

Direct Disposal of Dual-Purpose Canisters – Options for Assuring Criticality Control

Winter 2009 U.S. NWTRB Meeting January 28, 2009

Albert J. Machiels Senior Technical Executive Alan H. Wells **EPRI** Consultant

Topics

- 1. Background
- 2. Criticality Evaluations
- 3. Results
 - a) Burnup Credit Methodology
 - i. Fission Products
 - ii. Loading Pattern
 - iii. Moderator Displacement
 - iv. Surrogate Control Rods
 - b) Biases and Uncertainties
- 4. Options for Criticality Control

Background

- March '07: Information provided by TVA to US NWTRB Staff about HOLTEC Dual-Purpose MPC-32 canisters used at Sequoyah
- NWTRB Staff expressed interest to EPRI in a calculation of the potential of used (spent) fuel in two canisters to sustain a nuclear reaction (k_{eff}) assuming:
 - Fully flooded conditions
 - No neutron absorber
 - "Full" burnup credit (YMP approach)
 - As of December 31, 2017 if date was needed
- EPRI performed a number of calculations documented in EPRI Report 1016629 *"Feasibility of Direct Disposal of Dual-Purpose Canisters – Options for Assuring Criticality Control"*
 - <u>http://mydocs.epri.com/docs/public/000000000001016629.pdf</u>

Criticality Evaluation According to ...

Reactor Operation	Fissile Material Transportation	System Performance Assessment	
Operational purpose	Small number of scenarios	Potentially large number of scenarios	
$k_{eff} \sim 1$	$k_{eff} < 1$	Probability of $k_{eff} = 1$	
Approach to reactor	No measurement of margin to	No measurement of margin to	
criticality is monitored	criticality	criticality	
CASMO/SIMULATE	SAS2H/KENO or MCNP	SAS2H/KENO or MCNP	
Best-estimate approach	Highly conservative approach	Probabilistic approach	
Use of actual fuel parameters	Use of a limited subset of "design basis fuel" parameters in a most conservative manner	Principal isotopes	
Burnup is taken into account	From no to limited credit for burnup + arbitrary safety margin	no arolirary margin	

 k_{eff} = effective neutron multiplication factor = ratio of the number of neutrons resulting from fission in each generation to the total number of neutrons lost by both absorption and leakage in the preceding generation

 k_{∞} = infinite neutron multiplication factor (no leakage)

Dual-Purpose Canister for 32 PWR Assemblies

Probabilistic Approach Would Take Into Account ...

Main Assumptions

- Assemblies: W 17x17 with Wet Annular Burnable Absorbers (WABAs) irradiated in TVA's Sequeyah reactors
- 32 assemblies stored in Holtec Dual-Purpose Canister (MPC-32)
- Neutron absorber material (METAMIC) in MPC basket
 - As-built: neutron absorber is assumed to be present
 - Disposal (degraded): neutron absorber is assumed to be completely dissolved away
- Canister, basket, and fuel assembly geometries remain unchanged
- Fully flooded with water (density = 1 g/cm^3)
 - Effect of partial flooding: significant for canister less than 5/8th full
 - Small effect of temperature in the temperature range between 4°C and 75°C
- Cooling time: 5 years
 - Effect of cooling time: significant
 - Assuming 10 years instead of 5 years result in a k_{eff} decrease of ${\sim}2\%$

MPC-018 and -011 Loading (First 16 Cells)

		MPC-018				MPC-011		
	Assembly ID	Initial Enrichment (Wt% U-235)	Burnup (MWd/MTU)	Position	Asse mbly ID	Initial Enrichment (Wt% U-235)	Burnup (MWd/MTU)	
	F31	3.50	38,643	1	N29	3.10	07 444	90°*
	E38	3.75	37,848	2	F55	3.80		
	E64	3.75	37,473	3	F41	3.80	k	
	R45	3.60	36,755	4	E18	3.75		
→	D64	3.65	42,743	5	P54	3.50		
	D04	3.65	42,084	6	P55	3.50	Þ-	
	D25	3.65	37,920	7	D45	3.65	180'	11 12 18 14 15 16 6
	F12	3.50	42,081	8	D30	3.65		
	D44	3.65	40,167	9	P31	3.50		
>	N04	3.10	34,435	10	P61	3.50		23 24 25 27 28
	N40	3.10	34,495	11	D68	3.65		
	F71	3.80	41,618	12	F66	3.80		
	F34	3.80	41,503	13	F36	3.80		
	F14	3.50	40,812	14	F10	3.50	40,982	270"
	F46	3.80	38,519	15	F24	3.50	40,735]
	N07	3.10	36,308	16	D10	3.65	42,374]

