DOE/RW-0184 VOLUME 8 of 8 (DE88011574) 7 3 3 3 3

2 6 5

HQX.880801.54

.0102 くりい

Office of Civilian Radioactive Waste Management

CHARACTERISTICS OF SPENT FUEL, HIGH-LEVEL WASTE, AND OTHER RADIOACTIVE WASTES WHICH MAY REQUIRE LONG-TERM ISOLATION

- Appendix 4A. Nuclear Reactors at Educational Institutions in the United States
- Appendix 4B. Data Sheets for Nuclear Reactors at Educational Institutions
- Appendix 4C. Supplemental Data for Fort St. Vrain Spent Fuel
- Appendix 4D. Supplemental Data for Peach Bottom 1 Spent Fuel

JUNE 1988

U.S. Department of Energy

Office of Civilian Radioactive Waste Management Washington, D.C. 20585

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use-fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

ا میں دیکھی کو بار کو کا میں کا بار کو کا کر کی کا دیکھی کے بار کی کر کر کی کا دیکھی کی کا دیکھی کا دیکھی کا د ایک کا دیکھی ایک کا دیکھی 7 0 0 0 8

2 5 5 DOE/RW-0184 VOLUME 8 of 8 UC-70,-71, and -85

Office of Civilian Radioactive Waste Management

CHARACTERISTICS OF SPENT FUEL, HIGH-LEVEL WASTE, AND OTHER RADIOACTIVE WASTES WHICH MAY REQUIRE LONG-TERM ISOLATION

- Appendix 4A. Nuclear Reactors at Educational Institutions in the United States
- Appendix 4B. Data Sheets for Nuclear Reactors at Educational Institutions
- Appendix 4C. Supplemental Data for Fort St. Vrain Spent Fuel
- Appendix 4D. Supplemental Data for Peach Bottom 1 Spent Fuel

JUNE 1988

U.S. Department of Energy Office of Civilian Radioactive Waste Management Washington, D.C. 20585

APPENDIX 4A. NUCLEAR REACTORS AT EDUCATIONAL

INSTITUTIONS IN THE UNITED STATES

2664

4A-1

4A.1 INTRODUCTION

There are fifty reactors at educational institutions in the U.S. These reactors may be categorized into six general types, as follows: (1) open pool type with plate fuel assemblies, (2) open pool TRIGA type with cylindrical fuel pins (often used in 4-pin "clusters"), (3) open pool AGN-201 type with fuel elements consisting of UO_2 -polyethylene discs (about 10" diameter), (4) open pool PULSTAR type (5 x 5 fuel pin arrays), (5) Atomics International liquid fuel type, and (6) miscellaneous types. Table 4A.1 shows the number of educational reactors in each of the categories.

Table 4A.2 is a complete list of the reactors summarized in the previous table and gives data on locations, thermal power, fuel type category, and other details. This list was compiled principally from information in Burn and Bilof (1983), supplemented by conversations with individuals at the various institutions.

4A.2 FUEL SUPPLY ARRANGEMENTS

Under DOE's university assistance program, DOE supplies the fuel for university and educational reactors and retains ownership of the fuel; thus DOE is responsible for disposal of the fuel when it is removed from a reactor. Figure 4A.1 is a schematic representation of the fuel supply arrangements for reactors under this program. The fuel procurement contractor is EG&G, Idaho Falls, Idaho, and procurement arrangements are made by EG&G with the fuel manufacturers. When an order for fuel is received from EG&G, the fuel manufacturer ships the desired number of fuel elements directly to the university reactor. Each university contacts EC&G when it needs to order fuel, and describes the 7 8 9 8 8 2 6 6 5

4A-2

type and number of fuel elements needed. Figure 4A.1 shows only those university reactors that regularly order fuel in appreciable quantities. Many university reactors require fueling only infrequently; for others, no refueling is planned in the foreseeable future. Table 4A.3 shows the approximate refueling rates for some of the major university reactors. This information was supplied by EG&G (Brown, 1986a).

4A.3 FUEL ELEMENT SERIAL NUMBERS

Tables 4A.4 - 4A.8 list fuel element serial numbers for reactors that use plate-type elements manufactured by Babcock and Wilcox and supplied to the reactors under the EG&G subcontract with DOE. The list indicates which elements have already been shipped to the reactors and which ones have not yet been shipped but are being stored at the B&W plant.

4A.4 REACTOR DATA SHEETS

Appendix 4B consists of detailed data sheets on the fifty university/educational reactors listed in Table 4A.2. Supplemental information is included in these data sheets to amplify on the data contained in Burn and Bilof 1983.

Fig. 4A.1. Fuel supply arrangements for DOE University Assistance Program.

