MOL.19990929.00)48
-----------------	-----

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT CALCULATION COVER SHEET

Page: 1 Of: 57

2. Calculation Title Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package				
3. Document Identifier (including Revision Number) CAL-EBS-NU-000008 REV 00 MOL.19990929.0048				
4. Total Attachments 8	Total Attachments5. Attachment Numbers - Number of pages in each I-4, II-8, III-5, IV-25, V-2, VI-8, VII-5, VIII-5			
		Print Name	Signature	Date
6. Originator		John A. McClure	Johna M Clue	9/28/99
7. Checker		D. R. (Dennis) Moscalu	Store in Late levul	09/28/99
8. Lead		Peter Gottlieb	Atu Houtub	09/28/99
9. Remarks	· · · · ·			
		Revision I	History	
10. Revision No.		11.	Description of Revision	
00	Initial Issue			
AP-3.120.1	I			Bev. 06/30/1999

 Calculation

 Calculation

 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21

 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00

 Page 2 of 57

CONTENTS

1.	PURPOSE			
2.	METHOD			
	2.1.	TIME-DEPENDENT METHODS		
	2.2.	STEADY-STATE METHODS7		
3.	ASS	UMPTIONS		
4.	USE	OF COMPUTER SOFTWARE AND MODELS 10		
	4.1	SOFTWARE APPROVED FOR QUALITY ASSURANCE (QA) WORK		
		4.1.1 RELAP5/MOD3.2		
		4.1.2 MCNP		
		4.1.3 SCALE		
	4.2	SOFTWARE ROUTINES11		
		4.2.1 Excel		
		4.2.2 Strip		
	4.3	MODELS		
5.	CAL	CULATION		
	5.1	DESIGN PARAMETERS		
		5.1.1 Spent Fuel Assembly Parameters		
		5.1.2 MOX Assembly Design Parameters		
		5.1.3 Intact Waste Package Geometry Parameters		
		5.1.4 Material Properties		
		5.1.5 Neutronic Data Description		
	5.2	NEUTRONICS CALCULATIONS AND REACTIVITY COEFFICIENTS		
		5.2.1 Reactivity Effect of Temperature and Density Changes		
	6.2	5.2.2 SAS2H Setup and Reactivity Feedback Development		
	5.5	STEADY-STATE DESCRIPTION		
	5.4	RELAPS WP DESCRIPTION		
		5.4.1 RELAPS/MOD3.2 Component Descriptions		
		5.4.2 RELAPS Junction Description		
		33 Stars RELARS Heat Conductor Description		
6.	RES	ULTS		
	6.1	RAPID REACTIVITY INSERTION RATE		
	6.2	SLOW REACTIVITY INSERTION RATE		
	6.3	STEADY-STATE CRITICALITY		
7.	. ATTACHMENTS			

Page 2 of 57

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR MC	DX SNF in a Degraded 21
PWR Assembly Waste Package	-
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 3 of 57
8. REFERENCES	

ì

Calculation

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00
 Page 4 of 57

FIGURES

Page

Figure 5.4.1-	1. RELAP5 Component Diagram for the MOX PWR Reactivity Consequence
Figure 6.1-1.	Peak WP Pressures vs WP Egress Junction Area for 0.158-\$/s Reactivity Insertion
	Rate
Figure 6.1-2.	Peak Average Fuel Temperature for SNF Volume vs WP Egress Junction Area for 0.158-\$/s Reactivity Insertion Rate
Figure 6.1-3.	WP Pressure Histories for a Range of Egress Junction Areas for 0.158-\$/s
U	Reactivity Insertion Rate
Figure 6.1-4.	Fuel Temperature Histories for 0.158-\$/s Reactivity Insertion Rate Parameterized
C	by Egress Junction Area
Figure 6.1-5.	Fission Power Histories for 0.158-\$/s Reactivity Insertion Rate Parameterized by
-	Egress Junction Area
Figure 6.1-6.	WP Moderator Inventory Histories for 0.158-\$/s Reactivity Insertion Rate
	Parameterized by Egress Junction Area
Figure 6.1-7.	Reactivity Component Histories for 0.158-\$/s Reactivity Insertion Rate with 0.1-
	cm ² Egress Junction Area
Figure 6.1-8.	Reactivity Component Histories for 0.158-\$/s Reactivity Insertion Rate with 10.0-
	cm ² Egress Junction Area
Figure 6.1-9.	WP Egress Junction Mass Flow Rate Histories for 0.158-\$/s Reactivity Insertion
	Rate Parameterized by Egress Junction Area
Figure 6.2-1.	WP Pressure Histories for 10.0- and 0.1-cm ² Egress Junction Areas and a 0.0004-
	\$/s Reactivity Insertion Rate
Figure 6.2-2.	Fuel Temperature Histories for 10.0- and 0.1-cm ² Egress Junction Areas and a
	0.0004-\$/s Reactivity Insertion Rate
Figure 6.2-3.	Fission Power Histories for 10.0- and 0.1-cm ² Egress Junction Areas and a 0.0004-
	\$/s Reactivity Insertion Rate
Figure 6.2-4.	WP Moderator Inventory Histories for 10.0- and 0.1-cm ² Egress Junction Areas
	and a 0.0004-\$/s Reactivity Insertion Rate
Figure 6.2-5.	WP Egress Junction Mass Flow Rate Histories for 10.0- and 0.1-cm ² Egress
	Junction Areas and a 0.0004-\$/s Reactivity Insertion Rate

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00

Page 5 of 57

TABLES

Page

Table 5.1.2-1. Mechanical Parameters for Westinghouse 17x17 Fuel Assemblies Table 5.1.2-2. Initial Heavy Metal Isotopic Content of Fuel Assemblies	.14 .14
Table 5.1.4-1. Atom Densities for 4.0 wt% HM Fissile Pu Westinghouse 17x17 MOX SNF with	ith
35.6 GWd/MTHM Burnup and 25,000 Years Decay Time	.15
Table 5.1.5-1. SAS2H Path-B Parameters	.16
Table 5.1.5-2. RELAP5 MOX Kinetics Parameters	.16
Table 5.2.2-1. SAS2H Reactivity Input For RELAP5	.24
Table 5.4.1-1. RELAP5 Fluid Component Volume Description	.30
Table 5.4.2-1. RELAP5 Fluid Component Junction Description	.31
Table 5.4.3-1. RELAP5 Heat Conductor Specifications	.34
Table 6.1-1. Maximum Temperature and Pressure Values for PWR MOX SNF for a Reactivity	у
Insertion Rate of 0.158 \$/s	.36
Table 6.3-1. Total Activity (61 nuclides) for 21 PWR MOX SNF Waste Package for Steady- State Criticality Event	.51
Table 6.3-2. Isotopic Activity for 21 PWR MOX SNF Waste Package for Steady-State	
Criticality Event	.52
Table 7.1. List of Attachments	~ .
Table 7-1. List of Attachments	. 54

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 6 of 57

1. PURPOSE

The purpose of this calculation is to evaluate the transient behavior and consequences of a worstcase criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package This calculation will provide information necessary for demonstrating that the (WP). consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository. This calculation includes results obtained by maximizing postulated rates of reactivity insertion to assure no synergistic reactions could occur among waste packages from hypothetical criticality events. Another variable, potentially influencing the criticality consequences, is the exit area of the leakage path(s) from the WP. If the leakage area through the WP is sufficiently small, inflow rates will be restricted, lengthening the time required for flooding the WP and thus delaying potential criticality events, which require flooded conditions. However, if a criticality event does occur, a limited leakage area will reduce the exit flow volume. The immediate effect on the system from a limited leakage area is to reduce the negative reactivity effect of voiding the WP because the water/vapor escape rate may be lowered. This, in turn, leads to higher heat output, higher internal pressure, and higher temperatures. The higher pressure and density of the water vapor will increase the mass flow out of the WP, so that eventually the negative reactivity from voiding the system becomes dominant, and the criticality event shuts down.

This calculation was performed under the AP-3.12Q Revision 0, ICN 0 Procedure and will support WP design and analysis activities.

2. METHOD

2.1. TIME-DEPENDENT METHODS

The method for analyzing transient criticality consequences involving intact PWR SNF in a degraded WP has been documented previously (Ref. 1). The same methodology was followed for calculations to determine the criticality consequences of PWR MOX SNF in a degraded WP. The analysis deck (Case: r5wp2d.c103c) from the initial consequence analysis (Ref. 1, Attachment IV) was used as the basis for this calculation with the fuel element parameters adjusted for the MOX fuel assemblies. This file is included in the electronic data files on a compact disk (CD) (Ref. 7). The light water reactor (LWR) transient analysis code, RELAP5/MOD3.2 (Ref. 2) was used to calculate the time evolution of the power level and other characteristics of a criticality event involving PWR MOX SNF.

The simulated criticality event is driven by a linear rate of reactivity insertion until a maximum reactivity of 14.18 \$ is reached (Ref. 1, Section 7); the reactivity is held constant thereafter. The 14.18-\$ reactivity value was derived from the low-enriched uranium (LEU) SNF WP reactivity change between a homogeneous and settled distribution of Fe_2O_3 (hematite) (Refs. 1 and 21), and used in this calculation to maintain a consistent basis for purposes of comparison. The calculation was performed for time scales corresponding to a rapid reactivity insertion rate of

Waste	e Package Operations	<u>Calculation</u>
Title:	Criticality Consequence Calculation Involving Intact PWR MOX SNF in a D	Degraded 21
	PWR Assembly Waste Package	

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 7 of 57

0.158 \$/s and a much slower rate of 0.0004 \$/s. The rapid reactivity insertion rate was derived from the time required (\cong 90 seconds) for a spherical particle of Fe₂O₃ to fall one meter in water at a Reynolds number of \cong 1.0 (Ref. 1, Attachment III), hence the value 0.158 \$/s = 14.18 \$/90s. This time provides an upper bound on the rate at which the reactivity in the WP can be increased through absorber redistribution. The low reactivity insertion rate approximates a more likely gradual shift in conditions conducive to criticality. One possible mechanism is a sudden increase in the flow rate into the WP, which could cover all the assemblies in approximately 10 hours, starting from a partially covered (30%-35%) condition for the top fuel assemblies, corresponding to the 14.18 \$ total reactivity addition.

Reactivity tables based on changes in the effective neutron multiplication factor (k_{eff}) from a baseline configuration must be included in the RELAP5/MOD3.2 input data file. The Monte Carlo N-Particle computer code, MCNP4B2 (Ref. 3), is used to calculate a baseline keff for criticality safety evaluations and to determine the change in reactivity from one configuration to another. MCNP4B2 does not have an associated cross-section library with sufficient temperature-dependent data to calculate the reactivity changes associated with the fuel and moderator temperature changes required for this calculation. SCALE4.3 and its SAS2H sequence do have the necessary cross sections. SAS2H employs a one-dimensional (1-D) assembly-cell discrete-ordinates technique (XSDRNPM) for calculation of the keff for a configuration. A correction for finite dimensions can be made using various buckling terms. Initially, infinite MCNP4B2 cases were run with which to compare the results from infinite SAS2H cases to develop the appropriate SAS2H data file to match MCNP4B2 results. Corrections were then made to the SAS2H input file to account for finite dimensions using the appropriate buckling terms based on the baseline MCNP4B2 finite case. The resulting SAS2H input data file incorporating the buckling terms is then used for calculating temperature and density reactivity effects. The reactivity changes calculated by MCNP4B2 and SAS2H are used as input to RELAP5/MOD3.2 to evaluate the transient behavior of a criticality event.

2.2. STEADY-STATE METHODS

A low reactivity insertion rate approximates a more likely gradual shift in conditions conducive to criticality. Consequences of low reactivity addition rates are calculated by two different methods, one using the transient criticality consequence methodology (RELAP5/MOD3.2) with a low reactivity addition rate of 0.0004 \$/s and the second from a steady-state equilibrium condition. This section describes the computational method used for a steady-state event.

If a WP reaches a k_{eff} of 1 through a gradual process, continued small positive reactivity insertions will cause the power output of the WP to begin rising slowly (i.e., a long reactor period). If the power exceeds a certain limit, the rate at which water is subsequently removed from the WP will exceed the rate of input, and the resulting water level drop will provide a negative reactivity insertion driving the WP back towards a subcritical condition. Conversely, if insufficient power is produced, the water level will be maintained and the processes contributing to the reactivity will continue, thus providing a continued source of positive reactivity insertions

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 8 of 57

until the point of equilibrium is achieved. The maximum steady-state power for such a scenario can be estimated by determining the power required to maintain the WP bulk water temperature at the point where water is removed at the same rate that it drips into the WP. The WP must produce sufficient power to raise the temperature of the incoming water to this equilibrium value, as well as account for heat losses to the environment by radiation and/or conduction.

Unqualified (existing) data were used as input for this calculation and the RELAP5/MOD3.2 basis data file is unqualified data per AP-SIII.2Q.

3. ASSUMPTIONS

The following assumptions were used in the reactivity consequence calculation:

- 3.1 It is assumed that the reactivity feedback mechanism for the point kinetics calculation can be represented by separable effects. The bases for this assumption are as follows:
 - (1) Doppler reactivity depends upon intrinsic fuel parameters with temperature being the only time-dependent variable.
 - (2) Moderator reactivity effects depend only upon the fluid density.
 - (3) No soluble poisons are included.
 - (4) The settled iron oxide residue is not redistributed in the WP.

This assumption is used throughout Section 5.2.

- 3.2 The WP is assumed to be filled with water at the start of the postulated reactivity-driven scenarios. The basis for this assumption is that it is conservative and is an assumption in a previous probabilistic analyses (Ref. 20, p. 17). This assumption is used throughout Section 5.
- 3.3 Thermal properties of MOX fuel pellets are assumed to be similar to LEU fuel pellets. The basis for this assumption is that the pellets are ~ 95 wt% UO₂ (Ref. 5, p. 18). This assumption is used throughout Section 5.4.
- 3.4 It is assumed that the Fe_2O_3 in the WP from degradation of internal components can be neglected for hydraulic calculations. The basis for this assumption is that it is conservative since it results in a larger water inventory in the WP. This assumption is used throughout Section 5.4.

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF i	n a Degraded 21
PWR Assembly Waste Package	C
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 9 of 57

- 3.5 It is assumed that the pure water region (above the settled iron oxide region in the WP) is the principal contributor to reflector effects. The basis for this assumption is the much greater importance (more than twice) of the pure water region contribution to the combined k_{eff} . This assumption is used in Section 5.2.
- 3.6 It is assumed for the reactivity calculations that the instrument tube can be replaced with a guide tube. The basis for this assumption is that the SAS2H Path-B geometry is based on the fuel pin-to-water rod ratio and that the fuel assemblies have 24 guide tubes versus one instrument tube. This assumption is used in Section 5.1.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 10 of 57

4. USE OF COMPUTER SOFTWARE AND MODELS

4.1 SOFTWARE APPROVED FOR QUALITY ASSURANCE (QA) WORK

4.1.1 RELAP5/MOD3.2

The transient simulation of criticality events is performed using the transient thermal-hydraulic code RELAP5/MOD3.2 (Refs. 2 and 25-30). RELAP5/MOD3.2 was developed for the U.S. Nuclear Regulatory Commission for simulations of operational transients in PWR systems such as loss of coolant. The transient criticality events involving PWR SNF within a WP are similar to the situations for which RELAP5/MOD3.2 was developed to analyze. The software specifications are as follows:

- Software name: RELAP5/MOD3.2
- Software version/revision number: Version V1.0
- Software activity number: LV-1999-047
- Software tracking number: 10091-1.0-00
- Software media number: 10091-MED-1.0-00
- Computer type: Hewlett Packard (HP) 9000 Series Workstations

The RELAP5/MOD3.2 software used is: (a) appropriate for the application of WP transient criticality consequence calculations, (b) used within the range of the software validation, and (c) obtained from the Software Configuration Secretariat in accordance with appropriate procedures.

4.1.2 MCNP

The MCNP code (Ref. 3) was used to calculate the k_{eff} of the MOX PWR SNF WP. The software specifications are as follows:

- Software name: MCNP
- Software version/revision number: Version 4B2
- Software tracking number: 30033 V4B2LV
- Computer type: HP 9000 Series Workstations

The MCNP software used is: (a) appropriate for the application of WP k_{eff} calculations, (b) used only within the range of validation, and (c) obtained from the Software Configuration Manager in accordance with appropriate procedures.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 11 of 57

4.1.3 SCALE

The SAS2H module of the SCALE modular code (Ref. 6) was used to calculate the reactivity values for the PWR MOX SNF assemblies. The software specifications are as follows:

- Software name: SCALE/SAS2H
- Software version/revision number: Version 4.3
- Software tracking number: 30011 V4.3
- Computer type: HP 9000 Series Workstations

The SCALE software used is: (a) appropriate for the application of WP reactivity calculations, (b) used only within the range of validation, and (c) obtained from the Software Configuration Manager in accordance with appropriate procedures.

4.2 SOFTWARE ROUTINES

4.2.1 Excel

The Excel spreadsheet program was used to generate graphical representations of various parameters calculated by RELAP5/MOD3.2 and to identify maximum values. No additional calculations were performed on the data files. The software specifications are as follows:

- Software name: Excel
- Software version/revision number: 97
- Computer type: Personal Computer (PC).

4.2.2 Strip

The RELAP5/MOD3.2 program writes two files as output as follows:

- (1) A formatted print file containing "major edits" at specified times
- (2) A binary "restart" file to enable a case to resume.

The RELAP5/MOD3.2 code also has an option to collect minor edits (a history of particular variables) at each time point from the restart file and put them into a formatted strip file. The FORTRAN-90 program, "Strip", reads a RELAP5/MOD3.2 strip file and writes the information in a series of more compact files for use in later calculation. The output of the code can be readily checked against the strip files by visual inspection. The source code with sample input and output files are included in Attachment II. The source and executable files are included as part of the electronic data on a CD (Ref. 7). The software specifications are as follows:

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 12 of 57

- Software name: Strip
- Software version/revision number: V00
- Computer type: PC.

4.3 MODELS

There were no models used in this calculation.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 13 of 57

5. CALCULATION

As stated in Section 1, the purpose of this calculation is to evaluate the transient behavior and consequences of a worst-case criticality event involving intact PWR MOX SNF in a degraded basket configuration inside a 21 PWR WP. The calculation was performed for hypothetical criticality events where a reactivity insertion rate of 0.158 \$/s was used to approximate the maximum rate of change in the available reactivity due to absorber redistribution within the WP. A much slower insertion rate of 0.0004 \$/s and a steady-state condition were used to approximate a gradual shift in the system reactivity. Additionally, this calculation investigated the relationship between reduction in the leakage area and possible increases in peak pressures and temperatures for such hypothetical criticality events.

The basic RELAP5/MOD3.2 data file from the initial consequence analysis (Ref. 1, Attachment IV) was used as a basis for this calculation. The input deck was modified for the use of MOX SNF in place of low enriched uranium (LEU) SNF and is listed in Attachment IV of this document. These sections included the reactivity feedback tables, fluid volume dimensions, junction areas, and heat conductor dimensions. The area of the junction exiting the WP was varied for the sensitivity calculation.

5.1 **DESIGN PARAMETERS**

5.1.1 Spent Fuel Assembly Parameters

The fuel assembly upon which this calculation is based is the Westinghouse Vantage 5 17x17 assembly (Ref. 8, Section 5.1). Design parameters for calculating input data for the SAS2H cases of MOX SNF assemblies are given in this section. The reactivity coefficient data are developed in Section 5.2, the steady-state description in Section 5.3, and the RELAP5 WP description in Section 5.4.

5.1.2 MOX Assembly Design Parameters

The MOX Westinghouse Vantage 5 PWR assembly parameters are given in Table 5.1.2-1 (Ref. 9, pp. 2A-355 through 2A-358 and Ref. 10, p. 37). Assembly dimensions are given primarily in English units and converted into metric units. The number of digits in the corresponding metric value column results from the units conversion and is not indicative of precision. The zero-burnup density of the 4.0 wt% heavy metal (HM) fissile Pu MOX is 10.28 g/cm³ (Ref. 8, p. 14). The initial heavy metal isotopic content of the Westinghouse Vantage 5 assembly fuel is given in Table 5.1.2-2 (Ref. 5, p. 17).

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package**

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 14 of 57

	Vantage 5 Assembly		
	Value in	Value in	
Parameter	Metric Units	English Units	
Fuel Rods/Assembly	264	N/A ¹	
Fuel Assembly Width	21.4172 cm	8.432 in.	
Cladding Material	Zirc-4	N/A	
Cladding Outside Diameter (OD)	0.9144 cm	0.360 in.	
Cladding Thickness	0.05715 cm	0.0225 in.	
Fuel Pellet OD	0.784352 cm	0.3088 in.	
Fuel Length	365.76 cm	144 in.	
Pitch	1.25984 cm	0.496 in.	
Guide Tube Material	Zirc-4	N/A	
Guide Tube OD ²	1.22428 cm	0.482 in.	
Guide Tube Inside Diameter (ID)	1.143 cm	0.45 in.	
Number of Guide Tubes	24	N/A	
Instrument Tube OD ³	1.22428 cm	0.482 in.	
Instrument Tube ID	1.143 cm	0.45 in.	
Number of Instrument Tubes	1	N/A	

Table 5.1.2-1. Mechanical Parameters for Westinghouse 17x17 Fuel Assemblies

¹ Not Applicable. ² Guide tube dimensions are from Westinghouse Standard 17x17 assemblies. ³ Assumption 3.6.

Isotopes	lsotopic Mass (g/mole)	1996 Design for Vantage 5 Assemblies
Uranium		(wt% of U)
U234	234.040904	0.002
U235	235.043915	0.200
U236	236.045637	0.001
U238	238.05077	99.797
Plutonium		(wt% of Pu)
Pu238	238.049511	0.000
Pu239	239.052146	93.600
Pu240	240.053882	5.900
Pu241	241.056737	0.400
Pu242	242.058725	0.100

Table 5.1.2-2. Initial Heavy Metal Isotopic Content of Fuel Assemblies

5.1.3 Intact Waste Package Geometry Parameters

The intact WP geometry parameters used in this calculation were unchanged from the LEU reactivity consequence analysis (Ref. 1, Table 4.1-2) which was based on the 21 PWR uncannistered fuel (UCF) WP design (Ref. 24, p. I-17). These parameters are used in the MCNP V4B2LV calculations and in the geometric input data for RELAP5/MOD3.2.

Waste	Pa	ckage	Ope	rations	

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 15 of 57

5.1.4 Material Properties

The atom densities for the PWR MOX SNF are taken from a previous SAS2H/ORIGEN-S calculation (Ref. 11, Case w3_35-5gwd_2cy-6stps) of assembly burnup to 35.6 GWd/MTHM (gigawatt-days/metric ton heavy metal). The ORIGEN-S isotopic distribution at 25,000 years decay time is the reference condition on which reactivity calculations are made and the RELAP5 reactivity tables developed. The isotopic concentration and number density for the nuclides important for criticality are listed in Table 5.1.4-1. The input for this case is included in Attachment III.

 Table 5.1.4-1.
 Atom Densities for 4.0 wt% HM Fissile Pu Westinghouse 17x17 MOX

 SNF with 35.6 GWd/MTHM Burnup and 25,000 Years Decay Time

[]	MCNP4B2	Number Density	Isotopic Concentration
Isotopic ID	Nuclide ID	(atoms/bn·cm)	(g/assembly)
U233	92233.50C	8.308600E-07	1.50E+01
U234	92234.50C	3.386430E-06	6.14E+01
U235	92235.50C	2.169270E-04	3.95E+03
U236	92236.50C	1.848360E-04	3.38E+03
U238	92238.50C	2.136450E-02	3.94E+05
Np237	93237.55C	1.105420E-04	2.03E+03
Pu239	94239.55C	1.868310E-04	3.46E+03
Pu240	94240.50C	1.381940E-05	2.57E+02
Pu241	94241.50C	2.099100E-11	3.92E-04
Pu242	94242.50C	2.490360E-05	4.67E+02
Am241	95241.50C	6.586460E-10	1.23E-02
Am243	95243.50C	5.576220E-07	1.05E+01
016	8016.50C	5.003520E-02	6.20E+04
Mo95	42095.50C	3.876310E-05	2.85E+02
Tc99	43099.50C	4.254610E-05	3.26E+02
Ru101	44101.50C	4.720380E-05	3.69E+02
Rh103	45103.50C	4.214700E-05	3.36E+02
Ag109	47109.50C	1.040670E-05	8.78E+01
Nd143	60143.50C	3.224570E-05	3.57E+02
Nd145	60145.50C	2.342700E-05	2.63E+02
Sm147	62147.50C	1.001630E-05	1.14E+02
Sm149	62149.50C	1.898300E-07	2.19E+00
Sm150	62150.50C	1.291530E-05	1.50E+02
Sm152	62152.50C	6.372550E-06	7.50E+01
Eu151	63151.50C	1.197420E-06	1.40E+01
Eu153	63153.50C	5.824350E-06	6.90E+01
Gd155	64155.50C	2.891220E-07	3.47E+00

5.1.5 Neutronic Data Description

The Westinghouse Vantage 5 assemblies have 24 guide tubes and one instrument tube per assembly (Table 5.1-2). The SAS2H Path-B representation of the assembly (Ref. 7, Spreadsheet $MOX_96_sas2h.xls$, Sheet "Path-B geom") incorporates a water-filled guide tube at the center, water (plus Fe₂O₃ as required), and a fuel mixture having an area scaled to the number of fuel

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 16 of 57

pins per guide tube ((289-25)/25 = 10.56). This was increased to ~ 11 pins/guide tube since the guide tubes are not uniformly distributed over the assembly cross section. The Path-B dimensions and compositions are given in Table 5.1.5-1.

Composition	Outside Radius (cm)	Area (cm ²)
5 (water)	0.57150	1.02610
4 (Zirc-4)	0.61214	0.15112
3 (water Fe ₂ O ₃)	0.71079	0.40999
500 (fuel)	2.4665	12.0415

Table 5.1.5-1. SAS2H Path-B Parameters

Kinetics parameters required for the RELAP5 calculation are given in Table 5.1.5-2.

Parameter	Value	
End-of-Life (EOL) Effective Delayed Neutron Fraction ¹ - β	0.00371	
EOL Prompt Neutron Lifetime ¹ - Λ (s)	9.58e-06	
β/Λ -(1/s)	387.3	
Delayed Neutron Group ²	Relative Yield	Decay Constant
1	0.038	0.0129
2	0.280	0.0311
3	0.216	0.1336
4	0.328	0.33165
5	0.103	1.2626
6	0.035	3.2090

Table 5.1.5-2.	RELAP5 MC	X Kinetics	Parameters
----------------	------------------	------------	------------

¹ (Ref. 5, p. 24).

² (Ref. 23, p. 64).

5.2 NEUTRONICS CALCULATIONS AND REACTIVITY COEFFICIENTS

The effects on reactivity due to changes in the system are shown to be separable into leakage effects and material effects in this section. Leakage effects are primarily dependent on boundary conditions, such as water level in the WP, and must be calculated using finite WP representations. Material effects such as changes to fuel temperature, moderator temperature, or moderator density are primarily localized and can be approximated using infinite-assembly representations with a constant buckling (leakage) term.

Reactivity is defined as in the commercial LEU reactivity consequence analysis (Ref. 1, p. 18):

$$\rho = \frac{k_{eff} - 1.0}{k_{eff}}$$

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 17 of 57

and a change in reactivity $(\Delta \rho)$ was defined as:

$$\Delta \rho = \rho_{Change} - \rho_{Base} = \frac{l}{k_{eff} - Base} - \frac{l}{k_{eff} - Change}$$

Thus, a positive reactivity change results when ρ_{Change} is greater than ρ_{Base} . In the RELAP5/MOD3.2 input, ρ and $\Delta \rho$ are noted in terms of dollars (\$) which is defined as:

$$\rho(\$) = \frac{\rho}{\beta_{eff}} and \quad \Delta \rho(\$) = \frac{\Delta \rho}{\beta_{eff}}$$

where

 β_{eff} is the effective delayed neutron fraction.

5.2.1 Reactivity Effect of Temperature and Density Changes

MCNP V4B2LV does not have an associated cross-section library with sufficient temperaturedependant data to calculate the reactivity changes required for this calculation. SCALE4.3 and its SAS2H sequence do have the necessary cross sections. SAS2H employs a 1-D assembly-cell discrete-ordinates technique (XSDRNPM) for calculation of the k_{eff} for a configuration. A correction for finite dimensions can be made through use of buckling (leakage) correction terms. Initially, MCNP cases (infinite through use of reflective boundary conditions) were run with which to compare the results from SAS2H cases (also infinite) in order to develop the appropriate SAS2H representation to match MCNP results. Corrections were then made to the SAS2H representation to account for finite dimensions using the appropriate buckling terms for inclusion in the SAS2H representations determined by comparisons with the finite baseline MCNP cases. The resulting SAS2H representation incorporating the buckling terms is then used for calculating temperature and density reactivity effects.

5.2.2 SAS2H Setup and Reactivity Feedback Development

The equation for the buckling (B) in the XSDRNPM-S computer software portion of the SAS2H code system is as follows (Ref. 12, Vol. 2, pp. F3.2.24-25):

$$B^{2} = \left(\frac{\pi}{Axial \ length \ + \ f \ (0.710446) \ \lambda_{m}}\right)^{2} + \left(\frac{\pi}{Radial \ length \ + \ f \ (0.710446) \ \lambda_{m}}\right)^{2}$$

waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in	a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 18 of 57

The above equation for the buckling of the three-dimensional WP representations is based on the separability of the geometrical configuration into an axial coordinate and radial plane. The reflector effects are treated by the term:

Reflector Effects = $f(0.710446) \lambda_m$

where f is a factor greater or equal to 0.0 and λ_m is the effective neutron mean free path in the reflector region. The neutron mean free path is determined by the XSDRNPM internal calculations from the properties of the fuel region. The product of f and 0.710446 is a constant input to the SAS2H representation to give the reflector effects indicated by the MCNP results. To determine the appropriate reflector effects constant (f * 0.710446), MCNP representations of the WP are evaluated. The k_{eff} values from MCNP and the k_∞ values from the SAS2H representations are used to determine the SAS2H buckling values. The buckling values are then used to determine the constant, f * 0.710446. This process is performed iteratively with the SAS2H representation because the analytic solution of the equation involves multiple unknowns.

The separation of the independent neutron variables into an infinite assembly cell coupled with a buckling correction is assessed by first benchmarking the SAS2H infinite (∞) representation (buckling = 0.0) with three MCNP k_{∞} results. The MCNP k_{∞} represents a fuel region with complete reflection on all finite surfaces. The complete reflection of the MCNP fuel representation represents a buckling of 0.0 and a k_{eff} equal to k_{∞}.

The base finite MCNP representation represents Westinghouse 17x17 fuel assemblies, 4.0 wt% HM fissile Pu, 35.6 GWd/MTHM burnup, and 25,000 years of isotopic decay. In the degraded state, for a WP that has been breached by water and that has 58% iron oxide by volume settled in the bottom of it, the MCNP k_{eff} is 0.8659 ± 0.0058 (±2 σ) (Ref. 13, Table 6.2-2).