Best-Estimate <u>Single Assembly</u> Reactivity (k_∞) Using CASMO Code

	Assemb	ly	Reactiv	vity (\mathbf{k}_{∞})
ID Enrichment (wt% U-235)		Burnup (MWd/MTU)	Reactor Conditions (600K/1000K)	Disposal Conditions (300K)
D64	3.65	42,743	0.946	0.993
N04	3.10	34,435	0.968	1.025

Reminder

"*Disposal*" = Neutron absorber material is assumed to be completely dissolved away

Cooling time = Five years

Comparison Between CASMO and SAS2H/MCNP Calculated Reactivity (Single Assembly k_∞)

Assembly	SAS2F (16 Fissio	H/MCNP n Products)	CASMO		
	Disposal Conditions	Reactor Conditions	Disposal Conditions	Reactor Conditions	
D64	1.075	1.016	0.993	0.946	
N04	1.080	1.024	1.025	0.968	

From k_{∞} (Single Assembly) to k_{eff} (MPC-32)

- 32 spent fuel assemblies with specific characteristics in specified positions (accounted for)
- Neutron absorption by structural and neutron absorber materials (accounted for)
- Neutron leakage (accounted for)
- Methodology to calculate k_{eff}

Burnup Credit Methodology

- 14 uranium and transuranic isotopes + oxygen
 - O-16; U-233, -234, -235, -236, -238; Np-237; Pu-238, -239, -240, -241, -242; Am-241, -242m, -243
- Options for fission products
 - 1. Actinide-only burnup credit
 - 2. Five fission products
 - Rh-103; Nd-143; Sm-149 and -151; Gd-155
 - 3. Six fission products
 - + Cs-133
 - 4. Sixteen fission products
 - + Mo-95; Tc-99; Ru-101; Ag-109; Nd-145; Sm-147, -150, -152; Eu-151 and -153

Effect of Fission Products

	k _{eff}	σ	FP Worth	
Actinide-	Only Burnu	p Credit		
As-Built	0.88535	0.00022	0	
Disposal	1.06569	0.00020	0	
Act	inides + 5 F	Ps		Worth of Rh ¹⁰³ , Nd ¹⁴³ , Sm ¹⁴⁹ , Sm ¹⁵¹ , Gd ¹⁵⁵
As-built	0.83555	0.00021	-0.050	
Disposal	1.00157	0.00019	-0.064	
Acti	Actinides + 16 FPs			+ Worth of Mo ⁹⁵ , Tc ⁹⁹ , Ru ¹⁰¹ , Ag ¹⁰⁹ , Cs ¹³³ , Nd ¹⁴⁵ , Sm ¹⁴⁷ , Sm ¹⁵⁰ , Sm ¹⁵² , Eu ¹⁵¹ , Eu ¹⁵³
As-built	0.80948	0.00021	-0.076	
Disposal	0.97029	0.00019	-0.095	
Best-Es	stimate (CA	SMO)		
As-built	~0.77		-0.12	Applied 5% correction based on comparison
Disposal	~0.92		-0.15	between calculated k_{∞} using CASMO and (Actinides + 16 FPs)

Results – Effect of Loading Pattern

Condition	k _{eff}	σ	Δk_{eff}
Disposal – As loaded	1.00157	0.00019	
<i>Disposal</i> – Rearranged 4 Center	0.99244	0.00019	-0.009
<i>Disposal</i> – Rearranged 4 Center + 8 Middle	0.98419	0.00019	-0.017
<i>Disposal</i> – Rearranged 4 Center + 12 Middle	0.98284	0.00019	-0.019
<i>Disposal</i> – Worst Case – Maximized Reactivity	1.00890	0.00019	+0.007

Simple Loading (4 Central Positions Minimized)

Optimized Loading (4 Central, 12 Middle Positions Minimized)

