the proposed Monitored Geologic Repository (MGR), and was performed under Administrative Procedure-3.12Q, *Design Calculations and Analyses*. This calculation is subject to the *Quality Assurance Requirements and Description* (DOE 2003) per the activity evaluation under work package number ACRM01 in the technical work plan TWP-EBS-MD-000014 REV 00 (BSC 2002).

The control of the electronic management of data was accomplished in accordance with methods specified in BSC (2002).

Page 6 of 37

2. METHOD

The calculational method used to determine the spent nuclear fuel isotopics consisted of using the SAS2H control sequence of the baselined modular code system SCALE to deplete the fuel for two initial fuel enrichments and eight burnups. The isotopic predictions are then compared against measured concentrations from the fuel assembly that was represented in the depletion calculations to determine the accuracy of the predicted values.

The analytical methods employed for this evaluation were the SAS2H control module of the baselined modular code system SCALE and baselined code system MCNP, Version 4B2LV (CSCI: 30033-V4B2LV). Based upon fuel assembly design, power history, and operating data for the specific assembly in the Limerick Unit 1 core, a computational representation was developed for use with SAS2H. The SAS2H module is used to perform a fuel depletion analysis to predict the isotopic concentrations in localized areas of assembly pins. The isotopic concentrations predicted by the SAS2H module are then compared with measured concentrations of the same localized areas (axial locations) of the assembly pins to determine the accuracy of the developed calculational representation. The measured and calculated isotopic compositions from SCALE were then used as input to the baselined MCNP code to calculate the neutron multiplication factor in order to quantify the overall effect that the variations between measured and calculated isotopic concentrations have on system neutron multiplication. The measured isotopic concentrations used for comparisons in this evaluation are taken from Reager (2003).

Page 7 of 37

3. ASSUMPTIONS

- 3.1 It is assumed that the YJ1433 fuel assembly channel was made of Zircaloy-4. Although specific information about the YJ1433 assembly channel material could not be found, various sources indicate that the material used for the assembly channel in other similar General Electric fuel designs was Zircaloy-4 (CRWMS M&O 2000a, Table S2.6.4 and BSC 2001, p. 25). This assumption is used in Section 5.
- 3.2 It was assumed that the ²³⁴U wt% in the fresh fuel composition was approximately 0.9 % of ²³⁵U wt%. The rationale for this assumption is that no information about the ²³⁴U content in the fresh fuel rods in YJ1433 assembly at the Limerick Unit 1 BWR is available, therefore the information about ²³⁴U and ²³⁵U contents in similar fuel types is used to approximate the correlation between the wt% contents for the two isotopes (CRWMS M&O 2000a, p. S2.6.11 and BSC 2001, p. 15). This assumption is used in Section 5.
- 3.3 It is assumed that there is no ²³⁶U in the fresh fuel composition. The rationale for this assumption is that no information about the ²³⁶U content in the fresh fuel rods in YJ1433 assembly at the Limerick Unit 1 BWR was available, and ²³⁶U is only present in ²³⁵U that has been obtained from reprocessed uranium. This assumption is used in Section 5.
- 3.4 The heat transfer between the outer surface of the fuel rod and the coolant is assumed to be completely efficient (i.e., there is no temperature jump across the boundary layer). The rationale for this assumption is that is reasonable for boiling heat transfer and should have an acceptably small effect on fuel temperature. This assumption is used in Section 5.
- 3.5 The fuel thermal conductivity is assumed to be invariant with radial temperature distribution and fuel exposure. The rationale for this assumption is that since the fuel temperature is lumped in the SAS2H depletion model, this is acceptable. This assumption is used in Section 5.
- 3.6 It is assumed that the omission of the isotopes ¹⁴⁶Nd, ¹⁴⁸Nd, ¹⁵⁰Nd, ²⁴²Cm, ²⁴³Cm, and ²⁴⁵Cm from the MCNP cases has a negligible effect on system reactivity. The rationale for these isotopes being omitted is that the MCNP cross section libraries for these isotopes are not available, and their concentrations are very small (< 0.15 wt%). This assumption is used in Section 6.
- 3.7 It is assumed that using the Al material cross-section for Zn in the MCNP cases has a negligible impact on the results of criticality calculations. The basis for this assumption is that the neutronic characteristics for Zn and Al are sufficiently similar. The Zn neutron cross-section libraries are not available for MCNP. Also, the Zn material that is substituted only appears in Al6061 and is in trace amounts. This assumption is used in Section 5.
- 3.8 It is assumed that the length of each axial node in the core follow information for Limerick Unit 1 (Scaglione 2003) is 15.24 cm (6 in.). The basis for this assumption is the core follow information for LaSalle BWR (CRWMS M&O 1999, Table 3-4), which has a similar design with Limerick Unit 1 and the core follow information is reported for both reactors in the same (25 node) format. This assumption is used in Section 5.

Page 8 of 37

4. USE OF COMPUTER SOFTWARE AND MODELS

4.1 SOFTWARE APPROVED FOR QA WORK

4.1.1 SAS2H

The SAS2H control module of the baselined modular code system SCALE, Version 4.4A (STN: 10129-4.4A-00), was used to perform the fuel assembly depletion calculations required for this evaluation. The software specifications are as follows:

- Program Name: SAS2H of the SCALE Modular Code System
- Version/Revision Number: Version 4.4A
- Status/Operating System: Qualified/HP-UX B.10.20
- Software Tracking Number: 10129-4.4A-00
- Computer Type: Hewlett Packard (HP) 9000 Series Workstations
- Computer Processing Unit number: 700887.

The input and output files for the various SAS2H calculations were documented in Attachments II and III to this calculation so that an independent repetition of the software use could be performed. The SAS2H code sequence of SCALE that was used was (1) appropriate for the application of commercial fuel assembly depletion, (2) used only within the range of validation documented in *Users Manual for SCALE-4.4A* (CRWMS M&O 2000a) and *Validation Test Report (VTR) for SCALE-4.4A* (CRWMS M&O 2000b), and (3) obtained from Software Configuration Management in accordance with appropriate procedures.

4.1.2 MCNP

The baselined code MCNP, Version 4B2LV (CSCI: 30033-V4B2LV), was used to calculate the neutron multiplication factor for the various spent nuclear fuel compositions. The software specifications are as follows:

- Program Name: MCNP
- Version/Revision Number: Version 4B2LV
- Status/Operating System: Qualified/HP-UX B.10.20
- Computer Software Configuration Item Number: 30033-V4B2LV
- Computer Type: HP 9000 Series Workstations
- CPU number: 700887.

The input and output files for the various MCNP calculations are documented in Attachments II and III to this calculation so that an independent repetition of the software use may be performed. The MCNP software used was (1) appropriate for the application of multiplication factor calculations, (2) used only within the range of validation as documented throughout *Software Qualification Report for MCNP Version 4B2, A General Monte Carlo N-Particle Transport Code* (CRWMS M&O 1998) and *MCNP-A General Monte Carlo N-Particle Transport Code* (Briesmeister 1997), and (3) obtained from Software Configuration Management in accordance with appropriate procedures.

5. CALCULATION

This report evaluates the accuracy to which the SAS2H control module can predict the composition of spent nuclear fuel for eight different radiochemical assay (RCA) samples from assembly YJ1433 that operated at the Limerick Generation Station Unit 1 BWR.

5.1 CALCULATION METHOD

The method of calculation is based upon the calculation of isotopic concentrations of irradiated fuel using the SAS2H sequence of the SCALE modular code system. All SAS2H inputs were set up to represent the assembly axial node where the measured fuel sample was located.

5.1.1 SAS2H Fuel Depletion Description

The SAS2H control sequence accesses five calculation modules of the SCALE code system for performing fuel depletion and decay calculations. The five modules include BONAMI, NITAWL-II, XSDRNPM, COUPLE, and ORIGEN-S. Each of the modules has a specific purpose in the sequence to perform the fuel depletion and decay calculations. The following provides a brief description of what each module does with a more detailed description being provided in CRWMS M&O (2000a).

- BONAMI applies the Bondarenko method of resonance self-shielding to nuclides for which Bondarenko data are available.
- NITAWL-II performs Nordheim resonance self-shielding corrections for nuclides that have resonance parameter data available.
- XSDRNPM performs a one-dimensional (1-D) neutron transport calculation on a specified geometry to facilitate production of cell-weighted cross sections for fuel depletion calculations.
- COUPLE updates all cross section constants included on an ORIGEN-S working nuclear data library with data from the cell-weighted cross section library obtained from the XSDRNPM calculation. Additionally, the weighting spectrum produced by XSDRNPM is applied to update all nuclides in the ORIGEN-S working library, which were not included in the XSDRNPM calculation.
- ORIGEN-S performs point depletion, buildup, and decay calculations for the specified assembly irradiation history. Additionally, can be run as a stand-alone case to provide isotopic concentrations at various decay times.

The SAS2H control module uses ORIGEN-S to perform a point depletion calculation for the fuel assembly section described in the SAS2H input file. The ORIGEN-S module uses cell-weighted cross sections based on 1-D transport calculations performed by XSDRNPM. One-dimensional transport calculations are performed on two models, Path A and Path B, to calculate energy dependent spatial neutron flux distributions necessary to perform cross section cell-weighting calculations.

The Path A model is simply a unit cell of the fuel assembly lattice containing a fuel rod. In the Path A model, the fuel, cladding, and moderator are modeled explicitly. The only modification

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 10 of 37

required to develop the Path A model is the conversion of the fuel assembly's square lattice unit cell perimeter to a radial perimeter conserving moderator volume within the unit cell (exterior to the fuel rod cladding). This modification is performed automatically by the SAS2H control module. A 1-D transport calculation is performed on the Path A model for each energy group, and the spatial flux distributions for each energy group are used to calculate cell-weighted cross sections for the fuel.

The Path B model is a larger representation of the assembly than the Path A model. The Path B model approximates spectral effects due to heterogeneity within the fuel assembly such as water gaps, burnable poison rods, control rods, or axial power shaping rods. The structure of the Path B model is based on a uniform distribution of non-fuel lattice cells. In reality, most fuel assemblies do not have uniformly distributed non-fuel lattice cells, but the approximation of uniformly distributed non-fuel lattice cells is considered acceptable within the fidelity of these calculations as documented in Section S2.2.3.1 of Volume 1, Rev. 6 in CRWMS M&O (2000a).

The basic structure of the Path B model for the fuel assembly depletion calculations performed in this analysis included an inner region composed of a representation of the non-fuel assembly lattice cell. A region containing the homogenization of the Path A model surrounds the inner region in the Path B model. A final region representing the moderator in the assembly-toassembly spacing surrounds the homogenized region in the Path B model. The size of each radial region that surrounds the inner region in the Path B model is determined by conserving both the fuel-to-moderator mass ratio and the fuel-to-absorber (burnable poison) mass ratio in the corresponding section of the fuel assembly. The cell-weighted cross sections from the Path A model are applied to the homogenized region during the Path B model transport calculations. New cell-weighted cross sections for each energy group are then developed using the unit cell spatial flux distribution results from the Path B model transport calculations. These cellweighted cross sections are ultimately used in the point depletion calculations performed by ORIGEN-S to calculate the depleted fuel isotopic compositions in the corresponding fuel assembly. A detailed description of the calculations used to produce burnup-dependent cross sections by SAS2H is documented in Section S2.2.4 of Volume 1, Rev. 6 in CRWMS M&O (2000a).

The Path B model for the fuel assembly configuration is provided to the SAS2H control module. The essential rule in deriving the zone radii is to maintain the relative volumes for all zones in the actual assembly (p. S2.2.5, CRWMS M&O 2000a).

5.2 SAMPLE DESCRIPTION

Eight representative cross-sectional samples (approximately $\frac{1}{2}$ -inch thick) were obtained from three extended exposure fuel rods operated at the Limerick Unit 1 BWR to measure the concentrations of 37 selected isotopes (Reager 2003, pp. 1-1 and 2-1). The sampled fuel rods consisted of one full-length standard UO₂ rod from fuel bundle lattice location D9; a gadoliniabearing UO₂ rod from location D8; and a part-length rod from location H5, all of which were retrieved from a GE11 9x9 fuel bundle assembly, identified as YJ1433. The 9x9 fuel rod array contains two water rods that span seven fuel rod positions, and eight part-length fuel rods (DOE 1996, p. 120). The samples were cut from various axial locations of the three fuel rods and were

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 11 of 37

dissolved and processed for the measurement of concentrations of the selected isotopes. Sample locations and basic characteristics are provided in Table 5-1.