This MCNP representation has two separate fuel regions: (1) the upper region of fuel in the WP that has no iron oxide in the water, and (2) the lower region of fuel in the WP that has 58% iron oxide by volume in the water. To be consistent, the SAS2H infinite representation must be able to calculate the same k_{∞} as MCNP (within a small deviation) for each independent fuel region. Note that the MCNP results are reported $\pm 2\sigma$ (~ 95% confidence interval). Filenames for cases (output included on a data CD [Ref. 7]) are reported in parenthesis beside or below the case results.

	<u>MCNP-k</u> ∞	<u>SAS2H-k</u> ∞	$\Delta \rho$ Difference
No Iron	1.06583 ± 0.00086 (infh2o.mox.inp)	1.06732 (out.e49.mox1d.inp)	+0.00148
Iron	0.79878 ± 0.00080 (infox.mox.inp)	0.799214 (out.fe.mox1f.inp)	+0.00068

Waste	e Package Operations	Calculation
Title:	Criticality Consequence Calculation Involving Intact PWR MOX SNF in a I	Degraded 21
	PWR Assembly Waste Package	

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 19 of 57

The above results show that the reactivity change between SAS2H and the MCNP reference k_{∞} is between 15/10,000 and 7/10,000. This difference is sufficiently small and indicates that results from the SAS2H representation is in good agreement with the MCNP representation. A comparison of the SAS2H input with the MCNP input shows that the SAS2H pin cell and assembly cell have the same geometrical and material characteristics as the MCNP pin and assembly lattice arrays.

The third SAS2H k_{∞} evaluation in comparison to MCNP was used to determine the SAS2H neutron flux and volume weighting of the upper fuel region with pure water and the lower fuel region with 58% iron oxide in water. The MCNP representation used a square array of 16 fuel assemblies (4 by 4) with 12 containing 58% iron oxide by volume in water and 4 containing pure water. This volume fraction of 0.25 pure water and 0.75 iron oxide in water is representative of the volume fraction of the 58% settled iron oxide in water representation of the degraded WP. The weighting of upper and lower regions was defined as follows:

 k_{∞} (MCNP) - $\Delta \rho$ bias = (x) k_{∞} (SAS2H pure water) + (1 - x) k_{∞} (SAS2H 58% iron oxide by volume in water).

The x is the combined flux and volume weighting factor, and the $\Delta \rho$ bias is defined by the $\Delta \rho$ difference in the table of iron and no-iron k_{∞} values. The parameters for the above equation are:

 k_{∞} (MCNP) = 0.99575 ± 0.00096 (influx2.mox1a.inp) $\Delta \rho$ bias = 0.00072 k_{∞} (SAS2H pure water) = 1.06710 (out.e49.mox1d.inp) k_{∞} (SAS2H 58% iron oxide in water) = 0.799214 (out.fe.mox1f.inp) x = 0.730

This value of x is used in the final calculation (out.wp.mox.inp) as a weighting factor for the fraction of water in the moderator and (1-x) is the weighting factor for the fraction of 58% iron oxide by volume/water mix in the moderator.

The comparison of MCNP and SAS2H results are shown in the following table:

	<u>MCNP-k</u> ∞	<u>SAS2H-k</u> ∞	Δp <u>Difference</u>
Infinite Waste Package	0.99575 ± 0.00096	0.996098	0.00035
	(influx2.mox1a.inp)	(wpi.mox1a.inp)	

Waste Package

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Axial Leakage Correction–The SAS2H axial buckling equation for the degraded WP is as follows (Ref. 12, Vol. 2, pp. F3.2.24-25):

$$B_{Axial}(SAS2H) = \frac{\pi}{Axial \ length + f(0.710446) \lambda_m}$$

with the assumption that the axial coordinate and radial plane may be separated by a constant buckling eigenvalue. The infinite-cell SAS2H-k_∞ results for the pure water in the upper region of the degraded WP and the k_∞ results for the 58% iron oxide by volume in water in the lower region of the degraded WP indicated that the SAS2H separability is valid. The flux-volume weighting of the upper and lower regions indicated that the importance of the upper region relative to the lower region is a factor greater than 2 to 1. Therefore, the pure-water upper region was used to establish the constants for the theoretical reflector effects.

The pure-water axial representation of the degraded WP was computed with MCNP and SAS2H. The MCNP case used reflective radial boundary conditions on the radial surfaces of the fuel. Thus, the boundary conditions represented an infinite radial case. The MCNP axial description however represented the appropriate geometry and compositions in the degraded WP with appropriate boundary conditions at the end of the WP outer metal surfaces. The SAS2H case used a radial buckling of zero ($B_{Radial} = 0.0$) to represent an infinite radial description. The SAS2H axial description represented the axial fuel length as 365.76 cm. The solution of the reflector effects constant, (f * 0.710446), was iterative. However, the theoretical solution of f = 2 gave a reasonable comparison between the MCNP- and SAS2H-k_{eff} results as shown below:

Reflector Effects Axial Constant = $f^* 0.710446 = 1.420892$

f = 2

<u>MCNP - k_{eff}</u>	<u>SAS2H - k_{eff}</u>	<u>Δρ Difference</u>
1.06300 ± 0.00092	1.06489	0.0017
(infh2oa.mox.inp)	(out.fin.m	iox.inp)

Radial Leakage Correction–In the 1-D SAS2H cases, the leakage from the SNF configuration may be represented with either a cylindrical or rectangular geometry. Both options are investigated to identify the better one. There are three theoretical equations that are appropriate to evaluate the radial buckling (Ref. 12, pp. F3.2.24-25 and Ref. 23, pp. 205-214) given by:

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 21 of 57

$$B_{Cylinder} = \frac{J_0(0) Bessel Function}{Radius + f_c(0.710446)\lambda_m}$$
$$B_{Square} = \frac{\left(\frac{\pi}{2}\right)^2}{Radial \ length + f_s(0.710446)\lambda_m}$$
$$B_{Square} = \frac{\sqrt{2} \pi}{(2) \ Radial \ length + f_{SS}(0.710446)\lambda_m}$$

In the radial buckling for a cylinder, the radial length for the WP representation is the radius of a cylinder, which has a planar area equal to the area of the 21 fuel assemblies in the degraded WP. The width of the fuel lattice in the MCNP baseline degraded case is 21.42 cm (10.7086 x 2) (Spreadsheet Vantage 5 Specs.xls, D19). The radius is given by:

Radius =
$$\left\{ \frac{\left(21.42 \, cm\right)^2 \, 21}{\pi} \right\}^{1/2} = 55.3729 \, cm$$

In the radial buckling for a square, the radial length for the WP representation is either the above radius or one-half the length of a side of a square having a planar area equal to the area of the fuel assemblies in the degraded WP. This radial length is given by:

Radial length =
$$\frac{\left\{ \left(21.42 \, cm \right)^2 \, 21 \right\}^{1/2}}{2} = 49.0730 \, cm$$

In the radial buckling for a separable square, the radial length for the WP representation is the above radial length.

Reflector Effects—The three radial buckling equations were evaluated in combination with the axial buckling equation to determine the appropriate constant for the reflector effects on the combined axial and radial leakage for the degraded WP. The SAS2H radial equation was used to determine the effective radial length with the reflector effects constant set to zero. For example, the effective radial length in the SAS2H radial buckling equation to reproduce the radial buckling of the separable square equation was determined as follows:

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 22 of 57

$$\frac{\pi}{Effective \ Radial \ Length} = \frac{\pi}{\sqrt{2} \quad Radial \ Length}$$

where

Effective Radial Length = 69.3997 cm.

Iterations with the radial buckling equations and reflector effects constant in the SAS2H representation with comparisons to MCNP- k_{eff} results indicated that the separable square radial buckling equation gave the more consistent overall results. The effective radial length is that shown above. The combined (axial and radial) reflector effects constant is given by:

Reflector Effects Constant = f * 0.710446 = 0.815.

The comparison of the MCNP- k_{eff} and SAS2H- k_{eff} values shown below indicates that the iterative solution of the reflector effects constant (0.815) is appropriately converged.

	<u>MCNP-k_{eff}</u>	<u>SAS2H-k_{eff}</u>	<u>Δρ Difference</u>
Waste Package	1.00799 ± 0.00052	1.00818	0.00019
	(h2oh13f.mox.inp)	(out.wpn.mox.inp)	

Based on the results of the axial buckling evaluation of the reflector effects constant, it would be expected that "f" would be between 1 and 2 for the combined axial and radial reflector effects with a probable value nearer to 1. The above calculation results in an f of 1.15 = 0.815/0.710446, which is consistent with expectations.

SAS2H Effective Radial Length of Fuel Stack–The last step in the development of a SAS2H representation for the WP reactivity coefficients is to determine the effective radial length. Ideally, the effective radial length for the degraded WP with separate regions of pure-water and of 58% iron oxide by volume and water would be the effective radial length for the pure water region. If this were the situation, it would mean that the effects of the spatial flux shape could adequately be defined by the importance weighting of the two water regions. There would be no additional leakage effects. Unfortunately, the SAS2H-k_{eff} results, with an effective radial length of 69.3997 cm and a reflector constant of 0.815, did not agree with the MCNP-k_{eff} (0.8659 \pm 0.0058). To obtain agreement between the MCNP- and SAS2H-k_{eff} values, the SAS2H effective radial length had to be decreased. The revised value is given by:

Effective Radial Length (MCNP- k_{eff}) = 43.870 cm

Calculation

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR M	1OX SNF in a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 23 of 57

The decrease in the effective radial length significantly increased the radial leakage and decreased the k_{eff}. The iteration to determine the effective radial length of 43.870 cm gave the following SAS2H keff in comparison to MCNP:

	<u>MCNP-k_{eff}</u>	<u>SAS2H-k_{eff}</u>	<u>Δρ Difference</u>
Waste Package	0.86585 ± 0.00143	0.866196	0.00046
	(21MS1F)	(out.mox1e.wp.inp)	

Weste Desley an One and the

This agreement supports making the appropriate adjustments in the SAS2H-k_∞ representation.

Summary–With the buckling corrections developed in this section and the SAS2H assembly representation giving the same k_∞ and k_{eff} results as MCNP, the SAS2H representation is appropriate to evaluate reactivity changes in the degraded WP fuel region. Three values are required for the buckling correction to the SAS2H representation: (1) axial length (dz) = 365.76cm; (2) reflector effects constant (bkl) = 0.815; and (3) effective radial length (dy) = 43.870 cm.

The reactivity effects of changes in the fuel temperatures and water densities are calculated with SAS2H to evaluate the RELAP5 functional relations between the thermodynamic state points and the respective reactivity values. The input file for the SAS2H base reactivity case (out.mox1e.wp) is included as Attachment I. The RELAP5 representation of reactivity used in this evaluation is based on two reactivity variables: (1) fuel temperature, and (2) water density. These two reactivity variables are treated as separable entities and combined in the RELAP5 representation to define a total reactivity for the WP.

The development of the RELAP5 reactivity input data included the dependent relationship between the fuel temperature and water density variables. The dependent effects were represented using the following constraints and approximations:

- (1) The fuel temperature would lead in time the water density.
- (2) The water temperature effect on reactivity is insignificant compared to the water density.
- (3) The water pressure effect on reactivity is insignificant compared to the water density.
- (4) The onset of vapor (steam void fraction) formation would occur in the temperature range around 373 K (212 °F).
- (5) The fuel temperature does not exceed 813 K (1004 °F).

Steam void fractions in the 10% range were assumed to be generated by fuel temperatures of 543 K (518 °F). Greater void fractions were assumed to be caused by fuel temperatures of

Waste Package Operations	<u>Calculation</u>
Title: Criticality Consequence Calculation Involving Intact PWR MO	X SNF in a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 24 of 57

813 K (1004 °F). Table 5.2.2-1 provides a case listing of 20 SAS2H calculations forming the bases for the RELAP5 reactivity values. The water density factor is the water density reduction factor relative to the 300 K value.

		Fuel	Fuel	
Case	Water Density Factor	(K)	(°F)	k _{eff}
out.mox1e.wp	1.000	300	80.33	0.866196
out.mox1.122	1.000	323.15	122	0.865423
out.mox2.122	0.988	323.15	122	0.863406
out.mox2.212	0.988	373.15	212	0.861854
out.mox1.212	0.973	373.15	212	0.859113
out.mox1.320	0.973	433.15	320	0.857437
out.mox5.518	0.973	543.15	518	0.854514
out.mox4.518	0.958	543.15	518	0.85168
out.mox3.518	0.940	543.15	518	0.846952
out.mox2.518	0.920	543.15	518	0.841404
out.mox1.518	0.900	543.15	518	0.835624
out.mox9.100	0.900	813.15	1004	0.829274
out.mox8.100	0.875	813.15	1004	0.821654
out.mox7.100	0.850	813.15	1004	0.813638
out.mox6.100	0.825	813.15	1004	0.805201
out.mox5.100	0.800	813.15	1004	0.796323
out.mox4.100	0.775	813.15	1004	0.786977
out.mox3.100	0.750	813.15	1004	0.777141
out.mox2.100	0.725	813.15	1004	0.766783
out.mox1.100	0.700	813.15	1004	0.755879

Table 5.2.2-1. SAS2H Reactivity Input For RELAP5

5.3 STEADY-STATE DESCRIPTION

The steady-state calculation for a postulated criticality event is developed from a thermal equilibrium basis. It is conservatively assumed that airflow is stagnant in a drift during postclosure, and evaporation can be represented as diffusion of water vapor into air. The following expression (Ref. 14, p. 601) provides an approximation for the diffusion coefficient of water into air as a function of temperature:

$$D(T) = [435.7 \cdot T^{3/2} \cdot (M_1^{-1} + M_2^{-1})^{\frac{1}{2}}] / [P_{atm} \cdot (V_1^{-1/3} + V_2^{-1/3})^2]$$
(1)

Waste Package Operations	· · · · · · · · · · · · · · · · · · ·	Calculation
Title: Criticality Consequence	Calculation Involving Intact PWR MOX SNF in a	a Degraded 21
PWR Assembly Waste I	Package	-
Document Identifier: CAL-EB	S-NU-000008 REV 00	Page 25 of 57
where		
D(T)	Diffusion coefficient at temperature T (cm^2/s)	
Т	Temperature (K)	

I	Temperature (K)
Patm	Atmospheric pressure (Pa)
V_1, V_2	Molecular volumes of substances 1 and 2 (cm ³ /mole) (in this
	case, water and air, respectively)
M_{1}, M_{2}	Molecular weights of substances 1 and 2 (g/mole) (water and
	air).

Atmospheric pressure is taken to be 101,325 Pa (Ref. 14, p. 669). The molecular volumes of water and air are 18.8 cm³/mole and 29.9 cm³/mole, respectively (Ref. 14, p. 602). The molecular weights of water and air are 18.02 g/mole (Ref. 16, p. 50) and 28.964 g/mole (Ref. 15, p. F-13), respectively. An additional factor of 0.056 cm²/s has been added to values calculated with Equation 1 to correspond to empirical measurements of the diffusion coefficient of water vapor into air at 8 °C and 25 °C (Ref. 14, Table A-8).

With the diffusion coefficient determined, the volumetric flow rate of water out of the WP due to evaporation is determined using the integrated form of Stefan's law (Ref. 14, p. 606):

$$V_{evap}(T) = \left[(D(T) \cdot P_{atm} \cdot M_1 \cdot A \cdot v(T)) / (R_0 \cdot T \cdot z) \right] \cdot \ln\left[(P_{atm} - p(T) \cdot RH) / (P_{atm} - p(T)) \right]$$
(2)

where

Volumetric evaporation rate (m^3/s)
Diffusion coefficient at temperature T (m^2/s)
Temperature (K)
Atmospheric pressure (Pa)
Saturation pressure of water at temperature T (Pa)
Universal Gas Constant (J/mole K)
Distance from the water surface to the bulk environment (m)
Specific volume of the water at temperature T (kg/m^3)
Surface area of the water in the WP (m^2)
is the drift relative humidity
Molecular weight of water (kg/mole).

The approximate mean rate of water dripping onto a WP during the long-term average climate in Total System Performance Assessment-Viability Assessment (TSPA-VA) was approximately 0.5 m³/y (Ref. 17, pp. 3-15 and 3-23). Using Equation 2, the WP would have to produce sufficient power to maintain the water in the WP at a temperature of 73 °C, as well as compensate for other mechanisms of heat loss, to match this drip rate. The 73 °C value is the temperature derived from Equation 1 where the evaporation rate balances the inflow rate of 0.5 m^3/y . The above estimate used the following input values: p(73 °C) = 0.3546 bars (Ref. 18, pp. 219-221), v(73 °C) = 0.3546 bars (Ref. 18, pp. °C) = $1.025 \text{ cm}^3/\text{g}$ (Ref. 18, pp. 219-221), $R_0 = 8.315 \text{ J/mole} \cdot \text{K}$ (Ref. 16, p. 57), RH = 0.96 (Ref. 17, p. 3-37). The surface area of the water just above the upper row of assemblies (~ 8 cm from

Waste Package Operations	<u>Calculation</u>
Title: Criticality Consequence Calculation Involving Intact PWR	MOX SNF in a Degraded 21
PWR Assembly Waste Package	_
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 26 of 57

inner barrier inner surface) is taken to be 3 m^2 (Ref. 20, p. VI-4). This indicates that evaporation alone will be sufficient to remove the incoming water, and bulk boiling will not occur.

The amount of reactor heat dissipated by heating the incoming water, which is assumed to be at a temperature of 30 °C, to a temperature of 73 °C is given by the following expression:

$$q_{water} = [Cp(30 \ ^{\circ}C) \cdot V_{drip} \cdot \Delta T] / \nu (30 \ ^{\circ}C)$$
(3)

where

Heat rate required to raise the water temperature 43 K (J/s)
Rate of water dripping into the WP (m^3/s)
Specific heat of water at 30 °C (4.179 kJ/kg·K; (Ref. 14, Table
A-9)
Specific gravity of water at 30 °C (1.004 cm ³ /g; Ref. 18, p.
221)
Temperature increase (43 K).

Using Equation 3, only 2.8 W are required to raise the temperature of the water to the point where the evaporation rate is equal to the rate of influx.

Once at 73 °C, the power level required to vaporize water at a rate of 0.5 m³/y must be included. This is equal to the product of the heat of vaporization at 73 °C, 2346 kJ/kg (interpolated from Ref. 18, pp. 219-221), the volume of water to be evaporated, 0.5 m³/y, and the density of water at 73 °C, 975.9 kg/m³. Multiplying the above three values and performing the appropriate unit conversions yield an additional 37 W.

As stated above, additional heat losses will also occur due to radiation and/or conduction heat transfer to the local environment. The actual configuration of the drift thousands of years after emplacement cannot be defined sufficiently to allow a detailed heat transfer estimate. It is highly likely that a portion of the WP may be covered with rubble, possibly as a result of the gradual collapse of the drift, and both radiation and conduction mechanisms will be active. However, examination of ideal radiation-only and conduction-only systems should respectively provide an upper and lower bound on the heat loss from a WP with a bulk water temperature of 73 °C. Heat losses due to radiation alone can be estimated by treating the WP and drift as a system of concentric cylinders, with the WP surface at 73 °C, and the drift wall assumed to maintain a constant temperature of 30 °C. The radiation heat transfer rate is then given by (for concentric cylinders) (Ref. 14, p. 420):

$$q_{rad} = [\sigma \cdot A_1 \cdot (T_1^4 - T_2^4)] / [\varepsilon_1^{-1} + (A_1 / A_2)(\varepsilon_2^{-1} - 1)]$$
(4)

<u>Waste Package Opera</u>	tions	<u> </u>
Title: Criticality Conse	quence Calculation Involving Intact PWR MC	OX SNF in a Degraded 21
PWR Assembly	Waste Package	-
Document Identifier: C.	AL-EBS-NU-000008 REV 00	Page 27 of 57

where

Radiation heat transfer rate (J/s)
WP surface temperature (K)
Drift wall temperature (K)
WP surface area (26.0 m ² [Ref. 8.20, Attachment VII])
Drift surface area (77.0 m ² [Ref. 8.20, Attachment VII])
Emissivity of oxidized carbon steel (0.8; Ref. 19, p. 9)
Emissivity of tuff rock (0.85; Ref. 19, p. 34)
Stephan-Boltzman constant $(5.669 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4)$, (Ref. 14, p. 14).

Using the above equation, the radiation heat loss from a 73-°C WP is estimated to be 6,558 W. Again assuming the system of concentric cylinders and a drift wall temperature of 30 °C, a WP entirely covered by crushed tuff would lose heat by conduction according to (Ref. 14, p. 31):

$$q_{\text{cond}} = [2\pi k L (T_1 - T_2)] / [\ln(d_2/d_1)]$$
(5)

where

Q cond	Conduction heat transfer rate (J/s)
k	Average thermal conductivity of crushed tuff (0.66 J/s·m ² ·K/m,
	[Ref. 8.20, Attachment VII])
L	WP outer length less that of the skirts (4.885 m, Ref. 17)
T ₁	WP surface temperature (73 °C)
T ₂	Drift wall temperature (30 °C)
dı	WP outer diameter (1.7 m, Ref. 17)
d ₂	Drift diameter (5.5 m; Ref. 17).

Solving the above equation for a WP surface temperature of 73 °C indicates that 728 W will be lost if all heat transfer occurs by conduction through crushed tuff.

The steady-state criticality calculation was performed with the SAS2H-ORIGEN-S modules from the SCALE4.3 code system (Ref. 6) for the PWR MOX assembly with a fissile Pu content of 4.0 wt% HM and burnup of 35.6 GWD/MTHM. A baseline case was run with only the decay option and a criticality case was run with a burn subcase included in the ORIGEN-S data at 25,000 years through 35,000 years followed by decay to one million years. For a conservative calculation, the larger estimated power source (((6558 + 37)/21 = 314 W/assembly) was used for the ORIGEN-S burn subcase.

Waste Package Operations			Calculation	
Title:	Criticality Consequence Calculation Involving Intact PWR MOX SNF in a	Degr	aded	21
	PWR Assembly Waste Package	-		
-		_		<u> </u>

Document Identifier: CAL-EBS-NU-000008 REV 00

5.4 RELAP5 WP DESCRIPTION

5.4.1 RELAP5/MOD3.2 Component Descriptions

The purpose of this section is to describe the RELAP5 representation used for the coupled neutronic-thermal-hydraulic analyses of a criticality event in a WP where the outer barrier has been compromised leading to a fully degraded basket assembly. The RELAP5 representation of the WP, illustrated as a block diagram in Figure 5.4.1-1, consisted of 27 control volumes, 43 junctions, and 35 heat conductors. The spatial orientation of the WP is such that the cylindrical WP axis and long fuel assembly dimension are in the horizontal plane. The representation represents one-half of the WP cross-sectional cylinder since the system has left-right symmetry.

The RELAP5 code is designed to be used with fundamentally 1-D hydraulic systems, but does include multi-directional flow representation under restricted conditions (Ref. 22, pp. 2-14 through 2-16). The RELAP5 representation for the degraded WP contains flow connections in the two directions normal to the WP cylinder axis, but not parallel to the axis. For this quasi-2-D representation, the fuel bundles were represented at one-fifth their actual length with appropriate adjustments to the representation parameters. The principal elements of the representation description include the geometric representation, flow connections, friction factors, and heat conductors. These elements are described in the following sections. Note that RELAP5 input quantities are specified in English units. The calculational worksheets are included as Attachment VIII.

Frictional effects are important in the hydraulic calculations to maintain computational stability. These effects were simulated in the RELAP5/MOD3.2 representation of WP fluid volumes containing SNF by applying loss coefficients in the connecting junctions. A prior sensitivity calculation (Ref. 21, Section 5) showed that reactivity consequences in the WP were not sensitive to loss coefficient values over the range of K_f between 20 and 40 in junctions connecting volumes not containing SNF. Consequently, a K_f of 20 was used for these junctions.

The particular WP configuration used for the RELAP5 studies was the fully degraded basket condition with intact fuel assemblies. The iron oxide was assumed to have settled to the bottom of the WP covering the lower 3.5 rows of assemblies. The presence of oxide material was included in the development of the reactivity parameters but not specifically included in the hydrodynamic or thermodynamic representation. The fluid volume in each fuel assembly is represented by one RELAP5 volume. The presence of the metal fuel rods in assemblies was represented by connecting powered heat conductors to appropriate volume components. As stated previously, the WP is designed to hold fuel assemblies in a horizontal arrangement limiting the gravity contributions to the volume pressures in the WP representation to elevations of 21.42 cm, the assembly width (Table 5.1.2-1). Control volumes 010010000-050010000 represent half assemblies. The remaining space in the WP interior was described by the control volumes labeled 140010000-250010000. Two time-dependent control volumes (ID 260010000 and ID 360010000), representing the external boundary WP environment, complete the RELAP5

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR MOX S	NF in a Degraded 21
PWR Assembly Waste Package	-
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 29 of 57

geometry setup. The block diagram of the RELAP5 representation displayed in Figure 5.4.1-1, while not to scale, shows the relative control volume arrangement. Initial conditions for the RELAP5 control volumes were specified as water filled at 50 °C (122.0 °F) and 1.01325e+5 Pa (14.696 psia) except for the time-dependent control volume (ID 260010000), representing the external environment, which was initialized as steam at 220.0 °F and 14.696 psia to approximate a non-condensing gas environment.

Figure 5.4.1-1. RELAP5 Component Diagram for the MOX PWR Reactivity Consequence Calculation

Time-dependent volumes were included in the representation to represent the drift space outside the WP, where the out-flowing water inventory from the WP accumulates, and to provide a low temperature flow path into the WP representing the drift flow leaking into the WP. Timedependent volumes are used as boundary conditions providing sinks and sources for the fluid inventory. Thermodynamic conditions in these control volumes are specified as functions of time and are not dependent upon the mass or enthalpy of connecting volumes.

The control volume dimensions for the RELAP5 WP representation are listed in Table 5.4.1-1 (Spreadsheet: Vantage 5 specs.xls). With the exception of volumes 140 and 150, the non-fuel volume dimensions were unchanged from the base representation (Ref. 1). This has a minor effect on the WP water inventory that is already represented in a conservative manner (Assumption 3.4). The total volume contained in the fluid component volumes is 0.4654 m³ (16.437 ft³) resulting in an initial inventory of 458.15 kg (1010.04 lb_m) of water.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page 30 of 57

Component ID ¹	Volume (ft ³)	Vertical Flow Area (ft ²)	Elevation (ft) (Center-line)	Pressure (psia)	Temperature (°F)
010010000	0.37035853	0.5271757	0.0	14.696	122.0
020010000	0.37035853	0.5271757	0.702667	14.696	122.0
030010000	0.37035853	0.5271757	1.40533	14.696	122.0
040010000	0.37035853	0.5271757	2.10800	14.696	122.0
050010000	0.37035853	0.5271757	2.81067	14.696	122.0
060010000	0.74071706	1.0541514	0.0	14.696	122.0
070010000	0.74071706	1.0541514	0.702667	14.696	122.0
080010000	0.74071706	1.0541514	1.40533	14.696	122.0
090010000	0.74071706	1.0541514	2.10800	14.696	122.0
100010000	0.74071706	1.0541514	2.81067	14.696	122.0
110010000	0.74071706	1.0541514	0.702667	14.696	122.0
120010000	0.74071706	1.0541514	1.40533	14.696	122.0
130010000	0.74071706	1.0541514	2.10800	14.696	122.0
140010000	0.20454480	0.8135505	-0.477045	14.696	122.0
150010000	0.22424063	0.9973376	-0.463753	14.696	122.0
160010000	0.7989270	1.1369929	0.0	14.696	122.0
170010000	0.5438773	0.7740189	0.702667	14.696	122.0
180010000	0.8980821	1.278105	1.40533	14.696	122.0
190010000	0.8738187	1.243575	2.10800	14.696	122.0
200010000	0.8633786	1.228717	2.81067	14.696	122.0
210010000	0.7822260	1.113225	2.81067	14.696	122.0
220010000	0.8633786	2.477844	3.33622	14.696	122.0
230010000	0.8633786	2.477844	3.33622	14.696	122.0
240010000	0.4918077	1.411458	3.33622	14.696	122.0
250010000	1.2517607	2.384604	3.77291	14.696	122.0
260010000	238.468	238.468	4.03537	14.696	220.0
360010000	238.468	238.468	3.51044	14.696	122.0

Table 5.4.1-1. RELAP5 Fluid Component Volume Description

Notes : ¹ First 3 digits correspond to the component volume labels in Figure 5.4.1-1.

5.4.2 RELAP5 Junction Description

The spatial orientation of the WP cylindrical axis is in the horizontal direction with the fuel assemblies stacked on their sides. The assemblies used for the MCNP analyses (Ref. 13) were Westinghouse 17x17 assemblies with open-pin arrays. This allows cross flow between assemblies since the internal WP structure is assumed to be fully degraded. The "normal" flow direction in the representation (normal with respect to the 1-D hydraulic characteristic of the RELAP5 code) is vertical through the assemblies normal to the fuel rod long dimension. RELAP5 junctions define the cross-sectional flow area between two fluid component volumes that must intersect both volumes. These junctions are labeled as xxx010000, where xxx is the identifier (ID) of all junctions originating in a control volume. (Note that junction label prefixes "xxx" and volume labels prefixes form independent sets.) A second flow direction was defined

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF	in a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 31 of 57

horizontally across the assemblies and is likewise normal to the long fuel rod dimension. The horizontal flow paths were labeled as xxx020000. Physical constraints on flow paths in the WP are incorporated into the junction flow areas and frictional loss coefficients. A study on the effect of loss coefficient values on the transient criticality results (Ref. 21, Section 5) showed that results were relatively insensitive over the range of values as given. All junction flow rates were initialized at zero (0) kg/s (lb_m/s). Junction parameters used for the WP input file are listed in Table 5.4.2-1.