50

Table	4A.1. Reactor fuel types used at educational	institutions
Fuel category	Description	Numbers of reactors listed
1	Open pool, plate fuel elements (includes ARGONAUT, MTR type, and other plate fuel reactors)	20
2	Open pool, TRIGA type, cylindrical fuel elements	18
3	Open pool, AGN-201 type, UO ₂ -polyethylene disc fuel elements	6
4	Open pool PULSTAR; fuel element is 5 x 5 array of pins	2
5	Atomics International liquid fuel type	2
6	AGN-211 UO ₂ -polyethylene block fuel elements	1
7	Open pool, pin-type fuel assembly	

Total

.

dunational atitutiona 1 ...

Ref. r	no. Institution	Location	Туре	Power	Fuel type category
1	Brigham Young University	Provo, UT 84602	Atomics Intl Model L - 77	10 W	5
2	Catholic University	Washington, DC 20064	Aerojet General Nucleonics AGN-201 CU	0.1 W	3
3	Columbia University	New York, NY 10027	TRIGA Mk II General Atomics	250 kW	2
4	Cornell University	Ithaca, NY 14853	TRIGA Mk II General Atomics	100 kW	2
5	Cornell University	Ithaca, NY 14853	Open tank pin fuel critical facility "zero power reactor"	100 W	6
6	Georgia Institute of Technology	Atlanta, GA 30332	General Nuclear Engineering Co. (tank type) plate fuel heavy water cooled and moderated	5 MW	1
7	Idaho State University	Pocatello, ID 83209	Aerojet General AGN-201M	5 W	3
8	Iowa State University	Ames, Iowa 50011	Argonaut	10 kW	1
9	Kansas State University	Manhattan, KA 66506	Open pool TRIGA	250 kW	2
10	Manhattan College	Riverdale, NY 10471	Open pool plate fuel	0.1 W	1

Table 4A.2. Reactors at universities and other educational institutions in the U.S.

<u></u>

CO

Ref. no.	Institution	Location	Туре	Power	Fuel type category
11	Massachusetts Institute of Technology	Cambridge, MA 02139	Tank type plate fuel (constructed by ACF Industries)	4 . 9 MW	1
12	Memphis State University	Memphis, TN 38152	AGN-201	0.1 W	3
13	Michigan State University	E. Lansing, MI 48824	TRIGA Mk I open pool type	250 kW	2
14	North Carolina State University	Raleigh, NC 27650	PULSTAR pool type	1 MW	4
15	Ohio State University	Columbus, OH 43212	Open pool plate type	10 kW	1
16	Oregon State University	Corvallis, OR 97331	Open pool TRIGA	1 MW	2
17	Pennsylvania State University	University Park, PA 16802	Open pool TRIGA Mk III	1 MW	2
18	Purdue University	W. Lafayette, IN 47907	Open pool plate type	10 kW	1
19	Reed College	Portland, OR 97202	Open pool TRIGA Mk I	250 kW	2
20	Rensselaer Polytechnic Institute	Troy, NY 12181	Tank type plate fuel	Critical assembly (100 W)	1

Table 4A.2. (continued)

Things of the second

2

<u>من</u>

Ref. no.	Institution	Location	Туре	Power	Fuel type category
21	State University of New York	Buffalo, NY 14214	Open tank type PULSTAR	2 MW	4
22	Texas A&M University	College Station, TX 77843	AGN-201	5 W	3
23	Texas A&M University	College Station, TX 77843	Open pool TRIGA	1 MW	2
24	University of Arizona	Tucson, AR 85721	Open pool TRIGA	100 kW	2
25	University of California, Berkeley	Berkeley, CA 97420	Open pool TRIGA	1 MW	2
26	University of California, Irvine	Irvine, CA 92717	Open pool TRIGA Mk I	250 kW	2
27	University of California, Los Angeles	Los Angeles, CA 90024	Argonaut plate type	100 kW	1
28	University of California, Santa Barbara ^a	Santa Barbara, CA 93106	Liquid fuel ^a	10 W	5
29	University of Florida	Gainesville, FL 32611	Argonaut plate type	100 kW	1
30	University of Illinois	Urbana, IL 61801	Open pool TRIGA	1 W	2

Table 4A.2. (continued)

~1

2 5 7

2

Ref.	no.	Insti	tution	Location	Туре	Pc	ower	Fuel type category
31	U	niversity	of Illinois	Urbana, IL 61801	Open pool TRIGA	1	.5 MW	2
32	U	niversity	of Kansas	Lawrence, KA 66045	Open pool plate type	10	kW	1
33	Ur	niversity	of Lowell	Lowell, MA 01854	Open pool plate type	1	MW	1
34	Ur	niversity	of Maryland	College Park, MD 20740	Open pool TRIGA	250	kW	2
35	Ur	niversity	of Michigan	Ann Arbor, MI 48109	Open pool plate type	2	MW	1
36	Un	niversity (Columbia	of Missouri,	Columbia, MO 65211	Open pool plate type	10	MW	1
37	Ur	niversity (Rolla	of Missouri,	Rolla, MO 65401	Open pool plate type	200	kW	1
38	Ur	niversity (of New Mexico	Albuquerque, NM 87131	AGN-201	5	W	3
39	Un	liversity o	of Oklahoma	Norman, OK 73019	AGN-211P Open pool, poly- ethylene block fuel	15	W	3
40	Un	iversity c	of Texas	Austin, TX 78712	Open pool TRIGA Mk I modified	250	k₩	2