Rod Location in		Axial Position ^a	Initial Enrichment	Measured Burnup ^b (MWd/MTU)	
Assembly Lattice	Sample Identifier	(in. / cm)	(Wt% ²³⁵ U)		
0	D8-3D2B	82.30 / 209.04	2 60	54,840	
Do	D8 – 3D2C ^c	82.05 / 208.41	5.00		
D0	D8-4G3	130.45 / 331.34	2.60	37,020	
Do	D8 – 4G4 ^c	130.95 / 332.61	3.00		
D0	D9-1D2	30.75 / 78.11	2.05	62,110	
D9	D9 – 1D3 ^c	30.50 / 77.47	3.95		
00	D9-2D2	62.25 / 158.12	2.05	65,540	
D9	$D9 - 2D3^{c}$	62.00 / 157.48	5.95		
00	D9-4D4	102.20 / 259.59	2.05	64,950	
D9	$D9 - 4D3^{c}$	101.70 / 258.32	5.95		
00	D9-4G1E1	123.06 / 312.57	2.05	56,520	
D9	D9 – 4G1D1 ^c	122.51 / 311.18	5.95		
115	H5-3A1C	85.25 / 216.54	2.05	57.015	
сп	H5 – 3A1B ^c	85.00 / 215.90	3.95	57,915	
115	H5-3A1G	88.90 / 225.81	2.05	57.910	
CD	$H5 - 3A1E^{\circ}$	88.40 / 224.54	3.90	57,010	

Table 5-1	Fuel Sample	Characteristic	Parameters
	ruel Sample	Characteristic	Farameters

Source: Reager (2003, pp. 1-4 and 1-5).

NOTES: ^a Axial position of each sample is measured in inches from the tip of bottom end plug of the fuel rod; cm value provided was converted from inches.

^b Measured burnup via ¹⁴⁸Nd method.

^c Since the dissolution technique for samples assayed through the inductive coupled plasma mass spectroscopy (used for measurement of ⁹⁵Mo, ⁹⁹Tc, ¹⁰¹Ru, ¹⁰³Rh, and ¹⁰⁹Ag concentrations) was significantly different than the conditions used for the rest of the analyses, duplicate "matched" full cross-sectional fuel samples (approximately ¼-inch thick) were excised from the fuel rods. The "matched" fuel samples were immediately adjacent or as close as possible to one another. No distinction will be made hereafter between the matched samples, i.e. the ⁹⁵Mo, ⁹⁹Tc, ¹⁰¹Ru, ¹⁰³Rh, and ¹⁰⁹Ag concentrations will be associated to the first sample in each pair in column "Sample Identifier".

For convenience, the rods will be identified hereafter by their lattice position within the fuel bundle.

The dates of the measurements were used to calculate the amount of decay time associated with each sample. Reager (2003, pp. 4-3 through 4-7) indicated measurement dates of May 30, June 12 and July 15, 2002 for various samples. The date of July 15, 2002 was used as the reference date for all samples, and the measurements performed at other dates were corrected for decay to the reference date. This date corresponds to a downtime of 1510 days for all the samples investigated.

The radiochemical assay measured isotopic concentrations for all eight samples from assembly YJ1433 are presented in Table 5-2.

Page 12 of 37

Sample	D8-3D2B	D8-4G3	D9-1D2	D9-2D2	D9-4D4	D9-4G1E1	H5-3A1C	H5-3A1G
Average Burnup (MWd/MTU)	54840	37020	62110	65540	64950	56520	57915	57810
Isotope			C	oncentration	ւ (mg/mg ²³⁸ U)		
²³⁴ U	1.61E-04	1.94E-04	1.66E-04	1.63E-04	1.65E-04	1.85E-04	1.80E-04	1.87E-04
²³⁵ U	4.26E-03	8.72E-03	1.70E-03	2.19E-03	2.69E-03	4.31E-03	4.80E-03	4.88E-03
²³⁶ U	5.71E-03	5.18E-03	6.00E-03	6.01E-03	6.05E-03	6.01E-03	6.21E-03	6.21E-03
²³⁸ Pu	4.39E-04	2.55E-04	4.00E-04	5.08E-04	5.43E-04	4.45E-04	5.07E-04	5.08E-04
²³⁹ Pu	5.46E-03	5.52E-03	3.94E-03	4.77E-03	5.30E-03	5.44E-03	6.14E-03	6.18E-03
²⁴⁰ Pu	3.70E-03	2.90E-03	3.12E-03	3.50E-03	3.61E-03	3.35E-03	3.76E-03	3.77E-03
²⁴¹ Pu	1.38E-03	1.14E-03	1.06E-03	1.31E-03	1.43E-03	1.39E-03	1.50E-03	1.50E-03
²⁴² Pu	1.19E-03	6.33E-03	1.54E-03	1.62E-03	1.56E-04	1.23E-04	1.16E-03	1.14E-03
¹⁴³ Nd	1.02E-03	9.19E-04	8.52E-04	9.85E-04	1.04E-03	1.04E-03	1.11E-03	1.11E-03
¹⁴⁵ Nd	1.01E-03	7.99E-04	1.13E-03	1.17E-03	1.16E-03	1.06E-03	1.07E-03	1.07E-03
¹⁴⁶ Nd	1.23E-03	8.52E-04	1.43E-03	1.52E-03	1.50E-03	1.28E-03	1.32E-03	1.31E-03
¹⁴⁸ Nd	6.15E-04	4.44E-04	6.96E-04	7.36E-04	7.29E-04	6.37E-04	6.51E-04	6.49E-04
¹⁵⁰ Nd	3.09E-04	2.16E-04	3.42E-04	3.68E-04	3.65E-04	3.15E-04	3.25E-04	3.23E-04
¹³⁴ Cs	5.74E-05	3.35E-05	5.90E-05	7.17E-05	7.22E-05	5.66E-05	6.24E-05	6.21E-05
¹³⁷ Cs	1.87E-03	1.35E-03	1.99E-03	2.17E-03	2.09E-03	1.78E-03	1.95E-03	1.94E-03
¹⁵¹ Eu	4.77E-07	4.32E-07	3.42E-07	4.04E-07	4.38E-07	4.52E-07	5.19E-07	5.26E-07
¹⁵³ Eu	1.94E-04	1.41E-04	2.09E-04	2.21E-04	2.15E-04	2.01E-04	1.97E-04	1.97E-04
¹⁵⁵ Eu	7.96E-06	5.36E-06	8.01E-06	9.01E-06	8.74E-06	8.00E-06	8.11E-06	8.10E-06
¹⁴⁷ Sm	2.88E-04	2.58E-04	2.95E-04	2.96E-04	2.90E-04	2.99E-04	2.94E-04	2.95E-04
¹⁴⁹ Sm	2.69E-06	2.91E-06	1.67E-06	2.35E-06	2.81E-06	3.08E-06	2.94E-06	2.95E-06
¹⁵⁰ Sm	4.81E-04	3.34E-04	4.98E-04	5.51E-04	5.43E-04	4.90E-04	5.07E-04	5.04E-04
¹⁵¹ Sm	1.35E-05	1.23E-05	1.01E-05	1.24E-05	1.35E-05	1.35E-05	1.54E-05	1.53E-05
¹⁵² Sm	1.52E-04	1.20E-04	1.79E-04	1.76E-04	1.66E-04	1.58E-04	1.49E-04	1.48E-04
¹⁵⁵ Gd ^a	1.19E-05	9.68E-06	7.80E-06	8.78E-06	9.18E-06	7.79E-06	8.60E-06	8.09E-06
²⁴¹ Am	3.89E-04	3.17E-04	2.83E-04	3.26E-04	3.81E-04	3.69E-04	4.08E-04	4.14E-04
^{241m} Am	1.18E-06	1.16E-06	6.68E-07	8.18E-07	9.90E-07	1.06E-06	1.42E-06	1.46E-06
²⁴³ Am	3.03E-04	1.30E-04	3.62E-04	3.92E-04	4.19E-04	3.01E-04	2.96E-04	2.97E-04
²³⁷ Np	7.92E-04	5.40E-04	7.67E-04	9.00E-04	8.86E-04	8.22E-04	8.60E-04	8.65E-04
⁹⁵ Mo	1.27E-03	9.94E-04	1.43E-03	1.42E-03	1.37E-03	1.27E-03	1.28E-03	1.28E-03
⁹⁹ Tc ^b	1.27E-03	9.99E-04	1.39E-03	1.36E-03	1.40E-03	1.16E-03	1.22E-03	1.18E-03
¹⁰¹ Ru	1.28E-03	9.56E-04	1.50E-03	1.51E-03	1.47E-03	1.33E-03	1.32E-03	1.36E-03
¹⁰³ Rh	7.45E-04	6.07E-04	7.22E-04	7.59E-04	8.00E-04	7.41E-04	7.54E-04	7.84E-04
¹⁰⁹ Ag	1.61E-04	1.10E-04	1.46E-04	1.53E-04	1.55E-04	1.21E-04	1.34E-04	1.51E-04
²⁴² Cm	4.91E-08	3.73E-08	3.75E-08	3.76E-08	5.28E-08	5.56E-08	4.81E-08	4.27E-08
²⁴³ Cm	1.15E-06	6.48E-07	8.49E-07	1.13E-06	1.37E-06	1.21E-06	1.24E-06	1.30E-06
²⁴⁴ Cm	1.56E-04	4.61E-05	1.81E-04	2.21E-04	2.43E-04	1.51E-04	1.62E-04	1.63E-04
²⁴⁵ Cm	1.28E-05	3.28E-06	9.50E-06	1.53E-05	1.90E-05	1.13E-05	1.53E-05	1.53E-05
²⁴⁶ Cm	2.94E-06	4.17E-07	3.46E-06	5.10E-05	5.54E-06	2.47E-06	3.10E-06	3.10E-06

Source: Reager (2003, pp. 4-2 through 4-9).

NOTE: ^a Not including ¹⁵⁵Gd from the decay of ¹⁵⁵Eu. ^b Includes any ⁹⁹Ru present in the sample solution.

Page 13 of 37

5.3 FUEL ASSEMBLY DESIGN AND OPERATING PARAMETERS

The general fuel assembly design parameters are presented in Table 5-3.

Table 5-3. YJ1433 Fuel Assembly Geometric and Material Information
--

Fuel Assembly Data	
Lattice	9x9
Number of lattice positions occupied by water rods (DOE 1996, p. 120)	7
Number of fuel rods	74
Number of rods containing Gd ₂ O ₃	9
Number of part-length fuel rods (DOE 1996, p. 120)	8
Rod pitch (cm)	1.440
Assembly pitch (cm)	15.240
Assembly channel material (see Assumption 3.1)	Zircaloy-4
Fuel Rod Data	
Cladding outer diameter (cm)	1.1176
Cladding thickness (cm)	0.0711
Cladding inner diameter (cm) (= Outer diameter - 2*Thickness)	0.9754
Fill gas (DOE 1992, p. 2.2-3)	Helium
Cladding material	Zircaloy-2
Fuel Pellet Data	
Diameter (cm)	0.9550
Pellet material	UO ₂

Source: Nuclear Engineering International (1998, p. 63), unless otherwise noted.

The nominal characteristics of the fuel rods from which the samples were cut are presented in Table 5-4.

Fuel Rod Number	As-Built ²³⁵ U (Wt.%)	As-Built Gd ₂ O ₃ (Wt.%)	Active Fuel Column (in./cm)	As-Built Rod Length (in./cm)	Average Exposure (GWd/MTU)
D8 ^a	3.60	5.00	138.0 / 350.5	160.97 / 408.9	43.5
D9 ^b	3.95	0.00	146.0 / 370.8	160.97 / 408.9	54.2
H5	3.95	0.00	90.0 / 228.6	102.99 / 261.6	51.0

 Table 5-4.
 Nominal Characteristics of Sampled Fuel Rods

Source: Reager (2003, Table 1-2).