Component ID ¹	Area (ft ²)	Orientation (referenced to horizontal) (deg)	Connecting Volume IDs From To	Forward Loss Coefficient	Reverse Loss Coefficient	Choke Flag	Face Position (ft)
010010	0.2312	90.0	01000000 02001000	68.7	68.7	No	0.351333
010020	0.4624	0.0	01000000 06000000	68.7	68.7	No	0.351333
020010	0.2312	90.0	02000000 03000000	68.7	68.7	No	1.05400
020020	0.4624	0.0	02000000 07000000	68.7	68.7	No	1.05400
030010	0.2312	90.0	030010000 040000000	68.7	68.7	No	1.75667
030020	0.4624	0.0	03000000 08000000	68.7	68.7	No	1.05400
040010	0.2312	90.0	040010000 050000000	68.7	68.7	No	2.45933
040020	0.4624	0.0	04000000 09000000	68.7	68.7	No	1.75667
050010	0.2312	90.0	050010000 220000000	68.7	68.7	No	3.16200
050020	0.4624	0.0	05000000 100000000	68.7	68.7	No	2.45933
060010	0.4624	90.0	06000000 070010000	68.7	68.7	No	0.351333
060020	0.4624	0.0	06000000 16000000	68.7	68.7	No	0.351333
070010	0.4624	90.0	07000000 08000000	68.7	68.7	No	1.05400
070020	0.4624	0.0	07000000 110000000	68.7	68.7	No	1.05400
080010	0.4624	0.0	080010000 09000000	68.7	68.7	No	1.75667
080020	0.4624	0.0	08000000 12000000	68.7	68.7	No	1.05400
090010	0.4624	90.0	09000000 10000000	68.7	68.7	No	2.5933

Table 5.4.2-1. RELAP5 Fluid Component Junction Description

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00 Page 32 of 57

Component ID ¹	Area (ft ²)	Orientation (referenced to horizontal) (deg)	Connecting Volume IDs From To	Forward Loss Coefficient	Reverse Loss Coefficient	Choke Flag	Face Position (ft)
090020	0.4624	0.0	09000000 13000000	68.7	68.7	No	1.75667
100010	0.4624	90.0	100010000 230000000	68.7	68.7	No	3.16200
100020	0.4624	0.0	10000000 20000000	68.7	68.7	No	2.45933
110010	0.4624	90.0	110000000 120000000	68.7	68.7	No	1.05400
110020	0.4624	0.0	110000000 170000000	68.7	68.7	No	1.05400
120010	0.4624	90.0	120010000 130000000	68.7	68.7	No	1.75667
120020	0.4624	0.0	120000000 180000000	68.7	68.7	No	1.05400
130010	0.4624	90.0	130010000 200000000	68.7	68.7	No	2.45933
130020	0.4624	0.0	130000000 190000000	68.7	68.7	No	1.75667
140010	0.2312	90.0	14000000 010010000	68.7	68.7	No	-0.351333
140020	0.541983	0.0	140000000 150000000	0.0	0.0	No	-0.351333
150010	0.4624	90.0	.150000000 060010000	68.7	68.7	No	-0.351333
160010	0.4624	90.0	160000000 110010000	68.7	68.7	No	0.351333
170010	1.10807	90.0	170000000 180000000	0.0	0.0	No	1.05400
180010	1.33394	90.0	180010000 190000000	0.0	0.0	No	1.75667
190010	1.03803	90.0	190010000 210000000	0.0	0.0	No	2.45933
200010	0.754086	90.0	200010000 240000000	20.0	20.0	No	3.16200
200020	1.79585	0.0	200000000 210000000	20.0	20.0	No	2.45933
210010	1.03803	90.0	210010000 240000000	20.0	20.0	No	3.16200
220010	0.203838	90.0	220010000 250000000	20.0	20.0	No	3.51044
220020	0.823478	0.0	22000000 23000000	20.0	20.0	No	3.16200
230010	0.4624	90.0	230010000 250000000	20.0	20.0	No	3.51044
230020	0.823478	0.0	23000000	20.0	20.0	No	3.16200

.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 33 of 57

Component ID ¹	Area (ft ²)	Orientation (referenced to horizontal) (deg)	Connecting Volume IDs From To	Forward Loss Coefficient	Reverse Loss Coefficient	Choke Flag	Face Position (ft)
			24000000				
240010	0.973291	90.0	240010000 250000000	20.0	20.0	No	3.51044
250010	0.107639	90.0	250010000 260000000	0.0	0.0	Yes	4.03537
3700101	1.0	0.0	360010000 250000000	0.0	0.0	No	3.51044

Notes: ¹ Digits 1-4 correspond to the "J" IDs in Figure 5.4.1-1.

5.4.3 RELAP5 Heat Conductor Description

Energy sources in RELAP5 representations must be described with powered heat conductors connected to fluid volumes. In addition, non-powered heat conductors may be used to transport energy between disjoint fluid paths and/or into heat sinks. To properly describe the thermal characteristics of conductors, the geometry is normally representative of individual components such as fuel rods. The total fuel assembly energy balance is maintained by assigning the proper heat transfer area to the conductor. For the RELAP5 description of the WP, two sets of conductors describing the fuel pins and guide tubes were defined; one as a powered set representing the UO_2 fuel pellets (IDs 3301001 through 3301013) and one as a passive set representing the fuel rod cladding and guide tubes (IDs 3481001 through 3481013).

The conductor series 3301 and 3481 were connected respectively to control volumes 01001000 through 13001000, where the SNF assemblies are located. The fuel rods were represented with independent pellet and clad conductors to simulate breached conditions with no gas gap between the fuel pellets and cladding and with water in contact with the UO_2 pellets. In this description, the fuel rod cladding was disassociated from the fuel pellet-to-water heat conduction path placing the pellets directly in contact with the fluid volume water mass. The cladding and guide tubes were in turn heated from secondary contact with the fluid volume water mass.

The outer containment shell of the WP was described with a set of nine passive heat conductors (IDs 3121001 through 3121009) representing large carbon steel heat sinks connected to the peripheral water filled volumes (IDs 140010000 through 220010000).

Initial conditions for all heat conductors were 50.0 °C (122.0 °F).

Global energy sources in the RELAP5 program are defined by the time-dependent solution of point kinetics equations for the fission contribution to the energy generation coupled with (optionally) fission product and actinide radioactive decay energy. The global energy sources are distributed locally to powered heat conductors (IDs 3301001 through 3301013) through power factors, which consist of nodal weights within conductors and overall weight factors

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in	n a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 34 of 57

power factors, which consist of nodal weights within conductors and overall weight factors among the conductors. For the RELAP5 WP representation, the time-dependent power history represented one fuel assembly, and the power factors were specified accordingly: 0.2 for one-fifth length full area assemblies and 0.1 for one-fifth length half area assemblies. Nodal power factors within conductors were given equal weighing.

The heat conductor descriptions for the RELAP5 representation are listed in Table 5.4.3-1 (Attachment VIII).

Conductor	Geom	Compo-	Coordinate (ft) Left	Volume Connection ID Left	Initial Temperature	Heat Transfer Area	Power
ID	Туре	sition ¹	Right	Rright	(°F)	(11)	Factor
3301001	Cylinder	UO₂	0.0 1.286667e-02	0 010010000	122.0	316.8	0.1
3301002	Cylinder	UO₂	0.0 1.286667e-02	0 020010000	122.0	316.8	0.1
3301003	Cylinder	UO₂	0.0 1.286667e-02	0 030010000	122.0	316.8	0.1
3301004	Cylinder	UO₂	0.0 1.286667e-02	0 040010000	122.0	316.8	0.1
3301005	Cylinder	UO₂	0.0 1.286667e-02	0 050010000	122.0	316.8	0.1
3301006	Cylinder	UO₂	0.0 1.286667e-02	0 060010000	122.0	633.6	0.2
3301007	Cylinder	UO₂	0.0 1.286667e-02	0 070010000	122.0	633.6	0.2
3301008	Cylinder	UO₂	0.0 1.535833e-02	0 080010000	122.0	633.6	0.2
3301009	Cylinder	UO₂	0.0 1.286667e-02	0 090010000	122.0	633.6	0.2
3301010	Cylinder	UO ₂	0.0 1.286667e-02	0 100010000	122.0	633.6	0.2
3301011	Cylinder	UO ₂	0.0 1.286667e-02	0 110010000	122.0 .	633.6	0.2
3301012	Cylinder	UO ₂	0.0 1.286667e-02	0 120010000	122.0	633.6	0.2
3301013	Cylinder	UO₂	0.0 1.286667e-02	0 130010000	122.0	633.6	0.2
3481001	Cylinder	Zr-4	1.3125e-02 1.4997e-02	010010000 010010000	122.0	265.875 531.750	0.0
3481002	Cylinder	Zr-4	1.3125e-02 1.4997e-02	020010000 020010000	122.0	265.875 531.750	0.0
3481003	Cylinder	Zr-4	1.3125e-02 1.4997e-02	030010000 030010000	122.0	265.875 531.750	0.0
3481004	Cylinder	Zr-4	1.3125e-02 1.4997e-02	040010000 040010000	122.0	265.875 531.750	0.0
3481005	Cylinder	Zr-4	1.3125e-02 1.4997e-02	050010000 050010000	122.0	265.875 531.750	0.0

Table 5.4.3-1. RELAP5 Heat Conductor Specifications

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 35 of 57

			Coordinate	Volume		Heat	
			(ft)	Connection ID	Initial	Transfer	
Conductor	Geom	Compo-	Left	Left	Temperature	Area	Power
ID	Туре	sition ¹	Right	Rright	(°F)	(11)	Factor
3481006	Cylinder	Zr-4	1.3125e-02 1.4997e-02	060010000 060010000	122.0	265.875 531.750	0.0
3481007	Cylinder	Zr-4	1.3125e-02 1.4997e-02	070010000 070010000	122.0	265.875 531.750	0.0
3481008	Cylinder	Zr-4	1.3125e-02 1.4997e-02	080010000 080010000	122.0	265.875 531.750	0.0
3481009	Cylinder	Zr-4	1.3125e-02 1.4997e-02	090010000 090010000	122.0	265.875 531.750	0.0
3481010	Cylinder	Zr-4	1.3125e-02 1.4997e-02	100010000 100010000	122.0	265.875 531.750	0.0
3481011	Cylinder	Zr-4	1.3125e-02 1.4997e-02	110010000 110010000	122.0	265.875 531.750	0.0
3481012	Cylinder	Zr-4	1.3125e-02 1.4997e-02	120010000 120010000	122.0	265.875 531.750	0.0
3481013	Cylinder	Zr-4	1.3125e-02 1.4997e-02	130010000 130010000	122.0	265.875 531.750	0.0
3121001	Rectang ular	Carbon Steel	0.0 190.0	140010000 0	122.0	1.73 0.0	0.0
3121002	Rectang ular	Carbon Steel	0.0 190.0	150010000 0	122.0	1.73 0.0	0.0
3121003	Rectang ular	Carbon Steel	0.0 190.0	160010000 0	122.0	1.73 0.0	0.0
3121004	Rectang ular	Carbon Steel	0.0 190.0	170010000 0	122.0	1.73 0.0	0.0
3121005	Rectang ular	Carbon Steel	0.0 190.0	180010000 0	122.0	1.73 0.0	0.0
3121006	Rectang ular	Carbon Steel	0.0 190.0	190010000 0	122.0	1.73 0.0	0.0
3121007	Rectang ular	Carbon Steel	0.0 190.0	200010000 0	122.0	1.73 0.0	0.0
3121008	Rectang ular	Carbon Steel	0.0 190.0	210010000 0	122.0	1.73 0.0	0.0
3121009	Rectang ular	Carbon Steel	0.0 190.0	220010000 0	122.0	1.73 0.0	0.0

Note: ¹ MOX thermal properties assumed to be similar to UO_2 (Assumption 3.3)

Waste Package Operations	<u>Calculation</u>
Title: Criticality Consequence Calculation Involving Intact PWR MOX S	NF in a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 36 of 57

6. RESULTS

The criterion for determining where the egress junction area becomes influential in criticality consequences is where the exit mass flow becomes sufficiently restricted to limit the contribution of the void reactivity in terminating the event due to moderator mass loss. The initial power rise in criticality events with large reactivity insertion rates is halted by the Doppler reactivity feedback with significant void or density reactivity feedback (ultimately from voiding the WP) required to completely terminate the criticality (Ref. 1, Section 7). As the exit junction area is decreased sufficiently, the exit mass flow rate becomes restricted, resulting in higher pressures and temperatures, which partially determine criticality consequences (Ref. 1, Section 7). For sufficiently slow events, where the Doppler and moderator density reactivity feedback effects can terminate the criticality event without the necessity of a large void generation due to boiling (with subsequent moderator mass loss from internal pressurization), varying the exit junction area has little effect on the criticality consequences since internal pressures and exit flow rates remain low.

Unqualified data were used in the development of the results presented in this section.

6.1 RAPID REACTIVITY INSERTION RATE

A series of cases having a rapid reactivity insertion rate were run with decreasing exit junction area as a variable parameter. These calculations were performed for hypothetical criticality events where a reactivity insertion rate of 0.158 \$/s was used to approximate the maximum rate of change in the available reactivity due to absorber redistribution within the WP. This rate corresponds to a maximum reactivity addition of 14.18 \$ in 90 seconds (Section 2.1). As expected, peak values of the system pressure and fuel temperature were insensitive to the junction area until the exit flow area was decreased to sufficiently small values. The results for these variables are summarized in Table 6.1-1 with the pressure variation shown in Figure 6.1-1 and the temperature variation shown in Figure 6.1-2.

Exit Junction Area	Temp	erature	Pressure		
(cm ²)	(K) .	(°F)	(Pa)	(psia)	
10.0	413.91	285.37	1.15E+05	1.67E+01	
5.0	413.91	285.37	1.15E+05	1.67E+01	
0.5	413.92	285.39	1.43E+05	2.08E+01	
0.375	413.92	285.38	1.63E+05	2.37E+01	
0.25	453.23	356.15	9.17E+05	1.33E+02	
0.10	493.70	428.99	5.89E+06	8.55E+02	

Table 6.1-1. Maximum Temperature and Pressure Values for PWR MOX SNF for a Reactivity Insertion Rate of 0.158 \$/s
Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 37 of 57

Figure 6.1-1. Peak WP Pressures vs WP Egress Junction Area for 0.158-\$/s Reactivity Insertion Rate

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page 38 of 57

Maximum Average Fuel Temperature (K) Exit Junction Area (cm²)

Figure 6.1-2. Peak Average Fuel Temperature for SNF Volume vs WP Egress Junction Area for 0.158-\$/s Reactivity Insertion Rate

Detailed histories for a number of parameters affecting the criticality consequences are shown in Figures 6.1-3 through 6.1-9 with the egress junction area as a parameter (Cases: rlp5.MOX02cR1, rlp5.MOX03cR1, rlp5.MOX03dR1, rlp5.MOX03gR1, rlp5.MOX03fR1, and rlp5.MOX03eR1, respectively). In each case, the pressures and temperatures reached maximum values prior to ending the calculation. Figure 6.1-3 shows the pressure histories for a representative (since variation in parameter values among components was small) interior volume of the WP and Figure 6.1-4 shows the temperature histories for a representative SNF assembly. Figure 6.1-5 shows the fission power per assembly for the various cases. Additional assembly burnup for the most severe case (Case F) due to the transient criticality event is approximately 4.23e-6 GWd/MTHM (gigawattdays/metric ton heavy metal). Figure 6.1-6 shows the WP moderator inventory; and Figure 6.1-9 shows the exit junction mass flow rates. Figure 6.1-7 and Figure 6.1-8 show reactivity components for exit junction areas of 10.0 cm² and 0.375 cm², respectively. The increase in magnitude of the void reactivity components correlates with the decrease in the respective WP fluid inventories.

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 39 of 57

Figure 6.1-3. WP Pressure Histories for a Range of Egress Junction Areas for 0.158-\$/s Reactivity Insertion Rate

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 40 of 57

Figure 6.1-4. Fuel Temperature Histories for 0.158-\$/s Reactivity Insertion Rate Parameterized by Egress Junction Area

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 41 of 57

Figure 6.1-5. Fission Power Histories for 0.158-\$/s Reactivity Insertion Rate Parameterized by Egress Junction Area

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 42 of 57

Figure 6.1-6. WP Moderator Inventory Histories for 0.158-\$/s Reactivity Insertion Rate Parameterized by Egress Junction Area

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 43 of 57

Figure 6.1-7. Reactivity Component Histories for 0.158-\$/s Reactivity Insertion Rate with 0.1-cm² Egress Junction Area

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 44 of 57

Figure 6.1-8. Reactivity Component Histories for 0.158-\$/s Reactivity Insertion Rate with 10.0-cm² Egress Junction Area

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 45 of 57

Figure 6.1-9. WP Egress Junction Mass Flow Rate Histories for 0.158-\$/s Reactivity Insertion Rate Parameterized by Egress Junction Area

6.2 SLOW REACTIVITY INSERTION RATE

The consequences to a WP containing MOX PWR SNF of a criticality event with a low reactivity insertion were calculated for events having a reactivity addition rate of 0.0004 \$/s and for steady-state events. The 0.0004 \$/s rate is the same as the one used for the commercial PWR SNF reactivity consequence sensitivity calculation (Ref. 21, Section 2). This latter calculation showed that results had little sensitivity to the exit junction area. Consequently, only two exit junction areas were used for this calculation: a 10.0-cm² and a 0.1-cm² area (Cases: rlp5.MOX04cR1 and rlp5.MOX04eR1, respectively). These results are shown in Figures 6.2-1 through 6.2-5. No discernable differences are apparent in the results from these cases, which are similar to the results observed for the LEU low reactivity insertion rate cases (Ref. 21, Section 6). Thus, for this slow reactivity insertion rate, the exit area had no effect on the results. The negative reactivity from the change in fuel temperature and bulk density was sufficient to compensate for the slow reactivity rate without vapor generation as shown in Figure 6.2-2 where the maximum SNF assembly temperatures are below the vaporization level. Differential pressure histories associated with the corresponding temperature histories are shown in Figure 6.2-1. Differential pressure values are shown since the change in pressure is small with respect

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a	Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 46 of 57

to the absolute pressure. The fission power/assembly history is given in Figure 6.2-3. The additional assembly burnup due to these transient criticality events is approximately 5.0e-7 GWd/MTHM. The WP moderator inventory history is given in Figure 6.2-4; and the exit junction mass flow rates in Figure 6.2-5.

Figure 6.2-1. WP Pressure Histories for 10.0- and 0.1-cm² Egress Junction Areas and a 0.0004-\$/s Reactivity Insertion Rate

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 47 of 57

Figure 6.2-2. Fuel Temperature Histories for 10.0- and 0.1-cm² Egress Junction Areas and a 0.0004-\$/s Reactivity Insertion Rate

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 48 of 57

Figure 6.2-3. Fission Power Histories for 10.0- and 0.1-cm² Egress Junction Areas and a 0.0004-\$/s Reactivity Insertion Rate

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 49 of 57

Figure 6.2-4. WP Moderator Inventory Histories for 10.0- and 0.1-cm² Egress Junction Areas and a 0.0004-\$/s Reactivity Insertion Rate

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 50 of 57

Figure 6.2-5. WP Egress Junction Mass Flow Rate Histories for 10.0- and 0.1-cm² Egress Junction Areas and a 0.0004-\$/s Reactivity Insertion Rate

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in	a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 51 of 57

6.3 STEADY-STATE CRITICALITY

Results from the steady-state criticality calculation are given in terms of the excess radionuclide inventory in curies produced during the postulated criticality event. The excess inventory is referenced to the baseline levels from the MOX SNF in a decay-only mode. Table 6.3-1 lists the total radionuclide inventory levels based on 61 nuclides for the 21 PWR MOX WP at the end of the criticality event and extending 20,000 years past the end of the criticality. The radionuclide inventory level was nearly a factor of 2 over the baseline level immediately following the criticality event, but fell to less than 3% over the baseline level by 20,000 years after termination of the criticality event. The baseline activity level in this time period is predominately due to the Pu isotopes (> 90%) and is the principal activity contributor for the criticality case also (\geq 70%) (Spreadsheet Curie.xls: Sheet "Summary"). Table 6.3-2 lists the changes in individual nuclide inventories relative to the baseline values for the same time periods.

Table 6.3-1. Total Activity (61 nuclides) for 21 PWR MOX SNF Waste Package for Steady-State Criticality Event

Time Following Emplacement (y)	Time Following Criticality Termination (y)	Total Activity No-Criticality (Ci)	Total Activity 10,000 y Criticality (Ci)	Increase over Baseline Case (%)
36000	1000	3.98004E+03	4.70748E+03	18.3
45000	10000	2.96840E+03	3.19413E+03	7.6
55000	20000	2.23317E+03	2.28937E+03	2.5

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 52 of 57

Table 6.3-2. Isotopic Activity for 21 PWR MOX SNF Waste Package for Steady-State Criticality Event

	Activity	Change at End	Change 1,000 y	Change 10,000 y	Change 20,000 y
	(Ci)	of 10,000 y	after 10,000 y	after 10,000 y	After 10,000 y
Isotope	25,000 y	Criticality (Ci)	Criticality (Ci)	Criticality (Ci)	Criticality (Ci)
<u>H3</u>	0.00000E+00	3.34950E-02	1.28660E-26	0.00000E+00	0.00000E+00
C14	1.73000E-02	3.40423E-02	3.01221E-02	1.01607E-02	3.03121E-03
CI36	4.60000E-03	-2.63100E-02	-2.63100E-02	3.08000E-03	3.06000E-03
Fe55	0.00000E+00	1.20000E-01	0.00000E+00	0.00000E+00	0.00000E+00
Co60	0.00000E+00	4.32000E-01	0.00000E+00	0.00000E+00	0.00000E+00
Ni59	9.49000E-01	1.75000E-01	1.83000E-01	1.64000E-01	1.49000E-01
Ni63	0.00000E+00	2.40000E-02	-3.80602E-01	3.60000E-02	3.60000E-02
Se79	0.00000E+00	-3.51500E-01	-3.51600E-01	3.60000E-02	3.60000E-02
Kr85	0.00000E+00	4.60978E-01	-2.18000E-05	2.28000E-04	1.61600E-04
Sr90	0.00000E+00	3.95000E+00	-5.39000E+00	3.70000E-01	3.60000E-01
Y90	0.00000E+00	9.40520E+00	1.89000E-10	0.00000E+00	0.00000E+00
Zr93	5.59000E-02	3.08700E-01	3.08600E-01	9.60000E-03	1.06000E-02
Nb93m	5.60000E-02	4.29200E-01	4.23200E-01	5.70000E-03	5.60000E-03
Nb94	2.49000E-01	4.73430E-02	4.63310E-02	3.30000E-02	2.36000E-02
Tc99	4.99000E-04	5.42404E+00	5.40704E+00	1.23900E-03	1.23800E-03
Ru106	0.00000E+00	6.49060E+00	-1.93000E-02	0.00000E+00	0.00000E+00
Pd107	1.54000E-18	1.19000E-01	1.19000E-01	5.30000E-02	5.30000E-02
Cd113m	0.00000E+00	-3.30708E-01	-3.35000E-01	0.00000E+00	0.00000E+00
Sb125	0.00000E+00	2.11100E-01	0.00000E+00	0.00000E+00	0.00000E+00
Sn126	3.92000E-01	2.60000E-02	2.60000E-02	2.50000E-02	2.30000E-02
1129	5.75000E-15	2.06000E-02	2.06000E-02	2.86000E-15	2.86000E-15
Cs134	0.00000E+00	5.78000E+00	0.00000E+00	2.10000E-07	2.10000E-07
Cs135	5.61000E-25	3.87997E-01	3.87997E-01	-3.00000E-27	-2.00000E-27
Cs137	0.00000E+00	1.64000E+01	1.51000E-09	0.00000E+00	0.00000E+00
Ba137m	0.00000E+00	1.55000E+01	1.43000E-09	0.00000E+00	0.00000E+00
Pm147	0.00000E+00	5.52000E+00	0.00000E+00	0.00000E+00	0.00000E+00
Sm147	0.00000E+00	2.82000E-06	2.82000E-06	0.00000E+00	0.00000E+00
Sm151	0.00000E+00	3.54000E+00	1.60000E-03	0.00000E+00	0.00000E+00
Eu154	0.00000E+00	4.17000E+00	0.00000E+00	0.00000E+00	0.00000E+00
Eu155	0.00000E+00	3.10000E-01	0.00000E+00	0.00000E+00	0.00000E+00
Pb210	7.32000E-02	1.80000E-02	2.30000E-02	8.70000E-02	1.56000E-01
Po218	7.32000E-02	1.80000E-02	2.30000E-02	8.70000E-02	1.56000E-01
Fr221	8.64000E-02	-8.00000E-03	-9.00000E-03	-1.60000E-02	-1.90000E-02
Ra226	7.32000E-02	1.80000E-02	2.30000E-02	8.70000E-02	1.56000E-01
Ra228	1.90000E-07	0.00000E+00	0.00000E+00	6.00000E-09	1.50000E-08
Ac227	2.25000E-03	2.14600E-02	2.10200E-02	1.71300E-02	1.36500E-02
Th229	8.64000E-02	-8.00000E-03	-9.00000E-03	-1.60000E-02	-1.90000E-02
Th230	7.98000E-02	2.90000E-02	3.70000E-02	1.04000E-01	1.70000E-01
Th232	1.90000E-07	0.00000E+00	0.00000E+00	6.00000E-09	1.50000E-08
Pa231	2.25000E-03	2.14600E-02	2.10200E-02	1.71400E-02	1.36500E-02
U232	1.08000E-07	1.05999E-02	2.68000E-06	2.06430E-06	1.94990E-06
U233	1.45000E-01	-2.30000E-02	-2.30000E-02	-2.20000E-02	-2.10000E-02
U234	3.82000E-01	8.85000E-01	8.96000E-01	8.72000E-01	8.48000E-01
U235	8.53000E-03	-1.18000E-03	-1.13000E-03	-1.30000E-03	-1.30000E-03
U236	2.19000E-01	9.00000E-03	1.00000E-02	1.60000E-02	1.90000E-02
U238	1.32000E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
Np237	1.43000E+00	0.00000E+00	0.00000E+00	1.00000E-02	0.00000E+00
Pu238	0.00000E+00	3.60000E+01	1.42000E-02	2.44000E-23	0.00000E+00
Pu239	2.15000E+02	-9.00000E+00	-9.00000E+00	-6.00000E+00	-4.60000E+00

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00
 Page 53 of 5

Page 53 of 57

	Activity	Change at End	Change 1,000 y	Change 10,000 y	Change 20,000 y
	(Ci)	of 10,000 y	after 10,000 y	after 10,000 y	After 10,000 y
Isotope	25,000 y	Criticality (Ci)	Criticality (Ci)	Criticality (Ci)	Criticality (Ci)
Pu240	5.84000E+01	3.80000E+01	3.41000E+01	1.32400E+01	4.59000E+00
Pu241	4.05000E-02	2.12821E+01	-6.20000E-03	-2.97000E-03	-1.32000E-03
Pu242	1.85000E+00	-1.30000E-01	-1.40000E-01	-1.40000E-01	-1.40000E-01
Am241	4.21000E-02	2.06814E+01	4.31280E+00	-3.08000E-03	-1.31000E-03
Am242m	0.00000E+00	5.81000E-02	4.25000E-04	2.60000E-23	0.00000E+00
Am243	2.11000E+00	4.28800E+00	3.90100E+00	1.66900E+00	6.54000E-01
Cm242	0.00000E+00	3.03000E-01	3.50000E-04	2.14000E-23	0.00000E+00
Cm243	0.00000E+00	3.86000E-07	1.06000E-17	0.00000E+00	0.00000E+00
Cm244	0.00000E+00	6.0000E-01	1.40000E-17	0.00000E+00	0.00000E+00
Cm245	4.04000E-02	-6.70000E-03	-6.20000E-03	-2.96000E-03	-1.31000E-03
Cm246	8.49000E-04	1.25400E-03	1.08100E-03	2.90700E-04	6.70000E-05
Cm247	1.11000E-07	-1.34000E-08	-1.34000E-08	-1.35000E-08	-1.35000E-08
Total		1.91678E+02	3.46400E+01	1.07493E+01	2.67642E+00
Decreased		-9.85940E+00	-1.56714E+01	-6.17931E+00	-4.78124E+00
Increased		2.01504E+02	5.03114E+01	1.69286E+01	7.45766E+00
Max				· · · ·	
Increase		3.80000E+01	3.41000E+01	1.32400E+01	4.59000E+00
% Increase					
Due to					
Pu240		18.9	67.8	78.2	61.5
Total/WP	2.88853E+02	4.02524E+03	7.27441E+02	2.25734E+02	5.62048E+01

<u>Waste</u>	Pack	age Op	perations

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page 54 of 57

7. ATTACHMENTS

Hardcopy attachments are listed in Table 7-1. Electronic data files are provided on a compact disk (CD) (Ref. 7).

Attachment Number	Description	Number of Pages
ſ	SAS2H Data File for MOX Reactivity Calculation (out.mox1e.wp)	4
11	STRIP FORTRAN Source with Sample Input and Output Files	8
111	MOX SAS2H Depletion Data File W3_35-5gwd_2cy-6stps	5
IV	Base RELAP5/MOD3.2 Data File	25
V	Script Files to Collect Isotopic Values from ORIGEN-S Output Files	2
VI	Document Input Reference Sheet (DIRS)	8
VII	Directory of Files on CD (Ref. 7)	5
VIII	Calculational Worksheets for RELAP5 Geometry	5

Table 7-1. List of Attachments

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving In	tact PWR MOX SNF in a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 55 of 57

8. REFERENCES

- Civilian Radioactive Waste Management System (CRWMS) Management & Operating Contractor (M&O) 1997. Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package. BBA000000-01717-0200-00057 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980106.0331.
- 2. Nuclear Regulatory Commission (NRC) 1995. *RELAP5/MOD3 Code Manual, Vol. 1.* NUREG/CR-5535. Washington, D.C.: NRC. TIC: 238741.
- CRWMS M&O 1998. Software Qualification Report for MCNP Version 4B2, A General Monte Carlo N-Particle Transport Code. CSCI: 30033 V4B2LV. DI: 30033-2003 Rev. 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980622.0637.
- 4. Not Used.
- Westinghouse Electric Corporation 1996. Plutonium Disposition Study, Implementation of Weapons Grade MOX Fuel in Existing Pressurized Water Reactors for the Department of Energy, Oakland, California. DOE/SF/19683-7 Revision 1. Pittsburgh, Pennsylvania: Westinghouse Electric Corporation. TIC: 245436.
- CRWMS M&O 1997. Software Qualification Report for The SCALE Modular Code System Version 4.3. CSCI: 30011 V4.3. DI: 30011-2002 Rev. 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19970731.0884.
- 7. CRWMS M&O 1999. Electronic Data for Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package, CAL-EBS-NU-000008 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990923.0239.
- 8. CRWMS M&O 1998. Westinghouse MOX SNF Isotopic Source. BBA000000-01717-0210-00007 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980818.0131.
- 9. Department of Energy (DOE) 1987. Characteristics of Spent Fuel, High Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Volume 3 of 6, Appendix 2A: Physical Descriptions of LWR Fuel Assemblies. DOE/RW-0184. Washington, D.C.: DOE. TIC: 202243.
- CRWMS M&O 1998, Summary Report of Commercial Reactor Criticality Data for McGuire Unit 1. B0000000-01717-5705-00063 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980622.0079.
- CRWMS M&O 1998. Two (2) Data Cartridges for Westinghouse MOX SNF Isotopic Source BBA000000-01717-0210-00007 REV 00. Las Vegas, Nevada: CRWMS M&O. MOL.19980629.0795.

Waste Package Operations	<u>Calculation</u>
Title: Criticality Consequence Calculation Involving Intact PWR MC	DX SNF in a Degraded 21
PWR Assembly Waste Package	-
Document Identifier: CAL-EBS-NU-000008 REV 00	Page 56 of 57

- 12. Oak Ridge National Laboratory (ORNL) 1995. SCALE 4.3, RSIC Computer Code Collection, CCC-545. Oak Ridge, Tennessee: ORNL. TIC: 235920.
- CRWMS M&O 1998. Criticality Evaluation of Intact and Degraded PWR WPs Containing MOX SNF. A0000000-01717-0210-00002 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980701.0482.
- 14. Holman, J.P. 1990. *Heat Transfer 7th Edition*. New York, New York: McGraw-Hill Publishing Company. TIC: 242477.
- 15. Weast, R.C. 1979. CRC Handbook of Chemistry and Physics, 60th Edition, 1979-1980. Boca Raton, Florida: CRC Press, Inc. TIC: 239951.
- 16. Walker, F.W.; Parrington, J.R.; and Feiner, F. 1989. Nuclides and Isotopes, Fourteenth Edition: Chart of the Nuclides. San Jose, California: General Electric Company. TIC: 201637.
- DOE 1998. Viability Assessment of a Repository at Yucca Mountain Total System Performance Assessment – Volume 3. DOE/RW-0508/V3. North Las Vegas, Nevada: DOE. ACC: MOL.19981007.0030.
- American Society of Mechanical Engineers (ASME) 1967. STEAM TABLES Thermodynamic and Transport Properties of Steam, Sixth Edition. New York, New York: ASME. TIC: 103243.
- CRWMS M&O 1995. Emplacement Scale Thermal Evaluations of Large and Small WP Designs. BB000000-01717-0200-00009 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19960624.0097.
- CRWMS M&O 1996. Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations. BBA000000-01717-0200-00005 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19960923.0196.
- 21. CRWMS M&O 1999. Sensitivity Study of Reactivity Consequences to Waste Package Egress Area. CAL-EBS-NU-000001 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990928.0239.
- 22. NRC 1995. RELAP5/MOD3 Code Manual, Vol. 2, Users's Guide and Input Requirements. NUREG/CR-5535. Washington, D.C.: NRC. TIC: 243017.
- 23. Duderstadt, J.J. and Hamilton, L.J. 1976. Nuclear Reactor Analysis. New York, New York: John Wiley & Sons, Inc. TIC: 245454.