Table 4A.2. (continued)

ر ^{در} ا

Ref. no.	Institution	Location	Туре	Powe	r	Fuel type category
41	University of Utah	Salt Lake City, UT 84112	AGN type (refer to Catholic University for details)	5	W	3
42	University of Utah	Salt Lake City, UT 84112	TRIGA Open pool	100	k₩	. 2
43	University of Virginia	Charlottesville, VA 22901	Open pool plate type	100	W	1
44	University of Virginia	Charlottesville, VA 22901	Open pool plate type	2	MW	1
45	University of Washington	Seattle, WA 98195	Argonaut	100	k₩	1
46	University of Wisconsin	Madison, WI 53706	Open pool TRIGA FLIP	1	MW	2
47	Virginia Polytechnic Institute	Blacksburg, VA 24060	Argonaut	100	k₩	1
48	Washington State University	Pullman, WA 99164	Open pool TRIGA	1	MW	2
49	Worcester Polytechnic Institute	Worcester, MA 01609	Open pool (plate fuel)	10	k₩	1
50	Rhode Island Nuclear Science Center	Narragansett, RI 02882	Open pool plate type	2	MW	1

~

 \odot

ు

၀ ဖ

. 4

N

6 7

ŝ

Table 4A.2. (continued)

^aReactor has been decommissioned and fuel has been shipped to DOE.

Reactor location	Power	Type of fuel element	Average number of new fuel elements shipped per year	U-235 content per element (grams)
University of Missouri Columbia, Missouri	10 MW	plate	24	750
University of Michigan Ann Arbor, Michigan	2 MW	plate	18	167
University of Virginia Charlottesville, Virginia	2 MW	plate	6	195
Rhode Island Nuclear Science Center Narragansett, Rhode Island	2 MW	plate	18	126
University of Lowell Lowell, Massachusetts	1 MW	plate	4-5	126
Texas A & M University College Station, Texas	2 MW	TRIGA		
Pennsylvania State University University Park, Pennsylvania	1 MW	TRIGA	3-4	

Table 4A.3. Supports of tresh fuel to targe university react
--

^aData provided by EG&G, Idaho Falls, Idaho.

7 0 0 0 8 2 6 7 4

Table 4A.4. University of Michigan fuel element numbers^a

Reactor location: University of Michigan, Ann Arbor, Michigan 2 MW (see Appendix A, Reactor No. 35)

Total number of elements listed: 103

Element numbers:

MI-01	MI-20	MI- 39	MI-202	MI-219	MI-236*
02	21	40	203	220	237*
03	22	41	204	221	238*
04	23	42	205	222	239*
05	24	43	206	223	240 *
06	25	44	207	224	241*
07	28	45	208	225	242*
09	29	46	209	226	243 *
10	30	47	210	227	244*
11	31	48	211	228	245*
12	32	49	212	229*	246*
13	33	50	213	230*	247*
15	34	51	214	231*	248*
16	35	53	215	232*	: 249*
17	36	54	216	233*	250*
18	37	200	217	234*	251*
19	38	201	218	235*	252*
					25 3*

^aSource: EG&G, Idaho Falls, Idaho. Date: January 13, 1986. *Elements marked with an asterisk are currently stored at Babcock and Wilcox, Lynchburg, VA.

7.0003 20675

Table 4A.5. University of Missouri fuel element numbers^a

Reactor location: University of Missouri, Columbia, Missouri 10 MW (see Appendix A, Reactor No. 36)

Total number of elements listed: 174

Element numbers:

MO-01	MO-32	MO-67	MO- 99	MO-131	MO-164
02	33	68	100	132	165
03	34	69	101	133	200
04	35	70	102	134	201
05	36	71	103	135	202
06	37	72	104	136	203
07	38	73	105	138	205
08	39	74	106	138	205
0 9	40	75	107	140	206
10	41	76	108	141	207
11	42	77	109	142	208
12	43	78	111	143	209
13	44	79	112	144	210
14	45	80	113	145	211
15	46	81	114	146	212
16	47	82	115	147	213
17	48	83	116	148	214
18	53	84	117	149	215*
19	54	85	118	150	216*
20	55	87	119	151	
21	56	88	120	152	
22	57	89	121	153	
23	58	9 0	122	154	
24	59	91	123	155	
25	60	92	124	156	
26	61	93	125	157	
27	62	94	126	158	
28	63	95	127	159	
29	64	96	128	160	
30	65	97	129	161	
31	66	98	130	162	

^aSource: EG&G, Idaho Falls, Idaho. Date: January 13, 1986. $\star \texttt{Elements}$ marked with an asterisk are currently stored at <code>Babcock</code> and Wilcox, Lynchburg, VA.