- NOTES: ^a D8: bottom 6 inches: UO₂ (natural U), 112 g; top 132 inches: 95 wt% UO₂ (3.60 wt% ²³⁵U) and 5 wt% Gd₂O₃, 2349g.
 - ^b D9: bottom 6 inches: UO₂ (natural U), 114 g; middle 132-inches: UO₂ (3.95 wt\%^{235} U), 2510g; top 8 inches UO₂ (natural U), 152 g.

There are eight part-length fuel rods like H5 in assembly YJ1433. Therefore, two main axial zones can be distinguished for assembly YJ1433:

• The lower zone, consisting of the lower 248.13 cm (97.69 in.) of the assembly fuel rods, as measured from the lower end plug tips of the rods. The length of this zone is the sum between the length of the active fuel column for the partial-length fuel rods (90 in. - see Table 5-4) and the remaining length of the fuel rod, from bottom end of active fuel

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 14 of 37

column to the end plug tip (7.69 in. - from Martinez 2001). This zone has 74 fuels rods (81 total lattice positions minus 7 positions occupied by water rods), of which 9 contain Gd_2O_3 . Samples D8-3D2B, D8-3D2C, D9-1D2, D9-1D3, D9-2D2, D9-2D3, H5-3A1C, H5-3A1B, H5-3A1G, and H5-3A1E are axially located in this zone.

• The upper zone, which is between the top of the lower zone and the top end of the active fuel column of the standard rods. This zone has 66 fuels rods (81 total lattice positions minus 7 positions occupied by water rods, and minus 8 positions occupied by water above the top of part-length rods), of which 9 contain Gd₂O₃. Samples D8-4G3, D8-4G4, D9-4D4, D9-4D3, D9-4G1E1, and D9-4G1D1 are axially located in this zone.

5.3.1 SAS2H Material Specifications

The material specification section defines the UO_2 fresh fuel composition to which the SAS2H calculation pertains, along with the other materials necessary to describe the fuel assembly. The UO_2 fresh fuel composition is characterized by the fuel density, fuel temperature, and weight percentages of ²³⁴U, ²³⁵U, and ²³⁸U. In SAS2H inputs, a number of additional isotopes are specified in trace amounts in the fresh fuel composition to assure that their buildup and decay is tracked during the depletion calculation. Table 5-5 contains a list of trace isotopes, which are specified as each having a concentration of 10^{-21} atoms/barn-cm in the fresh fuel composition.

⁸³ Kr	⁸⁵ Kr	⁹⁰ Sr	⁸⁹ Y	⁹⁵ Mo	⁹³ Zr	⁹⁴ Zr
⁹⁵ Zr	⁹⁴ Nb	⁹⁵ Nb	⁹⁹ Tc	¹⁰³ Rh	¹⁰⁵ Rh	¹⁰¹ Ru
¹⁰⁶ Ru	¹⁰⁵ Pd	¹⁰⁸ Pd	¹⁰⁹ Ag	¹²⁴ Sb	¹²⁶ Sn	¹³¹ Xe
¹³² Xe	¹³⁵ Xe	¹³⁶ Xe	¹³⁴ Cs	¹³⁵ Cs	¹³⁷ Cs	¹³⁶ Ba
¹³⁹ La	¹⁴⁴ Ce	¹⁴¹ Pr	¹⁴³ Pr	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd
¹⁴⁶ Nd	¹⁴⁷ Nd	¹⁴⁸ Nd	¹⁵⁰ Nd	¹⁴⁷ Pm	¹⁴⁸ Pm	¹⁴⁹ Pm
¹⁴⁷ Sm	¹⁴⁸ Sm	¹⁴⁹ Sm	¹⁵⁰ Sm	¹⁵¹ Sm	¹⁵² Sm	¹⁵⁴ Gd
¹⁵⁵ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁶⁰ Gd	¹⁵¹ Eu	¹⁵³ Eu	¹⁵⁴ Eu
¹⁵⁵ Eu	²³² U	²³³ U				

Table 5-5. Trace Isotopes Specified in Fresh Fuel Compositions

The wt% ranges for Zircaloy-2 and Zircaloy-4 compositions as given in MO9906RIB00048.000 and the values selected from these ranges for the SAS2H inputs are presented in Table 5-6.

Table 5-6.	Zircaloy-2 and Zircaloy-4 Compositions
------------	--

Element	Wt% in Zircaloy-2 ^a	SAS2H Wt% in Zircaloy-2	Wt% in Zircaloy-4 ^a	SAS2H Wt% in Zircaloy-4
Cr	0.05-0.15	0.10	0.07-0.13	0.10
Fe	0.07-0.20	0.135	0.18-0.24	0.21
0	0.09-0.16	0.125	0.09-0.16	0.125
Sn	1.20-1.70	1.45	1.20-1.70	1.45
Ni	0.03-0.08	0.055	-	-
Fe+Cr	0.18-0.38	-	0.28-0.37	-
Zr	Remainder	98.135	Remainder	98.115
Density ^a	6.55 g/cm ³		6.5	6 g/cm ³

Source: ^a MO9906RIB00048.000.

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 15 of 37

In the SAS2H Path A model, the moderator density and temperature must be provided, and both remain unchanged unless new values are added to the input irradiation history. The Limerick Unit 1 core follow report (Scaglione 2003) contains axial profile information for core averaged moderator void fraction, power, and exposure, and for YJ1433 assembly channel averaged power and exposure. The axial profile information for each of these physical quantities is provided as a sequence of 25 values, one for each axial node, which is a slice 15.24-cm- (6-in.-) thick of the active core (see Assumption 3.8). The lower end of the first node coincides with the lower end of the active fuel column of the standard fuel pin, which is 3.97 cm (1.563 in.) from the bottom end plug tip (Martinez 2001). The axial profile information in Scaglione (2003) is provided for 20 accounting cases for core operating cycle 5, 35 for cycle 6, and 32 for cycle 7. This information can be used to estimate the axial profile of the moderator density inside assembly YJ1433 channel, for each exposure accounting case. Therefore, it is possible to develop a more realistic Path A model than the simplified model that uses a constant moderator density for the entire residence time of the assembly in the core.

Since the moderator flows upward through the channel, the moderator density at any location is dependent not only on the power at that location but also on the power at lower locations. A correlation between the core averaged node moderator density was developed as a function of the node integrated relative core power. The node integrated relative core power is defined as the sum of the powers for that node and all the nodes below:

$$P_{i} = \sum_{1}^{i} p_{k}$$
 (Eq. 1)

where

 p_k = relative core power for node k (normalized to 1);

 P_i = integrated core relative power for node i.

The variation of core averaged node moderator density with node integrated relative core power is well fit as a fifth degree polynomial (BSC 2001, Section 5.2.7):

$$\rho_i = \sum_{j=0}^5 C_j \cdot P_i^j$$
(Eq. 2)

The coefficients C_j are calculated using the least squares method (Walpole et al. 1998, p. 411). As explained below, these coefficients are used to calculate the node averaged moderator density inside the channel containing assembly YJ1433.

The node integrated relative core power is defined as the sum of the powers for that node and all the nodes below:

$$P_{1433i} = \sum_{1}^{i} p_{1433k}$$
(Eq. 3)

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 16 of 37

where

 p_{1433k} = relative channel (containing assembly YJ1433) power for node k (normalized to 1):

 P_{1433i} = integrated channel (containing assembly YJ1433) relative power for node i.

The node averaged moderator density in the channel containing assembly YJ1433 is calculated using the coefficients calculated via the least squares method in the following equation:

$$\rho_{1433i} = \sum_{j=0}^{5} C_j \cdot P_{1433i}^j$$
(Eq. 4)

The isotopic composition of 234 U in fresh fuel was calculated using the following equation based on Assumption 3.2:

234
U wt% = 0.009 * 235 U wt% (Eq. 5)

The 238 U wt% is then the remainder from the total of 100 wt%:

$$^{238}U wt\% = 100 wt\% - ^{234}U wt\% - ^{235}U wt\%$$
(Eq. 6)

The fresh fuel densities and compositions used in this calculation are specified in Table 5-7.

		Density ^b (g/cm ³)			Concentra	ation ^c (wt%)
Description	SAS2H Mixture #	Rod D8 samples	Rod D9 and H5 samples	SAS2H Identifier	Rod D8 samples	Rod D9 and H5 samples
				92234	0.03240	0.03555
Fuel	1	9.37605	10.45128	92235	3.60000 ^a	3.95000 ^a
				92238	96.36760	96.01445
UO_2 - Gd_2O_3	4	0.27605	10 45129	64000	Б О ^а	∩ ^a
Rod	4	9.37005	10.45120	16000	5.0	0

Table 5-7. SAS2H Compositions Specific to Assembly YJ1433

Source: ^a Reager (2003, Table 1-2).

NOTES: ^b The fuel density was calculated using the fuel column masses in pins D8 and D9 given in Reager (2003, Table 1-2), and by expanding the rod UO₂ loading to fill the cladding-pellet gap. ^c The ²³⁴U and ²³⁸U wt.% were calculated using Equations 5 and 6, and the ²³⁵U wt.% given in Reager

(2003, Table 1-2).

SAS2H Operating History Specifications 5.3.2

The core follow report (Scaglione 2003) provides cumulative burnup information for assembly YJ1433. The average burnups for each axial node of the assembly are provided for 20 accounting cases for core operating cycle 5, 35 for cycle 6, and 32 for cycle 7. For each sample is known only the final burnup (see Table 5-1), which was measured through radiochemical assay. Sample cumulative burnup histories were estimated considering each sample was burned at the same relative rate as the full assembly. Thus, sample burnups per accounting case were obtained by normalizing the assembly burnup history and multiplying by the final sample burnup.

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 17 of 37

The axial power and burnup profile information in Scaglione (2003) was used to calculate the average values for assembly node power, moderator density, and temperatures of fuel, cladding and moderator in 37 irradiation steps, with lengths between 35 and 81 days. Irradiation steps that are less than 90 days are considered sufficiently short to have a negligible impact on SAS2H depletion results.

The fuel temperature corresponding to the nodal power was calculated from the nodal power in agreement with assumptions 3.4 and 3.5, by using equations 7 through 12, and the physical constants listed in Table 5-8.

Constant	Value used	Reference
Cladding-pellet gap mean diameter, D_G (cm)	0.965	(Cladding Inner Diameter + Pellet Outer Diameter)/2 (diameters taken from Table 5.3)
Effective gap thickness (cm)	0.0112	Calculated using Equation 10
Stefan-Boltzmann constant (kW·cm ⁻² ·K ⁻⁴)	5.67E-15	Parrington et al. 1996, p. 59
Fuel conductivity (kW·cm ⁻¹ ·K ⁻¹)	3.17E-05	Hagrman et al. 1981, p. 29
Cladding conductivity (kW·cm ⁻¹ ·K ⁻¹)	1.64E-04	Hagrman et al. 1981, p. 219
Fuel emissivity	0.7993	Hagrman et al. 1981, p. 48
Cladding emissivity	0.325	Hagrman et al. 1981, p. 230

Table 5-8. Constants for Fuel Temperature Calculations

The linear heat generation rate (\dot{q}) for a single fuel rod is calculated using Equation 7.

$$\dot{q} = \frac{P_{\text{node}} \cdot K_{235}}{N_{\text{rods}} \cdot L_{\text{node}}}$$
(Eq. 7)

where

$$\begin{split} P_{node} &= average \ assembly \ power \ in \ node \ (kW); \\ K_{235} &= ratio \ between \ pin \ and \ assembly \ ^{235}U \ wt.\% \ (used \ to \ correct \ the \ power \ in \ pin); \\ N_{rods} &= the \ number \ of \ fuel \ rods \ in \ lattice; \\ L_{node} &= the \ active \ length \ of \ the \ node \ (cm). \end{split}$$

The heat flux at the surface of the fuel pellet (\ddot{q}) is calculated using Equation 8.

$$\ddot{q} = \frac{\dot{q}}{\pi \cdot D_{p}}$$
(Eq. 8)

where D_P is the diameter of the fuel pellet (cm).

The temperature change across the cladding (ΔT_C) is calculated using Equation 9 (Todreas and Kazimi 1990, p. 336).

$$\Delta T_{\rm C} = \frac{\ddot{q} \cdot \delta_{\rm C}}{k_{\rm C}} \tag{Eq. 9}$$

where

 $\delta_{\rm C}$ = the thickness of the cladding (cm); k_C = the cladding conductivity (kW·cm⁻¹·K⁻¹).