Waste Package Operations	<u>Calculation</u>
Title: Criticality Consequence Calculation Involving	Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste Package	

Document Identifier: CAL-EBS-NU-000008 REV 00

Page 57 of 57

- 24. CRWMS M&O 1997. Waste Package Design Basis Events. BBA000000-01717-0200-00037 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19971006.0075.
- 25. CRWMS M&O 1999. Installation Test Plan (ITP) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-ITP-1.0-00. ACC: MOL.19990929.0035.
- 26. CRWMS M&O 1999. Validation Test Plan (VTP) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-VTP-1.0-00. ACC: MOL.19990929.0034.
- 27. CRWMS M&O 1999. Software Activity Plan (SAP) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-SAP-1.0-00. ACC: MOL.19990929.0031.
- 28. CRWMS M&O 1999. Software Requirements Document (RD) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-RD-1.0-00. ACC: MOL.19990929.0032.
- 29. CRWMS M&O 1999. Software Design Document (DD) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-DD-1.0-00. ACC: MOL.19990929.0033.
- 30. CRWMS M&O 1999. Validation Test Report (VTR) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-VTR-1.0-00. ACC: MOL.19990929.0036.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page I-1 of I-4

ATTACHMENT I

SAS2H input data file for the base MOX SNF WP reactivity feedback calculation. Additional cases use this file with variations in the fuel temperatures and water densities.

```
parm='skipcellwt,skipshipdata'
=sas2h
SAS2H: Fissile PU 4.0wt%, 35.6GWD/MTU, 25000yr, Inf-Assem Mixed H2O+Iron
' Iron (fe) rust in the water around the fuel pins 58 wt. %
    Case out.mox.wp.inp - Compares with 25000 yr MCNP case 21MS1F
' Westinghouse 17x17 MOX fuel Assembly, high temp burnup 35.6 Gwd/MTHM
' Vantage 5 bundle - Fissile Pu 4 wt% HM
' Representation follows Commercial SNF analysis using B & W 15x15 fuel
assembly
' Case out.fe.mox.inp - Path B outer radius derived from 12.23 pin cells/G.T.
                       Mix=0 in fuel pin gap
' Case out.fe.moxla.inp - Path B radius used 10.56 p.c/G.T
                       Mix=0 in fuel pin gap
' Case out.fe.mox1b.inp - Path B radius used 10.56 p.c/G.T
                       Mix=3 in fuel pin gap
 Case out.fe.mox1c.inp - Path B radius used 10.56 p.c/G.T
                       Mix=0 in fuel pin gap, GT radii modified
  Case out.fe.mox1d.inp - Path B radius used 10.56 p.c/G.T
                       Mix=0 in fuel pin gap, GT radii modified,
                       Correct MIX=2 for MOX dimensions, H2O densities
  Case out.fe.mox1f.inp - Path B radius used 10.56 p.c/G.T
                       Mix=0 in fuel pin gap, GT radii modified,
                        Correct MIX=2 for MOX dimensions, H2O densities
                        Sas2h eigenvalue high - raise last radius
  Case out.moxla.wpi.inp - Path B radius used 10.56 p.c/G.T
                        Mix=0 in fuel pin gap, GT radii modified,
                        Correct MIX=2 for MOX dimensions, H2O densities
                       Mix Comp as (1-x)*Fe2O3 + x*H2O
 Case out.moxla.wp.inp Path-B radius 11.04 p.c/G.T. Buckling search for WP
                        Mix=0 in fuel pin gap, GT radii modified,
                        Correct MIX=2 for MOX dimensions, H2O densities
                        Mix Comp as (1-x) *Fe2O3 + x*H2O
  Case out.mox1b.wp.inp Buckling search for WP, set dy=55.0
  Case out.mox1c.wp.inp Buckling search for WP, set dy=40.0
' Case out.mox1e.wp.inp Buckling search for WP, set dy=44.0
44group
            latticecell
  MCNP input mixtures for fuel-pin-cell, assembly-cell, and waste package
  mixtures from SAS2H-ORIGENS at 25000 yr
 u-233
            1 0 8.308600E-07 300.00 end
 u-234
u-235
            1 0 3.386430E-06 300.00 end
             1 0 2.169270E-04 300.00 end
 u-236
             1 0 1.848360E-04 300.00 end
 u-238
np-237
            1 0 2.136450E-02 300.00 end
            1 0 1.105420E-04 300.00 end
```

Calculation

 Waste Package Operations
 Calculation

 Title:
 Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21

 PWR Assembly Waste Package
 Page I-2 of I-4

Document I	dentifier: CAL-EBS-NU-000008 REV 00
pu-239	1 0 1.868310E-04 300.00 end
pu-240	1 0 1.381940E-05 300.00 end
pu-241	1 0 2.099100E-11 300.00 end
pu-242	1 0 2.490360E-05 300.00 end
am-241	1 0 6.586460E-10 300.00 end
am-243	1 0 5.576220E-07 300.00 end
0	1 0 5.003520E-02 300.00 end
mo-95	1 0 3.876310E-05 300.00 end
tc-99	1 0 4.254610E-05 300.00 end
ru-101	1 0 4.720380E-05 300.00 end
rh-103	1 0 4.214700E-05 300.00 end
ag-109	1 0 1.040670E-05 300.00 end
nd-143	1 0 3.224570E-05 300.00 end
nd-145	1 0 2.342700E-05 300.00 end
sm-147	1 0 1.001630E-05 300.00 end
sm-149	1 0 1.898300E-07 300.00 end
sm-150	1 0 1.291530E-05 300.00 end
sm-152	1 0 6.372550E-06 300.00 end
eu-151	1 0 1.197420E-06 300.00 end
eu-153	1 0 5.824350E-06 300.00 end
gd-155	1 0 2.891220E-07 300.00 end
sr-90	1 0 1-20 300.00 end
zr-93	1 0 1-20 300.00 end
zr-94	1 0 1-20 300.00 end
zr-95	1 0 1-20 300.00 end
nb-94	1 0 1-20 300.00 end
ru-106	1 0 1-20 300.00 end
rh-105	1 0 1-20 300.00 end
pd-105	1 0 1-20 300.00 end
pd-108	1 0 1-20 300.00 end
sb-124	1 0 1-20 300.00 end
xe-131	1 0 1-20 300.00 end
xe-132	1 0 1-20 300.00 end
xe-135	1 0 1-20 300.00 end
xe-136	1 0 1-20 300.00 end
cs-134	1 0 1-20 300.00 end
cs-135	1 0 1-20 300.00 end
cs-137	1 0 1-20 300.00 end
ba-136	1 0 1-20 300.00 end
la-139	1 0 1-20 300.00 end
pr-141	1 0 1-20 300.00 end
pr-143	1 0 1-20 300.00 end
nd-147	1 0 1-20 300.00 end
ce-144	1 0 1-20 300.00 end
pm-147	1 0 1-20 300.00 end
pm-148	1 0 1-20 300.00 end
eu-154	1 0 1-20 300.00 end
eu-155	1 0 1-20 300.00 end
'	
•	
' Homoge	nized zirc-4 clad and water gap
' Spread	sheet MOX_96 sas2h.xls; Parh-B geom
1	

- h
- 2 0 7.553602-03 300.00 end

Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21

 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00

 Page I-3 of I-4

2 0 3.776801-03 300.00 end 0 cr 2 0 6.740014-05 300.00 end fe 2 0 1.255093-04 300.00 end zr 2 0 3.771931-02 300.00 end arbm-sn 5.819074 1 0 0 0 50000 100.0 2 0.014 300.00 end ī. ı. sn 2 0 4.13376-04 300.00 end t 1 Moderator around fuel pins and guide tubes I. Contains 58 wt% fe2o3 ۲ 3 0 2.80888-02 300.00 end h I. 0 3 0 4.84328-02 300.00 end Ŧ fe 3 0 2.29256-02 300.00 end Ŧ t Mix Moderator Comp as (1-x) * Fe2O3 + x*H2O ŧ x=0.73007 lambda = 0.996133 1 x=0.73 lambda = 0.996107 1 h 3 0 5.64049-02 300.00 end 3 0 3.74873-02 300.00 end 0 3 0 6.18991-03 300.00 end fe ' 0 ppm boron 1_____ ' Zirc-4 4 0 2.96400-04 300.00 end 0 4 0 7.59820-05 300.00 end 4 0 1.41490-04 300.00 end 4 0 4.25220-02 300.00 end cr fe zr arbm-sn 6.5600 1 0 0 0 50000 100.0 4 0.014 300.00 end ' sn 4 0 4.6601-04 300.00 end !_____ ' Water region inside of the guide tubes 0 5 0 3.34390-02 300.00 end h 5 0 6.68780-02 300.00 end ' 0 ppm boron 1_____ end comp !_____ . ' fuel - pin - cell geometry: ' Water - Zirc-4 homogenized for water in gap

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page I-4 of I-4

```
MCNP assembly pitch = 10.7086 + 10.7086 = 21.4172
٠
τ.
 21.4172/17(pin-cells) = 1.25984 pin-cell pitch
' pellet OD 0.784352 cm
' clad ID 0.8001 cm
' clad OD 0.9144 cm
 Clean water + hematite + Zirc4 homogenized into MIX=2
squarepitch 1.25984 0.784352 1 3 0.9144 2 0.8001 0 end
' Standard pin-cell pitch = 1.25984
1
  Standard gap with gas and standard clad
1_____
ŧ.
  Inf - pin-cell buckling
more data bkl=0.8150 dy=43.870 dz=365.76 end
I______
  assembly and cycle parameters
' quide tube region is different
Path B radii determined by keeping pin cell area fractions
' the same as in the Commercial SNF SAS2H cases
T
  spreadsheet MOX 96 SAH2H.xls Sheet PATH-B Geom - 10.56 pin cells/G.T.
npin/assm=264 fuelngth=365.76 ncycles=1 nlib/cyc=1
printlevel=7 inplevel=3 numztotal=4
                               end
5 0.5715
4 0.61214 3 0.7107886 500 2.4665
1
    4 0.61214 3 0.7107886 500 2.416681
' Inf - assembly buckling
۲.
bon
     end
nit
     end
xsd
SAS2H: Fissile Pu 4.0 wt% HM, 35.6GWD/MTU, 25000yr, Inf-Assem
x5= 1.0-4 1.0-4 1.0 0.0 0.0 0.815
    43.870 365.76 0.0 1.0 1.0-3 0.75 end
power=7.25 burn=1.0-20 down=1.0-20 end
end
```

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page II-1 of II-8

ATTACHMENT II

STRIP Program

The RELAP5/MOD3.2 program writes two files as output:

- 1) a formatted print file containing 'major edits' at specified times, a list periodically of the minor edit variables, and
- 2) a binary 'restart' file to enable a case to resume.

The major edits form periodic snapshots of the problem variables. Minor edits form histories of particular problem variables and can thus be displayed graphically. The RELAP5/MOD3.2 code also has an option to collect all the minor edit variables at each time point from the restart file and put them into a formatted "strip" file. The FORTRAN-90 program, "Strip", reads a RELAP5/MOD3.2 strip file, pairs the time variable with each minor edit variable and writes the information in a series of more compact files for use in later analysis. The output of the code can be readily checked against the strip files by visual inspection.

```
1.
      STRIP Source
С
      Last change: T
                         16 Aug 99
                                      4:40 pm
     program strip
С
      implicit REAL*8 (a-h,o-z)
С
С
     program to read RELAP strip files and align into columns for use
     with Excel or Psiplot for plotting.
С
С
С
С
     units
С
      50
             = data input
С
      55
             = spread sheet output
С
      60
             = print file
С
      dimension
                            plotdat(75)
      INTEGER*4
                            scrno, scrni, ital1, isprd
      LOGICAL*4
                            isfopn, isfdef, skipr
      CHARACTER*10
                            headr1, headr2, headr3
      CHARACTER*1
                            alf(27)
      CHARACTER*1
                            num(10), noyes, yes
      CHARACTER*120
                            iomsg
      CHARACTER*80
                            card
      CHARACTER*15
                            filenam, outfile, avar, tmpnam, dum1, dum2
      CHARACTER*10
                            alfvar(75), numvar(75)
      CHARACTER*13
                            cblnk
     CHARACTER*7
                            chdir(2)
С
     data cblnk /'
                                1/
     data headr1 /'plotinf
                              '/, headr2 /'plotalf
                                                      1/,
          headr3 /'plotrec
                              1/
     data yes
               /'y'/
```

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21

 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00

 Page II-2 of II-8

```
С
      data num /'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'/
      data maxpts /1500/, maxvar /75/
      data delt20 /2.0d0/
      DATA zero /0.0e0/
С
      define files and open them
С
С
      scrni = 5
      scrno = 6
      ital1 = 50
      iout = 60
      WRITE (UNIT=scrno, FMT=2041)
2041 FORMAT (' input data file name = ':)
      read (UNIT=scrni, FMT=3001) filenam
      WRITE (UNIT=scrno, FMT=2042)
2042 FORMAT (' input final time = ':)
      read (scrni, '(e12.5)') fintim
С
3001 FORMAT (a15)
3002 FORMAT (a4)
      inquire (file=filenam, exist=isfdef, err=1001, iostat=ierr)
      if (.not.isfdef) then
         write (scrno, 2005) filenam
         GO TO 2000
      end if
2005 format (' data file ',a15,' does not exist'/' exit called')
      open (unit=ital1, file=filenam, status='old', form='formatted',
            access='sequential', err=1005, iostat=ierr)
С
      count records in filenam - mrec
С
      irec = 1
      mrec = 0
      read (UNIT=ital1, FMT=1107) card
10
      dum1 = ADJUSTL(card(1:10))
      if (dum1(1:7) .ne. headr3(1:7))go to 10
      mrec = mrec + 1
      read (card(16:30), '(e15.6)') timdat
      if (timdat .lt. fintim) go to 10
      rewind (UNIT=ital1)
С
      skipr = .false.
      write (UNIT=scrno, FMT=2044) mrec
2044 format (' Input file has ', i5, 'records'/
              ' set skip flag to reduce number y or n' :)
      read (scrni, '(a1)') noyes
      if (noyes .eq. yes) then
         skipr = .true.
         write (UNIT=scrno, FMT=2046)
         read (scrni, '(i6)') numskp
      END if
2046 format (' number of records to skip = ':)
С
25
      write (UNIT=scrno, FMT=2045)
```

Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21

 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00

 Page II-3 of II-8

```
2045 format (' Continue data processing - y or n ':)
      READ (scrni, '(al)') noyes
      if (noyes .ne. yes) go to 2000
С
С
      read two records, skip first record - title records
      read (UNIT=ital1, FMT=1107) card
      read (UNIT=ital1, FMT=1107) card
1107 format (a80)
      look for plot information record
С
30
      read (UNIT=ital1, FMT=1107) card
     DO 40 i=1,80
      m = i
      IF (card(i:i) .ne. ' ') GO TO 45
40
      continue
     blank card - read next one
С
      qo to 30
45
      IF (card(m:m+6) .eq. headr1(1:7)) then
         read (card(11:20), '(i10)') numdat
      END if
      IF (numdat .GT. maxvar) then
         WRITE (UNIT=scrno, FMT=1023)
         GO TO 2000
      END if
1023 FORMAT (' number of minor edits exceeds max allowed'/
     *
             ' exit called')
      numdat = numdat - 1
С
      read minor edit variable headings
      read (UNIT=ital1, FMT=1020) avar, (alfvar(k), k=1,numdat)
      read (UNIT=ital1, FMT=1020) avar, (numvar(k), k=1,numdat)
1020 format (8a10)
C
С
      select the record to plot
С
      ivarl = irec + 1
      IF (ivarl .GT. numdat) then
         WRITE (UNIT=scrno, FMT=1022)
         GO TO 2000
      END if
1022 FORMAT (' list of minor edits exceeded')
      do 75 n=ivarl,numdat
      write (UNIT=scrno, FMT=2022) alfvar(n), numvar(n)
      READ (scrni, '(a1)') noyes
      irec = n
      IF (noyes .EQ. yes) GO TO 80
75
      continue
С
      check for more files
      go to 25
С
С
      read the data records - terminate with EOF
С
2022 format (1x,a10,2x,a10,' ':)
С
80
     continue
С
```

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package** Page II-4 of II-8

Document Identifier: CAL-EBS-NU-000008 REV 00

```
dum1
              = ADJUSTL(alfvar(irec))
      dum2
             = ADJUSTL(numvar(irec))
     DO 84 j=1,8
      IF (dum1(j:j) .EQ. ' ') GO TO 84
     jdx = j
84
     continue
     DO 86 j=1,8
      IF (dum2(j:j) .EQ. ' ') GO TO 86
     kdx = j
86
     continue
      jdx
          = min0(jdx,5)
      kdx
            = 8 - jdx
      tmpnam = dum1(1:jdx)//dum2(1:kdx)
      outfile = tmpnam(1:(jdx+kdx))//'.dat'
С
С
      CALL SYSTEM ('dir')
С
      pause
      call SYSTEM ('cd temp')
С
      CALL SYSTEM ('dir')
С
      WRITE (UNIT=scrno, FMT=9031) outfile
9031 FORMAT (' file name = ',a12)
      pause
С
      inquire (file=outfile, exist=isfdef, err=1001, iostat=ierr)
      if (isfdef) then
         open (unit=iout, file=outfile, status='old',
         form='formatted', access='sequential', err=1010,
         iostat=ierr)
         close (UNIT=iout,STATUS='delete')
      end if
c.
     open (unit=iout, file=outfile, status='new',
           form='formatted', access='sequential', err=1010,
            iostat=ierr)
С
      WRITE (UNIT=iout, FMT=2020) filenam
2020 FORMAT (5x, 'data from file - ',a15/)
     WRITE (UNIT=iout, FMT=2015) alfvar(1),
     * alfvar(irec), numvar(irec)
2015 format (5x,a10,5x,a10/5x,' (sec) ',4x,a10/)
      lrecno = 0
      IF (skipr) then
         nrec = numskp
      else
         nrec = 1
      end if
      WRITE (UNIT=scrno, FMT=9010) nrec
С
9010 FORMAT (' nrec to skip = ',i6)
      kcnt = 0
      ctim = zero
      call system ('cd ..')
      CALL SYSTEM ('dir')
С
      pause
С
     lrecno = kcnt
90
     continue
```

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package** Document Identifier: CAL-EBS-NU-000008 REV 00 Page II-5 of II-8 nxtrec = lrecno + nrec read the first record of strip file С read (UNIT=ital1, FMT=2001, END=2090, ERR=1001) avar, * (plotdat(k), k=1,numdat) IF (.not. skipr) GO TO 96 store the first record С IF (kcnt .EQ. 0) GO TO 96 skip nrec-1 records C kcnt = kcnt + 1if (kcnt .lt. nxtrec) then GO TO 90 end if WRITE (UNIT=scrno, FMT=9021) nxtrec С 9021 FORMAT (' nxtrec = ', i6) 2001 format (a15, 4e15.6/(5e15.6)) 2010 FORMAT (1p,2e15.6) 96 continue lrecno = kcnt call system ('cd temp') WRITE (UNIT=iout, FMT=2010) plotdat(1), plotdat(irec) if (kcnt .eq. 0) kcnt = 1call system ('cd ...') call system ('cd juveni~1') С 2090 continue IF (plotdat(1) .lt. fintim) GO TO 90 rewind (UNIT=ital1) CALL SYSTEM ('cd temp') CLOSE (UNIT=iout, STATUS='keep') call system ('cd ...') call system ('cd juveni~1') С go to 25 С С error messages С 1001 write (scrno, 1002) ierr, filenam 1002 format (' error = ',i8,' encountered attempting to access file ', * a20) go to 2000 С 1005 write (scrno, 1006) ierr, filenam 1006 format (' error = ',i8,' encountered attempting to open file ', * a20) go to 2000 С 1010 write (scrno, 1006) ierr, outfile С 2000 continue end

Calculation

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00

2. Sample Input Strip File

RELAP5/3.	2	strip f	Eile	. :	24-Jun-1999) 12:54:10
relap5/mo	d2 waste	package c	L03x1hbv.te	est.strp		
plotinf	55	0		-		
plotalf	time	α	ŋ	σ	σ	מ מ
р р	а С	hvmix	hvmix	sonici	vapgen	vapgen
vapgen	E					· ····································
vangen	vangen	vapgen	tmass	tmassy	tmassv	tmassv
tmassy	, ab a cut	vapgen	Cillabb	Cincipit	Cillabby	
tmaggy	tmaggy	tmaggy	tmaggy	tmaggy	tmaggy	tmaggy
mflowi	CINADOV	CIIICODV	Chicoby	CIIICOSV	CHICODY	CIIICODV
mflowi	mflowi	mflowi	mflowi	mflowi	mflowi	mflowi
mflowi	((TTOM)	iii 10wj	((LICW)	wit t Ow J	((TTOW)	"TTOM?
mflowi	mflouri	mfloud	hterat		where we are	wiewooo
	mrrow]	mrtowj	nival	TKLIDOW	rkgapow	IKIEaC
chtrivar		A 7				
cntrivar	cntrivar	cntrivar	cntrivar	cntrivar	cntrivar	cntrivar
plotnum	0	150010000	60010000	70010000	80010000	90010000
100010000	•					
250010000	240010000	90010000	250010000	250010000	150010000	60010000
70010000						
80010000	90010000	100010000	. 0	260010000	150010000	60010000
70010000						k.
80010000	90010000	100010000	220010000	230010000	240010000	250010000
80010000						
80020000	70010000	70020000	240010000	230010000	230020000	250010000
220010000						
220020000	20010000	20020000	3301008	0	0	0
81						
14	56	60	65	70	75	80
plotrec		000000E+00	1.013254	4E+05 1.0	013254E+05	1.013254E+05
1.013254	E+05 1.	013254E+05	1.013254	4E+05 1.0	013254E+05	1.013254E+05
.000000	E+00 .	000000E+00	.00000	DE+00 .	000000E+00	.000000E+00
.000000	E+00 .	000000E+00	.00000	DE+00 .	000000E+00	4.490972E+02
.000000	E+00 6.	368977E+00	1.96795	7E+01 1.	967957E+01	1.967957E+01
1,967957	E+01 1.	967957E+01	2.415648	3E+01 2.4	415648E+01	1 376029E+01
3.502303	E+01	000000E+00	00000	DE+00	000000E+00	000000000000
.000000	E+00	000000E+00	00000	DE+00	000000000000000000000000000000000000000	000000000000000000000000000000000000000
.000000	E+00	000000000000000000000000000000000000000	00000	0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	231511F+02	4 634700E+00
3 653000	E-01	000000000000000000000000000000000000000	00000	DE+00 5.		1.034/005+00
00000	E+00	000000000000000000000000000000000000000	000000	DE+00 .	000000000000000000000000000000000000000	.000000E+00
nlotrec	1	000000000000000000000000000000000000000	1 075150		000000E+00	1.0207C2E+00
1 015074		000000E-02	1.07515	9E+05 I.	0809902+05	1.038/63E+05
1.013074	E+03 9.	924949E+04	9.000/30	DE+04 9.	3/4152E+04	9.5164408+04
.000000	E+00 .	000000E+00	.000000	JE+00 .	000000E+00	.000000E+00
.000000	E+00 .	000000E+00	.000000	JE+00 .0	000000E+00	4.490874E+02
.000000	E+UU 6.	308994E+00	1.967962	25+01 1.	967960E+01	1.967958E+01
1.967956	E+U1 1.	967954E+01	2.415642	2E+01 2.4	415642E+01	1.376026E+01
3.501335	E+U1 3.	410194E-02	2.37298	DE-03 2.0	627495E-02	3.793676E-03
6.202511	≝-02 5.	451060E-02	-2.357969	9E-02 2.4	478254E+00	4.129710E-02
-1.562832	E-02 1.	348391E-02	1.050594	4E-03 3.3	231511E+02	4.651265E+00
3.653010	Е-01 3.	553265E-03	.00000	DE+00 -1.	459565E-10	-1.171647E-03
4.726666	E-03 3.	555020E-03	5.008634	4E-02 .	000000E+00	7.100000E-01
plotrec	2.	000000E-02	1.046268	3E+05 1.	032420E+05	1.011549E+05

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00 Page II-7 of II-8

9.907315E+04	9.699584E+04	9.492212E+04	9.210218E+04	9.337293E+04
.000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
.000000E+00	.000000E+00	.000000E+00	.000000E+00	4.490737E+02
.000000E+00	6.368986E+00	1.967959E+01	1.967957E+01	1.967956E+01
1.967954E+01	1.967952E+01	2.415640E+01	2.415640E+01	1.376025E+01
3.500011E+01	1.121941E-03	-2.055325E-05	5.532075E-04	-2.973859E-05
6.016500E-03	5.328805E-03	-1.381403E-03	2.883632E+00	3.447919E-03
-4.805961E-04	2.801862E-04	-1.327511E-05	3.231511E+02	4.665872E+00
3.653039E-01	6.650467E-03	.000000E+00	-1.975029E-11	-2.797694E-03
9.453333E-03	6.655639E-03	1.003265E-01	.000000E+00	7.100000E-01
plotrec	3.000000E-02	1.030670E+05	1.016796E+05	9.958141E+04
9.748258E+04	9.538323E+04	9.328374E+04	9.043707E+04	9.172116E+04
.000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
.000000E+00	.000000E+00	.000000E+00	.000000E+00	4.490573E+02
.000000E+00	6.368982E+00	1.967958E+01	1.967956E+01	1.967954E+01
1.967953E+01	1.967951E+01	2.415638E+01	2.415638E+01	1.376024E+01
3.498396E+01	3.957219E-03	2.322828E-04	2.791887E-03	3.424082E-04
1.097558E-02	9.389635E-03	-3.279840E-03	3.393939E+00	6.364134E-03
-1.647311E-03	1.425709E-03	9.158744E-05	3.231511E+02	4.679066E+00
3.653085E-01	9.416994E-03	.000000E+00	2.848080E-10	-4.753726E-03
1.418000E-02	9.426274E-03	1.507059E-01	.000000E+00	7.100000E-01
plotrec	4.00000E-02	1.015588E+05	1.001717E+05	9.807489E+04
9.597816E+04	9.388151E+04	9.178519E+04	8.894152E+04	9.022409E+04
.000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
.000000E+00	.000000E+00	.000000E+00	.000000E+00	4.490383E+02
.000000E+00	6.368978E+00	1.967957E+01	1.967955E+01	1.967953E+01
1.967951E+01	1.967949E+01	2.415637E+01	2.415637E+01	1.376023E+01
3.496519E+01	3.526008E-03	2.458410E-04	2.495895E-03	3.359990E-04
1.018977E-02	8.453297E-03	-2.934241E-03	3.850954E+00	5.489125E-03
-1.321726E-03	1.270948E-03	9.147199E-05	3.231511E+02	4.690910E+00
3.653145E-01	1.187258E-02	.000000E+00	7.489204E-10	-7.020047E-03
1.890667E-02	1.188662E-02	2.012105E-01	.000000E+00	7.100000E-01
plotrec	5.000000E-02	1.001984E+05	9.881131E+04	9.671442E+04
9.461755E+04	9.252073E+04	9.042416E+04	8.758023E+04	8.886284E+04
.000000E+00	.000000E+00	.000000E+00	.000000E+00	.000000E+00
.000000E+00	.000000E+00	.000000E+00	.000000E+00	4.490168E+02
.000000E+00	6.368974E+00	1.967955E+01	1.967954E+01	1.967952E+01
1.967950E+01	1.967948E+01	2.415635E+01	2.415635E+01	1.376022E+01
3.494398E+01	3.133709E-03	2.562385E-04	2.224622E-03	3.285738E-04
9.479837E-03	7.613232E-03	-2.623204E-03	4.272640E+00	4.721612E-03
-1.038623E-03	1.129399E-03	9.080387E-05	3.231511E+02	4.701482E+00
3.653218E-01	1.403956E-02	.000000E+00	1.356153E-09	-9.574360E-03
2.363333E-02	1.405897E-02	2.518272E-01	.000000E+00	7.100000E-01

3. STRIP Sample Output File

data from file - 103x1hbv.s02

time (sec) tmass (sec) 0

0.00000E+00 4.490972E+02

Calculation

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00 Page II-8 of II-8

1.000000E-02	4.490874E+02
2.000000E-02	4.490737E+02
3.000000E-02	4.490573E+02

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package**

Document Identifier: CAL-EBS-NU-000008 REV 00 Page III-1 of III-5

ATTACHMENT III

Input data file for 4.0 wt% HM fissile Pu case for a 35.6 GWd/MTHM burn and decay to one million years.

```
parm=skipcellwt
=sas2h
 plut. burning in Westinghouse PWR (2 cycles) cy 1 with WABAs,
                                         cy 2 without WABAs!
1
       run all cycles as on SAS2H case - change compositions in PATH B
.
        follow boron letdown curve with 6 steps per cycle
44groupndf5 latticecell
   this is a 35.6 MWd/MTM case
       sas deck modified from from ORNL - B. Murphy
   make sure we use the 44 group library!!!!
   mixtures for fuel-pin unit cell
' fuel rods are mixed-oxide with uranium and plutonium.
         use 4.0 w/o enriched Pu
.
    density derived from fuel mass/volume
uo2 1 den=9.8426 1 901 92234 0.002 92235 0.2 92236 0.001
   92238 99.797 end
puo2 1 den=0.4372 1 901 94239 93.6 94240 5.9 94241 0.4
   94242 0.1 end
 ' NO IFBA's used for MOX core
    b-10 1 0 6.4584-5 901 end
 ' zr 1 0 3.2292-5 901 end
 .
       the boron-10 coating is assumed mixed with the fuel
          some extra nuclides needed from library
zr-94 1 0 1-20 901 end
zr-94101-20901endtc-99101-20901endru-106101-20901endrh-103101-20901endrh-105101-20901endxe-131101-20901endcs-133101-20901endcs-134101-20901endce-144101-20901endnd-143101-20901end
nd-145 1 0 1-20
                            901 end

      nd-145
      1
      0
      1-20
      901
      end

      nd-147
      1
      0
      1-20
      901
      end

      pm-147
      1
      0
      1-20
      901
      end

      sm-149
      1
      0
      1-20
      901
      end

      sm-151
      1
      0
      1-20
      901
      end

      sm-152
      1
      0
      1-20
      901
      end

      eu-153
      1
      0
      1-20
      901
      end

      eu-154
      1
      0
      1-20
      901
      end
```