•.	· .	and the second se	s,	~7	~	3	1	ാ
		1	¢	1		÷.	1	Û

Table 4A.6. Rhode Island Nuclear Science Center and University of Lowell fuel element numbers^a

Reactor locations:	Rhode Island Nuclear Science Center, Narragansett, RI
	2 MW (see Appendix A, Reactor No. 50)
	University of Lowell, Lowell, Mssachusetts 1 MW (see Appendix A, Reactor No. 33)

Total number of elements listed: 64

Element numbers:

RI-127	RI-142	RI-158	RI-174	RI-189
128	144	159	175	190
129	145	160	176	191
130	146	161	177	192
131	147	162	178	
132	148	163	179	
133	149	164	180	
135	150	166	181	
136	151	167	182	
137	153	169	184	
138	154	170	185	
139	155	171	186	
140	156	172	187	
141	157	173	188	

^aSource: EG&G, Idaho Falls, Idaho. These fuel elements are usable in both of the reactors listed here.

7 0 0 0 8 2 6 7 7

Table 4A.7. University of Virginia fuel element numbers^a

Reactor location: University of Virginia, Charlottesville, Va. 2 M (see Appendix A, Reactor No. 44)

Total number of elements listed: 26

Element numbers:

VI-001	VI-014*
002	015*
003	016*
004	017*
005	018
006	019
007	020
008	021
009	023
010	024
011	025*
012	026*
013	027*

^aSource: EG&G, Idaho Falls, Idaho. Date: January 13, 1986. *Elements marked with an asterisk are currently stored at Babcock and Wilcox, Lynchburg, VA.

7 0 0 3 2 5 7 8

Table 4A.8.	Massachusetts	Institute of	Technology
	fuel element	numbers ^a	

Reactor location: Massachusetts Institute of Technology, Cambridge, Mass.

4.9 MW (see Appendix A, Reactor No. 11)

Total number of elements listed: 41

Element numbers:

MIT-01	MIT-22
02	23
03	24
04	25
05	32
06	33
07	34
08	35
09	36
10	37
11	38
12	39
13	40*
14	41
15	42
16	43
17	44*
18	45*
19	46*
20	47*
21	

^aSource: EG&G, Idaho Falls, Idaho. Date: January 13, 1986. *Elements marked with an asterisk are currently stored at Babcock and Wilcox, Lynchburg, VA. APPENDIX 4B. DATA SHEETS FOR NUCLEAR REACTORS AT EDUCATIONAL INSTITUTIONS IN THE UNITED STATES

	7	0	0 0	3	2	5 _3^0	
REACTOR NO.	1						
REACTOR NAME	Brigham Youn	g Univ	versit	y Reactor	L-77		
LOCATION	Brigham Your	g Univ	versit	y, Provo,	UT 84	4602	
POWER	10 W						
LICENSE NO. N	RC DOCKET NO.	<u> </u>	.09	50-2	262		
TYPE	Atomics Inte	rnatio	nal M	odel L-77			
STATUS	Operational					-	
FUEL ELEMENT					_		
DESCRIPT	ION Liqui	d fuel	-				
OVERALL	DIMENSIONS						
kg U-235	PER ELEMENT						
ELEMENTS	PER REACTOR						
ENRICHME	NT (% U-235)	20					
DRAWING	NO.	<u> </u>	<u></u>			ik-ananya, generata ya kuta kuta ang mge	
SUPPLIER	Atomics I	nterna	itional	1			
	<u></u>		<u> </u>				
INVENTORY OF	<u>U-235</u>			FUEL	ELEME	INTS	<u>kg U-235</u>
IN REACT	OR						1.45
OUT OF R	EACTOR, FRESH	FUEL					0.055
OUT OF R	EACTOR, SPENI	FUEL					
TOTAL							1.505
TOTAL PE	R NMMSS RECOR	DS					
REFUELING SCH	EDULE Non	e					
SPENT FUEL SH	IPMENTS Non	e	¢	······	<u></u>		
NAMES OF PERS	ONS TO CONTAC	T:	J. Re	ex Goates,	Admi	nistrator, 80)1-378-2093
			Dwig	ht R. Dixo	on, Fa	cility Chief,	801-378-2093
			Gary	Lee Jense	en, Sr	• Operator, 8	301-378-2093

70	0:0	3	2	6 3 1	
-					

REACTOR NO.	2
REACTOR NAME	Catholic University AGN-201 CU
LOCATION	The Catholic University of America, Washington, DC 20064
POWER	0.1 W
LICENSE NO. NRC	DOCKET NO. R-31 50-77
TYPE <u>Aerojet</u>	General Nucleonics AGN-201
STATUS Opera	tional
FUEL ELEMENT	
DESCRIPTIO	NUO ₂ -polyethylene discs
OVERALL DI	MENSIONS 25.75 cm diam, thickness 3.9, 2.3, and 1.0 cm
kg U-235 Pl	ER ELEMENT
ELEMENTS P	ER REACTOR9 discs per reactor
ENRICHMENT	(% U-235) <u>19.9</u>
DRAWING NO	•
SUPPLIER	Aerojet General Nucleonics