The effective gap thickness (δ_{eff}) is estimated using Equation 10 (Todreas and Kazimi 1990, p. 334).

$$\delta_{\text{eff}} = \delta_{\text{G}} + \delta_{\text{jump1}} + \delta_{\text{jump2}} \tag{Eq. 10}$$

where δ_G is the geometrical gap thickness (cm), and δ_{jump1} and δ_{jump2} are corrections for temperature discontinuities near the surfaces (at atmospheric pressure, the sum of the last two terms is known to be 10^{-3} cm for helium; Todreas and Kazimi 1990, p. 334).

The gap thermal conductance (h_G) is calculated as follows (Todreas and Kazimi 1990, p. 334):

$$h_{G} = \frac{k_{G}}{\delta_{eff}} + \frac{\sigma \cdot T_{S}^{3}}{\frac{1}{\epsilon_{F}} + \frac{1}{\epsilon_{C}} - 1}$$
(Eq. 11)

where

 T_S = the fuel pellet surface temperature (K); k_G = the thermal conductivity of the gas in the gap (kW·cm⁻¹·K⁻¹); σ = the Stefan-Boltzmann constant (5.67·10⁻¹⁵ kW·cm⁻²·K⁻⁴); ϵ_F and ϵ_C = the emissivities of the fuel and cladding, respectively.

The thermal conductivity of the gas in the gap (helium), k_G is dependent on temperature as follows (Todreas and Kazimi 1990, p. 334):

$$k_{\rm G} = 15.8 \cdot 10^{-6} \cdot T^{0.79}$$
 (Eq. 12)

where T (K) is the gas temperature that was approximated with the average temperature across the gap (T_{avgg} , which is calculated using Equation 15).

For the fuel/cladding gap without gap closure, the temperature jump is given as follows (Todreas and Kazimi 1990, p. 336):

$$\Delta T_{\rm G} = \frac{\dot{q}}{\pi \cdot D_{\rm G} \cdot h_{\rm G}} \tag{Eq. 13}$$

where

 D_G = the gap mean diameter (cm); h_G = the gap conductance (kW·cm⁻²·K⁻¹; calculated using Equation 11).

The bulk temperature in the coolant/moderator (T_{bulk}) was considered approximately equal to the core outlet temperature, which was calculated by adding 10 K to the core inlet temperature. The

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 19 of 37

value of 10 K (or 10 °C) is used because it is equal to the difference between the core outlet (288 °C) and inlet (278 °C) temperatures for the Grand Gulf Unit 1 BWR, which has a very similar design to that of Limerick Unit 1 BWR (Nuclear Engineering International 1998, pp. 54 and 63).

Assuming excellent heat transfer due to boiling (see Assumption 3.4) and given the bulk temperature (T_{bulk}) in the coolant, the surface temperature of the fuel pellet may be calculated as follows:

$$T_{\rm s} = T_{\rm bulk} + \Delta T_{\rm c} + \Delta T_{\rm G} \tag{Eq. 14}$$

The average temperature across the gap is calculated as follows:

$$T_{avgg} = T_{bulk} + \Delta T_{C} + \frac{\Delta T_{G}}{2}$$
(Eq. 15)

The surface temperature of the fuel pellet and the linear heat generation rate were used to determine the centerline temperature of the fuel as shown in Equation 16 (Todreas and Kazimi 1990, p. 336):

$$T_{CL} = \frac{\dot{q}}{4 \cdot \pi \cdot k_{f}} + T_{S}$$
 (Eq. 16)

where

 T_{CL} = fuel centerline temperature (maximum fuel temperature; K);

 k_f = fuel thermal conductivity (3.17E-05 kW·cm⁻¹·K⁻¹, which is based on 93.4 % of theoretical density and an average temperature of 1071 K; from Hagrman et al. 1981, p. 29).

The average temperature across the cladding is calculated as follows:

$$T_{avgc} = T_{Bulk} + \frac{\Delta T_{C}}{2}$$
(Eq. 17)

The fuel, cladding, and moderator average temperatures for each sample and each irradiation step are presented in Table 5-9. The fuel conductivity was considered to be constant, thus the average fuel temperature (T_{avgf}) is the simple average of the pellet surface and centerline temperatures.

The source of information in Table 5-9 is spreadsheet 'LGS1RCA.xls' in Attachment III (in the worksheets that have identical names with the samples). The specific columns in the worksheets from where the information is retrieved are presented in the next eight paragraphs. The power, density and temperature values used in the 37 power steps for SAS2H input are highlighted in yellow in the worksheets. In Table 5-9 the column headings are the same as the keywords used in the power history data block of the SAS2H input:

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 20 of 37

power – nodal power for a given irradiation step (MW/node; in column with the header 'Linear Heat Gen. Rate'). It was calculated by dividing the YJ1433 assembly exposure for the node where the sample is located as given in Scaglione (2003) in MWD/ST for each time step to the length of the time step (days) and multiplied with a correction factor with the purpose of obtaining the same burnup as the sample (see also first paragraph in this section).

burn – duration of the irradiation step (days; in the second column with the header 'Days').

down – time at zero power (days; in cells D100, D191, and D281).

h2of – node averaged fraction of first power step moderator density (in column with the header 'H₂O fraction'). The method of calculating the moderator density is explained in Section 5.3.1.

tmpf – node averaged fuel temperature for the irradiation step (K; in column with the header 'Fuel T_{avgf} ').

tmpc – node averaged fuel cladding temperature for the irradiation step (K; was taken from column with the header 'Cladding T_{avgc} ').

tmpm – node averaged moderator temperature for the irradiation step (K, was taken from column with the header 'Moderator T_{bulk} ').

Equations 7 through 17 were used to calculate the average temperatures for fuel, cladding and moderator. Because the pellet surface temperature and the average temperature in the fuelcladding gap were unknowns in a system of two transcendental equations, these temperatures were determined by changing the given input values (in columns with the headers 'Input Value for T_s ,' and 'Input Value for T_{avgg} ') until they matched the calculated values.

Page 21 of 37

		Node 14 (D8-3D2B)		Node 22 (D8-4G3)					Node 5 (D9-1D2)							
burn	down	power	h2of	tmpf	tmpc	tmpm	power	h2of	tmpf	tmpc	tmpm	power	h2of	tmpf	tmpc	tmpm
73.0	0	0.19348	1.000	1059	574	561	0.08331	1.000	854	568	561	0.19255	1.000	1026	573	561
45.5	0	0.19718	0.877	1068	575	561	0.08553	0.902	862	569	561	0.28620	0.939	1233	579	561
45.5	0	0.19718	0.877	1068	575	561	0.08553	0.902	862	569	561	0.28620	0.939	1233	579	561
45.5	0	0.20425	0.880	1085	575	561	0.10600	0.896	929	570	561	0.28423	0.900	1228	579	561
45.5	0	0.20425	0.880	1085	575	561	0.10600	0.896	929	570	561	0.28423	0.900	1228	579	561
45.5	0	0.20348	0.978	1083	575	561	0.12238	0.905	982	572	561	0.25907	0.974	1174	577	561
45.5	0	0.20348	0.978	1083	575	561	0.12238	0.905	982	572	561	0.25907	0.974	1174	577	561
55.0	0	0.23563	0.878	1160	578	562	0.12725	1.065	998	573	562	0.31797	0.927	1301	582	562
53.0	0	0.21628	0.934	1114	577	562	0.12981	1.027	1007	574	562	0.23395	0.965	1120	577	562
50.0	0	0.24685	1.073	1183	575	558	0.16590	0.916	1118	573	558	0.23235	1.035	1113	573	558
67.0	38.0	0.20453	1.272	1086	575	561	0.16060	0.827	1103	575	561	0.13960	1.073	905	570	561
57.0	0	0.26255	0.696	1220	577	559	0.12149	1.774	978	570	559	0.33150	0.848	1328	580	559
65.0	0	0.24847	0.678	1189	577	560	0.12530	1.511	991	572	560	0.36368	0.805	1396	584	560
42.5	0	0.23814	0.725	1164	576	559	0.11584	1.246	960	570	559	0.36585	0.835	1400	583	559
42.5	0	0.23814	0.725	1164	576	559	0.11584	1.246	960	570	559	0.36585	0.835	1400	583	559
37.0	0	0.23024	0.779	1147	577	562	0.13369	1.140	1019	574	562	0.29116	0.845	1244	580	562
67.0	0	0.23010	0.793	1146	576	560	0.13108	1.041	1010	572	560	0.30643	0.844	1276	580	560
37.0	0	0.20482	0.819	1086	574	560	0.15234	0.910	1077	573	560	0.26226	0.875	1180	576	560
67.0	0	0.22097	0.889	1124	575	560	0.16937	0.835	1130	575	560	0.23495	0.971	1120	575	560
35.0	0	0.19817	0.847	1070	574	560	0.11503	0.850	958	571	560	0.22000	0.932	1088	574	560
42.0	0	0.21758	0.947	1116	575	560	0.13324	0.900	1016	572	560	0.21928	0.984	1086	574	560
43.0	0	0.14627	0.955	945	572	562	0.10259	0.887	918	571	562	0.13279	1.001	890	570	562
43.0	0	0.14627	0.955	945	572	562	0.10259	0.887	918	571	562	0.13279	1.001	890	570	562
60.0	0	0.21285	1.078	1105	574	560	0.16603	0.966	1120	575	560	0.17655	1.040	989	571	560
45.0	27.0	0.19883	1.293	1072	574	560	0.16373	1.161	1113	575	560	0.13438	1.077	893	569	560
57.0	0	0.16851	0.926	1001	575	563	0.06781	0.951	804	569	563	0.15984	1.007	954	573	563
78.0	0	0.19549	0.873	1065	575	562	0.07698	0.906	834	569	562	0.20550	0.977	1057	575	562
60.5	0	0.20135	0.894	1079	576	562	0.09416	0.876	891	571	562	0.20948	0.948	1066	576	562
60.5	0	0.20135	0.894	1079	576	562	0.09416	0.876	891	571	562	0.20948	0.948	1066	576	562
71.0	0	0.19366	0.952	1061	576	562	0.11309	0.921	953	573	562	0.19830	1.001	1041	575	562
74.0	0	0.20782	0.961	1095	576	562	0.10944	0.935	941	572	562	0.18613	1.000	1013	574	562
71.0	0	0.18913	1.111	1051	576	563	0.14128	0.992	1044	576	563	0.16350	1.026	962	574	563
81.0	0	0.15965	1.157	979	574	563	0.13612	1.066	1028	575	563	0.17005	1.021	977	574	563
41.0	0	0.15220	1.101	960	572	562	0.13692	1.046	1029	574	562	0.18649	0.994	1014	574	562
48.0	0	0.16887	1.000	1002	575	563	0.12618	1.008	996	575	563	0.23810	0.920	1130	579	563
48.0	0	0.16091	1.073	983	574	563	0.12809	1.060	1003	575	563	0.18756	0.965	1017	575	563
63.0	1510	0.12927	1.307	902	569	560	0.10709	1.247	932	569	560	0.13378	1.052	891	568	560

Table 5-9.	Operating	History	Information	for <i>i</i>	Assembly	YJ1433
------------	-----------	---------	-------------	--------------	----------	--------

Calculation

Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations Document Identifier: CAL-DSU-NU-000002 REV 00A