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00

Page III-2 of III-5

911-155	1	Λ	1-20	901	end		
u_222	1	ň	1_20	901	and		
u-232	1	0	1 20	001	ond		
u-233	1	0	1-20	901			
u-237	1	0	1-20	901			
np-238	1	0	1-20	901	end		
pu-236	1	0	1-20	901	end		
pu-237	1	0	1-20	901	end		
pu-243	1	0	1-20	901	end		
pu-244	1	0	1-20	901	end		
am-242	1	0	1-20	901	end		
cm-245	1	0	1-20	901	end		
cm-246	1	0	1-20	901	end		
cm-247	1	0	1-20	901	end		
cm-248	1	0	1-20	901	end		
bk-249	1	0	1-20	901	end		
cf-249	1	0	1-20	901	end		
cf-250	1	0	1-20	901	end		
cf-251	1	0	1-20	901	end		
of 252	1	õ	1-20	901	end		
of_252	1	ň	1-20	901	end		
CL 255	-	Ŭ	1 20	201	chu		
1 noo	~ 1,		/irc_2 _ r	not a	great effect although Zirg-4 has Cr & Fe		
arbmai] ~~	γ 1		1 40	$\begin{array}{c} \text{Great effect although 2110-4 \text{ has cf } \& \text{ re} \\ 0.00 0.7 0.1 26000 0 $		
arb(1121	20	о. т	607 and	т 40	000 97.91 28000 0.5 50118 0.88 50120		
0.75	2 همه	т Т	ia riman	1	creation on an arbitrary material		
· a	001	ve	is zircal	LIOY	specified as an arbitrary material		
, р	eca	aus	se it may	not	be in the library		
n20	3	0.	. 707	583	end		
CO-59	3	0	1-20	583	end		
arbm-b	orr	noc	1 0.707 2	0 0	0 5010 39.99 5011 60.01 3 1301.0-6 583 end		
1	al	700	<i>r</i> e is 1301	L ppn	initial boron concentration in moderator		
1	(4	108	s isotopic	cally	v enriched in B-10)		
1	94	4 I	Design cas	ses ı	used 750 ppm av. Boron		
'							
1	τ	niz	ctures for	r shi	.pping cask (just one assembly here!)		
•							
n	4	0	1.0-20 er	ıd			
n	5	0.	.00122 end	1			
t	τ	niz	ctures for	r lan	ger unit cell		
' check WABA numbers use ornl b4c value (redrived)							
' no	Wa	aba	as for cy	2 01	c cy 3		
arbm-a	102	x 3	3.72 2 0 1	L 0 1	3027 2 8016 3 9 0.95568 583 end		
b4c	9 0	ler	1=2.52 0.	.0443	12 583 end		
1							
' ar	bm-	-al	lox 3 72 2	2 0 1	0 13027 2 8016 3 9 0 97952 end		
' h4	~	u.	9 0 04	11 or	d		
end co	- mr		2 0.04		**		
1			l_nin_col	11 ~-			
,	1	Lue	er-bru-cer	rr de	omeer y		
	n i •	- ~1	-1 25004	a m			
	ρτί nc1	LUI LI	1=1.25984	2425			
perfet OD=0.78435 cm							

Waste Package Operations Calculation Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package** Document Identifier: CAL-EBS-NU-000008 REV 00 Page III-3 of III-5 clad OD=0.9144 cm clad ID=0.8001 cm squarepitch 1.25984 0.8202 1 3 0.95 2 0.8357 0 end (LOPAR) squarepitch 1.25984 0.78435 1 3 0.9144 2 0.8001 0 end assembly and cycle parameters npin/assm=264 fuelngth=365.76 ncycles=12 nlib/cyc=1 lightel=22 printlevel=4 inplevel=2 numzones=12 mxrepeats=0 end this assembly contains NO WABAs - cy 2, (Full MOX core Cy 1 only) 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 9 4.8896 2 4.9755 500 8.1972 2 8.2999 9 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 9 4.8896 2 4.9755 500 8.1972 2 8.2999 9 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 9 4.8896 2 4.9755 500 8.1972 2 8.2999 9 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 9 4.8896 2 4.9755 500 8.1972 2 8.2999 9 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 9 4.8896 2 4.9755 500 8.1972 2 8.2999 9 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 9 4.8896 2 4.9755 500 8.1972 2 8.2999 9 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 3 4.8896 2 4.9755 500 8.1972 2 8.2999 3 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 3 4.8896 2 4.9755 500 8.1972 2 8.2999 3 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 3 4.8896 2 4.9755 500 8.1972 2 8.2999 3 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 3 4.8896 2 4.9755 500 8.1972 2 8.2999 3 8.414 3 8.6763 500 12.0834 . 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 3 4.8896 2 4.9755 500 8.1972 2 8.2999 3 8.414 3 8.6763 500 12.0834 3 0.5715 2 0.6121 3 0.7108 500 4.5513 3 4.7912 3 4.8896 2 4.9755 500 8.1972 2 8.2999 3 8.414 3 8.6763 500 12.0834 discharge burnup is 27.01 GWd/MT - cv 1 discharge burnup is 35.58 GWd/MT - cy 2
Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page III-4 of III-5

```
power=23.165 burn=91.2 down=0 bfrac=0.861 end
power=23.165 burn=91.8 down=0 bfrac=0.623 end
power=23.165 burn=91.1 down=0 bfrac=0.442 end
power=23.165 burn=92.0 down=0 bfrac=0.329 end
power=23.165 burn=91.0 down=0 bfrac=0.179 end
power=23.165 burn=35.9 down=108 bfrac=0.034 end
power=7.35 burn=91.2 down=0 bfrac=0.861 end
power=7.35 burn=91.8 down=0 bfrac=0.623 end
power=7.35 burn=91.1 down=0 bfrac=0.442 end
power=7.35 burn=92.0 down=0 bfrac=0.329 end
power=7.35 burn=91.0 down=0 bfrac=0.179 end
power=7.35 burn=35.9 down=108 bfrac=0.034 end
 light elements
c 0.06 n 0.034 o 62.14 al 0.0457 s 0.00397
ti 0.0498 v 0.00227 cr 2.34 mn 0.109 fe 4.6 mo 0.1816
co 0.033 ni 4.402 cu 0.011 zr 111.178 cd 0.00003
sn 1.8168 hf 0.00886 w 0.00227 p 0.142 nb 0.328 si 0.0659
1 _____
      shipping cask žone description
27n-18couple tempcask=325 numzones=2 detect=0 dryfuel=yes
4 12.0834 5 12.5
zone=1 fuelbnds=1
1 _____
szfcask=0.25 end
· _____
end
=origens
0$$ a8 26 a11 71 e
1$$ 1 1t
w 17x17 MOX
3$$ 21 0 1 e
2t
35$$ 0 t
56$$ 0 7 a13 -1 a15 3 0 4 e 5t
Part B W 17x17, 4.0wt%, 35.6 gwd/mtu decay
per W assembly
60** 0 1 90 365.25 730.5 1826.25 3652.5
' 65$$ a2 1 a4 1 a10 1 a23 1 0 1 a28 1 a31 1 a44 1 0 1 a49 1 a52 1 e
65$$ a4 1 2z 1 2z 1 a16 1 2z 1 a25 1 2z 1 2z 1 a37 1 2z 1
a46 1 2z 1 2z 1 a58 1 2z 1 e
6t
56$$ 0 10 a10 7 a14 5 a17 4 e 57** 10 e 5t
60** 15 20 30 50 100 150 200 250 300 400
' 65$$ a2 1 a4 1 a10 1 a23 1 0 1 a28 1 a31 1 a44 1 0 1 a49 1 a52 1 e
65$$ a4 1 2z 1 2z 1 a16 1 2z 1 a25 1 2z 1 2z 1 a37 1 2z 1
a46 1 2z 1 2z 1 a58 1 2z 1 e
6t
```

1

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page III-5 of III-5

```
56$$ 0 10 a10 10 a14 5 a17 4 e 57** 400 e 5t
60** 500 1+3 2+3 4+3 6+3 8+3 1+4 1.2+4 1.4+4 1.5+4
' 65$$ a2 1 a4 1 a10 1 a23 1 0 1 a28 1 a31 1 a44 1 0 1 a49 1 a52 1 e
65$$ a4 1 2z 1 2z 1 a16 1 2z 1 a25 1 2z 1 2z 1 a37 1 2z 1
a46 1 2z 1 2z 1 a58 1 2z 1 e
6t
56$$ 0 10 a10 10 a14 5 a17 4 e 57** 1.5+4 e 5t
60** 1.6+4 1.7+4 1.8+4 1.9+4 2.0+4 2.1+4 2.2+4 2.3+4 2.4+4 2.5+4
' 65$$ a2 1 a4 1 a10 1 a23 1 0 1 a28 1 a31 1 a44 1 0 1 a49 1 a52 1 e
65$$ a4 1 2z 1 2z 1 a16 1 2z 1 a25 1 2z 1 2z 1 a37 1 2z 1
a46 1 2z 1 2z 1 a58 1 2z 1 e
6t
1
56$$ 0 10 a10 10 a14 5 a17 4 e 57** 2.5+4 e 5t
60** 3.5+4 4.5+4 5+4 5.5+4 6+4 6.5+4 7+4 1+5 2+5 2.5+5
' 65$$ a2 1 a4 1 a10 1 a23 1 0 1 a28 1 a31 1 a44 1 0 1 a49 1 a52 1 e
65$$ a4 1 2z 1 2z 1 a16 1 2z 1 a25 1 2z 1 2z 1 a37 1 2z 1
a46 1 2z 1 2z 1 a58 1 2z 1 e
6t
1
56$$ 0 3 a10 10 a14 5 a17 4 e 57** 2.5+5 e 5t
60** 3+5 5+5 999999
' 65$$ a2 1 a4 1 a10 1 a23 1 0 1 a28 1 a31 1 a44 1 0 1 a49 1 a52 1 e
65$$ a4 1 2z 1 2z 1 a16 1 2z 1 a25 1 2z 1 2z 1 a37 1 2z 1
a46 1 2z 1 2z 1 a58 1 2z 1 e
6t
56$$ f0 t
end
```

Waste Package Operations	Calculation
Title: Criticality Consequence Calculation Involving Intact PWF	MOX SNF in a Degraded 21

PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page IV-1 of IV-25

ATTACHMENT IV

Base input data file for PWR MOX SNF criticality consequence calculation for a rapid and slow rate of reactivity insertion. This file was modified for the Westinghouse Vantage 5 MOX assemblies from the LEU criticality consequence calculation (Ref. 21) RELAP5/MOD3.2 data file.

```
= relap5/mod2 waste package rlp5.MOX02cR1.inp
*______
* { this is /kappa/jrw/lv/relap/r5wp2d.in
* the input is a transition from tmi-1 power uprate lbloca
* to waste package (near field) criticality excursion consequences
* The input is a Waste Package for Westinghouse 17 by 17 Vantage 5
* 4.0 wt% HM fissile Pu in fresh pins, 35.6 GWD/MTHM burnup, 25000 yr
* decay period for isotopics
* The geometry reflects the 2-D representation
*----- base representation description -----
     fti document 32-1244460-00
     by: ks pacheco
* the base deck for the tmi-1 representation was taken from 2772base1.in
* contained in 32-1234886-00. /kappa/ksp/tmipug/base/tmibase.in
 21 fuel asemblies, 264-pins/fa, 24-guide tubes/fa, 1 instrument tube/fa
*
        one-fifth length representation - Initial Power into Assembly is 5
*
Watts
        for Full Length assemblies
*
  --**---**---**---**---**---**---**
   deck obtained from tuck w. (lynchburg) 07/31/97
    07/31/97 modifiation - jam (lv)
*
*
   Vantage 5 update JR Worsham, JA McClure 07/20/99
*
     delete most of the $$$ cards from deck
*
     convert to mod3 format
*
     junction control flag - change from 3xxxx to 0xxxx
                           no horizontal stratification
*
     heat structure cards ... 8xx and ... 9xx - CHF Changes
*
                            MOD2 - 5 wds, MOD3 - 9 wds
*
     add Time-Dependent Vol and Time-Dependent Junction to input
*
     InFlow Conditions
*
     Add Minor Edits
    Case 113a Reduce reactivity ramp rate to 14.18$ in 60.0 sec.
   Case 123a Reduce reactivity ramp rate to 14.18$ in 3600.0 sec.
   Case 123b rerun case c123a with revised MCNP void reactivity table
```

Calculation

Page IV-2 of IV-25

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

```
using Tuck's definition of delta rho
*
   Case 220a case c123b with slow reactivity insertion (0.0004 $/hour)
*
   Case 220b case c220a with slow reactivity insertion (0.0004 $/sec)
   Case 220c case c220b with bulk void reactivity feedback in place of MCNP
*
curve
   Case 221a case c220c with Jun 250 area = 5.0 sqcm (0.775 sqin)
*
*
              Turn off Choking option for interior junctions
*
             Use Homogeneous Representation, No momentum flux in exit Jun
   Case 221b case c220c with Jun 250 area = 1.5 sqcm (0.2325 sqin)
   Case 221c case c220c with Jun 250 area = 0.5 \text{ sgcm} (0.0775 \text{ sgin})
    Case 221d case c220c with Jun 250 area = 0.375 sqcm (0.0582 sqin)
   Case 221e case c220c with Jun 250 area = 0.25 sqcm (0.03875 sqin)
   Case 221f case c220c with Jun 250 area = 0.1 sqcm (0.0155 sqin)
    Case 221g case c220c with Jun 250 area = 100.0 sqcm (15.5 sqin) as
             check on c220c case
*
    Case rlp5.MOX01a Initial case for MOX reactivity consequences
*
              Exit area =100.0 sqcm (15.5 sqin)
*
    Case rlp5.MOX01b Adjust Junction connections and bring loops to closure
*
             Exit area =100.0 sqcm (15.5 sqin)
*
    Case rlp5.MOX01c Adjust Junction connections and bring loops to closure
              Exit area =100.0 sqcm (15.5 sqin), zero ramp $
*
    Case rlp5.MOX01d Adjust Reactivity Contrl
*
    Case rlp5.MOX02a Case for MOX reactivity consequences
              Exit area =100.0 sqcm (15.5 sqin)
    Case rlp5.MOX02b Case for MOX reactivity consequences
              Exit area =100.0 sqcm (15.5 sqin), reduce ramp rate
*
   Case rlp5.MOX02c Case for MOX reactivity consequences
              Exit area =10.0 sqcm (15.5 sqin), use converged TS set
    Case rlp5.MOX02c Case for MOX reactivity consequences
             Add Pu-239 Delayed Neutron Data
  --**---**---**---**---**---**---**---**
100 new
          transnt
101 run
* 101 inp-chk
102 british british
105
     150. 160.
* noncondensible gas
110
    "nitrogen"
*---**---**---**---**---**---**---**---**---**---**---**---**
* time step control
         end min max time minor major restart
time delt time step edit edit point
(sec) (sec) step optn freq freq freq
*
*
    set end MIN TS MAX TS Cntrl TS/Minor Ed TS/Major Ed TS/Restrt
        0.1 1.0-8 1.0-4 07 100 1000
  201
                                                              1000
         2.0 1.0-8 1.0-3 07
 202
                                     40
                                                  80
                                                                80
```

Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21

 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00

 Page IV-3 of IV-25

```
20310.01.0-81.0-50750010000204100.01.0-81.0-40750010000100000204300.01.0-85.0-407200020000100000
                                                                                 10000

      * trips name
      code
      op name
      code
      add
      1/n

      0000501 time
      0
      ge null
      0
      20.00 l *

      0000501 time
      0
      ge null
      0
      200.00 l *

      * 0000502 time
      0
      ge null
      0
      1000.0 * jun 370

*
   problem end trip
600 501
*
*---**---**---**---**---**---**---**---**---**---**---**---**---**---**---**
          general tables
*---**---**---**---**---**---**---**
* reactivity insertion
20200100 reac-t
*
    reactivity ramp rate 0.1576 $/s
20200101 0.0 0.0 2.0 0.0 92.0 14.18 1.0+10 14.18
*
        zero ramp - check steady level
* 20200101 0.0 0.0 90.0 0.0 1.0+10 0.0
* lower ramp insertion rate to 0.0004 $/hr
*
   20200101 0.0 0.0 20.0 0.0 3600.0 1.44 7200.0 2.88 10800.0 4.32
*
   average fuel temperature vs. reactivity (MOX)
*
     Spreadsheet MOX_96_sas2h.xls Sheet Path-B geom
20200200 reac-t
*
*
             fuel temp. K reactivity, dollars density lb/ft**3
*

      20200201
      273.15

      20200202
      300.01

      20200203
      323.15

      20200204
      373.15

      20200205
      433.15

      20200206
      543.15

                                          +0.277946
                                            +0.277946
                                             0.0
                                       -0.562172
                                           -1.175436
20200206 543.15
                                           -2.250746
20200207 813.15
                                           -4.720711
*
*
  moderator density reactivity feedback
20200500 reac-t
               density kg/m**3 reactivity, dollars fuel temp. f
20200501 699.999853 -39.688829 * 1004
```

Calculation

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package

Docum	ent Ider	ntifier: C	AL-EBS-NU-	- <u>000008 F</u>	<u>REV 00</u>			Page IV-4	of IV-25
202005	:02	724 9	99847	-34	617905		*	1004	
202002	:02	749.9	00015	-24	932688		*	1004	
20200	503 504	774 9	99838	-25	597751		*	1004	
202005	505	799 9	99832	-21	577987		*	1004	
202005	506	824 9	99827	-17	.845935		*	1004	
202005	507	849 9	99821	-14	374743		*	1004	
202000	508	874 9	99816	-11	142801		*	1004	
202005	509	899 9	99810	-08	.128449		*	518	
202005	510	919 9	99807	-05	912608		*	518	
202005	511	939 9	99803	-03	.814156		*	518	
202005	512	958.0	99168	-02	.047433		*	518	
202005	513	972.9	99796	-00	.997818		*	212	
202005	514	988.1	83837	00	.00		*	122	
202005	515	999.9	99790	+00	.727593		*	122	
202005	516	1041.1	99900	+00	.727593		*	80.33	
*									
*									
*	MCNP r	nixture	level react	tivity t	able (b	eta = 0.00	258	2)	
*	Table	for LEU	J Fuel	-					
*	Row 5	of fuel	led assembl:	ies					
*									
*	Miz	ture le	evel (ft)	Reacti	vity (\$)			
*					_				
20201(*	000 re	eac-t							
202010	001	0.0		-30.9	02				
202010	002	0.04399	•	-30.9	02				
202010	003	0.18933	3	-16.6	60				
202010	004	0.23657	7	-14.9	59				
202010	005	0.28415	5	-12.9	11				
202010	006	0.71		0.0	I				
*									
*									
*	minor	edits							
*									
**	***	**	****	****-	**	****	**-	***	
*									
*	press	ıre							
*									
301	"p"		150010000		* Vo	l Pressure			
302	"p"		060010000		* Vo	l Pressure			
303	"P"		070010000		* Vo	l Pressure			
304	"p"		080010000		* Vo	l Pressure			
305	"p"		090010000		* Vo	l Pressure			
306	"p"		100010000		* Vo	l Pressure			
307	"p"		250010000		* Vo	l Pressure			
*									
*	Fluid	Invento	ory						
*			-						
310	"tmas	5 "	0		* Flu	id Mass in	ven	tory	
*								-	
*	entha	lpy							
*									
315	"hvmi:	κ"	090010000		* Vol	Enthalpy			

Calculation

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00 Page IV-5 of IV-25

317	"hvmix"	250010000		*	Vol	Enthal	ру	
*								
*								
*	volume vapor	generation/u	nit vo	1				
*				-				
321	"vapgen"	150010000		*	VOL	vapor	gen	rate
322	"vapgen"	060010000		*	VOL	vapor	gen	rate
323	"vapgen"	070010000		- -	VOL	vapor	gen	rate
324	"vapgen"	080010000			VOL	vapor	gen	rate
325	"vapgen"	100010000		÷	VOI	vapor	gen	rate
326 ∸	"vapgen"	100010000			VOI	vapor	gen	Iace
*								
*	Volume Mass							
*	VOTUNE Mass							
331	"tmassv"	150010000		*	Vol	Mass		
332	"tmassv"	060010000		*	Vol	Mass		
333	"tmassv"	070010000		*	Vol	Mass		
334	"tmassv"	080010000		*	Vol	Mass		
335	"tmassv"	090010000		*	Vol	Mass		
336	"tmassv"	100010000		*	Vol	Mass		
337	"tmassv"	220010000		*	Vol	Mass		
338	"tmassv"	230010000		*	Vol	Mass		
339	"tmassv"	240010000		*	Vol	Mass		
340	"tmassv"	250010000		*	Vol	Mass		
*								
*	mass flow							
*								
341	"mflowj"	080010000		*	Jun	Flow		
342	"mflowj"	080020000		*	Jun	Flow		
343	"mflowj"	070010000		*	Jun	Flow		
344	"mflowj"	030020000		*	Jun	Flow		
345	"mflowj"	240010000		*	Jun	Flow		
346	"mflowj"	230010000		*	Jun	Flow		
347	"mflowj"	230020000		*	Jun	Flow		
348	"mtlowj"	250010000		*	Jun	Flow		
349	"mflowj"	220010000		*	Jun	Flow		
350	"mriow]"	220020000		*	Jun	FIOW		
* •								
÷	awaraga fual	tomporaturo						
*	average fuer	cemperature						
251	"htvat"	3301008		*	Δυα	Metal	Tom	h
*	nevac	3301008			луу	Mecal	Tem	ŗ
*	control variab	les						
*		100						
*	kinetics param	eters						
*	For Former							
389	"rkfipow"	0	* "fis	ssio	n" "	power"		
390	"rkqapow"	0	* "dec	cav	heat	woa" "	er"	
391	"rkreac"	0	* "tot	tal"	"re	activi	11	
393	"cntrlvar"	014	* "dor	pple	r re	ac		
394	"cntrlvar"	056	* "vo:	id r	eact	ivity		
395	"cntrlvar"	060	* "ran	mp r	eact	ivity		

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package** Page IV-6 of IV-25

Document Identifier: CAL-EBS-NU-000008 REV 00

```
* "total calc reac
396
      "cntrlvar"
                   065
397
      "cntrlvar"
                   070
                               * "assembly energy
      "cntrlvar"
                              * "Sum (Heat slab vapor gen rate)
398
                   075
* 392 "cntrlvar" 081
                               * "MCNP void Reactivity
*
*
     pressure
*
           "p"
                        150010000
                                             * Vol Pressure
20800301
           "p"
                        060010000
                                             * Vol Pressure
20800302
           "p"
                        070010000
                                             * Vol Pressure
20800303
           "p"
                                           * Vol Pressure
                        080010000
20800304
           "p"
                                            * Vol Pressure
20800305
                        090010000
           "p"
                                            * Vol Pressure
20800306
                       100010000
                                             * Vol Pressure
20800307
           "p"
                        250010000
*
      Fluid Inventory
*
                                            * Fluid Mass inventory
20800310
           "tmass"
                        0
*
*
      enthalpy
*
20800315
           "hvmix"
                        090010000
                                            * Vol Enthalpy
20800317
           "hvmix"
                                            * Vol Enthalpy
                        250010000
      volume vapor generation/unit vol
*
20800321
                        150010000
           "vapgen"
                                            * Vol vapor gen rate
20800322 . "vapgen"
                        060010000
                                            * Vol vapor gen rate
20800323
           "vapgen"
                        070010000
                                           * Vol vapor gen rate
20800324
           "vapgen"
                        080010000
                                            * Vol vapor gen rate
20800325
           "vapgen"
                                            * Vol vapor gen rate
                        090010000
         "vapgen"
20800326
                        100010000
                                            * Vol vapor gen rate
*
      Volume Mass
*
20800331
           "tmassv"
                                            * Vol Mass
                        150010000
20800332
           "tmassv"
                                            * Vol Mass
                        060010000
                    060010000
070010000
080010000
090010000
100010000
20800333
           "tmassv"
                                            * Vol Mass
20800334
           "tmassv"
                                            * Vol Mass
20800335 "tmassv"
                                            * Vol Mass
20800336 "tmassv"
                                            * Vol Mass
                                            * Vol Mass
20800337 "tmassv"
                        220010000
                                            * Vol Mass
20800338
           "tmassv"
                        230010000
20800339
           "tmassv"
                                            * Vol Mass
                        240010000
20800340
           "tmassv"
                        250010000
                                            * Vol Mass
*
      mass flow
*
20800341
           "mflowj"
                        080010000
                                            * Jun Flow
           "mflowj"
20800342
                                            * Jun Flow
                        080020000
20800343
           "mflowj"
                                            * Jun Flow
                        070010000
           "mflowj"
                                            * Jun Flow
20800344
                        030020000
```

Calculation

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00 Page IV-7 of IV-25

20800349	5 "mflowj"	240010	0000	* (Jun Flow		
20800346	5 "mflowj"	230010	0000	* ť	Jun Flow		
20800341	7 "mflowj"	230020	0000	* č	Jun Flow		
20800348	B "mflowj"	250010	0000	* :	Jun Flow		
20800349	9 "mflowj"	220010	0000	* (Jun Flow		
20800350) "mflowj"	220020	0000	* .	Jun Flow		
*							
*							
* av *	verage fuel (cemperature	2				
^ 2000025-	1 #btwat#	220100	10	+ 7	Ner Moto		
*	I "IILVAL"	330100	18	^ I	avg Meta	I Iemp	
* cont	rol variable	20					
*	CIOI VALIADIO	-9					
* kine	etics paramet	ers					
*	paramet						
20800389	9 "rkfipow"	" O	*	"fission	" "power		
20800390	0 "rkgapow"	" 0	*	"decay he	eat" "po	wer"	
20800393	l "rkreac"	0	*	"total" '	"reactiv	i"	
20800393	3 "cntrlva	r" 014	*	"doppler	reac		
20800394	4 "cntrlva	r" 056	*	"void rea	activity		
2080039!	5 "cntrlva	r" 060	*	"ramp rea	activity		
20800396	5 "cntrlvai	r" 065	*	"total ca	alc reac		
2080039	/ "cntrlva:	r" 070	*	"assembly	y energy		
20800398	S "Chtrivan	r" 075	*	"Sum (Hea	at slab	vapor gen rate	3)
* 208003	S92 "CHUFI	Var" 081		* "MCNP v	vold Rea	ctivity	
***	****	*****	****	-****.		***	
*							
* wast	te package						
*	1 3						
* repres	sentationing	begins wit	ch centra	l planar	region		
*				-	2		
***	****	*****	****	-****	**	***	
*							
* bottor	n of cylinder	r					
*							
1400000	"bot-watr	" "branch'	17				
*	no. or jun	jun cntrl					
+	2 aflew(name)	0	7		•		
1400101	allow(norm)	Teu	VOL	angle(az)	inclin	elev change	
1400101	0.00	.2293299	.20/5/16	0.0	-90.0	2293299	
*	wall rough	.20142230	.2045446	0 0.0	-90.0	25142236	
1400102	4 1667-5	1 0 + 10	00				
*	vol cntrl	press	temp				
1400200	003	14.696	122 00				
*	from vol	to vol	ajun	k(f)	k(r)	jun cntrl	
1401101	140000000	010010000	.203837	5 72.0	72.0	01000	
1401101	14000000	010010000	.2312	68.7	68.7	01000	
*	liq vel v	vap vel	interfac	e vel			
1401201	0.0	0.0	0.0				
*	from vol	to jun	ajun	k(f)	k(r)	jun cntrl	
1402101	140000000	150000000	.541982	9 0.0	0.0	01003	

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00 Page IV-8 of IV-25

* liq vel vap vel interface vel 1402201 0.0 0.0 0.0 * bottom side of cylinder 1500000 "bos-watr" "branch" 1500001 1 0 1500101 0.00 .2293299 .2276341 0.0 -90.0 -.2293299 .22483924 .22424063 0.0 -90.0 -.22483924 1500101 0.00 cntrl (therm-off, mix-off, pack-on, * vert strat-on, interphase fric-pipe, * wall-xdir, non-eq) 1500102 4.1667-5 1.0+10 0000000 1500200 003 14.696 122.00 1501101 150000000 060010000 .4076750 72.0 72.0 01000 1501101 150000000 060010000 .4624 68.7 68.7 01000 1501201 0.0 0.0 0.0 * side of cylinder fuel level 1 "s1-watr" "branch" 1600000 1600001 1 0 .71 .7989270 0.0 -90.0 -.71 1600101 0.00 0.00 0.00 1600101 .70266667 .7989270 0.0 -90.0 -.70266667 1600102 4.1667-5 1.0+10 00 1600200 003 14.696 122.00 1601101 16000000 110010000 .4076750 72.0 72.0 01000 1601101 160000000 110010000 .4624 68.7 68.7 01000 1601201 0.0 0.0 0.0 * side of cylinder fuel level 2 "s2-watr" 1700000 "branch" 1700001 1 0 1700101 0.00 0.0 -90.0 .71 .5438773 -.71 0.00 0.0 -90.0 -.70266667 1700101 .70266667 .5438773 00 1700102 4.1667-5 1.0602200 . 1700200 003 14.696 122.00 1701101 170000000 180000000 1.1080708 0.0 0.0 01000 1701201 0.0 0.0 0.0 * side of cylinder fuel level 3 1800000 "s3-watr" "branch" 1800001 1 0 1800101 0.00 .71 .8980821 0.0 90.0 .71 .70266667 1800101 0.00 .8980821 0.0 90.0 .70266667 1800102 4.1667-5 2.1134025 00 1800200 003 14.696 122.00 1801101 180010000 190000000 1.3339422 0.0 0.0 01000 1801201 0.0 0.0 0.0 * side of cylinder fuel level 4

<u>Waste Pacl</u>	kage Opera	tions				<u>Calculation</u>
Title: Critic	cality Conse	quence Calculat	ion Involving	Intact P	WR MO	X SNF in a Degraded 21
PWR	Assembly	Waste Package	Ũ			e
Document I	dentifier: C	AL-FRS-NU-00	0008 REV 00			Page IV-9 of IV-25
Document I		IL LDB NO 00	0000102100			1 4ge 1 4 9 01 1 4 25
190000	llo4_watall	"branch"				
1900000	1	o				
1900001	0	71	0720107	0 0	90 0	71
1900101	0.00	70266667	8738187	0.0	90.0	70266667
1900102	4.1667-5	2.0432176	00	0.0	20.0	. / 020000 /
1900200	003	14.696	122.00			
1901101	190010000	210000000	1.0380308	0.0	0.0	01000
1901201	0.0	0.0	0.0			
*						
* side of *	cylinder	- fuel level	5			
2100000	"s5-watr"	"branch"				
2100001	1	0				
2100101	0.00	.71	.7822260	0.0	90.0	.71
2100101	0.00	.70266667	.7822260	0.0	90.0	.70266667
2100102	4.1667-5	1.6252320	0000000			
2100200	003	14.696	122.00			
* 210110	1 210010	000 24000000	1.0380	308 0	.0 0.	0 01000
210110	1 210010	000 24000000	1.0380	308 2	0.0 2	0.0 01000
2101201 *	0.0	0.0	0.0			
* 21 fuel *	assemblie	s				
* half sv	mmetrv giv	es 13 planar	fuel areas			
* 1	1 3-	1				
* represe	ntationing	begins with	central fue	l leng	th,	
*						
* center	fuel colum	n, at the cy	linder bott	om		
*						
* hydraul: *	ic dia. ba	sed on flow a	round fuel-	clad,	guide tu	bes, inst. tube
* **	** **	ىلەرلە جەربە بارىلە	тт тт .			
*	**===**===	******-	****	-**	****-	*
*່ຕວໄນຫກ	1					
*	1					
0100000	"fuel-010	" "branch"				
0100001	2	0				
0100101	0.00	.71	.3516846	0.0	-90.0	71
0100101	0.00	.70266667	.37035853	0.0	-90.0	
0100102	3.133-6	.04168514	00			
0100102	3.133-6	.03929956	00			
0100200	003	14.696	122.00			
0101101	01000000	020010000	.2038375	72.0	72.0	01000
0101101	01000000	020010000	.2312	68.7	68.7	01000
0101201	0.0	0.0	0.0			
0102101	01000000	06000000	.4076750	72.0	72.0	01003
0102101	01000000	06000000	.4624	68.7	68.7	01003
0102201	0.0	0.0	0.0			
*						
0200000	"fuel-020	" "branch"				
0200001	2	0				
0200101	0.00	.71	.3516846	0.0	-90.0	71
0200101	0.00	.70266667	.37035853	0.0	-90.0	70266667
0700105	3.133-6	.04168514	00			