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	9	0.69
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	9	0.69
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	None an	ticipated
SPENT FUEL SHIPMENT	S None	
NAMES OF PERSONS TO	CONTACT:	Edward Jordan, Reactor Administrator 202-635-517
	-	Y. C. Whang, Chairperson, Mech. Eng. Dept.
		D. D. Ebert, Reactor Supervisor

	7	0 0 0 8 2 6 3 2	
REACTOR NO. 3	·		
REACTOR NAMEC	olumbia Unive	rsity TRIGA Mk II	
LOCATIONC	columbia Unive	rsity, 520 W. 120 St., New York, NY 10027	
POWER 2	50 kW		
LICENSE NO. NRC	DOCKET NO.	R-128 50-208	
TYPE Open pool	, TRIGA Mk II		
STATUS Built b	out never oper	ated	
FUEL ELEMENT			
DESCRIPTION	Cylindrical	pins, 3.74 cm diam x 72.05 cm long	
OVERALL DIM	ENSIONS		
kg U-235 PE	R ELEMENT		
ELEMENTS PE	R REACTOR 6	5-80	
ENRICHMENT	(% U-235) _2	0	
DRAWING NO.			
SUPPLIER	General Atomi	c	
INVENTORY OF U-2	35	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR			
OUT OF REAC	TOR, FRESH FU	EL	
OUT OF REAC	TOR, SPENT FU	EL	
TOTAL			
TOTAL PER N	MMSS RECORDS		
REFUELING SCHEDU	LE <u>None ant</u>	icipated	
SPENT FUEL SHIPM	ENTS None		
NAMES OF PERSONS	TO CONTACT:	Prof. Charles F. Bonilla, 212-280-4441	
		Prof. Edward Melkonian, 212-280-4442	

7	0 0 0 8 2 6 3 3	
REACTOR NO. 4		
REACTOR NAME Cornell Univer	rsity TRIGA Mk II	
LOCATION Cornell Univer	rsity, Ward Laboratory, Ithaca, NY 14853	
P OWER 100 kW		
LICENSE NO. NRC DOCKET NO.	R-80 50-157	
TYPETRIGA Mk II		
STATUS Operational		
FUEL ELEMENT		
DESCRIPTIONCylindrical	l pin	
OVERALL DIMENSIONS		
kg U-235 PER ELEMENT		
ELEMENTS PER REACTOR		
ENRICHMENT (% U-235)		
DRAWING NO.		
SUPPLIERGeneral Atomic	2	
INVENTORY OF U-235	FUEL ELEMENTS	k g U-235
IN REACTOR		
OUT OF REACTOR, FRESH FUI	EL	
OUT OF REACTOR, SPENT FUI	EL	
TOTAL		
TOTAL PER NMMSS RECORDS		
REFUELING SCHEDULE		
SPENT FUEL SHIPMENTS		
NAMES OF PERSONS TO CONTACT:	David Clark, 607-256-3480	
	Howard Aderhold	

In an and the second se Second secon second sec

70003 2634
REACTOR NO. 5
REACTOR NAME Cornell University Zero Power Reactor
LOCATION Cornell University, Ward Laboratory, Ithaca, NY 14850
POWER100 W
LICENSE NO. NRC DOCKET NO. R-89 50-97
TYPEOpen tank critical facility
STATUS Operational
FUEL ELEMENT
DESCRIPTION Cylindrical pin
OVERALL DIMENSIONS 1.52 cm diam x 121.92 cm long
kg U-235 PER ELEMENT
ELEMENTS PER REACTOR
ENRICHMENT (% U-235) 2.1
DRAWING NO.
SUPPLIER
INVENTORY OF U-235 FUEL ELEMENTS kg U-235
IN REACTOR
OUT OF REACTOR, FRESH FUEL
OUT OF REACTOR, SPENT FUEL
TOTAL
TOTAL PER NMMSS RECORDS
REFUELING SCHEDULE
SPENT FUEL SHIPMENTS
NAMES OF PERSONS TO CONTACT: David Clark, 607-256-3480
Howard Aderhold

	7 3 3 3 3 2 5 3 5
REACTOR NO.	6
REACTOR NAME	Georgia Tech Research Reactor
LOCATION	Georgia Institute of Technology, Nuclear Research Center, 900 Atlantic Dr., NW, Atlantic, GA 30332
POWER	5 MW
LICENSE NO. NR	C DOCKET NO. R-97 50-160
TYPE Tank ty	pe, heavy water moderated and cooled
STATUS Operat	ional
FUEL ELEMENT	
DESCRIPTI	ON 18 curved plates per element, (16 fueled, 2 unfueled)
OVERALL D	DIMENSIONS 7.52 cm x 7.04 cm x 219.41 cm
kg U-235	PER ELEMENT
ELEMENTS	PER REACTOR 17
ENRICHMEN	it (% U-235)
DRAWING N	10.
SUPPLIER	