Page 22 of 37

		I	Node 1	1 (D9-	2D2)			Node 1	7 (D9-	4D4)		N	ode 21	(D9-4	G1E1)	
burn	down	power	h2of	tmpf	tmpc	tmpm	power	h2of	tmpf	tmpc	tmpm	power	h2of	tmpf	tmpc	tmpm
73.0	0	0.23202	1.000	1107	575	561	0.18271	1.000	1062	574	561	0.13137	1.000	930	570	561
45.5	0	0.26529	0.853	1180	578	561	0.18458	0.882	1067	575	561	0.13469	0.891	939	571	561
45.5	0	0.26529	0.853	1180	578	561	0.18458	0.882	1067	575	561	0.13469	0.891	939	571	561
45.5	0	0.25452	0.848	1156	577	561	0.21496	0.874	1143	576	561	0.16663	0.876	1022	573	561
45.5	0	0.25452	0.848	1156	577	561	0.21496	0.874	1143	576	561	0.16663	0.876	1022	573	561
45.5	0	0.23305	0.977	1110	576	561	0.24941	0.946	1228	579	561	0.19459	0.898	1093	575	561
45.5	0	0.23305	0.977	1110	576	561	0.24941	0.946	1228	579	561	0.19459	0.898	1093	575	561
55.0	0	0.29177	0.872	1237	580	562	0.26319	0.844	1263	581	562	0.20343	0.959	1116	577	562
53.0	0	0.25663	0.933	1162	578	562	0.24836	0.893	1226	580	562	0.20660	0.937	1124	577	562
50.0	0	0.28952	1.082	1229	576	558	0.28455	1.023	1312	579	558	0.25913	0.917	1252	577	558
67.0	38.0	0.23129	1.268	1106	575	561	0.23933	1.228	1204	578	561	0.24137	0.978	1210	579	561
57.0	0	0.33564	0.716	1327	580	559	0.25400	0.729	1238	578	559	0.19225	1.436	1086	573	559
65.0	0	0.32068	0.684	1296	581	560	0.24489	0.700	1217	578	560	0.19441	1.235	1092	574	560
42.5	0	0.30160	0.726	1256	578	559	0.23708	0.699	1197	576	559	0.18062	1.009	1056	572	559
42.5	0	0.30160	0.726	1256	578	559	0.23708	0.699	1197	576	559	0.18062	1.009	1056	572	559
37.0	0	0.27503	0.766	1201	579	562	0.25360	0.759	1239	580	562	0.20588	0.990	1122	577	562
67.0	0	0.27154	0.773	1193	578	560	0.26351	0.768	1263	580	560	0.20480	0.922	1119	575	560
37.0	0	0.23440	0.803	1112	574	560	0.23457	0.796	1191	577	560	0.23120	0.823	1184	577	560
67.0	0	0.24842	0.905	1142	575	560	0.25440	0.858	1240	578	560	0.25640	0.798	1246	578	560
35.0	0	0.23686	0.844	1118	575	560	0.20907	0.824	1128	576	560	0.17684	0.815	1048	573	560
42.0	0	0.25812	0.951	1164	576	560	0.22919	0.930	1178	577	560	0.20237	0.891	1112	575	560
43.0	0	0.16652	0.969	963	572	562	0.15925	0.953	1002	573	562	0.15184	0.907	984	573	562
43.0	0	0.16652	0.969	963	572	562	0.15925	0.953	1002	573	562	0.15184	0.907	984	573	562
60.0	0	0.24491	1.098	1135	575	560	0.23439	1.049	1191	577	560	0.23936	0.986	1204	577	560
45.0	27.0	0.22816	1.304	1099	575	560	0.21826	1.241	1151	576	560	0.23172	1.188	1186	577	560
57.0	0	0.21049	0.942	1062	576	563	0.15473	0.931	992	574	563	0.10735	0.948	868	571	563
78.0	0	0.25345	0.873	1155	578	562	0.17428	0.887	1041	575	562	0.12128	0.904	904	571	562
60.5	0	0.23769	0.888	1121	577	562	0.19138	0.896	1085	576	562	0.14585	0.882	969	573	562
60.5	0	0.23769	0.888	1121	577	562	0.19138	0.896	1085	576	562	0.14585	0.882	969	573	562
71.0	0	0.23943	0.972	1125	578	562	0.19113	0.943	1084	576	562	0.16984	0.928	1031	575	562
74.0	0	0.25311	0.983	1154	578	562	0.19808	0.955	1102	577	562	0.16665	0.942	1023	574	562
71.0	0	0.18066	1.119	996	575	563	0.21880	1.066	1154	579	563	0.21403	1.009	1144	579	563
81.0	0	0.17242	1.143	977	574	563	0.17623	1.138	1047	576	563	0.20274	1.086	1115	578	563
41.0	0	0.18265	1.069	999	573	562	0.17503	1.104	1043	574	562	0.20369	1.062	1117	577	562
48.0	0	0.19833	0.957	1035	576	563	0.17902	1.025	1054	576	563	0.18537	1.018	1072	577	563
48.0	0	0.18429	1.038	1004	575	563	0.17331	1.087	1040	576	563	0.18472	1.074	1070	577	563
63.0	1510	0.15039	1.256	925	569	560	0.13888	1.304	948	570	560	0.15201	1.264	983	571	560

Table 5-9. Operating History Information for Assembly YJ1433 (continued)

Page 23 of 37

		N	Node 14 (H5-3A1C)					Node 15 (H5-3A1G)				
burn	down	power	h2of	tmpf	tmpc	tmpm	power	h2of	tmpf	tmpc	Tmpm	
73.0	0	0.20433	1.000	1104	575	561	0.19860	1.000	1087	575	561	
45.5	0	0.20823	0.877	1114	576	561	0.19891	0.881	1089	575	561	
45.5	0	0.20823	0.877	1114	576	561	0.19891	0.881	1089	575	561	
45.5	0	0.21570	0.880	1132	576	561	0.21298	0.882	1123	576	561	
45.5	0	0.21570	0.880	1132	576	561	0.21298	0.882	1123	576	561	
45.5	0	0.21489	0.978	1130	576	561	0.21974	0.972	1139	576	561	
45.5	0	0.21489	0.978	1130	576	561	0.21974	0.972	1139	576	561	
55.0	0	0.24884	0.878	1213	580	562	0.24720	0.871	1206	579	562	
53.0	0	0.22841	0.934	1164	578	562	0.22941	0.927	1163	578	562	
50.0	0	0.26069	1.073	1239	576	558	0.26297	1.062	1241	577	558	
67.0	38.0	0.21600	1.272	1133	576	561	0.21927	1.261	1138	576	561	
57.0	0	0.27727	0.696	1279	579	559	0.26841	0.689	1255	578	559	
65.0	0	0.26241	0.678	1245	579	560	0.25473	0.673	1223	578	560	
42.5	0	0.25149	0.725	1218	577	559	0.24569	0.715	1201	577	559	
42.5	0	0.25149	0.725	1218	577	559	0.24569	0.715	1201	577	559	
37.0	0	0.24315	0.779	1199	579	562	0.25029	0.772	1213	579	562	
67.0	0	0.24300	0.793	1198	578	560	0.25549	0.788	1225	579	560	
37.0	0	0.21630	0.819	1133	575	560	0.21936	0.817	1137	575	560	
67.0	0	0.23336	0.889	1174	576	560	0.23707	0.883	1180	577	560	
35.0	0	0.20928	0.847	1116	575	560	0.20801	0.844	1110	575	560	
42.0	0	0.22978	0.947	1166	577	560	0.22823	0.944	1159	576	560	
43.0	0	0.15448	0.955	980	573	562	0.15535	0.955	980	573	562	
43.0	0	0.15448	0.955	980	573	562	0.15535	0.955	980	573	562	
60.0	0	0.22478	1.078	1153	576	560	0.22645	1.069	1155	576	560	
45.0	27.0	0.20997	1.293	1118	575	560	0.21121	1.275	1118	575	560	
57.0	0	0.17795	0.926	1041	576	563	0.17272	0.926	1025	575	563	
78.0	0	0.20645	0.873	1110	577	562	0.19865	0.877	1089	576	562	
60.5	0	0.21264	0.894	1126	577	562	0.20975	0.895	1116	577	562	
60.5	0	0.21264	0.894	1126	577	562	0.20975	0.895	1116	577	562	
71.0	0	0.20451	0.952	1106	577	562	0.20211	0.947	1097	577	562	
74.0	0	0.21947	0.961	1142	578	562	0.21509	0.958	1129	577	562	
71.0	0	0.19974	1.111	1095	577	563	0.21091	1.095	1120	578	563	
81.0	0	0.16860	1.157	1017	575	563	0.17305	1.152	1026	575	563	
41.0	0	0.16073	1.101	996	573	562	0.16411	1.105	1003	573	562	
48.0	0	0.17834	1.000	1042	576	563	0.18076	1.010	1045	576	563	
48.0	0	0.16993	1.073	1021	576	563	0.17298	1.079	1026	576	563	
63.0	1510	0.13652	1.307	933	570	560	0.13837	1.310	936	570	560	

Table 5-9.	Operating	History	Information	for Assembly	YJ1433	(continued)
------------	-----------	---------	-------------	--------------	--------	-------------

5.4 SAS2H PATH B REPRESENTATIONS

The Path B model for the fuel assembly configuration is provided to the SAS2H control module. The primary concern in the development of the Path B model for BWR assemblies is the conservation of the fuel-to-moderator and the fuel-to-absorber mass ratios. The Path B model used in this evaluation is for a GE11 9x9 fuel assembly with 9 rods that contain gadolinium as a burnable neutron absorber. Figure 5-1 illustrates the general diagram of the Path B model, where R_i (i = 1,...,6) refer to the radial dimensions.

Page 24 of 37

Figure 5-1. SAS2H General Path B Model used for Assembly YJ1433

At any time during assembly YJ1433 residence inside Limerick Unit 1 BWR core, there is no control blade inserted fully or partially inside the blade position adjacent to the assembly (Scaglione 2003). Therefore no control blade region is represented in the Path B model.

SAS2H code sets the fuel composition to be uniform throughout the fuel and burnable absorber region (CRWMS M&O 2000a, p. S2.5.15). In the SAS2H representation of the fuel assembly node, the input value for the U fuel composition that most accurately represents the node assembly is the node-averaged U composition. However, for the purpose of this calculation the most accurate sample representation is needed. Therefore, the input value used for the U fuel composition in each case was the sample composition.

Equations 18 through 23 are used to calculate the Path B zone radii. For the first zone, which represents the burnable absorber rod (UO_2 -Gd₂O₃ mixture), the pellet diameter was increased to the inner cladding diameter and the material density was adjusted (smeared) accordingly. Therefore, the radius of the first zone is:

$$R_1 = (Fuel Rod Cladding Inner Diameter)/2 = 0.4877 cm.$$
 (Eq. 18)

The second zone represents the fuel rod cladding. Its radius is:

$$R_2 = (Fuel Rod Cladding Outer Diameter)/2 = 0.5588 cm.$$
 (Eq. 19)

The third zone represents the moderator in the fuel rod lattice cell. Its radius is:

$$R_3 = \frac{\text{rodpitch}}{\sqrt{\pi}} = 0.81243 \text{ cm}$$
 (Eq. 20)

where 'rodpitch' is the rod pitch in the 9x9 lattice.

The radii values for the first three zones are applicable to all eight samples.

The fourth zone represents the homogenized fuel zone. Its radius is:

Engineered Systems Project

Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations Document Identifier: CAL-DSU-NU-000002 REV 00A

Page 25 of 37

$$R_4 = \sqrt{R_3^2 + \left(\frac{\# \text{fuelrods}}{\# \text{gdrods}} - 1\right) \cdot \frac{\text{rodpitch}^2}{\pi}}$$
(Eq. 21)

where

 R_3 = the radius of the third Path B zone

#fuelrods = the total number of fuel rods in assembly (including those that contain Gd₂O₃)

#gdrods = the number of rods in assembly that contain Gd₂O₃.

As explained in Section 5.3, the fuel assembly has two axial zones with different numbers of fuel rods: 74 in the lower zone, and 66 in the upper zone. Therefore, Equation 21 gives two different results for R_4 , 2.32960 cm for the lower zone, and 2.20008 cm for the upper zone.

The fifth zone represents the assembly channel zone. Its radius is:

$$\mathbf{R}_{5} = \sqrt{\mathbf{R}_{4}^{2} + \frac{\text{outwidth}^{2} - \text{inwidth}^{2}}{\#\text{gdrods} \cdot \pi}}$$
(Eq. 22)

where

 R_4 = the radius of the fourth Path B zone outwidth = the outer width of the assembly channel inwidth = the inner width of the assembly channel.

 R_5 is 2.45181 cm for the lower zone, and 2.32909 cm for the upper zone.

The sixth zone represents the moderator outside the assembly channel zone, but inside the assembly lattice cell. Its radius is:

$$R_6 = \frac{\text{assemblypitch}}{\sqrt{\pi \cdot \# \text{gdrods}}}$$
(Eq. 23)

where 'assemblypitch' is the assembly pitch in the core zone lattice.

Equation 23 is independent of the axial zone of the assembly, therefore R_6 is 2.86608 cm for both zones.