XX / N I	0	•				
Waste Pack	ality Consec	<u>ions</u> wence Calculati	n Involving	Intact PV	VR MO	<u>Calculation</u> X SNF in a Degraded 21
PWR	Assembly V	Vaste Package	in moorving.	intact I v		A bitt in a Degraded 21
Document Io	dentifier: CA	L-EBS-NU-000	008 REV 00			Page IV-10 of IV-25
						- ,
0200102	3.133-6	.03929956	00			
0200200	003	14.696	122.00			
0201101	020000000	030000000	.2038375	72.0	72.0	01000
0201101	020000000	030000000	.2312	68.7	68.7	01000
0201201	0.0	0.0	0.0	R O 0	TO 0	21.222
0202101	020000000	070000000	.4076750	72.0	72.0	01003
0202101	020000000	070000000	.4624	68.7	68.7	01003
*	0.0	0.0	0.0			
0300000	"fuel-030"	" "branch"				
0300001	2	0				
0300101	0.00	.71	.3516846	0.0	90.0	.71
0300101	0.00	.70266667	.37035853	0.0	90.0	.70266667
0300102	3.133-6	.04168514	00			
0300102	3.133-6	.03929956	00			
0300200	003	14.696	122.00			
0301101	030010000	04000000	.2038375	72.0	72.0	01000
0301101	030010000	04000000	.2312	68.7	68.7	01000
0301201	0.0	0.0	0.0			
0302101	03000000	080000000	.4076750	72.0	72.0	01003
0302101	03000000	080000000	.4624	68.7	68.7	01003
0302201	0.0	0.0	0.0			
*	"fuel-040"	" "branch"				
0400001	2	0				•
0400101	0.00	. 71	3516846	0 0	90 0	71
0400101	0.00	70266667	.37035853	0.0	90.0	70266667
0400102	3.133-6	.04168514	00	0.0	2010	1,020000
0400102	3.133-6	.03929956	00			
0400200	003	14.696	122.00			
0401101	040010000	050000000	.2038375	72.0	72.0	01000
0401101	040010000	050000000	.2312	68.7	68.7	01000
0401201	0.0	0.0	0.0			
0402101	04000000	090000000	.4076750	72.0	72.0	01003
0402101	04000000	090000000	.4624	68.7	68.7	01003
0402201	0.0	0.0	0.0			
*						
0500000	"fuel-050	" "branch"				
0500001	2	0				
0500101	0.00	.71	.3516846	0.0	90.0	.71
0500101	0.00	.70266667	.37035853	0.0	90.0	.70266667
*		cntrl	(therm-off	, mix-c	off, pac	ck-on,
*			vert strat	-on, i	nterpha	ase fric-pipe,
*			wall-xdir,	non-eq	[)	
0500102	3.133-6	.04168514	0000000			
0500102	3.133-6	.03929956	00			
0500200	003	14.696	122.00			
0501101	050010000	220000000	.2038375	72.0	72.0	01000
0501101	050010000	220000000	.2312	68.7	68.7	01000
0501201	0.0	0.0	0.0	n o o	BO 0	01000
0502101	050000000	100000000	.40/6750	72.0	72.0	01003
0502201	0.0	0.0	.4024	00./	00./	01002

Waste Pac	kage Operat	tions				Ca	<u>lculation</u>
Title: Criti	cality Consec	quence Calculat	ion Involving	Intact F	WR MO	X SNF in a Degr	aded 21
PWF	R Assembly N	Vaste Package	-				
Document	Identifier: CA	AL-EBS-NU-00	0008 REV 00			Page IV-11	of IV-25
**	****	******-	* * * *	_ * *	****.	*	
*							
* column	2						
*							
0600000	"fuel-060	" "branch"					
0600001	2	0					
0600101	0.00	.71	.7033692	0.0	-90.0	71	
0600101	0.00	.70266667	.74071706	0.0	-90.0	70266667	
0600102	3.133-6	.04168514	00				
0600102	3.133-6	.03929956	00				
0600200	003	14.696	122.00				
0601101	060000000	070010000	.4076750	72.0	72.0	01000	
0601101	060000000	070010000	.4624	68.7	68./	01000	
0601201	0.0	16000000	0.0	72 0	72 0	01002	
0602101	060000000	160000000	.4076750	12.0 69 7	69 7	01003	
0602201	0 0	0.0	0.0	00.7	00.7	01005	
*	0.0	0.0	0.0				
0700000	"fuel-070	" "branch"					
0700001	2	0					
0700101	0.00	.71	.7033692	0.0	-90.0	71	
0700101	0.00	.70266667	.74071706	0.0	-90.0	70266667	
0700102	3.133-6	.04168514	00				
0700102	3.133-6	.03929956	00				
0700200	003	14.696	122.00				
0701101	07000000	080000000	.4076750	72.0	72.0	01000	
0701101	070000000	080000000	.4624	68.7	68.7	01000	
0701201	0.0	0.0	0.0				
0702101	070000000	110000000	.4076750	72.0	72.0	01003	
0702101	07000000	110000000	.4624	68.7	68.7	01003	
0702201	0.0	0.0	0.0				
*	#f inal 000	u ubaanahu					
0800000	"Iue1-080"	" "branch"					
0800001	² 0.00	71	7022602	0 0	00 0	71	
0800101	0.00	70266667	74071706	0.0	90.0	./1	
0800102	3 133-6	04168514	.140/1/00	0.0	90.0	.70200007	
0800102	3,133-6	.03929956	00				
0800200	003	14.696	122.00				
0801101	080010000	090000000	.4076750	72.0	72.0	01000	
0801101	080010000	090000000	.4624	68.7	68.7	01000	
0801201	0.0	0.0	0.0				
0802101	080000000	120000000	.4076750	72.0	72.0	01003	
0802101	080000000	120000000	.4624	68.7	68.7	01003	
0802201	0.0	0.0	0.0				
*							
090000	"fuel-090	" "branch"					
0900001	2	0	• [*]				
0900101	0.00	.71	.7033692	0.0	90.0	.71	
0900101	0.00	.70266667	.74071706	0.0	90.0	.70266667	
0900102	3.133-6	.04168514	00				
0900102	3.133-6	.03929956	00				
0900200	003	14.696	122.00				
0901101	090010000	100000000	.4076750	72.0	72.0	01000	

Calculation

Calculation

Document]	Identifier: CA	AL-EBS-NU-0	00008 REV 00			Page IV-12	of IV-25
0901101	090010000	100000000	. 4624	68.7	68.7	01000	
0901201	0.0	0.0	0.0				
0902101	090000000	130000000	.4076750	72.0	72.0	01003	
0902101	090000000	130000000	.4624	68.7	68.7	01003	
0902201	0.0	0.0	0.0				
*		•					
1000000	"fuel-100	" "branch"					
1000001	2	0					
1000101	0.00	.71	.7033692	0.0	90.0	.71	
1000101	0.00	.70266667	.74071706	0.0	90.0	.70266667	
1000102	3.133-6	.04168514	0000000				
1000102	3.133-6	.03929956	00				
1000200	003	14.696	122.00				
1001101	100010000	230000000	.4076750	72.0	72.0	01000	
1001101	100010000	230000000	.4624	68.7	68.7	01000	
1001201	0.0	0.0	0.0				
1002101	100000000	200000000	.4076750	72.0	72.0	01003	
1002101	100000000	200000000	.4624	68.7	68.7	01003	
1002201	0.0	0.0	0.0				
*							
*** -	****	****	****	- * *	****	*	
*	Э						
*	5						
1100000	"fuel-110	" "branch"					
1100001	2	0					
1100101	0.00	.71	.7033692	0.0	-90.0	71	
1100101	0.00	.70266667	.74071706	0.0	-90.0	70266667	
1100102	3.133-6	.04168514	00				
1100102	3.133-6	.03929956	00				
1100200	003	14.696	122.00				
1101101	110000000	120000000	.4076750	72.0	72.0	01000	
1101101	110000000	120000000	.4624	68.7	68.7	01000	
1101201	0.0	0.0	0.0				
1102101	110000000	170000000	.4076750	72.0	72.0	01003	
1102101	110000000	170000000	.4624	68.7	68.7	01003	
1102201	0.0	0.0	0.0				
*							
1200000	"fuel-120	" "branch"					
1200001	2	0					
1200101	0.00	.71	.7033692	0.0	90.0	.71	
1200101	0.00	.70266667	.74071706	0.0	90.0	.70266667	
1200102	3.133-6	.04168514	00				
1200102	3.133-6	.03929956	00				
1200200	003	14.696	122.00				
1201101	120010000	130000000	.4076750	72.0	72.0	01000	
1201101	120010000	130000000	.4624	68.7	68.7	01000	
1201201	120000000	0.0	0.0	70 0	TO 0	01000	
1202101	120000000	180000000	.4076750	12.0	12.0	01003	
1202101	120000000	T80000000	.4624	68.7	68.7	01003	
*	0.0	0.0	0.0				
1300000	"fuel-130	" "branch"					
1300001	2	0					

Waste Pac	kage Operat	tions				Cal	<u>culation</u>		
Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21									
PWR	Assembly V	Vaste Package				-			
Document I	dentifier: CA	AL-EBS-NU-00	0008 REV 00			Page IV-13	of IV-25		
1300101	0.00	.71	.7033692	0.0	90.0	.71			
1300101	0.00	.70266667	.74071706	0.0	90.0	.70266667			
1300102	3.133-6	.04168514	00						
1300102	3.133-6	.03929956	00						
1300200	003	14.696	122.00						
1301101	130010000	200000000	.4076750	72.0	72.0	01000			
1301101	130010000	200000000	.4624	68.7	68.7	01000			
1302201	13000000	19000000	4076750	72 0	72 0	01002			
1302101	130000000	190000000	4674	68 7	68 7	01003			
1302201	0.0	0.0	0.0	00.7	00.7	01005			
*									
* water - *	column 3								
***	****	******-	****	- * * *	***	*			
*									
2000000	"ts-watr"	"branch"							
2000001	2	0							
2000101	0.00	.71	.8633786	0.0	90.0	.71			
2000101	0.00	.70266667	.8633786	0.0	90.0	.70266667			
2000102	4.1667-5	1.0+10	122 00						
* 200110	1 2000100	14.090	754085	, , ,	0.0	01000			
200110	1 2000100	000 240000000	.754085	7 20.	0 20				
2001201	0.0	0.0	0.0		• -				
* 200210	1 200000	000 21000000	1.7958530	5 0.0	0.0	01003			
200210	1 200000	000 210000000	1.7958530	5 20.	0 20	0.0 01003			
2002201 *	0.0	0.0	0.0						
* top of	cylinder								
*									
*									
* three wa	ater colum	ns							
*									
2200000	"cl-watr"	"hranch"							
2200001	2	0							
2200101	0.00	.3484394	.8633786	0.0	90.0	.3484394			
2200102	4.1667-5	1.0+10	00						
2200200	003	14.696	122.00						
* 220110	1 2200100	000 250000000	.2038375	5 0.0	0.0	01000			
220110	1 220010	000 250000000	.203837	5 20.	0 20	0.0 01000			
2201101	220010000	250000000	.2312 2	20.0	20.0	01000			
* 2201201	1 220000	0.0	0.0			01000			
220210	1 220000		8234784	E 0.0	0.0	0 01003			
2202201	0.0	0.0	0.0	. 20.	- 20	01003			
*									
2300000	"c2-watr"	"branch"							
2300001	2	0							
2300101	0.00	.3484394	.8633786	0.0	90.0	.3484394			
2300102	4.1667-5	1.0+10 14 696	00						
* 230110	1 2300100	25000000	4076750) 0 0	0 (01000			
				5.0					

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package** Document Identifier: CAL-EBS-NU-000008 REV 00 Page IV-14 of IV-25 2301101 230010000 250000000 .4076750 20.0 20.0 01000 2301101 230010000 250000000 .4624 20.0 20.0 01000 0.0 2301201 0.0 0.0 * 2302101 230000000 240000000 .8234784 0.0 0.0 01003 2302101 230000000 240000000 .8234784 20.0 20.0 01003 2302201 0.0 0.0 0.0 2400000 "c3-watr" "branch" 2400001 1 0 2400101 0.00 .3484394 .4918077 0.0 90.0 .3484394 2400102 4.1667-5 1.6908844 00 2400200 003 14.696 122.00 * 2401101 240010000 250000000 .9732914 0.0 0.0 01000 2401101 240010000 250000000 .9732914 20.0 20.0 01000 2401201 0.0 0.0 0.0 * top plenum 2500000 "tp-watr" "branch" 2500001 1 0 25001010.00.52493441.2525001024.1667-51.325608300 1.2517607 0.0 90.0 .5249344 2500200 003 14.696 122.00 * change to match conditions 2500200 002 14.764 1.28e-5 Junction area = 100 sqcm = 15.5 sqin * 2501101 250010000 260000000 .1076391 0.0 0.0 01000 * 2501101 250010000 260000000 .1076391 0.0 0.0 00000 Junction area = 10.0 sqcm = 1.55 sqin 2501101 250010000 260000000 .01076391 0.0 0.0 00023 Junction area = 5.0 sqcm = 0.775 sqin* 2501101 250010000 260000000 .0053820 0.0 0.0 00023 Junction area = 1.5 sqcm = 0.2325 sqin * 2501101 250010000 260000000 .0016146 0.0 0.0 00023 * Junction area = 0.5 sqcm = 0.0775 sqin* 2501101 250010000 260000000 5.382e-4 0.0 0.0 00023 Junction area = 0.375 sqcm = 0.0582 sqin * 2501101 250010000 260000000 4.04167e-4 0.0 0.0 00023 Junction area = 0.25 sqcm = 0.03875 sqin * 2501101 250010000 260000000 2.691e-4 0.0 0.0 00023 Junction area = 0.10 sqcm = 0.0155 sqin * 2501101 250010000 260000000 1.0764e-4 0.0 0.0 00023 Junction area = 100.0 sqcm = 15.5 sqin * 2501101 250010000 260000000 1.076391e-1 0.0 0.0 00023 2501201, 0.0 0.0 0.0 * outside of waste package, * drift at 14.696 psia 2600000 "drift" "tmdpvol" 2600101 238.46 1.0 0.0 0.0 90.0 1.0 1.0e-6 0.0 0010

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package** Document Identifier: CAL-EBS-NU-000008 REV 00 Page IV-15 of IV-25 2600200 003 2600201 0.0 14.696 220.00 * drift inflow volume * 3600000 "gnd-watr" "tmdpvol" 3600101 238.46 1.0 0.0 0.0 90.0 1.0 1.0e-6 0.0 0010 3600200 103 3600201 0.0 14.696 122.0 * Time-Dependent Junction for inflow 3700000 "in-flow" "tmdpjun" 370010136001037002001 360010000 250000000 1.0 0 * 3700200 1 502 37002010.037002010.0 1.381e-3 0.0 0.0 0.0 0.0 0.0 * 3700201 0.0 2.762e-3 0.0 0.0 *---**---**---**---**---**---**---*** *** *** *** heat structure input *** *** *** *---**---**---**---**---**---**---** * * waste package wall 13121000 9 20 1 1 0.0 13121100 0 2 13121101 10.0 19 13121201 6 19 13121301 0.0 19 13121400 0 13121401 122.20 13121501 140010000 10000000 1 1 1.73 9 13121601 0 0 0 1 1.73 9 13121701 0 0.0 0.0 0.0 9 * 13121801 0 0.0 0.0 0.0 9 * 13121901 0 0.0 0.0 0.0 9 13121801 0.0 10.0 10.0 0.0 0.0 0.0 0.0 1.0 9 0.0 13121901 0.0 10.0 10.0 0.0 0.0 0.0 1.0 9 *---**---**---**---**---**---**---**---**---**---**---**---**---** * fuel assembly clad, guide tubes, & inst-tube in fuel region * * 13481000 13 3 2 1 0.01570833 13481000 13 3 2 1 0.013125 13481100 0 1 13481101 2 0.01791112

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00 Page IV-16 of IV-25

13481101	2	0.0149	997241							
13481201	5	2								
13481301	0.0	2								
13481400	0									
13481401	122.	3								
*				225	* 2.	.36333	33 =	531.7	75 ft	
*				112	.5*2	.36333	33 =	265.8	375 ft	:
13481501	010010	0000 1	000000	0	1	1		265.87	750	5
13481501	010010	0000 1	000000	0	1	1		346.8	5	
13481502	060010	0000 1	000000	0	1	1		531.75	500	13
13481502	060010	0000 1	000000	0	1	1		693.6	13	
13481601	010010	0000 1	000000	0	1	1		265.87	750	5
13481601	010010	0000 1	000000	0	1	1		346.8	5	
13481602	060010	0000 1	1000000	0	1	1		531.75	500	13
13481602	060010	0000 1	000000	0	1	1		693.6	13	
13481701	0 0	0 0	0 0	。 0 1	3	-		022.0		
* 13481801	0	00	0 0 0	0 0						
* 13481901	õ	0.0	0.0	0.0	13					
13491901	ñ n	10.0	0.0 10	0.0	10	0 0	0 0	0 0	1 0	10
12/01001	0.0	10.0	10.7			0.0	0.0	0.0	1.0	10
+ 12/01/01	0.0	10.0			1.0	0.0	0.0	12	1.0	13
* 12401001		0.053	00/54	0.0	15360	/54	0.0	13		
* 13481901	L U	0.047	/01465	0.0	47014	165	0.0	13		
*										
*===**===**	**.	**	**	**	**	-**	**	_**	.**	***
*			.							
* Iuei	assem	ыу ре	llets -	wate	er in	gap 1	regio	n		
*			_	_						
13301000	13	10	2	1	0.0					
* 13301000 13301100	13 0	10 1	2	1	0.0					
* 13301000 13301100 * 13301101	13 0 L 6	10 1 0.0	2 :)153583:	1 3 1	0.0	0.015	57083	32	0.01	791667
* 13301000 13301100 * 13301101 13301101	13 0 L 6 9	10 1 0.0 0.0153	2 2 3153583 35833	1 3 1	0.0	0.015	57083	32	0.01	791667
* 13301000 13301100 * 13301101 13301101 13301101	13 0 6 9 9	10 1 0.00 0.0153 0.0128	2 2 35833 366667	1 3 1	0.0	0.015	57083	32	0.01	.791667
* 13301000 13301100 * 13301101 13301101 * 13301201	13 0 6 9 9	10 1 0.0153 0.0128 6	2 2 35833 366667 -4	1 3 1 7	0.0	0.015	57083 9	32	0.01	791667
* 13301000 13301100 * 13301101 13301101 * 13301201 13301201	13 0 9 9 1 3 3	10 1 0.0153 0.0128 6 9	2 2 35833 366667 -4	1 3 1 7	0.0	0.015	57083 9	32	0.03	791667
* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301301 *	13 0 9 9 1 3 3 1 1.0	10 1 0.0153 0.0128 6 9 0 6	2 2 35833 366667 -4 0.0	1 3 1 7 7	0.0	0.015 -5 0.0	9 9	32	0.03	.791667
* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301301 13301301	13 0 9 3 1 1.0 1.0	10 1 0.0153 0.0128 6 9 0 6 9	2 2 35833 366667 -4 0.0	1 3 1 7 7	0.0	0.015 -5 0.0	57083 9 9	32	0.01	.791667
* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301301 13301301 13301400	13 0 9 3 1 1.0 -1	10 1 0.0153 0.0128 6 9 0 6 9	2 2 35833 366667 -4 0.0	1 3 1 7 7	0.0	0.015 -5 0.0	9 9	32	0.03	.791667
* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301301 13301400 13301401	13 0 9 3 1 1.0 -1 122.	10 1 0.0153 0.0128 6 9 0 6 9 122.	2 1535833 35833 366667 -4 0.0 122.	1 3 1 7 7 7 122.	0.0	0.015 -5).0 122.	9 9 122.	3 2	0.03	.791667 122.
* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301301 13301400 13301401 13301402	13 0 9 3 1 1.0 -1 122. 122.	10 1 0.0153 0.0128 6 9 0 6 9 122. 122. 122.	2 1535833 35833 3666667 -4 0.0 122. 122. 122.	1 3 1 7 7 122. 122.	0.0	0.015 -5).0 122. 122.	57083 9 9 122. 122.	3 2 122. 122.	0.0J 122. 122.	.791667 122. 122.
* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301301 13301400 13301401 13301402 13301403	13 0 9 9 1 3 3 1 1.0 -1 122. 122. 122.	10 1 0.0153 0.0128 9 0 6 9 122. 122. 122. 122.	2 153583 35833 366667 -4 0.0 122. 122. 122. 122.	1 3 1 7 7 122. 122. 122.	0.0 - - 122. 122. 122.	0.015 -5).0 122. 122. 122.	9 9 122. 122. 122.	3 2 122. 122. 122.	0.0J 122. 122. 122.	122. 122. 122.
* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301301 13301400 13301401 13301402 13301403 13301404	13 0 9 9 1 3 1.0 -1 122. 122. 122. 122.	10 1 0.0153 0.0128 9 122. 122. 122. 122. 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122.	0.0 122. 122. 122. 122.	0.015 -5).0 122. 122. 122. 122.	9 9 122. 122. 122. 122.	3 2 122. 122. 122. 122.	0.0J 122. 122. 122. 122.	122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301403 13301404 13301405</pre>	13 0 9 9 1 1.0 -1 122. 122. 122. 122. 122. 122.	10 1 0.0153 0.0128 9 122. 122. 122. 122. 122. 122. 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122.	0.015 -5).0 122. 122. 122. 122. 122.	9 9 122. 122. 122. 122. 122.	3 2 122. 122. 122. 122. 122.	0.0J 122. 122. 122. 122. 122.	122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301403 13301404 13301405 13301406</pre>	13 0 9 9 1 3 1.0 -1 122. 122. 122. 122. 122. 122. 122.	10 1 0.0153 0.0128 9 122. 122. 122. 122. 122. 122. 122. 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122.	0.015 -5).0 122. 122. 122. 122. 122.	9 9 122. 122. 122. 122. 122. 122.	3 2 122. 122. 122. 122. 122.	0.03 122. 122. 122. 122. 122. 122.	122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301403 13301404 13301405 13301406 13301407</pre>	13 0 9 9 1 3 1.0 -1 122. 122. 122. 122. 122. 122. 122. 122.	10 1 0.0153 0.0128 9 122. 122. 122. 122. 122. 122. 122. 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122. 122.	0.015 -5).0 122. 122. 122. 122. 122. 122.	9 9 122. 122. 122. 122. 122. 122. 122.	3 2 122. 122. 122. 122. 122. 122.	0.03 122. 122. 122. 122. 122. 122. 122.	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301402 13301402 13301403 13301404 13301405 13301406 13301407 13301408</pre>	13 0 9 9 1 1.0 -1 122. 122. 122. 122. 122. 122. 122. 122. 122.	10 1 0.0153 0.0128 9 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122. 122. 1	0.015 -5).0 122. 122. 122. 122. 122. 122. 122.	9 9 122. 122. 122. 122. 122. 122. 122. 1	3 2 122. 122. 122. 122. 122. 122. 122.	0.03 122. 122. 122. 122. 122. 122. 122.	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301402 13301402 13301403 13301404 13301405 13301406 13301407 13301408 13301408</pre>	13 0 9 9 1 1.0 -1 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	10 1 0.0153 0.0128 9 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122. 122. 1	0.015 -5).0 122. 122. 122. 122. 122. 122. 122. 12	9 9 122. 122. 122. 122. 122. 122. 122. 1	3 2 122. 122. 122. 122. 122. 122. 122. 12	0.03 122. 122. 122. 122. 122. 122. 122. 122	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301402 13301402 13301403 13301404 13301405 13301406 13301407 13301408 13301409 13301410</pre>	13 0 9 9 1 3 1.0 -1 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	10 1 0.0153 0.0128 9 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122. 122. 1	0.015 -5).0 122. 122. 122. 122. 122. 122. 122. 12	9 9 122. 122. 122. 122. 122. 122. 122. 1	3 2 122. 122. 122. 122. 122. 122. 122. 12	0.03 122. 122. 122. 122. 122. 122. 122. 122	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301402 13301402 13301404 13301405 13301405 13301406 13301407 13301408 13301409 13301410</pre>	13 0 9 9 3 1.0 -1 122.	10 1 0.0153 0.0128 9 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122. 122. 1	0.015 -5 0.0 122. 122. 122. 122. 122. 122. 122.	9 9 122. 122. 122. 122. 122. 122. 122. 1	 3 2 122. 	0.03 122. 122. 122. 122. 122. 122. 122. 122	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301404 13301405 13301406 13301406 13301407 13301408 13301409 13301410 13301411 12201412</pre>	13 0 9 9 1 1.0 -1 122.	10 1 0.0153 0.0128 9 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	0.015 -5 0.0 122. 122. 122. 122. 122. 122. 122.	9 9 122. 122. 122. 122. 122. 122. 122. 1	 3 2 122. 	0.03 122. 122. 122. 122. 122. 122. 122. 122	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301404 13301405 13301406 13301406 13301407 13301408 13301409 13301410 13301411 13301412</pre>	13 0 9 9 1 3 1.0 -1 122.	10 1 0.0153 0.0128 9 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	0.015 -5).0 122. 122. 122. 122. 122. 122. 122. 12	9 9 122. 122. 122. 122. 122. 122. 122. 1	 3 2 122. 	0.01 122. 122. 122. 122. 122. 122. 122.	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301404 13301405 13301405 13301406 13301407 13301408 13301409 13301410 13301411 13301412 13301413</pre>	13 0 9 9 3 1.0 -1 122.	10 1 0.0153 0.0128 9 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	0.0 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122.	0.015 -5).0 122. 122. 122. 122. 122. 122. 122. 12	9 9 122. 122. 122. 122. 122. 122. 122. 1	 3 2 122. 	0.03 122. 122. 122. 122. 122. 122. 122. 122	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301404 13301405 13301405 13301406 13301407 13301408 13301409 13301410 13301410 13301411 13301412 13301413 13301501 *</pre>	13 0 9 9 1 3 1.0 -1 122. 0 0 0	10 1 0.0153 0.0128 6 9 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 0.	0.0 122. 1	0.015 -5).0 122. 122. 122. 122. 122. 122. 122. 12	9 9 9 122. 122. 122. 122. 122. 122. 122.	 3 2 122. 	0.03 122. 122. 122. 122. 122. 122. 122. 122	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301404 13301405 13301405 13301406 13301407 13301408 13301409 13301410 13301410 13301412 13301413 13301501 * * * * * * * * * * * * * * * * * * *</pre>	13 0 9 9 1 3 1.0 -1 122. 12	10 1 0.0153 0.0128 6 9 122. 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 122. 0.	0.0 122. 1	0.015 -5).0 122. 122. 122. 122. 122. 122. 122. 12	9 9 9 122. 122. 122. 122. 122. 122. 122.	 3 2 122. 	0.03 122. 122. 122. 122. 122. 122. 122. 122	122. 122. 122. 122. 122. 122. 122. 122.
<pre>* 13301000 13301100 * 13301101 13301101 * 13301201 * 13301201 * 13301301 13301400 13301400 13301401 13301402 13301404 13301405 13301406 13301406 13301407 13301408 13301409 13301410 13301410 13301411 13301412 13301413 13301501 * * length of </pre>	13 0 9 9 1 3 1.0 -1 122. 12	10 1 0.0153 0.0128 9 122.	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 7 7 122.	0.0 122. 1	0.015 -5 0.0 122. 122. 122. 122. 122. 122. 122.	9 9 9 122. 122. 122. 122. 122. 122. 122.	 3 2 122. 123. 123. 124. 124.<td>0.03 122. 122. 122. 122. 122. 122. 122. 122</td><td>122. 122. 122. 122. 122. 122. 122. 122.</td>	0.03 122. 122. 122. 122. 122. 122. 122. 122	122. 122. 122. 122. 122. 122. 122. 122.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR** Assembly Waste Package Page IV-17_of IV-25

Document Identifier: CAL-EBS-NU-000008 REV 00

```
* length of fuel pin = #pins/ass'y * 144.0/(5 * 12)
                           = 264 * 2.400
                              = 633.6
*

      13301601
      010010000
      10000000
      1
      1
      245.78667

      13301601
      010010000
      10000000
      1
      1
      316.8
      5

      13301602
      060010000
      10000000
      1
      1
      491.57333

      13301602
      060010000
      10000000
      1
      1
      633.6
      13

      13301701
      1000
      0.1
      0.0
      0.0
      5

      13301702
      1000
      0.2
      0.0
      0.0
      13

      * 13301801
      0
      0.05492351
      0.05492351
      0.0
      13

                                                                                      5
                                                                                      13

        13301801
        0.0
        10.0
        10.0
        0.0
        0.0
        0.0
        1.0
        13

        13301901
        0.0
        10.0
        10.0
        0.0
        0.0
        0.0
        1.0
        13

     _**___**_-_**___**___**___**___**
* heat structure composition type
*---**---**---**---**---**---**
* fuel ( uo2 )
20100300 "tbl/fctn" 1
                                            1
 *---**---**---**---**---**---**---**---**---**---**---**---**
* gap (hot channel)
20100400 "tbl/fctn" 3
                                            1
*---**---**---**---**---**---**---**
* clad (zr-4)
                                               . .
20100500 "tbl/fctn" 1 1
 *---**---**---**
                                               - - * * - - - * * - - - * * - - - * * - - - * * - - - * * - - - *
* base metal ( carbon steel )
20100600 "tbl/fctn" 1 1
 *---**---**---**---**---**---**---**
* cladding ( stainless steel )
20100700 "tbl/fctn" 1 1
*---**---**---**---**---**---**---**
*$$$ *$$$ *
*$$$ *$$$ * gap (avg channel)
*$$$ *$$$ *
*$$$ *$$$ 20100900 "tbl/fctn" 3 1
*$$$ *
*---**---**---**---**---**---**---**
```