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	17	3.01
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	17	3.01
TOTAL PER NMMSS RECORDS		

 REFUELING SCHEDULE
 2 elements per 90 MW-days

 SPENT FUEL SHIPMENTS
 spent fuel has been shipped to SRP in BMI-l cask

 NAMES OF PERSONS TO CONTACT:
 Dr. John L. Russel, 404-894-3606

Robert S. Kirkland

	7 0 0 8 2 6 8 5
REACTOR NO.	7
REACTOR NAME	Idaho State University AGN-201 M
LOCATION	Pocatello, Idaho 83209
POWER	5W
LICENSE NO. NRC	DOCKET NO. <u>R-110</u> 50-284
TYPE Aerojet (General Nucleonics AGN-201 M
STATUS Operation	ional
FUEL ELEMENT	
DESCRIPTION	Discs of dispersed UO2 in polyethylene
OVERALL DIM	TENSIONS 25.0 cm diam; thickness 5.0, 2.5, or 1.0 cm
kg U-235 PI	R ELEMENT
ELEMENTS PI	R REACTOR 9 discs per reactor
ENRICHMENT	(% U-235) <u>19.88</u>
DRAWING NO.	
SUPPLIER	

.

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	9	0.67
OUT OF REACTOR, FRESH FUEL		0
OUT OF REACTOR, SPENT FUEL		0
TOTAL	9	0.67
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	None	anticipated
SPENT FUEL SHIPMENTS	None	
NAMES OF PERSONS TO CONTA		Albert E. Wilson, Reactor Administrator, 208-236-2417

Terry W. Smith, Reactor Supervisor, 208-236-2311

		7 3 3 3 3 2 5 3 7
REACT	OR NO.	8
REACT	OR NAM	Iowa State University Research Reactor
LOCAT	ION	Iowa State University, Ames, Iowa
POWER		10 kW
LICEN	SE NO.	NRC DOCKET NO.
TYPE	ARGO	NAUT
STATU	S _ op	erational
FUEL	ELEMEN	I
	DESCRI	PTION rectangular fuel plates, 12 plates per element
I	OVERAL	L DIMENSIONS 7.62 cm x 15.24 cm x 66.04 cm
1	kg U-2	35 PER ELEMENT approximately 0.266
•	ELEMEN	TS PER REACTOR 12
	ENRICH	MENT (% U-235) 90
	DRAWIN	G NO.
	SUPPLI	ER American Standard

an employees of the second second

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg</u> U-235
IN REACTOR	12	3.19
OUT OF REACTOR, FRESH FUEL	2 plates	
OUT OF REACTOR, SPENT FUEL		
TOTAL	12	
TOTAL PER NMMSS RECORDS		

REFUEI	LING	SCHEDUL	E	approxi	imately every 2 years
SPENT	FUEL	SHIPME	NTS .	fuel ha	as been shipped to Oak Ridge
NAMES	OF P	ERSONS	то с	ONTACT:	Dr. C. Hendrickson 515-294-6422

		7.0	0	0	3	2	6	3	1	
REACTOR NO.	9									
REACTOR NAME	Kansas S	tate U	niver	sity	Nuclear	Reac	tor	Fac	ili	ty
LOCATION	Kansas S	tate U	niver	sity	, Manhatt	an,	KA 6	650	6	
POWER	250 kW									
LICENSE NO. NRC	DOCKET N	0. <u>R</u>	-88	5	0-188					
TYPE TRIGA										
STATUS Operati	lonal							<u></u>		·····
FUEL ELEMENT										
DESCRIPTION	Cylin	drical	pin,	3.7	4 cm diam	x 7	2.05	cm	lor	ng
OVERALL DIM	ENSIONS	3.74	cm x	72.)5 cm				·	
kg U-235 PH	ER ELEMEN'	T	•034					÷	<u> </u>	
ELEMENTS PE	R REACTO	R8	2				- 18 1			
ENRICHMENT	(% U−235))	20%							
DRAWING NO.	·	·								
SUPPLIER G	eneral A	tomic								

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg</u> U-235
IN REACTOR	80	2.70
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	8	0.27
TOTAL	88	2.97
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	None	stated
SPENT FUEL SHIPMENTS	None	stated
NAMES OF PERSONS TO CO	ONTACT:	Richard E. Faw, Director, 913-532-5624
		Timothy M. DeBey, Reactor Supervisor