5.5 MCNP SPECIFICATIONS

In order to quantify the overall effect that the differences between the calculated and measured isotopic concentrations have on system reactivity, MCNP calculations were performed to calculate the multiplication factor (k_{eff}) that results from using the different sets of isotopic concentrations and provide a comparison in terms of Δk_{eff} .

The axial nodes from which the samples came from were used to represent fuel assemblies in a flooded waste package configuration. The waste package design parameters used in the MCNP

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 26 of 37

representations are illustrated in Attachment I. Axially reflective boundary conditions were used for each representation. The general assembly design parameters were presented in Table 5-3.

The spent fuel isotopes used in the MCNP cases correspond to those from the SAS2H calculations and the measured sample isotopes. Isotopes were extracted from the SAS2H outputs and measured results, and then combined with the initial oxygen mass and renormalized to the total mass in terms of weight percents. Isotopes ¹⁴⁶Nd, ¹⁴⁸Nd, ¹⁵⁰Nd, ²⁴²Cm, ²⁴³Cm, ²⁴⁵Cm, and ²⁴⁶Cm were omitted from the MCNP cases as they have a negligible effect on system reactivity (see Assumption 3.6). The values from the SAS2H calculations are given in units of mols, which were converted to units of grams using Equation 24. In order to keep changes in reactivity limited to variations from isotopic concentrations, for the MCNP density input was used the value calculated for the fresh fuel. Each depleted fuel composition is listed in the MCNP input files contained in Attachment III in terms of ZAID's and weight percents, and can be verified by visual inspection from the SAS2H outputs along with the equation provided. The SAS2H output files for each calculation are contained on a compact disc attachment (Attachment III).

$$Mass_i = (Mols Isotope_i) * A_i$$
 (Eq. 24)

where 'i' is the particular isotope and A_i is the atomic mass value (from Audi and Wapstra 1995).

The outer barrier of the waste package was represented as SB-575 N06022 as described in Table 5-10. The inner barrier was represented as SA-240 S31600, which is nuclear grade 316 stainless steel (SS) with tightened control on carbon and nitrogen content (ASM International 1987, p. 931, and ASME 1998, Section II, SA-240, Table 1) as described in Table 5-11. The fuel basket plates were represented as Neutronit A978 with 1.62 wt% boron as described in Table 5-12, and the thermal shunts were represented as aluminum 6061 as described in Table 5-13. The basket side and corner guides were represented as Grade 70 A 516 carbon steel as described in Table 5-14. The basket stiffeners were represented as water since they are not solid over the length of the basket.

The chromium, nickel, and iron elemental weight percents obtained from the references were expanded into their constituent natural isotopic weight percents for use in MCNP. This expansion was performed by: (1) calculating a natural weight fraction of each isotope in the elemental state, and (2) multiplying the elemental weight percent in the material of interest by the natural weight fraction of the isotope in the elemental state to obtain the weight percent of the isotope in the material of interest. This process is described mathematically in Equations 25 and 26. The atomic mass values and atom percent of natural element values for these calculations are from Parrington et al (1996).

$$\begin{pmatrix} \text{Weight Fraction} \\ \text{of Isotope "i" in the} \\ \text{Natural Element} \end{pmatrix} = \frac{(\text{Atomic Mass of Isotope "i"})(\text{At% of Isotope "i" in Natural Element})}{\sum_{i=1}^{I} (\text{Atomic Mass of Isotope "i"})(\text{At% of Isotope "i" in Natural Element})}$$

where 'I' the total number of isotopes in the natural element

(Eq. 25)

$\begin{pmatrix} Wt\% of Isotope"i" in \\ Material Composition \end{pmatrix} = \begin{pmatrix} Weight Fraction \\ of Isotope"i" in the \\ Natural Element \end{pmatrix}$	(Reference Wt% of Element in Material Composition)
--	---

(Eq. 26)

Element/Isotope	ZAID	Wt%	Element/Isotope	ZAID	Wt%
C-nat	6000.50c	0.0150	⁵⁹ Co	27059.50c	2.5000
⁵⁵ Mn	25055.50c	0.5000	¹⁸² W	74182.55c	0.7877
Si-nat	14000.50c	0.0800	¹⁸³ W	74183.55c	0.4278
⁵⁰ Cr	24050.60c	0.8879	¹⁸⁴ W	74184.55c	0.9209
⁵² Cr	24052.60c	17.7863	¹⁸⁶ W	74186.55c	0.8636
⁵³ Cr	24053.60c	2.0554	V	23000.50c	0.3500
⁵⁴ Cr	24054.60c	0.5202	⁵⁴ Fe	26054.60c	0.2260
⁵⁸ Ni	28058.60c	36.8024	⁵⁶ Fe	26056.60c	3.6759
⁶⁰ Ni	28060.60c	14.6621	⁵⁷ Fe	26057.60c	0.0865
⁶¹ Ni	28061.60c	0.6481	⁵⁸ Fe	26058.60c	0.0116
⁶² Ni	28062.60c	2.0975	³² S	16032.50c	0.0200
⁶⁴ Ni	28064.60c	0.5547	³¹ P	15031.50c	0.0200
Mo-nat	42000.50c	13.5000	Der	nsity = 8.69 g/cm ³	

Table 5-10. Material Specifications for SB-575 N06022

Source: MO0003RIB00071.000.

Table 5-11.	Material	Specifications	for SS316NG
-------------	----------	----------------	-------------

Element/Isotope	ZAID	Wt%	Element/Isotope	ZAID	Wt%
C-nat	6000.50c	0.0200	⁵⁴ Fe	26054.60c	3.6911
¹⁴ N	7014.50c	0.0800	⁵⁶ Fe	26056.60c	60.0322
Si-nat	14000.50c	1.0000	⁵⁷ Fe	26057.60c	1.4119
³¹ P	15031.50c	0.0450	⁵⁸ Fe	26058.60c	0.1897
³² S	16032.50c	0.0300	⁵⁸ Ni	28058.60c	8.0641
⁵⁰ Cr	24050.60c	0.7103	⁶⁰ Ni	28060.60c	3.2127
⁵² Cr	24052.60c	14.2291	⁶¹ Ni	28061.60c	0.1420
⁵³ Cr	24053.60c	1.6443	⁶² Ni	28062.60c	0.4596
⁵⁴ Cr	24054.60c	0.4162	⁶⁴ Ni	28064.60c	0.1216
⁵⁵ Mn	25055.50c	2.0000	Mo-nat	42000.50c	2.5000
		Density =	7.98 g/cm ³		

Source: ASM International (1987), p. 931, and ASME 1998, Section II, SA-240, Table 1.

Calculation

Page 27 of 37

Page 28 of 37

Element/Isotope	ZAID	Wt%	Element/Isotope	ZAID	Wt%
¹⁰ B	5010.50c	0.2986	⁵⁷ Fe	26057.60c	1.3928
¹¹ B	5011.56c	1.3214	⁵⁸ Fe	26058.60c	0.1872
C-nat	6000.50c	0.0400	⁵⁹ Co	27059.50c	0.2000
⁵⁰ Cr	24050.60c	0.7730	⁵⁸ Ni	28058.60c	8.7361
⁵² Cr	24052.60c	15.4846	⁶⁰ Ni	28060.60c	3.4805
⁵³ Cr	24053.60c	1.7894	⁶¹ Ni	28061.60c	0.1539
⁵⁴ Cr	24054.60c	0.4529	⁶² Ni	28062.60c	0.4979
⁵⁴ Fe	26054.60c	3.6411	⁶⁴ Ni	28064.60c	0.1317
⁵⁶ Fe	26056.60c	59.2189	Mo-nat	42000.50c	2.2000
		Density =	7.76 g/cm ³		

Table 5-12.	Material Specifications	for Neutronit A978 wit	h 1.62 wt% Boron
-------------	-------------------------	------------------------	------------------

Source: MO0109RIB00049.001.

Element/Isotope	ZAID	Wt%	Element/Isotope	ZAID	Wt%		
Si-nat	14000.50c	0.6000	Mg-nat	12000.50c	1.0000		
⁵⁴ Fe	26054.60c	0.0396	⁵⁰ Cr	24050.60c	0.0081		
⁵⁶ Fe	26056.60c	0.6433	⁵² Cr	24052.60c	0.1632		
⁵⁷ Fe	26057.60c	0.0151	⁵³ Cr	24053.60c	0.0189		
⁵⁸ Fe	26058.60c	0.0020	⁵⁴ Cr	24054.60c	0.0048		
⁶³ Cu	29063.60c	0.1884	Ti-nat	22000.50c	0.1500		
⁶⁵ Cu	29065.60c	0.0866	²⁷ AI	13027.50c	96.9300		
⁵⁵ Mn	25055.50c	0.1500	Density = 2.7065 g/cm ³				

Table 5-13	Material	Specifications	for	AI 6061
	material	Specifications	101	AI 000 I

Source: MO9906RIB00048.000.

NOTE: Zn cross-section data unavailable, therefore it was substituted as ²⁷Al (See assumption 3.7).

Table 5-14.	Material Specifications	for Grade 70	A516 Carbon Steel
-------------	-------------------------	--------------	-------------------

Element/Isotope	ZAID	Wt% ^a	Element/Isotope	ZAID	Wt% ^a	
C-nat	6000.50c	0.2700	⁵⁴ Fe	26054.60c	5.5558	
⁵⁵ Mn	25055.50c	1.0450	⁵⁶ Fe	26056.60c	90.3584	
³¹ P	15031.50c	0.0350	⁵⁷ Fe	26057.60c	2.1252	
³² S	16032.50c	0.0350	⁵⁸ Fe	26058.60c	0.2856	
Si-nat	14000.50c	0.2900	Density ^b = 7.850 g/cm ³			

Sources: ^a ASTM A 516/A 516M-01 (2001), Table 1. ^b ASTM A 20/A20M-99a (1999), p. 9.

Page 29 of 37

Element/Isotope	ZAID	Wt% ^a	Element/Isotope	ZAID	Wt% ^a			
¹⁶ O	6000.50c	0.1250	⁵⁸ Fe	26058.60c	0.0004			
⁵⁰ Cr	24050.60c	0.0042	⁵⁸ Ni	28058.60c	0.0370			
⁵² Cr	24052.60c	0.0837	⁶⁰ Ni	28060.60c	0.0147			
⁵³ Cr	24053.60c	0.0097	⁶¹ Ni	28061.60c	0.0007			
⁵⁴ Cr	24054.60c	0.0024	⁶² Ni	28062.60c	0.0021			
⁵⁴ Fe	26054.60c	0.0076	⁶⁴ Ni	28064.60c	0.0006			
⁵⁶ Fe	26056.60c	0.1241	Sn-nat	50000.35c	1.4500			
⁵⁷ Fe	26057.60c	0.0029	Zr-nat	40000.60c	98.1350			
	Density = 6.55 g/cm^3							

Source: MO9906RIB00048.000.

Table 5-16.	Material S	pecifications	for Zircaloy-4
-------------	------------	---------------	----------------

Element/Isotope	ZAID	Wt%	Element/Isotope	ZAID	Wt%
⁵⁰ Cr	24050.60c	0.0042	⁵⁷ Fe	26057.60c	0.0045
⁵² Cr	24052.60c	0.0837	⁵⁸ Fe	26058.60c	0.0006
⁵³ Cr	24053.60c	0.0097	¹⁶ O	8016.50c	0.1250
⁵⁴ Cr	24054.60c	0.0024	Zr-nat	40000.60c	98.1150
⁵⁴ Fe	26054.60c	0.0119	Sn-nat	50000.35c	1.4500
⁵⁶ Fe	26056.60c	0.1930	Dens	ity = 6.56 g/cm^3	

Source: MO9906RIB00048.000.

Page 30 of 37

6. **RESULTS**

The Limerick Generating Station Unit 1 radiochemical assay comparison results are presented in this section. The criticality calculations were performed using two different sets of compositions for the fuel material while keeping unchanged all the other material compositions and geometry parameters for the waste package disposal configuration. One set consists of the concentrations for 32 of the isotopes measured in eight samples, and the other set consists of the concentrations for the same isotopes calculated using the SAS2H sequence of SCALE 4.4a. The results presented provide a comparison of the calculated isotopic concentrations with the measured isotopic concentrations on a percent difference basis. The difference between the measured and the calculated value was divided by the measured value to determine the accuracy of the SAS2H calculation. A positive percent difference represents an over prediction by the code, while a negative percent difference represents an under prediction by the code. Two additional calculations were performed, for the two fresh fuel compositions (and using the same geometry).