	-				-
	1	2	3	4	
	1	2	3	4	
8	6.69	7.59	7.65	7.36	
5	6	7	8	9	10
5	6	7	8	9	10
6.40	6.49	7.18	6.04	6.89	6.02
11	12	13	14	15	16
11	12	17	22	15	16
6.04	7.07	5.43	5.50	7.68	5.73
17	18	19	20	21	22
13	18	23	27	21	14
7.08	7.40	5.54	5.57	6.81	6.26
23	24	25	26	27	28
19	24	25	26	20	28
7.40	6.01	6.64	7.62	6.81	5.60
	29	30	31	32	
	20	30	31	32	
	25	50	51	02	

	1	2	3	4	
	1	2	3	4	
	6.69	7.59	7.65	7.36	
5 6.49	6 5 6.40	7 28 5.60	8 30 5.69	9 11 6.04	10 26 7.62
11	12	13	14	15	16
9	31	17	22	16	15
6.89	5.70	5.43	5.50	5.73	7.68
17	18	19	20	21	22
13	32	23	27	29	25
7.08	5.72	5.54	5.57	5.82	6.64
23	24	25	26	27	28
19	14	24	10	8	7
7.40	6.26	6.01	6.02	6.04	7.18
	29	30	31	32	
	21	20	12	18	
	6.81	6.81	7.07	7.40	

ELECTRIC POWER RESEARCH INSTITUTE

© 2009 Electric Power Research Institute, Inc. All rights reserved.

Condition	k _{eff}	σ	Δk_{eff}
Disposal	1.00157	0.00019	
<i>Disposal</i> - WABA Moderator Displacement	0.97862	0.00019	-0.023
<i>Disposal</i> - BAA Moderator Displacement	0.97319	0.00019	-0.028

WABA: Westinghouse Annular Burnable Absorber

BAA: Burnable Absorber Assembly (borated pyrex)

Results – Effect of Adding Surrogate Control Rods

Condition	k _{eff}	σ	Δk_{eff}
Disposal	1.00157	0.00019	
<i>Disposal</i> – Spiked 4 Center Assembly	0.95493	0.00020	-0.047
<i>Disposal</i> – All 32 Assemblies Spiked	0.64817	0.00019	-0.353

Biases and Uncertainties

- <u>Fissile Material Transportation</u> applications presently require taking biases and uncertainties into account in a conservative manner
 - Uncertainties in cross sections
 - Actinides
 - Fission products
 - Uncertainties in isotopic concentrations
 - Methodological biases
 - + Arbitrary safety margin

Bias + uncertainties can potentially negate a large share of the benefits provided by adding fission products

• <u>System Performance Assessment</u> should, in principle, be handled in a more rigorous manner

Feasibility of Direct Disposal of Dual-Purpose Casks – Options for Assuring Criticality

Canister Contents

- 1. Actual fuel inventory
- 2. Moderator displacement
- 3. Loading optimization
- 4. Moderator displacement
- 5. Corrosion-resistant control element inserts

<u>Analysis Method</u>

- 1. Probabilistic approach
 - a) Level of flooding
 - b) Time-dependent reactivity
- 2. Sufficient credit for burnup with appropriate treatment of uncertainties associated with fuel composition and nuclide parameters

EPRI Reports

- Feasibility of Direct Disposal of Dual-Purpose Canisters Options for Assuring Criticality Control. EPRI, Palo Alto, CA: 2008. 1016629 http://mydocs.epri.com/docs/public/000000000001016629.pdf
- Criticality Risks During Transportation of Spent Fuel Revision 1. EPRI, Palo Alto, CA: 2008. 1016635

http://mydocs.epri.com/docs/public/000000000001016635.pdf

 Fuel Relocation Effects for Transportation Packages – EPRI, Palo Alto, CA: 2007. 1015050

http://mydocs.epri.com/docs/public/000000000001015050.pdf

- Feasibility of Direct Disposal of Dual-Purpose Canisters in a High-Level Waste Repository. EPRI, Palo Alto, CA: 2008. 1018051
- http://mydocs.epri.com/docs/public/000000000001018051.pdf

Backup Slide Reactivity Calculations – Main Parameters

- Irradiation Parameters
 - Fuel temperature: 1000K
 - Moderator temperature: 600K
 - Moderator density: 0.670 g/cm³
 - Boron concentration: 550 ppm average, constant
 - Specific power: calculated from Sequoyah unit power history, constant
 - Absorbers in guide tubes: assumed to be present for the full three cycles (later corrected)
- Main Software Tool
 - Isotopic calculation: SAS2H
 - Reactivity calculations: MCNP4B/MCNP5