Title: Criti	cality Conse	equence Calc	ulation Invo	lving Intact P	WR MOX	SNF in a Degrad	led 2
PWF	ζ Assembly	Waste Packa	.ge	0		- · G	
Document	Identifier: C	AL-EBS-NU	J-000008 RE	EV 00		Page IV-18 o	fIV
*							
*							
* hea	t structu	re thermal	conductiv	ities			
*							
*							
***	****	-****	****	****	****	_***	
* fuol	(~		·			
* IUEI	(uo.	2)					
20100301	70.0	1.237e-3	200	.0 1.23	7e-3		
20100302	400.0	1.022e-3	800	.0 0.74	5e-3		
20100303	1200.0	0.592e-3	1600	.0 0.492	2e-3		
20100304	2000.0	0.430e-3	2400	.0 0.39	5e-3		
20100305	2800.0	0.383e-3	3200	.0 0.36'	7e-3		
20100306	3600.0	0.370e-3	4000	.0 0.380)e-3		
20100307	4400.0	0.405e-3	5000	.0 0.470)e-3		
*	/ 1	י ר ר					
- gap *	(OQ)	_)					
20100401	"helium"	0 9897	48				
20100402	"nitroge	n" 0.0080	98				
20100403	"oxygen"	0.0021	.53				
20100404	"krypton	" 0.0000	000				
20100405	"xenon"	0.0000	02				
*							
* clad	(zr	-4)					
*	70.0	0 000 0	200 0	2 222 2	400 0	2 450 - 2	
20100501	800 0	2.3336-3	1200.0	2.3338-3	400.0	2.4588-3	
20100502	1800.0	4.112e-3	2000.0	4.445e-3	2100.0	4.667e-3	
20100504	2200.0	4.945e-3	2800.0	7.000e-3	2100.0	1.00/2 5	
*							
* ther	mal condu	ctivity	base meta	al (carbo	on steel)	
*							
20100601	0.0	.00728	2000.0	.00728			
×				/ ~==		`	
<pre> cner * </pre>	mar condu	CIEVIEY	cladding	(stainle	ess steel)	
20100701	0.0	.00311	2000.0	.00311			
*	5.0		2000.0				
***	****	-****	****	-****	****		
*							
*							
* hea	t structu	re volumetr	ic heat ca	apacities			
*							
*							
***	****	_ * * * *	****	-****	****	_***	
- 1 -			,				
*		and a set of the set o					
* * volumet	ric heat	capacity f	uel (uoz)			
* volumet * 20100251	ric heat	capacity f	uel (uoz)	42.07		
* volumet * 20100351 20100352	77.0	capacity f	$\begin{array}{c} \text{cuel} & (\\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	400.0 12 1000 0	43.87		
<pre>* volumet * 20100351 20100352 20100353</pre>	77.0 600.0 1200.0	capacity f 33.8 20 45.82 80 48.88 160	uel (00.0 40.0 00.0 47.1 00.0 49.0	uoz) 52 400.0 12 1000.0 92 2000 0	43.87 48.10 50.37		

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 **PWR Assembly Waste Package** Document Identifier: CAL-EBS-NU-000008 REV 00 Page IV-19 of IV-25 20100355 3600.0 66.30 4000.0 78.97 4400.0 90.80 20100356 4800.0 99.12 5100.0 101.40 * volumetric heat capacity gap (hot channel) 20100451 32.0 0.000075 5400.0 0.000075 * volumetric heat capacity clad 20100551 32.0 28.346 1062.0 33.232 1140.0 35.432 201005521480.035.4321510.049.4401530.056.440201005531560.058.9161590.061.8001610.066.332201005541620.076.2201650.080.3401680.078.28201005551700.074.161780.035.4323000.035.432 * volumetric heat capacity base metal (carbon steel) 20100651 0.0 64.4 2000.0 64.4 * volumemetric heat capacity cladding (stainless steel) 20100751 0.0 64.4 2000.0 64.4 *---**---**---**---**---**---**---**---**---**---**---**---**---**---**---** * general tables *---**---**---**---**---**---**---**---**---**---**---**---**---**---**---** * test power insertion * 20200100 power * 20200101 0.0 0.0 5.0 0.0 25.0 1.0-2 *---**--**--**--***--***--***--***--***--***--***--***--***--***--***--***--***--***--***--***--*** * control varialbes *---**---**---**---**---**---**---**---**---**---** * 20547400 "hcpwr" "constant" 3.15e6 * 20547400 "hcpwr" "function" 3.15e4 0.0 0 * 20547401 time 0 1 *---**---**---**---**---**---**---**---**---**---**---**---**---** *** *** reactor kinetics *** ***

Waste Packa	ge Operat	tions		Calculation
Title: Critical	ity Consec	quence Calcul	ation Involving Intact PWR	MOX SNF in a Degraded 21
PWR A	ssembly V	Waste Package	2	
Document Ide	ntifier: CA	L-EBS-NU-	000008 REV 00	Page IV-20 of IV-25
*****-	***	*****	*******-	***
* power in	watts pe	er assembly		
* 30000000 "I 30000001 "ga 30000001 "ga 30000002 "a 30000301 0 30000301 *	point" amma-ac" amma" 5 ans73" .3230 0 * fis	"separabl" 5.00000 .00000 .000 0.0 1.0 .000491 0.3 ssions in Pa	.00000 .28637e+03 1. 000 .387297e+03 1.0 2910 0.00000341 u	0 1.0 1.0
*****.	**	*****	*********-	***
* Delessed	N	Trafference	_	
* Delayed	Neutron	Information	n	
*	5510H 1H	Fu-237		
30000101 0	.038 0	.01290		
30000102 0	.280 0	.03110		
30000103 0	.216 0	.1336		
30000104 0	.328 0	.33165		
30000105 0	.103 1	.26256		
* 30000106 0	.035 3	.2090		
^ ***- **.	**;	****	*******	***
*				
* general t *	table for	r waste pac	kage reactivity insert	ion ttt = 1
30000011 1				
* 30000012	10081			
*				
*****.	**	*****	*********-	***
* moderato	r dengiti	v reactivit	y feedback	
*	L densie	y reaccivit.	y recuback	
* beff = 0	.00371			
*				
* (density	lf/ft**3	reactivity, dollars	fuel temp. f
*	42 60	05704	20.00000	
30000501	43.69	95/24		* 1004
30000502	45.200	02714	-34.01/3038	* 1004
30000504	48.38	16695	-25,5977517	* 1004
30000505	49.942	23685	-21.5779876	* 1004
30000506	51.50	30675	-17.8459359	* 1004
30000507	53.063	37665	-14.3747439	* 1004
30000508	54.624	44655	-11.1428012	* 1004
30000509	56.189	51645	-08.1284495	* 518
30000510	57.43	37238	-05.9126080	* 518
30000511	58.682	22830 01997		* 518
30000512	60 7/1	2107/	-02.04/4332	^ ⊃⊥ö ★ ⊃1⊃
30000514	61.690	03146	00.00	* 122
30000515	62.42	79606	+00.7275935	* 122
30000516	65.000	00000	+00.7275935	* 80.33

Calculation

Title: Criticality Consequence Calculation Involving Intact P	WR MOX SNF in a Degraded 21
PWR Assembly Waste Package	
Document Identifier: CAL-EBS-NU-000008 REV 00	Page IV-21 of IV-25

*								
* control	volume weig	ghtir	ng - modified	from	Original	deck	with	uniform
weights (po	orportional	to t	volume fraction	ıs)				
30000701	010010000	0	.022531251	0.0				
30000702	020010000	0	.022531251	0.0				
30000703	030010000	õ	.022531251	0.0				
30000704	040010000	õ	.022531251	0.0				
30000705	050010000	0	.022531251	0.0				
30000706	060010000	0	.045062502	0.0				
30000707	070010000	0	.045062502	0.0				
30000708	080010000	0	.045062502	0.0				
30000709	090010000	0	.045062502	0.0				
30000710	100010000	0	.045062502	0.0				
30000711	110010000	0	.045062502	0.0				
30000712	120010000	0	.045062502	0.0				
30000713	130010000	0	.045062502	0.0				
30000714	140010000	0	.012443753	0.0				
30000715	150010000	0	.013678393	0.0			÷	
30000716	160010000	0	.048603781	0.0				
30000717	170010000	0	.033087495	0.0				
30000718	180010000	0	.054636012	0.0				
30000719	190010000	0	.053159916	0.0				
30000720	200010000	0	.052524779	0.0				
30000721	210010000	0	.047587753	0.0				
30000722	220010000	0	.052524779	0.0				
30000723	230010000	0	.052524779	0.0				
30000724	240010000	0	.029919722	0.0				
30000725	250010000	0	.076152518	0.0				
* 20000501								
* 30000501								
* 30000502								
* 30000503								
* 30000505								
* 30000506								
* 30000507								
* 30000508								
* 30000509								
* 30000510								
* 30000511								
* 30000512								
* 30000513								
* 30000514								
* 30000515								
* 30000516								
* 30000701								
* 30000702								
* 30000703								
* 30000704								
* 30000705								
* 30000706								
* 30000707								
50000708								

Calculation

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00

Page IV-22 of IV-25

* 30000709						
* 30000710						
* 30000711						
* 30000712						
* 30000713						
* 30000714						
* 30000715						
* 30000716						
* 30000717						
* 30000718						
* 30000719						
* 30000720						
* 30000721						
* 30000722			i.			
* 30000723						
* 30000724						
* 30000725						
****	***	_**;	***	***	· ***	**
*						
* averag	a fual t	amparat	turo vo ro	aativity		
*	e ruer co	empera	cure vs. re	activity		
*						
*	fuel to	nn f	roacti	with dolla	na da	noite 1h/Ettan
÷	ruer cei	щр. г	reacti	vity, dolla	us de	insity id/it**3
20000601	22.0		. 0	0770460	т	60 400060C
30000601	32.0		+0	.2779469	*	62.4279606
30000602	80.33	•	+0	.2779469	*	62.4279606
30000603	122.0		0	.0	*	61.6903146
30000604	212.0		-0	.5621724	*	61.6903146
30000605	320.0	1.1.8.1	-1	.1754369	*	60.7424057
30000606	518.0		-2	.2507464	*	60.7424057
30000607	1004.0		-4	.7207118	*	56.1851645
*						
*						
* 1						
* neat st	ructure v	weight:	ing - (adde	d to deck -	· B&W code	does weights
*			inte	rnally)		
*						
30000801	3301001	0	.04762000	0.0		
30000802	3301002	0	.04761900	0.0		
30000803	3301003	0	.04761900	0.0		
30000804	3301004	0	.04761900	0.0		
30000805	3301005	0	.04761900	0.0		
30000806	3301006	0	.09523800	0.0		
30000807	3301007	0	.09523800	0.0		
30000808	3301008	0	.09523800	0.0		
30000809	3301009	0	.09523800	0.0		
30000810	3301010	0	.09523800	0.0		
30000811	3301011	0	.09523800	0.0		
30000812	3301012	0	.09523800	0.0		
30000813	3301013	0	.09523800	0.0		
*						
* Contro	l Blocks					
*						
20500000	999					
						r.

Calculation

 Waste Fackage Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00
 Page IV-23 of IV-25

Document I	dentifier: CA	L-EBS-NU-C	000008 REV	<u>' 00</u>			Page IV-23 of IV-25
20500100	cntrlvar	function	0,04762	0.0	0		
20500101	htvat	3301001	002	0.0	. •		
20500200	cntrlvar	function	0.04761	0.0	0		
20500201	htvat	3301002	002				
20500300	cntrlvar	function	0.04761	0.0	0		
20500301	htvat	3301003	002		-		
20500400	cntrlvar	function	0.04761	0.0	0		
20500401	htvat	3301004	002				
20500500	cntrlvar	function	0.04761	0.0	0		
20500501	htvat	3301005	002				
20500600	cntrlvar	function	0.095238	0.0	0		-
20500601	htvat	3301006	002				
20500700	cntrlvar	function	0.095238	0.0	0		
20500701	htvat	3301007	002				
20500800	cntrlvar	function	0.095238	0.0	0		
20500801	htvat	3301008	002				
20500900	cntrlvar	function	0.095238	0.0	0		
20500901	htvat	3301009	002				
20501000	cntrlvar	function	0.095238	0.0	0		
20501001	htvat	3301010	002				
20501100	cntrlvar	function	0.095238	0.0	0		
20501101	htvat	3301011	002				
20501200	cntrlvar	function	0.095238	0.0	0		
20501201	htvat	3301012	002				
20501300	cntrlvar	function	0.095238	0.0	0		
20501301	htvat	3301013	002				
*							
* Dopp	ler Reactiv	vity			•		
*	name o	component So	cale F. I	nitia	al Init	ial Val	Falg
20501400	cntrlvar	sum	1.0	0.0	0		
20501401	-6.63322e-	-5 1.0 cnt	rlvar 1 1	.0 0	entrlvar	2 1.0	cntrlvar 3
20501401	1.0213e-5	1.0 cnt	rlvar 1 1	.0 0	ntrlvar	2 1.0	cntrlvar 3
20501402	1.0) cntrlvar	4 1.0	cntrl	lvar 5	1.0	cntrlvar 6
20501403	1.0) cntrlvar	7 1.0	cntrl	lvar 8	1.0	cntrlvar 9
20501404	1.0) cntrlvar	10 1.0	cntr]	lvar 11	1.0	cntrlvar 12
20501405	1.0) cntrlvar	13				
*							
* Viod	Reactivity	ŧ.					
*							
*	name	component	Scale F.	In	itial I	nitial '	Val Falg
20502000	cntrlvar	function	0.022531	251	0.0	0	
20502001	"rho"	010010000	005				
20502100	cntrlvar	function	0.022531	251	0.0	0	
20502101	"rho"	020010000	005				
20502200	cntrlvar	function	0.022531	251	0.0	0	
20502201	rho	030010000	005				
20502300	cntrlvar	function	0.022531	251	0.0	0	
20502301	rho	040010000	005				
20502400	cntrlvar	function	0.022531	251	0.0	0	
20502401	rho	050010000	005				
20502500	cntrlvar	function	0.045062	502	0.0	0	
20502501	rho	060010000	005				
20502600	cntrlvar	function	0.045062	502	0.0	0	
20502601	rho	070010000	005				

Calculation

Waste Package OperationsCalculationTitle: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste PackagePurce PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page IV-24 of IV-22

Document Ic	lentifier: CA	L-EBS-NU	-000008 RH	EV 00			Page I	V-24 of IV-25
20502700	cntrlvar	function	0.0450	52502	0.0	0		
20502701	rho	080010000	005			-		
20502800	cntrlvar	function	0.0450	52502	0.0	0		
20502801	rho	090010000	005			-		
20502900	cntrlvar	function	0.04506	52502	0.0	0		
20502901	rho	100010000	005			-		
20503000	cntrlvar	function	0.04506	52502	0.0	0		
20503001	rho	110010000	005			•		
20503100	cntrlvar	function	0.04506	52502	0.0	0		
20503101	rho	120010000	005			•		
20503200	cntrlvar	function	0.04506	52502	0.0	0		
20503201	rho	130010000	005		••••	Ū		
20503300	cntrlvar	function	0.01244	43753	0.0	0		
20503301	rho	140010000	005		•••	Ū		
20503400	cntrlvar	function	0.0136	78393	0.0	0		
20503401	rho	150010000	005		0.0	Ŭ		
20503500	cntrlvar	function	0 04860	13781	0 0	0		
20503501	rho	160010000	005	<i></i>	0.0	Ŭ		
20503600	cntrlvar	function	0 0330	37495	0 0	0		
20503601	rho	170010000	005	51455	0.0	U		
20503700	cntrlvar	function	0 0546	36012	0 0	0		
20503701	rho	180010000	005	0012	0.0	Ū		
20503800	cntrlvar	function	0 0531	59916	0 0	0		
20503801	rho	190010000	005		0.0	U		
20503900	cntrlvar	function	0 05253	24779	0 0	0		
20503901	rho	200010000	0.05	51/12	0.0	U		
20504000	cntrlvar	function	0 04758	27753	0 0	0		
20504001	rho	210010000	005		0.0	Ŭ		
20504100	cntrlvar	function	0 05253	24779	0 0	0		
20504101	rho	220010000	005		0.0	Ū		
20504200	cntrlvar	function	0.05252	24779	0.0	0		
20504201	rho	230010000	005		0.0	U		
20504300	cntrlvar	function	0.0299	9772	0.0	0		
20504301	rho	240010000	005		•••	U U		
20504400	cntrlvar	function	0.07619	52518	0 0	0		
20504401	rho	250010000	005	2310	0.0	U		
*			000					
20505000	cntrlvar	sum	1.0	0 0	0			
20505001	0.0 1.0	cntrlvar	20 1.0	cntrly	var 21	1 0	cntrlvar	22
20505002	1.0	cntrlvar	23 1 0	cntrl	var 24	1 0	cntrlvar	25
20505003	1.0	cntrlvar	26 1.0	cntrly	var 27	1 0	cntrlvar	28
20505004	1.0	cntrlvar	29 1.0	cntrly	var 30	1 0	cntrlvar	20
*	2.0	onorrat	27 1.0	CHCLT	ar 50	1.0	cherivar	51
20505500	cntrlvar	sum	1.0	0 0	0			
20505501	0.0 1.0	cntrlvar	32 1.0	cntrly	var 33	1 0	cntrlvar	34
20505502	1.0	cntrlvar	35 1.0	cntrly	var 36	1 0	cntrlvar	37
20505503	1.0	cntrlvar	38 1.0	cntrly	var 39	1 0	cntrlvar	40
20505504	1.0	cntrlvar	41 1.0	cntrly	var 42	1 0	cntrlvar	43
20505505	1.0	cntrlvar	44	CHCLT	JUL 12	1.0	ciiciivai	TJ
*	1.0							
20505600	cntrlvar	SIIM	1.0	0 0	Ο			
20505601	0.306497	1.0 CT	itrlvar 50) 1 0	cntr	lvar 5	5	
*		2.0 01	Ju	, 1.0	CIICL	rvar D		
20506000	cntrlvar	function	1.0	0.0	0			

Calculation

.

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page IV-25 of IV-25

20506001	time	0	001				
20506500	cntrlvar	sum	1.0	0.0 0			
20506501 *	0.0 1.0	cntrlvar	14 1.0	cntrlva	ar 56 1	.0 cntrl	var 60
20507000	cntrlvar	integral	1.0	0.0 0			
20507001 *	rktpow	0					
20507500	cntrlvar	sum 6	.22971e-2	0.0	0		
20507501	0.0 1.0) htgamw	3121001	00 1.0	htgamw	31210020	0
20507502	1.0) htgamw	3121003	00 1.0	htgamw	31210040	0
20507503	1.0) htgamw	3121005	00 1.0	htgamw	31210060	0
20507504	1.0) htgamw	3121007	00 1.0	htgamw	31210070	0
20507505	1.0) htgamw	3121009	00			
*							
*	scale	factor =	1/area s	um			
* 20508000	cntrlva	r sum (0.2628988	6 0.0	0		
* 20508001	0.0	0.3516846	voidf 0	50010000	0.70336	592 void	f 100010000
* 20508002	(0.8633786	voidf 2	00010000	0.78222	260 void	f 210010000
*							
* 20508100	cntrlva	r functio	on 1.0	0.0	0		
* 20508101	cntrlva	r 80	010				
*							

. * end of data

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page V-1 of V-2

Calculation

ATTACHMENT V

Unix script files to strip selected isotopic data from the ORIGEN-S output data files.

KS.run.script

Script calls KS.script to act on the output file and place results in the output file.

awk -f KS.script W335-5-6.joklo2.output > NOCcuries.out

KS.script

Script searches for records containing isotopic names after encountering appropriate trigger character strings.

BEGIN {intable	e=0 && i1	nsas=0 }			
/grams/ {insa	s=1}				
/nuclide radio	oactivity	y/{if (insa	as) print	\$O;	intable=1}
/initial/ {if	(insas	&& intable)) print \$	0}	
/charge/ {if	(insas &	& intable)	print \$0	}	
/ac227/ {if (insas &&	intable) p	print \$0}		
/am241 / {if	(insas &	& intable)	print \$0	}	
/am242m/ {if	(insas &	& intable)	print \$0	}	
/am243 / {if	(insas &	& intable)	print \$0	}	
/ba137m/ {if	(insas &	& intable)	print \$0	}	
/ c 14 / {if	(insas &	& intable)	print \$0	}	
/cd113m/ {if	(insas &	& intable)	print \$0	}	
/cl 36 / {if	(insas &	& intable)	print \$0	}	
/cm242 / {if	(insas &	& intable)	print \$0	}	
/cm243 / {if	(insas &	& intable)	print \$0	}	
/cm244 / {if	(insas &	& intable)	print \$0	}	
/cm245 / {if	(insas &	& intable)	print \$0	}	
/cm246 / {if	(insas &	& intable)	print \$0	}	
/cm247 / {if	(insas &	& intable)	print \$0	}	
/co 60 / {if	(insas &	& intable)	print \$0	}	
/cs134 / {if	(insas &	& intable)	print \$0	}	
/cs135 / {if	(insas &	& intable)	print \$0	}	
/cs137 / {if	(insas &	& intable)	print \$0	}	
/eu154 / {if	(insas &	& intable)	print \$0	}	
/eu155 / {if	(insas &	& intable)	print \$0	}	
/fe 55 / {if	(insas &	& intable)	print \$0	}	
/fr221 / {if	(insas &	& intable)	print \$0	}	
/h 3/{if	(insas &	& intable)	print \$0	}	
/ I129 / {if	(insas &	& intable)	print \$0	}	
/kr 85 / {if	(insas &	& intable)	print \$0	}	
/nb 93m/ {if	(insas &	& intable)	print \$0	}	
/nb 94 / {if	(insas &	& intable)	print \$0	}	
/ni 59 / {if	(insas &	& intable)	print \$0	}	
/ni 63 / {if	(insas &	& intable)	print \$0	}	
/np237 / {if	(insas &	& intable)	print \$0	}	
/pa231 / {if	(insas &	& intable)	print \$0	}	

Calculation

 Waste Fackage Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00
 Page V-2 of V

Page V-2 of V-2

/pb210	7	{if	(insas	&&	intable)	print	\$0}
/pd107	1	{if	(insas	&&	intable)	print	\$0}
/pm147	1	{if	(insas	&&	intable)	print	\$0}
/po218	/	{if	(insas	&&	intable)	print	\$0}
/pu238	1	{if	(insas	&&	intable)	print	\$0}
/pu239	1	{if	(insas	&&	intable)	print	\$0}
/pu240	1	{if	(insas	&&	intable)	print	\$0}
/pu241	1	{if	(insas	33	intable)	print	\$0}
/pu242	/	{if	(insas	&&	intable)	print	\$0}
/ra226	1	{if	(insas	&&	intable)	print	\$0}
/ra228	1	{if	(insas	&&	intable)	print	\$0}
/ru106	1	{if	(insas	&&	intable)	print	\$0}
/sb125	1	{if	(insas	&&	intable)	print	\$0}
/se 79	/	{if	(insas	&&	intable)	print	\$0}
/sm147	1	{if	(insas	&&	intable)	print	\$0}
/sm151	1	{if	(insas	&&	intable)	print	\$0}
/sn126	1	{if	(insas	&&	intable)	print	\$0}
/sr 90	1	{if	(insas	33	intable)	print	\$0}
/tc 99	1	{if	(insas	&&	intable)	print	\$0}
/th229	1	{if	(insas	&&	intable)	print	\$0}
/th230	1	{if	(insas	&&	intable)	print	\$0}
/th232	1	{if	(insas	&&	intable)	print	\$0}
/ u232	1	{if	(insas	&&	intable)	print	\$0}
/ u233	1	{if	(insas	&&	intable)	print	\$0}
/ u234	1	{if	(insas	&&	intable)	print	\$0}
/ u235	1	{if	(insas	&&	intable)	print	\$0}
/ u236	1	{if	(insas	&&	intable)	print	\$0}
/ u238	1	{if	(insas	&&	intable)	print	\$0}
/у 90	1	{if	(insas	&&	intable)	print	\$0}
/zr 93	1	{if	(insas	&&	intable)	print	\$0}
/total/	/ {	inta	uble=0}				-

Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21

 PWR Assembly Waste Package

 Document Identifier: CAL-EBS-NU-000008 REV 00

 Page VI-1 of VI-8

ATTACHMENT VI

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT DOCUMENT INPUT REFERENCE SHEET

1. Docu	ment Identifier No./Rev.:		Change: T	Fitle:					
CAL-E	BS-NU-000008 REV 00		N/A C	Criticality Conse	equence Calculation Involvi	ng Intact PWI	R MOX SN	NF in a Degraded 2	21 PWR
			/	Assembly Waste	e Package				
	Input Document		4. Input Status	5. Section Used in	6. Input Description	7. TBV/TBD Priority		8. TBV Due To	
2. Tech	2. Technical Product Input Source Title and Identifier(s) with Version						Unqual.	From Uncontrolled Source	Un- confirmed
2a									
1	Civilian Radioactive Waste	Attach. IV	TBV-3294	Sect. 2, 5, 6	Base RELAP5 Data File	3	1	N/A	N/A
Management System (CRWMS) Management & Operating Contractor (M&O)	Attach. III	TBV-3295	Sect. 2, 5, 6	Particle fall time in water	3	\checkmark	N/A	N/A	
	Sect. 7	TBV-3296	Sect. 2, 5, 6	Max WP excess reactivity	3	1	N/A	N/A	
	Analysis Involving Intact PWR	p. 37	TBV-3297	Sect. 5, 6	Assembly dimensions	3	1	N/A	N/A
	SNF in a Degraded 21 PWR	Table 4.1-2	TBV-3298	Sect. 5, 6	WP dimensions	3	1	N/A	N/A
	Assembly Waste Package.	p. 18	TBV-3299	Sect. 5	Equation	3	1	N/A	N/A
	00057 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980106.0331.				Resolved through peer review				
2	Nuclear Regulatory Commission (NRC) 1995. <i>RELAP5/MOD3 Code Manual,</i> <i>Vol. 1.</i> NUREG/CR-5535. Washington, D.C.: NRC. TIC: 238741.	Entire	N/A	Sect. 5, 6	Software Documentation		N/A	N/A	N/A

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page VI-2 of VI-8

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT DOCUMENT INPUT REFERENCE SHEET 1. Document Identifier No./Rev.: Change: Title: CAL-EBS-NU-000008 REV 00 N/A Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package 5. Section 6. Input Description 7. TBV/TBD 8. TBV Due To Input Document 4. Input Status Used in Priority 2. Technical Product Input Source Title and 3. Section Ungual. From Uncontrolled Un-Source confirmed Identifier(s) with Version 3 CRWMS M&O 1998. Software N/A Sect. 5, 6 Software Documentation N/A N/A N/A Entire Qualification Report for MCNP Version 4B2 A General Monte Carlo N-Particle Transport Code CSCI: 30033 V4B2LV. DI: 30033-2003 Rev. 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980622.0637. Not Used N/A N/A N/A N/A N/A N/A N/A 4 Westinghouse Electric 5 **TBV-3301** Sect. 3 **Fuel Composition Data** 3 N/A 1 N/A p. 18 Corporation 1996. Plutonium U and Pu Isotopic p. 17 Disposition Study. Distribution Implementation of Weapons p. 25 Grade MOX Fuel in Existing **Kinetics parameters** Pressurized Water Reactors **Resolved through peer** for the Department of Energy, review Oakland, California. DOE/SF/19683-7, Revision 1. Pittsburgh, Pennsylvania: Westinghouse Electric Corporation. TIC: 245436. CRWMS M&O 1997. Software N/A Software Documentation N/A N/A N/A 6 Entire Sect. 5, 6 Qualification Report for The SCALE Modular Code System Version 4.3. CSCI: 30011 V4.3. DI: 30011-2002 Rev. 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19970731.0884.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21

PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00

Page VI-3 of VI-8

		OFFICE O	F CIVILIAN	NRADIOAC	TIVE WASTE MANA	GEMENT	[
			DOCUME	NT INPUT F	REFERENCE SHEET				
		· ·							
1. Docu	ment Identifier No./Rev.:		Change: T	ītle:					<u></u>
CAL-E	EBS-NU-000008 REV 00		N/A C	I/A Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package					
	Input Document		4. Input Status	5. Section Used in	6. Input Description	7. TBV/TBD Priority		8. TBV Due To	<u></u>
2. Tec	hnical Product Input Source Title and Identifier(s) with Version	3. Section					Unqual.	From Uncontrolled Source	Un- confirmed
7	CRWMS M&O 1999. Electronic Data for Criticality Consequence Calculation	N/A	TBV-3302	Sect. 5, 6	Output files as a result of CAL-EBS-NU-000008 REV 00 Calculation	3	V	N/A	N/A
	Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package, CAL-EBS-NU-000008 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990923.0239.				Resolved through peer review				
8	CRWMS M&O 1998. Westinghouse MOX SNF Isotopic Source. BBA000000- 01717-0210-00007 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980818.0131.	Sect. 5.1, p. 14	TBV-3303	Sect. 5.1	Westinghouse Vantage 5 Assembly data Resolved through peer review	3	N/A	1	N/A
9	Department of Energy (DOE) 1987. Characteristics of Spent Fuel, High Level Waste, and Other Radioactive Wastes Which May Require Long- Term Isolation, Volume 3 of 6, Appendix 2A: Physical Descriptions of LWR Fuel Assemblies. DOE/RW-0184. Washington, D.C.: DOE. TIC: 202243.	pp. 2A-355 through 2A- 358.	TBV-3304	Sect. 5.1	Westinghouse Vantage 5 assembly data Resolved through peer review	3	N/A	1	N/A

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page VI-4 of VI-8

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT DOCUMENT INPUT REFERENCE SHEET 1. Document Identifier No./Rev.: Change: Title: CAL-EBS-NU-000008 REV 00 N/A Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package 4. Input Status 5. Section 7. TBV/TBD 8. TBV Due To Input Document 6. Input Description Used in Priority 2. Technical Product Input Source Title and From Uncontrolled 3. Section Ungual. Un-Identifier(s) with Version Source confirmed CRWMS M&O 1998, Summary 10 p. 37 **TBV-3305** Sect. 5.1 Westinghouse Vantage 5 3 N/A 1 N/A Report of Commercial Reactor assembly data Criticality Data for McGuire **Resolved through peer** Unit 1, B0000000-01717review 5705-00063 REV 01, Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980622.0079. CRWMS M&O 1998. Two (2) 11 **TBV-3606** 3 1 N/A N/A entire Section 5.1 Assembly isotopic data Data Cartridges for for 25000 yr. Decay Westinghouse MOX SNF **Resolved through peer** Isotopic Source BBA000000-01717-0210-00007 REV 00. review Las Vegas, Nevada: CRWMS M&O. MOL.19980629.0795. Oak Ridge National Laboratory 12 N/A Sect. 5, 6 Software N/A N/A N/A entire (ORNL) 1995. SCALE 4.3, Documentation **RSIC Computer Code** Collection, CCC-545. Oak Ridge, Tennessee: ORNL. TIC: 235920. CRWMS M&O 1998, Criticality 13 MCNP ken calculation for 3 Table 6.2-2 TBV-3407 Sect. 5.2. 1 N/A N/A Evaluation of Intact and 21 PWR MOX WP 5.4 Degraded PWR WPs **Resolved through peer** Containing MOX SNF. review A0000000-01717-0210-00002 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980701.0482.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page VI-5 of VI-8

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT DOCUMENT INPUT REFERENCE SHEET 1. Document Identifier No./Rev.: Change: Title: CAL-EBS-NU-000008 REV 00 N/A Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package Input Document 4. Input Status 5. Section 6. Input Description 7. TBV/TBD 8. TBV Due To Used in Priority 2. Technical Product Input Source Title and 3. Section Unqual. From Uncontrolled Un-Identifier(s) with Version Source confirmed Holman, J.P. 1990. Heat 14 TBV-3408 Sect. 5.3 3 J pp. 14, 31, Parameter values for N/A N/A Transfer - 7th Edition. New Steady State power 420, 601, York, New York: McGraw-Hill calculation 602, 606. Publishing Company, TIC: Resolved through peer 242477. Tables A-8, review A-9 Weast, R.C. 1979. CRC 15 p. F-13 N/A Sect. 5.3. Molecular weight of air N/A N/A N/A N/A Handbook of Chemistry and Handbook value. Physics, 60th Edition, 1979-1980. Boca Raton, Florida: CRC Press, Inc. TIC: 239951. Walker, F.W.; Parrington, J R.; 16 p. 57 N/A Sect. 5.3 Steady State Power N/A N/A N/A and Feiner, F. 1989, Nuclides Calculation, Gas Constant and Isotopes, Fourteenth Handbook Value Edition: Chart of the Nuclides. San Jose, California: General Electric Company. TIC: 201637. DOE 1998. Viability 17 pp. 3-15, 3-**TBV-3316** Sect. 5.3 Steady State Power 3 √ N/A N/A Assessment of a Repository at 17, 3-37 Calculation for WP Yucca Mountain - Total System Performance **Resolved through peer** Assessment - Volume 3. review DOE/RW-0508/V3. North Las Vegas, Nevada: DOE. ACC: MOL.19981007.0030.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page VI-6 of VI-8

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT DOCUMENT INPUT REFERENCE SHEET 1. Document Identifier No./Rev.: Change: Title: CAL-EBS-NU-000008 REV 00 N/A Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package Input Document 4. Input Status 5. Section 6. Input Description 7. TBV/TBD 8. TBV Due To Used in Priority 2. Technical Product Input Source Title and 3. Section From Uncontrolled Un-Ungual. Identifier(s) with Version Source confirmed American Society of 18 N/A N/A pp. 218-Sect. 5.3 Steady State Power N/A N/A N/A Mechanical Engineers (ASME) 221 Calculation - Water 1967. STEAM TABLES Properties - Handbook Thermodynamic and Transport Values Properties of Steam, Sixth Edition. New York, New York: ASME. TIC: 103243. CRWMS M&O 1995. 19 3 J **TBV-3318** N/A N/A pp. 9, 34 Sect. 5.3 Steady State Power Emplacement Scale Thermal Calculation Evaluations of Large and Small WP Designs. Resolved through peer BB000000-01717-0200review 00009 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19960624.0097. CRWMS M&O 1996, Second 20 p. VI-4 **TBV-3319** Sect. 5.3 3 1 N/A Steady State Power N/A Waste Package Probabilistic Calculation Criticality Analysis: Generation and Evaluation of Internal **Basis for Assumption TBV-3300** p. 17 Sect. 3 3 N/A N/A Criticality Configurations. Resolved through peer BBA000000-01717-0200review 00005 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19960923.0196. CRWMS M&O 1999. 21 1 Sect. 5 **TBV-3320** 3 N/A Sect. 5.4 **Relap5** Representation N/A Sensitivity Study of Reactivity Sect. 2 Sect. 6 **Results Comparison** Consequences to Waste Package Egress Area. CAL-Resolved through peer EBS-NU-000001 REV 00. Las review Vegas, Nevada: CRWMS M&O. ACC: MOL.19990928.0239.