			7 0.0 0		2 5 3 9	
REACT	OR NO.	10	<u> </u>	- <u>1</u>		
REACT	OR NAME	Manhattan Manhattan Riverdale	College Zero College, Leo NY 10471	Power Reacto Engineering	br Building,	
POWER		0.1 W				
LICEN	SE NO. NR	C DOCKET NO.	R-94	50-199		
TYPE	Open p	001				
STATU	S _Operat	ional				
FUEL	ELEMENT					
ł	DESCRIPTI	ON <u>6 concer</u>	itric cylinder	s of 3 plate	es each	<u>. </u>
ł	OVERALL D	IMENSIONS	8.89 cm diam	x 93.98 cm	long	<u></u>
1	kg U-235	PER ELEMENT				
]	ELEMENTS	PER REACTOR	16			
]	ENRICHMEN	T (% U-235)	92%			
]	DRAWING N	0				
1	SUPPLIER	Sylcor, Hi	.cksville, NY			

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg</u> U-235
IN REACTOR	16	3.02
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	16	3.02
TOTAL PER NMMSS RECORDS		

REFUELING SCHEI	OULE	None ant	icipated
SPENT FUEL SHID	MENTS	None	
NAMES OF PERSON	аѕ то с	ONTACT: _I	Dr. Ronald S. Kane, 212-920-0145
			Dr. Joseph Augustus

	70008 2690			
REACTOR NO.	11			
REACTOR NAME	MIT Research Reactor (MITR-II) Massachusetts Institute of Technology Nuclear, Reactor			
LOCATION	Laboratory, 138 Albany St., Cambridge, MA 02139			
POWER	4.9 MW			
LICENSE NO. NRC	DOCKET NO. <u>R-37</u> 50-20			
TYPE Tank ty	vpe, plate fuel			
STATUS _ Operati	ional			
FUEL ELEMENT				
DESCRIPTI(DNFlat plates, 15 per element			
OVERALL DI	[MENSIONS6.11 cm x 66.68 cm			
kg U-235 H	PER ELEMENT			
ELEMENTS PER REACTOR 24				
ENRICHMENT	r (% U-235)			
DRAWING NO)•			
SUPPLIER _	Babcock and Wilcox			

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	24	12.2
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	24	12.2
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	l element every 17 operating days
SPENT FUEL SHIPMENTS	SRP, Aiken, SC, or INEL, Idaho
NAMES OF PERSONS TO	CONTACT: 0. K. Harling, 617-253-4202
	L. Clark, Jr.
	J. Bernard

7 0 0 0 8 2 6 9 1
REACTOR NO. 12
REACTOR NAME Memphis State University AGN-201-108 Memphis State University, Center for Nuclear Studies, LOCATION Memphis, TN 38152
POWER 0.1 W
LICENSE NO. NRC DOCKET NO. R-127 50-538
TYPE Aerojet General Nucleonics AGN-201
STATUS Operational
FUEL ELEMENT
DESCRIPTION U02-polyethylene discs
OVERALL DIMENSIONS 25.4 cm diam, thickness 4.0, 2.0, and 1.0 cm
kg U-235 PER ELEMENT
ELEMENTS PER REACTOR 9 discs per reactor
ENRICHMENT (% U-235) 19.9
DRAWING NO.
SUPPLIER Fuel available from decommissioned reactors

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg</u> U-235
IN REACTOR	9	0.66
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	9	0.66
TOTAL PER NMMSS RECORDS		, · · ·

REFUELING SCHEDULE	None anticipated
SPENT FUEL SHIPMENTS	to Oak Ridge National Laboratory, Oak Ridge, TN in DOT type 6J drums
NAMES OF PERSONS TO CON	NTACT: Dr. D. W. Jones, 901-454-2687
	R. L. Dietz

	7 0 0 0) 8 2692	
REACTOR NO.	13		
REACTOR NAME	Michigan State University	TRIGA Mk I	
LOCATION	Michigan State University East Lansing, MI 48824	, Nuclear Reactor Laborato	ry,
	250 1-14		1-11-11-11-11-11-11-11-11-11-11-11-11-1
POWER	230 KW		· · · · · · · · · · · · · · · · · · ·
LICENSE NO. NRC	DOCKET NO. R-114 50-	-294	
TYPE pool typ	e, TRIGA Mk I		ander die der der die der der andere der angeweinen.
STATUS Operat	ional		
FUEL ELEMENT			
DESCRIPTIO	N cylindrical pin		
OVERALL DI	MENSIONS 3.76 cm diam x	72.39 cm long	
kg 11-235 P	ER FLEMENT		
			<u></u>
ELEMENTS P	ER REACTOR		
ENRICHMENT	(% U-235) <u>20</u>		,
DRAWING NO)•		
SUPPLIER _	General Atomic		
INVENTORY OF U-	235	FUEL ELEMENTS	kg U-235
IN REACTOR	Ł		
OUT OF REA	CTOR, FRESH FUEL		
UDI OF REA	CION, STENI FOEL		
TOTAL			
TOTAL PER	NMMSS RECORDS		
REFUELING SCHED	ULE Not stated		
SPENT FUEL SHIP	MENTS Not stated		
NAMES OF PERSON	IS TO CONTACT: Mr. Bruc	e Wilkinson, 517-353-9097	
	an a	517-355-3444	