In order to quantify the overall effect that the differences between the calculated and measured isotopic concentrations have on system reactivity, MCNP calculations were performed to calculate the multiplication factor (k) that results from using the different sets of isotopic concentrations and provide a comparison in terms of Δk . The results represent the average combined collision, absorption, and track-length estimator from the MCNP calculations. The standard deviation (σ) represents the standard deviation of k about the average combined collision, and track-length estimate due to the Monte Carlo calculation statistics.

The SAS2H and MCNP input and output files used in this evaluation are contained on an attachment compact disc to this calculation file as listed in Attachment II. The outputs are considered reasonable compared to inputs.

The results are suitable for their intended use.

Page 31 of 37

6.1 SAMPLE RESULTS FROM ASSEMBLY YJ1433

Table 6-1 presents the SAS2H calculated isotopic concentrations.

Sample	D8-3D2B	D8-4G3	D9-1D2	D9 2D2	D9 4D4	D9-4G1E1	H5-3A1C	H5-3A1G
Node	15	23	6	11	18	22	15	16
Isotope				(g/g ²	³⁸ U)	1		
²³⁴ U	1.49E-04	1.97E-04	1.62E-04	1.56E-04	1.50E-04	1.71E-04	1.73E-04	1.72E-04
²³⁵ U	2.63E-03	6.62E-03	2.13E-03	2.38E-03	1.68E-03	3.09E-03	4.09E-03	4.20E-03
²³⁶ U	5.57E-03	5.15E-03	6.11E-03	6.17E-03	6.18E-03	6.17E-03	6.15E-03	6.16E-03
²³⁸ Pu	4.45E-04	1.87E-04	4.27E-04	5.32E-04	4.61E-04	3.78E-04	4.62E-04	4.68E-04
²³⁹ Pu	4.85E-03	4.15E-03	4.32E-03	4.95E-03	4.17E-03	4.29E-03	5.31E-03	5.40E-03
²⁴⁰ Pu	3.54E-03	2.63E-03	3.33E-03	3.69E-03	3.52E-03	3.33E-03	3.58E-03	3.60E-03
²⁴¹ Pu	1.26E-03	8.58E-04	1.13E-03	1.32E-03	1.11E-03	1.08E-03	1.35E-03	1.36E-03
²⁴² Pu	1.50E-03	6.38E-04	1.61E-03	1.71E-03	1.70E-03	1.28E-03	1.33E-03	1.32E-03
¹⁴³ Nd	1.04E-03	9.03E-04	1.00E-03	1.11E-03	9.79E-04	1.01E-03	1.14E-03	1.15E-03
¹⁴⁵ Nd	1.12E-03	8.42E-04	1.20E-03	1.24E-03	1.22E-03	1.11E-03	1.14E-03	1.13E-03
¹⁴⁶ Nd	1.40E-03	8.80E-04	1.50E-03	1.60E-03	1.60E-03	1.35E-03	1.38E-03	1.38E-03
¹⁴⁸ Nd	6.83E-04	4.55E-04	7.27E-04	7.70E-04	7.59E-04	6.58E-04	6.78E-04	6.76E-04
¹⁵⁰ Nd	3.48E-04	2.18E-04	3.66E-04	3.93E-04	3.85E-04	3.27E-04	3.40E-04	3.40E-04
¹³⁴ Cs	6.10E-05	2.92E-05	6.31E-05	7.20E-05	7.13E-05	5.77E-05	5.86E-05	5.88E-05
¹³⁷ Cs	2.06E-03	1.37E-03	2.18E-03	2.32E-03	2.29E-03	1.98E-03	2.04E-03	2.03E-03
¹⁵¹ Eu	5.28E-07	3.94E-07	4.79E-07	5.72E-07	4.86E-07	4.73E-07	5.89E-07	6.00E-07
¹⁵³ Eu	2.37E-04	1.42E-04	2.51E-04	2.65E-04	2.58E-04	2.20E-04	2.31E-04	2.30E-04
¹⁵⁵ Eu	6.61E-06	3.64E-06	6.84E-06	7.49E-06	7.14E-06	6.03E-06	6.45E-06	6.45E-06
¹⁴⁷ Sm	2.78E-04	2.67E-04	3.00E-04	2.91E-04	2.85E-04	2.87E-04	2.89E-04	2.87E-04
¹⁴⁹ Sm	2.46E-06	2.18E-06	2.24E-06	2.63E-06	2.40E-06	2.60E-06	2.69E-06	2.75E-06
¹⁵⁰ Sm	5.26E-04	3.39E-04	5.45E-04	5.91E-04	5.71E-04	5.01E-04	5.26E-04	5.26E-04
¹⁵¹ Sm	1.57E-05	1.16E-05	1.43E-05	1.70E-05	1.46E-05	1.42E-05	1.74E-05	1.77E-05
¹⁵² Sm	2.23E-04	1.63E-04	2.39E-04	2.44E-04	2.46E-04	2.18E-04	2.19E-04	2.18E-04
¹⁵⁵ Gd	5.70E-06	3.14E-06	5.88E-06	6.45E-06	6.13E-06	5.18E-06	5.58E-06	5.58E-06
²⁴¹ Am	3.50E-04	2.44E-04	3.09E-04	3.64E-04	2.95E-04	2.90E-04	3.79E-04	3.84E-04
^{241m} Am	1.26E-06	9.37E-07	9.90E-07	1.27E-06	8.59E-07	8.99E-07	1.52E-06	1.55E-06
²⁴³ Am	4.25E-04	1.25E-04	4.43E-04	5.12E-04	4.74E-04	3.29E-04	3.78E-04	3.77E-04
²³⁷ Np	7.62E-04	4.56E-04	7.70E-04	8.74E-04	7.86E-04	7.07E-04	8.13E-04	8.18E-04
⁹⁵ Mo	1.32E-03	9.59E-04	1.42E-03	1.47E-03	1.46E-03	1.31E-03	1.33E-03	1.33E-03
⁹⁹ Tc	1.38E-03	1.00E-03	1.48E-03	1.53E-03	1.51E-03	1.36E-03	1.39E-03	1.38E-03
¹⁰¹ Ru	1.42E-03	9.58E-04	1.52E-03	1.59E-03	1.57E-03	1.37E-03	1.41E-03	1.40E-03
¹⁰³ Rh	7.21E-04	5.42E-04	7.35E-04	7.73E-04	7.27E-04	6.81E-04	7.29E-04	7.28E-04
¹⁰⁹ Ag	1.82E-04	1.02E-04	1.87E-04	2.02E-04	1.94E-04	1.60E-04	1.73E-04	1.72E-04
²⁴² Cm	4.71E-08	2.83E-08	4.62E-08	5.10E-08	4.45E-08	4.32E-08	4.83E-08	4.90E-08
²⁴³ Cm	9.82E-07	3.76E-07	8.87E-07	1.11E-06	9.33E-07	8.19E-07	9.91E-07	1.01E-06
²⁴⁴ Cm	1.99E-04	3.22E-05	1.96E-04	2.63E-04	2.44E-04	1.40E-04	1.68E-04	1.68E-04
²⁴⁵ Cm	8.21E-06	1.02E-06	6.73E-06	1.11E-05	8.77E-06	5.17E-06	7.54E-06	7.74E-06

Table 6-1.	SAS2H Calculated	Isotopic Concentrations	for Assembly YJ143	3 Samples
10010 0 11	of torin outoutatou		ion / loconnory i o i io	2 Gampioo

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 32 of 37

Table 6-2 presents the results in terms of percent difference for the calculated isotopic concentrations compared with the measured results (Table 5-2).

Sample	D8-3D2B	D8-4G3	D9-1D2	D9 2D2	D9 4D4	D9-4G1E1	H5-3A1C	H5-3A1G
Node	15	23	6	11	18	22	15	16
Isotope	(Calo	culated Cond	entration – I	Measured Co	ncentration)	x 100/Measu	red Concent	tration
²³⁴ U	-7.42	1.29	-2.46	-4.58	-9.08	-7.70	-4.15	-4.18
²³⁵ U	-38.29	-24.06	25.07	8.82	-37.71	-28.20	-14.78	-13.97
²³⁶ U	-2.49	-0.48	1.92	2.65	2.09	2.60	-0.94	-0.87
²³⁸ Pu	1.43	-26.51	6.86	4.77	-15.10	-14.99	-8.79	-7.94
²³⁹ Pu	-11.15	-24.83	9.69	3.68	-21.40	-21.08	-13.45	-12.61
²⁴⁰ Pu	-4.36	-9.15	6.73	5.41	-2.40	-0.61	-4.82	-4.45
²⁴¹ Pu	-8.47	-24.75	6.69	1.08	-22.65	-22.43	-10.29	-9.08
²⁴² Pu	26.02	0.81	4.32	5.53	8.91	3.71	14.98	16.01
¹⁴³ Nd	1.81	-1.76	17.36	12.49	-5.83	-2.60	2.67	3.34
¹⁴⁵ Nd	11.07	5.39	6.10	5.92	5.20	5.05	6.22	5.97
¹⁴⁶ Nd	13.67	3.25	4.98	5.48	6.52	5.14	4.42	5.05
¹⁴⁸ Nd	11.06	2.56	4.45	4.56	4.14	3.32	4.09	4.23
¹⁵⁰ Nd	12.60	0.85	7.05	6.68	5.48	3.69	4.77	5.26
¹³⁴ Cs	6.17	-12.86	7.08	0.38	-1.25	1.99	-6.14	-5.27
¹³⁷ Cs	9.75	1.61	9.55	6.62	9.30	11.13	4.24	4.60
¹⁵¹ Eu	10.62	-8.73	40.03	41.64	10.99	4.64	13.44	14.05
¹⁵³ Eu	22.21	1.03	20.23	20.06	19.85	9.35	17.11	16.76
¹⁵⁵ Eu	-16.92	-32.15	-14.57	-16.91	-18.27	-24.57	-20.45	-20.34
¹⁴⁷ Sm	-3.55	3.42	1.86	-1.82	-1.71	-4.11	-1.72	-2.58
¹⁴⁹ Sm	-8.41	-24.92	33.99	11.94	-14.44	-15.57	-8.47	-6.67
¹⁵⁰ Sm	9.32	1.64	9.52	7.22	5.12	2.19	3.68	4.34
¹⁵¹ Sm	16.04	-5.42	41.50	37.36	7.96	4.97	12.84	15.72
¹⁵² Sm	46.44	35.72	33.68	38.76	48.12	38.11	46.94	47.24
¹⁵⁵ Gd	-52.11	-67.61	-24.62	-26.59	-33.28	-33.56	-35.12	-30.99
²⁴¹ Am	-10.07	-23.16	9.22	11.64	-22.54	-21.54	-7.02	-7.23
^{241m} Am	6.60	-19.25	48.26	55.83	-13.22	-15.18	7.19	6.32
²⁴³ Am	40.41	-3.71	22.30	30.55	13.12	9.33	27.68	26.81
²³⁷ Np	-3.74	-15.62	0.35	-2.91	-11.25	-13.96	-5.47	-5.46
⁹⁵ Mo	3.72	-3.51	-1.04	3.47	6.37	2.97	3.81	3.58
⁹⁹ Tc	8.87	0.17	6.35	12.66	8.18	17.11	13.64	17.20
¹⁰¹ Ru	11.07	0.23	1.11	5.44	7.09	2.97	6.51	3.13
¹⁰³ Rh	-3.23	-10.73	1.78	1.88	-9.12	-8.15	-3.34	-7.10
¹⁰⁹ Ag	13.10	-7.30	28.02	31.71	24.95	32.60	28.78	14.01
²⁴² Cm	-4.01	-24.12	23.20	35.45	-15.68	-22.24	0.34	14.86
²⁴³ Cm	-14.65	-41.90	4.53	-1.57	-31.90	-32.31	-20.11	-22.32
²⁴⁴ Cm	27.45	-30.14	8.31	19.07	0.45	-7.46	3.40	3.16
²⁴⁵ Cm	-35.88	-69.04	-29.19	-27.70	-53.86	-54.28	-50.70	-49.38

Table 6-2. Assembly YJ1433 Sample Percent Differences

Page 33 of 37

6.2 MCNP CALCULATION RESULTS

The results of MCNP runs using standard fuel rods with the fresh fuel compositions from Table 5-7 are presented in Table 6-3.