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00

Page VI-7 of VI-8

		OFFICE O	F CIVILIA	N RADIOAC	TIVE WASTE MANA	AGEMENT	[.					
			DOCUM	ENT INPUT F	REFERENCE SHEET							
1. Docu	ment Identifier No./Rev.:		Change:	Change: Title:								
CAL-E	EBS-NU-000008 REV 00		N/A	I/A Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package								
	Input Document		4. Input Status	s 5. Section Used in	6. Input Description	7. TBV/TBD Priority		8. TBV Due To				
2. Tec	hnical Product Input Source Title and Identifier(s) with Version	3. Section					Unqual.	From Uncontrolled Source	Un- confirmed			
22	NRC 1995. RELAP5/MOD3 Code Manual, Vol. 2, Users's Guide and Input Requirements. NUREG/CR- 5535. Washington, D.C.: NRC.TIC: 243017.	pp. 2-14 -2- 16	N/A	Sect. 5.4	Relap5 Representation			N/A	N/A			
23	Duderstadt, J.J. and Hamilton, L.J. 1976. <i>Nuclear Reactor</i> <i>Analysis</i> . New York, New York: John Wiley & Sons, Inc. TIC: 245454.	p. 64	TBV-3321	Sect. 5, 6	Delayed Neutron Data for Pu Resolved through peer review	3	N/A	4	N/A			
24	CRWMS M&O 1997. Waste Package Design Basis Events. BBA000000-01717-0200- 00037 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19971006.0075.	p. l-17	TBV-3322	Sect. 5.1	WP Design Parameter Resolved through peer review	3	1	N/A	N/A			
25	CRWMS M&O 1999. Installation Test Plan (ITP) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-ITP-1.0-00. ACC: ACC: MOL.19990929.0035.	Entire	N/A	Sect. 5, 6	Software Documentation		N/A	N/A	N/A			
26	CRWMS M&O 1999. Validation Test Plan (VTP) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-VTP-1.0- 00. ACC: ACC: MOL.19990929.0034.	Entire	N/A	Sect. 5, 6	Software Documentation		N/A	N/A	N/A			
Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page VI-8 of VI-8

OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT DOCUMENT INPUT REFERENCE SHEET 1. Document Identifier No./Rev.: Change: Title: CAL-EBS-NU-000008 REV 00 N/A Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package 5. Section 8. TBV Due To Input Document 4. Input Status 6. Input Description 7. TBV/TBD Used in Priority 2. Technical Product Input Source Title and 3. Section Ungual. From Uncontrolled Un-Identifier(s) with Version Source confirmed CRWMS M&O 1999. Software 27 N/A Software Documentation N/A N/A Entire Sect. 5, 6 N/A Activity Plan (SAP) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-SAP-1.0-00. ACC: ACC: MOL.19990929.0031. CRWMS M&O 1999. Software 28 N/A Software Documentation N/A N/A N/A Entire Sect. 5, 6 Requirements Document (RD) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-RD-1.0-00. ACC: ACC: MOL.19990929.0032. CRWMS M&O 1999. Software 29 Entire N/A Sect. 5. 6 Software Documentation N/A N/A N/A Design Document (DD) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-DD-1.0-00. ACC: ACC: MOL.19990929.0033. CRWMS M&O 1999. 30 Entire N/A Sect. 5. 6 Software Documentation N/A N/A N/A Validation Test Report (VTR) for RELAP5/MOD3.2 V1.0. Las Vegas, Nevada: CRWMS M&O. SDN: 10091-VTR-1.0-00. ACC: MOL.19990929.0036.

AP-3.15Q.1

Rev. 06/30/1999

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page VII-1 of VII-5

ATTACHMENT VII

The directory of files on the electronic media (CD) (Ref. 7) for this calculation is given in Tables VII-1 and VII-2. Files from the HP-9000 workstation directory were copied first to a PC, then to the CD. File names and sizes in bytes are listed as given on the originating hardware. The RELAP5/MOD3.2 program uses and creates a number of data files. Many of these files are intermediate in nature and thus are important but may not be directly referenced either as initial input data files or as resource files for tabular and/or graphical display of results from the calculation.

Table VII-1.	Director	y of HP	Files	on	Compact Disk	
--------------	----------	---------	-------	----	--------------	--

HP File Directory for C	AL-EBS-NU	-000008 REV 0)0	
Criticality Consequence	e Calculatio	n Involving In	tact PWR M	OX SNF in a Degraded 21 PWR
Assembly Waste Pack	age			
Read (r), Write (w),				
Execute (x)	File Size	Creation	Creation	
Permissions	(bytes)	Date	Time	File Name
-rw-r	14871	Sept 9, 1999	14:25	21MS1F
-rw-rr	289048	Sept 9, 1999	14:25	21MS1F.O
-fw-f	12009335	Sept 9, 1999	14:33	Case02cR1.ist
-IW-II	12009549	Sept 9, 1999	14:34	Case03cR1.lst
-rw-rr	12009763	Sept 9, 1999	14:34	Case03dR1.lst
-ſW-ſ	12010084	Sept 9, 1999	14:35	Case03eR1.lst
-rw-rr	12010191	Sept 9, 1999	14:35	Case03fR1.lst
-rw-rr	12010512	Sept 9, 1999	14:36	Case03gR1.lst
-rw-rr	2289316	Sept 9, 1999	14:36	Case04cR1.lst
-rw-rr	2288888	Sept 9, 1999	14:36	Case04eR1.lst
-IM-LI	3563781	Sept 9, 1999	14:36	Case04eR1.r01.lst
-rw-rr	29809368	Sept 9, 1999	14:37	MOX02cR1.rst
-rw-rr	1351659	Sept 9, 1999	14:37	MOX02cR1.strp.set01
-rw-rr	29809368	Sept 9, 1999	14:37	MOX03cR1.rst
-ſ₩-ſſ	1351659	Sept 9, 1999	14:37	MOX03cR1.strp.set01
-rw-rr	29809368	Sept 9, 1999	14:38	MOX03dR1.rst
-rw-rr	1351659	Sept 9, 1999	14:38	MOX03dR1.strp.set01
-IM-II	29809368	Sept 9, 1999	14:39	MOX03eR1.rst
-iW-ii	1351659	Sept 9, 1999	14:39	MOX03eR1.strp.set01
-rw-rr	29809368	Sept 9, 1999	14:39	MOX03fR1.rst
-rw-rr	1351659	Sept 9, 1999	14:39	MOX03fR1.strp.set01
-rw-rr	29809368	Sept 9, 1999	14:40	MOX03gR1.rst
-rw-rr	1351659	Sept 9, 1999	14:40	MOX03gR1.strp.set01
-rw-rr	10440328	Sept 9, 1999	14:40	MOX04cR1.rst
-rw-rr	898329	Sept 9, 1999	14:40	MOX04cR1.strp.set01
-rw-rr	29138008	Sept 9, 1999	14:41	MOX04eR1.rst
-rw-rr	898329	Sept 9, 1999	14:41	MOX04eR1.strp.set01
-rw-rr	2358329	Sept 9, 1999	14:41	MOX04eR1.strp.set02
-rw-r	9072	Sept 9, 1999	14:07	h2oh13f.mox.inp
-rw-rr	2697120	Sept 9, 1999	14:07	h2oh13f.mox.lst
-rw-rr	6154	Sept 9, 1999	14:04	infh2oa.mox.inp
-rw-rr	668233	Sept 9, 1999	14:05	linfh2oa.mox.lst
-rw-rr	6474	Sept 9, 1999	14:06	out.fin.mox.inp
-D4/-FF	5063082	Sent 9 1999	14:06	out fin mox lst

Waste Package OperationsCalculationTitle: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste PackagePWR MOX SNF in a Degraded 21
PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page VII-2 of VII-5

Triticality Consequence	ce Calculatio	n Involving In	tact PWR M	OX SNF in a Degraded 21 PW		
Assembly Waste Pack	age			- -		
Read (r), Write (w),		Creation	Creation			
Execute (x)	(bytec)	Date	Time	File Name		
	(Dytes) 6717	Sent 9 1999	14:08	out won mox inp		
<u></u>	5063605	Sept 9 1999	14:09	out won mox lst		
γγ-11 <i>σ</i> ν-ΓΓ	52163	Sept 9 1999	14:41	rlp5 MOX01aR1 inp		
rw-ff	53406	Sept 9, 1999	14:41	rlp5.MOX02cR1.inp		
nw-rr	53533	Sept 9, 1999	14:41	rlp5.MOX03cR1.inp		
TW-II	53664	Sept 9, 1999	14:41	rlp5.MOX03dR1.inp		
	53862	Sept 9, 1999	14:41	rlp5.MOX03eR1.inp		
	53923	Sept 9, 1999	14:41	rlp5.MOX03fR1.inp		
DW-FF	54148	Sept 9 1999	14.41	rlp5 MOX03gR1 inp		
	54514	Sent 9 1999	14.41	rln5 MOX04cR1 inn		
DAI-FF	54238	Sent 9 1999	14:41			
DW-FF	3086	Sent 9 1999	14:41			
DI(((ff	1216	Sept 9 1999	13:23			
1WXII	2920	Sept 9, 1999	14:49	runxrln5		
	708	Sept 0 1000	14:48	runxetro		
-1WX1	0174	Sept 9, 1999	13:23	w3 35 Found 20v Estos inp		
-1W-11	15159077	Sept 9, 1999	13:23	w3_35-5gwd_2cy-ostps.mp		
-iw-ii	6799	Sept 9, 1999	14:02	wo_55-59wu_2cy-osips.output		
1W-1	5142289	Sept 9, 1999	14:02	wpi.mox1a.inp		
(W-II	17006525	Sept 9, 1999	14.01	W235 5 6 jokiol output		
	17090323	Sept 24, 1999	10:41	W335-5-6-jokio1.output		
	9003	Sept 24, 1999	07:31	W335-5-6 joki01 inp		
	17590401	Sept 24, 1999	07:57	W335-5-6.jokio2.mp		
	9078	Sept 24, 1999	10.27	h20h13f mov1a inp		
1W-11	2606600	Sept 24, 1999	13.17	h2oh13f.mox1a.htp		
	2030000	Sept 24, 1999	10:55	linfh2o mox inn		
	669350	Sept 24, 1999	17:36	linfh2o.mox.lst		
	669339	Sept 24, 1999	17.30	linfb2comerculat		
[W-[[008233	Sept 10, 1999	19.10	linfluid MOXIs inc		
[W-[[2525220	Sept 24, 1999	13.34	influx2.MOX1a.inp		
rw-rr	2555556	Sept 24, 1999	17.33	Innux2.MOXTa.ist		
FW-FF	6024	Sept 24, 1999	08:05	infox.mox.inp		
rw-rr	66//15	Sept 24, 1999	19:27	infox.mox.ist		
rw-rr	6087	Sept 24, 1999	08:15	infox.mox1a.inp		
rw-rr	670093	Sept 24, 1999	11:48	infox.mox1a.lst		
rw-rr	6167	Sept 24, 1999	13:32	infox.mox1b.inp		
·rw-rr	670183	Sept 24, 1999	17:02	infox.mox1b.lst		
rw-rr	5131789	Sept 26, 1999	10:35	outfe.mox1f1.lst		
rw-fr	5577	Sept 26, 1999	08:57	out.e49.mox1a.inp		
·rw-rr	5244657	Sept 26, 1999	09:03	out.e49.mox1a.lst		
-FW-FF	5733	Sept 26, 1999	19:23	out.e49.mox1b.inp		
·rw-rr	5060224	Sept 26, 1999	19:30	out.e49.mox1b.lst		
·rw-rr	6003	Sept 26, 1999	11:20	out.e49.mox1c.inp		
-rw-rr	5060987	Sept 26, 1999	11:13	out.e49.mox1c.lst		
-rw-rr	6396	Sept 26, 1999	07:09	out.e49.mox1d.inp		
-rw-rr	5062580	Sept 26, 1999	07:13	out.e49.mox1d.lst		
-rw-rr	5256	Sept 26, 1999	16:29	out.fe.mox.inp		
·rw-rr	5314692	Sept 26, 1999	16:33	out.fe.mox.lst		
•rw-rr	5507	Sept 26, 1999	10:19	out.fe.mox1a.inp		

Calculation

Waste Package OperationsCalculationTitle: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste PackagePWR MOX SNF in a Degraded 21
PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page VII-3 of VII-5

Assembly Waste Pack	age			
Read (r), Write (w),	T			
Execute (x)	File Size	Creation	Creation	
Permissions	(bytes)	Date	Time	File Name
-rw-rr	r 5314118 Sept 26, 1999		10:24	out.fe.mox1a.lst
-rw-rr	6788	Sept 26, 1999	14:30	out.fe.mox1a.wpi.inp
-rw-rr	5612	Sept 26, 1999	11:04	out.fe.mox1b.inp
-rw-rr	5315001	Sept 26, 1999	11:10	out.fe.mox1b.lst
-rw-rr	5708	Sept 26, 1999	11:17	out.fe.mox1c.inp
-rw-rr	5130148	Sept 26, 1999	11:23	out.fe.mox1c.lst
-rw-rr	5960	Sept 26, 1999	10:25	out.fe.mox1d.inp
-rw-rr	5130585	Sept 26, 1999	10:30	out.fe.mox1d.lst
-rw-rr	6249	Sept 26, 1999	13:43	out.fe.mox1e.inp
-rw-rr	5317135	Sept 26, 1999	13:25	out.fe.mox1e.lst
-rw-rr	6265	Sept 26, 1999	22:13	out.fe.mox1f.inp
-rw-rr	5131758	Sept 26, 1999	22:17	out.fe.mox1f.lst
-rw-rr	6266	Sept 26, 1999	10:32	out.fe.mox1fl.inp
-rw-rr	6656	Sept 26, 1999	21:50	out.fe.mox1g.inp
-rw-rr	5494153	Sept 26, 1999	21:56	out.fe.mox1g.lst
-rw-rr	5316	Sept 26, 1999	16:55	out.fegp.mox.inp
-rw-rr	71565	Sept 26, 1999	16:49	out.fegp.mox.lst
-rw-rr	4997	Sept 26, 1999	10:51	out.fin.inp
-rw-rr	5390793	Sept 26, 1999	10:53	out.fin.lst
-rw-rr	6513	Sept 26, 1999	12:57	out.fin.mox1c.inp
-rw-rr	5063246	Sept 26, 1999	12:59	out.fin.mox1c.lst
-rw-rr	9624	Sept 26, 1999	20:17	out.mox1.100.inp
-rw-rr	5149796	Sept 26, 1999	20:48	out.mox1.100.lst
-rw-rr	7574	Sept 26, 1999	09:20	out.mox1.122.inp
-rw-rr	5148317	Sept 26, 1999	09:27	out.mox1.122.lst
-ГW-ГГ	7898	Sept 26, 1999	15:36	out.mox1.212.inp
-rw-rr	5150101	Sept 26, 1999	14:59	out.mox1.212.lst
-rw-rr	8012	Sept 26, 1999	15:37	out.mox1.320.inp
-rw-rr	5150827	Sept 26, 1999	15:50	out.mox1.320.lst
-rw-rr	8587	Sept 26, 1999	16:02	out.mox1.518.inp
-rw-rr	5150649	Sept 26, 1999	16:14	out.mox1.518.lst
-rw-rr	7145	Sept 26, 1999	15:46	out.mox1a.wp.inp
-rw-rr	5144163	Sept 26, 1999	16:01	out.mox1a.wp.lst
-rw-rr	7199	Sept 26, 1999	16:06	out.mox1b.wp.inp
-rw-rr	5144414	Sept 26, 1999	16:10	out.mox1b.wp.lst
-rw-rr	7259	Sept 26, 1999	16:23	lout.mox1c.wp.inp
-rw-rr	5144769	Sept 26, 1999	16:25	out mox lc wp.lst
-rw-rr	7259	Sept 26, 1999	16:40	lout.mox1d.wn.inn
-rw-rr	5144665	Sent 26, 1999	16:44	out mox 1d wn 1st
-rw-rr	7323	Sept 26, 1999	12:28	out mox le wn inn
-rw-rr	5145633	Sept 26 1999	12:32	out mox le wn lst
+rw-rr	9509	Sept 26, 1999	20.14	out mox 2 100 inn
-rw-ff	5148880	Sept 26, 1999	20.14	out mox2 100 lst
-: ** 11 *FW-FF	7670	Sept 26 1000	13.11	out mov2 122 inn
-1 ** -11	5149777	Sept 26, 1999	13.11	Jour.mox2.122.mp
-1 w -1	3140///	Sept 20, 1999	13:14	Jour mov2 212 inn
	5140527	Sept 20, 1999	14:11	lout mov2 212 lst
-1 W-ff	0149337	Sept 20, 1999	14:17	out.mox2.212.ist
-1 w-11	84/3	1 sept 20, 1999	10:01	jour.mox2.516.mp

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page VII-4 of VII-5

HP File Directory for C	AL-EBS-NU	-000008 REV 0	0				
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR							
Assembly Waste Packa	age						
Read (r), Write (w),							
Execute (x)	File Size	Creation	Creation				
Permissions	(bytes)	Date	Time	File Name			
-rw-rr	5150147	Sept 26, 1999	16:13	out.mox2.518.lst			
-rw-rr	9394	Sept 26, 1999	20:10	out.mox3.100.inp			
-rw-rr	Sept 26, 1999	Sept 26, 1999	20:26	out.mox3.100.lst			
-rw-rr	8359	Sept 26, 1999	15:44	out.mox3.518.inp			
-rw-rr	5149583	Sept 26, 1999	16:03	out.mox3.518.lst			
-rw-rr	9279	Sept 26, 1999	16:56	out.mox4.100.inp			
-rw-rr	5151426	Sept 26, 1999	17:06	out.mox4.100.lst			
-ſW-ſſ	8246	Sept 26, 1999	15:35	out.mox4.518.inp			
-rw-rr	5149039	Sept 26, 1999	16:02	out.mox4.518.lst			
-rw-rr	9164	Sept 26, 1999	16:52	out.mox5.100.inp			
•rw-rr	5150924	Sept 26, 1999	17:07	out.mox5.100.lst			
-rw-rr	8126	Sept 26, 1999	15:37	out.mox5.518.inp			
-rw-rr	5151777	Sept 26, 1999	15:51	out.mox5.518.lst			
-rw-rr	9049	Sept 26, 1999	16:48	out.mox6.100.inp			
-rw-rr	5150568	Sept 26, 1999	16:57	out.mox6.100.lst			
-rw-rr	8934	Sept 26, 1999	16:36	out.mox7.100.inp			
-rw-rr	5149959	Sept 26, 1999	16:57	out.mox7.100.lst			
-rw-rr	8819	Sept 26, 1999	16:30	out.mox8.100.inp			
-rw-rr	5152632	Sept 26, 1999	16:36	out.mox8.100.lst			
-rw-rr	8702	Sept 26, 1999	16:09	out.mox9.100.inp			
-rw-rr	5152005	Sept 26, 1999	16:36	out.mox9.100.lst			
-rw-rr	6717	Sept 26, 1999	09:22	out.wpn.mox.inp			
-rw-rr	5063605	Sept 26, 1999	09:25	out.wpn.mox.lst			
-rw-rr	5142388	Sept 26, 1999	14:21	wpi.mox1a.lst			
-rw-rr	54514	Sept 26, 1999	07:22	rlp5.MOX04cR1.inp			
-rw-rr	43913	Sept 08, 1999	8:49	r5wp2d.c103c			

Table VII-2. Directory of PC Files on Compact Disk

Criticality Consequer	ice Calculatio	on Involving II	ntact PWR M	OX SNF in a Degraded
Assembly Waste Pac	kage			
	File Size	Creation	Creation	
DOS File Name	(bytes)	Date	Time	File Name
CASE2CR1.S01	1,370,174	08-31-99	3:49p	Case2cR1.s01
CASE3CR1.S01	1,370,174	08-31-99	3:50p	Case3cR1.s01
CASE3DR1.S01	1,370,174	08-31-99	3:56p	Case3dR1.s01
CASE3ER1.S01	1,370,174	09-24-99	9:38a	Case3eR1.s01
CASE3FR1.S01	1,370,174	09-01-99	7:55a	Case3fR1.s01
CASE3GR1.S01	1,370,174	08-30-99	3:20p	Case3gR1.s01
CASE4CR1.S01	910,634	09-01-99	10:44a	Case4cR1.s01
CASE4ER1.S01	910,634	08-31-99	3:53p	Case4eR1.s01
CASE4ER1.S02	2,390,634	09-02-99	5:06p	Case4eR1.s02
CURIE.XLS	78,848	09-08-99	9:22p	curie.xls
(SRUN~1.SCR	57	09-08-99	8:29p	KS.run.script
(S~1.SCR	2,839	09-08-99	8:29p	KS.script
AOX03C.XLS	3,804,160	09-01-99	10:23p	MOX03c.xls
MOX04A.XLS	1,829,888	09-02-99	8:24a	MOX04a.xls

 Waste Package Operations
 Calculation

 Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00

Page VII-5 of VII-5

PC File Directory for (CAL-EBS-NU	-000008 REV	00	
Criticality Consequen	ce Calculatio	n Involving li	ntact PWR M	OX SNF in a Degraded 21 PWR
Assembly Waste Paci	kage			
DOS File Name	File Size (bytes)	Creation Date	Creation Time	File Name
MOX_96~1.XLS	166,400	09-01-99	9:57p	MOX_96_sas2h.xls
NOCCUR~1.OUT	133,450	09-08-99	8:53a	NOCcuries.out
R5WP2D~1.C10	45,042	09-08-99	8:51p	r5wp2d.c103c
SSCCUR~1.OUT	115,430	09-09-99	9:46a	SSCcuries.out
STRIP.EXE	301,237	08-16-99	4:40p	strip.exe
STRIP.FOR	7,310	08-16-99	4:40p	strip.for

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package Document Identifier: CAL-EBS-NU-000008 REV 00

Page VIII-1 of VIII-5

ATTACHMENT VIII

Worksheets for calculating the RELAP5/MOD3.2 geometry and loss coefficient data are listed in this attachment. These data are summarized in Section 5.4.

Westinghouse 17x17 MOX Fuel

Pin Pitch = .496 in.

Fuel Pellet OR = .1544 in.

Clad IR = .1575 in.

Clad OR = .180 in.

Guide Tube IR = .225 in.

Guide Tube OR = .241 in.

*Assume Inst. Tube = Guide Tube

Pellet Volume = $19.7718993760 \text{ in}^2 * \text{height}$ Clad Volume = $6.29810787228 \text{ in}^2 * \text{height}$ GT & IT Volume = $.585592870630 \text{ in}^2 * \text{height}$

Fuel Water Volume	$=(17 * .496)^2 * height$
	- 19.7718993760 in ² * height
	- 6.29810787228 in ² * height
	585592870630 in ² * height

Fuel Region Water	$= (8.432 \text{ in})^2 * \text{height}$
Volume	- 19.7718993760 in ² * height
	- 6.88370074291 in ² * height

Calculation

Calculation

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page VIII-2 of VIII-5

Fuel Region Water = $44.4430238811 \text{ in}^2 * \text{height}$ Volume = $44.4430238811 \text{ in}^2 * 144 \text{ in}/5$ Fuel Region Water = $1279.95908778 \text{ in}^3$ Volume Fuel Region Water = $.74071706 \text{ ft}^3$ Volume $(1/2) = .37035853 \text{ ft}^3$

Fuel Region Cross Flow Height = 8.432 in/12= .70266667 ft

Hydraulic Diameter for Fluid Friction {d_h (friction)} Flow Region is Around Clad & Guide Tubes Volume = $[(8.432)^2 - 264 \pi (.18)^2 - 25 \pi (.241)^2]$ * length = 39.6650260055 in² * length Surface Area = $[264 * 2 \pi (.18) + 25 \pi (.241)]$ * length = 336.433157273 in * length

 $d_{h} \text{(friction)} = \frac{4*39.6650260055 \text{ in}^{2} * \text{length}}{336.433157273 \text{ in} * \text{length}}$

= .471594730163 in

 d_h (friction) = .03929956 ft.

Channel length = 144/5 = 28.8 in

Cross flow height = 8.432 in

Ratio for d_h (friction) = 28.8/8.432 = 3.41555977230

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21
PWR Assembly Waste PackageDocument Identifier: CAL-EBS-NU-000008 REV 00Page VIII-3 of VIII-5

Junction Area = [17 (.496 in) - 17 (.36 in)] 144/5 in = [8.432 in - 6.12 in] 28.8 in = $66.5856 in^2$ Junction Area = $.4624 ft^2$ $(1/2) = .2312 ft^2$

Fuel Assembly Pellet - Heat Structure

13301101 9 .012866667

Pellet OR = .1544 in = .012866667 ft

Length of fuel (pins) in fluid volume to determine heat transfer surface area.

Surface Area = 2π OR * length

Length = 264 pins * 144 in/[(5) * 12 in/ft]

= 264 * 28.8 in/12 (in/ft)

 $= 633.6 \, \mathrm{ft}$

Fluid volumes 010 through 050

= 1/2 (264) 2.4ft = 316.8ft

13301601 010010000 10000000 1 1 316.8 5 13301602 060010000 10000000 1 1 633.6 13 13301901 0 .057843059 .057843059 0.0 13

Hydraulic Diameter for heat transfer d_h (heat)

 d_{h} (heat) = $\frac{4* \text{ cross-sectional area of fluid volume to be heated * length}}{264*2\pi \text{ OR (pellet) * length}}$

 $=\frac{4*44.4430238811 \text{ in}^2}{264*2\pi*.1544 \text{ in}}$

Title: Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

Document Identifier: CAL-EBS-NU-000008 REV 00

Page VIII-4 of VIII-5

 d_h (heat) = .694116711476 in

= .057843059 ft

Fuel Pin Clad, Guide Tubes & Inst. Tube

Heat Structures

This is a combined structure -

IR (fuel rod) = .1575 in = .013125 ft

Area = π (.180² - .1575²) 264

 $+\pi$ (.241² - .225²) 25

Area (289 tubes) = π (OR² effective - IR²) 289

OR _{effective} =
$$\sqrt{\frac{\text{Area} (289 \text{ tubes})}{289 \pi} + \text{IR}^2}$$

 $OR_{effective} = .179966896706$ in = .014997241 ft

13481000 13 3 2 1 .0131250

13481101 2 .014997241

Length of clad, GT & IT in fluid volume to determine heat transfer surface area Surface Area = 2π OR_{effective} * Length Length = 289 tubes * 144 in / (5 * 12 in/ft) = 289 * 28.8 in / 12 in/ft = 693.6 ft

<u>Waste Packag</u>	<u>e Operatio</u>	ns					<u>Calculation</u>
Title: Criticalit	y Conseque	ence Calculat	tion	Invo	lving Int	act P	WR MOX SNF in a Degraded 21
PWR As	sembly Wa	ste Package					_
Document Iden	tifier: CAL	-EBS-NU-00	0000	<u>8 RE</u>	EV 00		Page VIII-5 of VIII-5
Fluid Volumes = 1/2 69	010 throug 93.6 ft = 34	h 050 6.8 ft					
13481501 01	0010000	10000000	1	1	346.8	5	

13481502 060010000 10000000 1 1 693.6 13

Hydraulic Diameter for heat transfer d_h (heat)

 d_{h} (heat – outside) = $\frac{4 * cross - sectional}{outer - surface}$ area of fluid volume to be heated * length

 $=\frac{4*44.4430238811*\text{length}}{289*2\pi.179966896706*\text{length}}$

= .543992926686 in

 d_h (heat-outside) = .045332744 ft

 $d_{h} \text{ (heat-inside)} = \frac{4*44.4430238811*\text{ length}}{289*2\pi*.1575*\text{ length}}$

= .621591865687 in

 d_h (heat-inside) = .051799322 ft

13481801 0 .051799322 .051799322 0.0 13

13481901 0 .045332744 .045332744 0.0 13