Pin Type Filling the Waste Package	²³⁵ U (Wt%)	k _{eff}	σ	AENCF
D8	3.60 (with 5.0 wt% Gd ₂ O ₃)	0.17581	0.00014	0.827
D9	3.95	0.91651	0.00068	0.163

Table 6-3. MCNP Results for Fresh Nuclear Fuel

Table 6-4 presents the MCNP results for each of the spent nuclear fuel samples.

Sample #	Sample ID	RCAª		Operating History ^b		Delta (Operating History - RCA) ^c			
		k _{eff}	σ	AENCF	k _{eff}	σ	AENCF	∆k _{eff}	σ^{d}
1	D8–3D2B	0.55913	0.00052	0.304	0.51709	0.00045	0.330	-0.04204	0.00069
2	D8–4G3	0.63515	0.00052	0.259	0.57645	0.00049	0.279	-0.05870	0.00071
3	D9–1D2	0.46612	0.00044	0.369	0.48665	0.00041	0.351	0.02053	0.00060
4	D9–2D2	0.50712	0.00047	0.339	0.51048	0.00043	0.335	0.00336	0.00064
5	D9–4D4	0.53262	0.00049	0.324	0.46549	0.00041	0.361	-0.06713	0.00064
6	D9–4G1E1	0.56781	0.00048	0.299	0.50364	0.00048	0.331	-0.06417	0.00068
7	H5–3A1C	0.58889	0.00047	0.290	0.5552	0.00042	0.305	-0.03369	0.00063
8	H5–3A1G	0.59134	0.00051	0.291	0.55936	0.00050	0.304	-0.03198	0.00071

Table 6-4. MCNP Results for Spent Nuclear Fuel Samples

NOTES: ^a Results based on measured compositions of spent nuclear fuel samples.

^b Results based on SAS2H calculated compositions using reactor operating history information adjusted to yield the sample measured burnup.

^c Values reported were calculated from MCNP reported values which lists results out to five significant digits, therefore computing delta values from table values will introduce some roundoff error.

^d Delta σ value equals the square root of the sum of the squared σ values for RCAs and operating history.

Page 34 of 37

7. REFERENCES

7.1 DOCUMENTS CITED

Audi, G. and Wapstra, A.H. 1995. *Atomic Mass Adjustment, Mass List for Analysis*. [Upton, New York: Brookhaven National Laboratory, National Nuclear Data Center]. TIC: <u>242718</u>.

Briesmeister, J.F., ed. 1997. *MCNP-A General Monte Carlo N-Particle Transport Code*. LA-12625-M, Version 4B. Los Alamos, New Mexico: Los Alamos National Laboratory. ACC: MOL.19980624.0328.

BSC (Bechtel SAIC Company) 2001. *44 BWR Waste Package Loading Curve Evaluation*. CAL-UDC-NU-000005 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20011114.0132.

BSC (Bechtel SAIC Company) 2002. *Technical Work Plan for: Risk and Criticality Department*. TWP-EBS-MD-000014 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20021209.0011.

CRWMS M&O 1998. Software Qualification Report for MCNP Version 4B2, A General Monte Carlo N-Particle Transport Code. CSCI: 30033 V4B2LV. DI: 30033-2003, Rev. 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980622.0637.

CRWMS M&O 1999. Summary Report of Commercial Reactor Criticality Data for LaSalle Unit *1*. B0000000-01717-5705-00138 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990923.0233.

CRWMS M&O 2000a. *Users Manual for SCALE-4.4A*. 10129-UM-4.4A-00. Las Vegas, Nevada: CRWMS M&O. ACC: <u>MOL.20001130.0136</u>.

CRWMS M&O 2000b. *Validation Test Report (VTR) for SCALE-4.4A*. 10129-VTR-4.4A-00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20001130.0139.

DOE (U.S. Department of Energy) 1992. *Characteristics of Potential Repository Wastes*. DOE/RW-0184-R1. Four volumes. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: <u>HQO.19920827.0001</u>; <u>HQO.19920827.0002</u>; <u>HQO.19920827.0003</u>; <u>HQO.19920827.0004</u>.

DOE (U.S. Department of Energy) 1996. *Spent Nuclear Fuel Discharges from U.S. Reactors* 1994. SR/CNEAF/96-01. Washington, D.C.: U.S. Department of Energy. TIC: <u>232923</u>.

DOE (U.S. Department of Energy) 2003. *Quality Assurance Requirements and Description*. DOE/RW-0333P, Rev. 13. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: <u>DOC.20030422.0003</u>.

Engineered Systems Project	Calculation

Page 35 of 37

Hagrman, D.L.; Reymann, G.A.; and Mason, R.E., eds. 1981. *MATPRO - Version 11 (Revision 2), A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior*. NUREG/CR-0497, Rev. 2. Washington, D.C.: U.S. Nuclear Regulatory Commission. TIC: 209823.

Keenan, J.H.; Keyes, F.G.; Hill, P.G.; and Moore, J.G. 1969. *Steam Tables, Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases (English Units)*. New York, New York: John Wiley & Sons. TIC: <u>246766</u>.

Martinez, C. 2001. "RE: YMP RCA Analysis." E-mail from C. Martinez to J. Scaglione, August 2, 2001. ACC: MOL.20030731.0363.

Nuclear Engineering International. 1998. *World Nuclear Industry Handbook.* Wilmington, Kent, England: Wilmington Business Publishing. TIC: <u>237121</u>.

Parrington, J.R.; Knox, H.D.; Breneman, S.L.; Baum, E.M.; and Feiner, F. 1996. *Nuclides and Isotopes, Chart of the Nuclides*. 15th Edition. San Jose, California: General Electric Company and KAPL, Inc. TIC: <u>233705</u>.

Punatar, M.K. 2001. *Summary Report of Commercial Reactor Criticality Data for Grand Gulf Unit 1.* TDR-UDC-NU-000002 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20011008.0008.

Reager, R. 2003. *BWR Spent Fuel Isotopic Characterization, Final Report.* NEDO-33094, Rev. 0. Sunol, California: GE Nuclear Energy, Vallecitos Nuclear Center. ACC: MOL.20030528.0184.

Scaglione, J.M. 2003. "Transmittal of Assembly and Burnup Information for Limerick Spent Nuclear Fuel Assemblies." Interoffice memorandum from J.M. Scaglione (BSC) to D.A. Thomas, July 8, 2003, 0707037983, with attachment. ACC: <u>MOL.20030708.0230</u>.

Todreas, N.E. and Kazimi, M.S. 1990. *Nuclear Systems I, Thermal Hydraulic Fundamentals*. New York, New York: Hemisphere Publishing. TIC: <u>226511</u>.

Walpole, R.E.; Myers, R.H.; and Myers, S.L. 1998. *Probability and Statistics for Engineers and Scientists*. 6th Edition. Upper Saddle River, New Jersey: Prentice Hall. TIC: <u>242020</u>.

7.2 CODES, STANDARDS, REGULATIONS, AND PROCEDURES

AP-3.12Q, Rev. 2, ICN 0. *Design Calculations and Analyses*. Washington, D.C.: U.S. Department of Energy. ACC: DOC.20030403.0003.

ASM International. 1987. *Corrosion*. Volume 13 of *Metals Handbook*. 9th Edition. Metals Park, Ohio: ASM International. TIC: <u>209807</u>.

ASME (American Society of Mechanical Engineers) 1998. *1998 ASME Boiler and Pressure Vessel Code*. 1998 Edition with 1999 and 2000 Addenda. New York, New York: American Society of Mechanical Engineers. TIC: <u>247429</u>.

ASTM A 20/A20M-99a. 1999. *Standard Specification for General Requirements for Steel Plates for Pressure Vessels*. West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: <u>247403</u>.

ASTM A 516/A 516M-01. 2001. *Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service.* West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: <u>253997</u>.

7.3 SOURCE DATA LISTED BY DATA TRACKING NUMBER

MO0003RIB00071.000. Physical and Chemical Characteristics of Alloy 22. Submittal date: 03/13/2000.

MO0109RIB00049.001. Waste Package Material Properties: Neutron Absorbing Materials. Submittal date: 09/17/2001.

MO9906RIB00048.000. Waste Package Material Properties: Waste Form Materials. Submittal date: 6/9/1999.

7.4 SOFTWARE CODES

CRWMS M&O 1998. Software Code: MCNP. 4B2LV. HP. 30033 V4B2LV.

CRWMS M&O 2000. Software Code: SCALE. V4.4A. HP. 10129-4.4A-00.

Engineered Systems Project	Calculation
Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations	
Document Identifier: CAL-DSU-NU-000002 REV 00A	Page 37 of 37

8. ATTACHMENTS

Table 8-1 presents the attachment specifications for this calculation file. The contents of Attachment II are provided electronically on an attachment CD to this calculation file. A listing of the contents of the CD is provided in hard-copy form for Attachment II in the attachments to this calculation file.

Table 8.1. Attachment Listing

Attachment #	# of Pages	Description
Ι	23,55	3 44-BWR Waste Package Configurations for Site Recommendation Sketch
. 11	1-2 HP2 08/25/0	Excel spreadsheet, SAS2H input files, SAS2H outputs, MCNP inputs, and MCNP outputs
111	N/A	Compact Disc attachment containing information listed in Attachment II

Calculation Attachment

Title: Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H CalculationsDocument Identifier: CAL-DSU-NU-000002 REV 00AAttachment II, Page II-1 of II-2

ATTACHMENT II

This attachment contains a listing and description of the zip file contained on Attachment III, the CD of this calculation. The CD was written using the Hewlett Packard (HP) CD-Writer Plus model 7200e external CD-rewritable drive for personal computers, and the zip archive was created using WINZIP 8.1. The zip file attributes on the CD are as follows:

Archive Filename	File Size (bytes)	File Date	File Time
att.zip	5,056,040	07-28-2003	4:17p

There are 78 total files contained in the root directory. Upon file extraction, the file naming system corresponds as follows for the SAS2H cases, and as listed in Table II-1 for the MCNP cases.

- *N*.inp* files are the SAS2H input files.
- *N*.msgs* files contain the standard run-time messages associated with the SAS2H calculations (these are generated by SAS2H).
- *ft72f001.N** files are temporary ASCII files generated by SAS2H, which must be retained, that contain the isotopic concentrations as a function of time (the actual SAS2H output file contains a large amount of information that is not needed for this calculation, therefore it is discarded, but the temporary files SAS2H creates are retained).
- *act_N*.mass* files contain the extracted actinide isotopes from the *ft72f001.N** files and provides them in units of grams.
- *fp_N*.mass files* contain the extracted fission product isotopes from the *ft72f001.N** files and provides them in units of grams.

File Name ^a	Sample ID	Comments
1m	D8–3D2B	
2m	D8–4G3	
3m	D9–1D2	Cases for samples from
4m	D9–2D2	assembly 11433
5m	D9–4D4	moasured isotopic
6m	D9–4G1E1	concentrations
7m	H5–3A1C	concentrations.
8m	H5–3A1G	
1c	D8–3D2B	
2c	D8–4G3	Cases for samples from
3c	D9–1D2	assembly YJ1433 using
4c	D9–2D2	operating history information
5c	D9–4D4	adjusted to sample measured
6c	D9–4G1E1	burnup in SAS2H to generate
7c	H5–3A1C	isotopic concentrations.
8c	H5–3A1G	
1f	Representative for pin D8	Cases with fresh fuel in the
2f	Representative for pins	same geometric configuration
21	D9 and H5	as the rest of the cases.

Table II-1. Sample and MCNP Filename Identification

NOTE: ^a Input files have an "i" at the end of the file name, and output files have an "io" at the end of the file name.

Engineered Systems Project	Calculation Attachment
Title: Limerick Unit 1 Radiochemical Assay Comparisons to S	SAS2H Calculations
Document Identifier: CAL-DSU-NU-000002 REV 00A	Attachment II, Page II-1 of II-2

LGS1RCA.xls is an Excel spreadsheet that contains design parameters and operation information (limited to cycles 5, 6, and 7) for Limerick Unit 1 BWR core and YJ1433 fuel assembly.