	4 - 27 20	7 0 0	0 8	2 6 9 3	
REACTOR NO.	14				
REACTOR NAME	North Carol	ina State Un	iversity PULST	AR	
LOCATION	North Carol Engineering	, Raleigh, N	1000000000000000000000000000000000000	rtment of Muclear	
POWER	1 MW	<u></u>			
LICENSE NO. NRC	DOCKET NO.	R-120	50-297		****
TYPEPULSTAR,	pool type		<u> </u>		
STATUS _ Operatio	onal	<u></u>	 		
FUEL ELEMENT					
DESCRIPTION	l_element_c	onsists of 2	25 pins in 5 x	5 array	
OVERALL DIM	ENSIONS	8.0 cm x 6.9	96 cm x 96.47 c	m	
kg U-235 PE	R ELEMENT	0.57			
ELEMENTS PE	R REACTOR	25			
ENRICHMENT	(% U-235) _	4	<u></u>		
DRAWING NO.	·				
SUPPLIER	Vestinghouse	canada			
INVENTORY OF U-2	235		FUEL ELEMEN	ITS	<u>kg U-235</u>
IN REACTOR					14.36
OUT OF REAC	CTOR, FRESH	FUEL			
OUT OF REAC	CTOR, SPENT	FUEL			
TOTAL					
TOTAL PER 1	NMMSS RECORI	DS			
REFUELING SCHED	ULE	Not stated			
SPENT FUEL SHIP	MENTS	None			
NAMES OF PERSON	S TO CONTAC	C: Dr.	Robert G. Cocki	ell, 919-737-232	2 and 2323
		Thom	as C. Bray		

David P. Coccamo

			ł	7	0 0	0	3	2	6	94		
REACT	OR NO.	15										
REACT	OR NAME	Ohi	o State	Univer	sity R	esea	rch Reac	tor				
LOCAT	ION	Ohi	o State	Univer	sity,	12 9 8	Kinnear	Road,	Colu	mbus,	Ohio	43212
POWER	·	10	kW									
LICEN	SE NO.	NRC DO	CKET NO	• <u>R-7</u>	75		50-150)				
TYPE	open	pool t	ype, pl	ate fue	21							
STATU	S ope	ration	al		<u> </u>		. <u></u>					
FUEL	ELEMENT	•										
	DESCRIF	TION _	<u>10 pl</u>	ates pe	er elem	ent						
	OVERALI	DIMEN	SIONS	7.62 0	<u>em x 7.</u>	62 ci	n x 88.9	cm				
	kg U-23	5 PER	ELEMENT	0.14	+							
	ELEMENI	S PER	REACTOR	20								
	ENRICHM	ENT (%	U-235)	93								
	DRAWING	NO										
	SUPPLIE	R	exas In	strumer	its, Da	llas	, TX					

. . .

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	20	3.18
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	20	3.18
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	None anticipated
SPENT FUEL SHIPMENTS _	None
NAMES OF PERSONS TO CO	Don W. Miller, Director 614-422-6755
	Brian K. Hajek

Richard D. Myser

7.0008 2695			
REACTOR NO. 16			
REACTOR NAMEOregon State TRIGA Reactor			
LOCATION Oregon State University, Radiation Center, Corvallis, Oregon 97331			
POWER 1 MW			
LICENSE NO. NRC DOCKET NO. R-106 50-243			
TYPE open pool, TRIGA type			
STATUS operational			
FUEL ELEMENT			
DESCRIPTION cylindrical pin			
OVERALL DIMENSIONS 3.73 cm diam x 72.06 cm			
kg U-235 PER ELEMENT approx. 0.13			
ELEMENTS PER REACTOR 85			
ENRICHMENT (% U-235)			

DRAWING NO.

SUPPLIER _____ General Atomic

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg</u> U-235
IN REACTOR	85	11.17
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	85	
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	About 1 element/year
SPENT FUEL SHIPMENTS	One shipment made to HEDL in BMI-1 cask
NAMES OF PERSONS TO CO	DNTACT: Dr. C. H. Wang, Director 503-754-2341
	A. G. Johnson

Dr. B. Dodd
		7 0 0 0 8 2 6 9 6			
REACTOR NO.	17				
REACTOR NAME	Penn State Brazeale Reactor				
LOCATION	Brazeale Nuclean	r Reactor, Pennsylvania State Universi	ty,		
	University Park, PA 16802				
POWER	1 MW				
LICENSE NO. NR	C DOCKET NO.	R-2 50-5			
TYPE	Open pool, TRIGA	A Mk III			
STATUS	Operational				
FUEL ELEMENT					
DESCRIPTI	ON Cylindrical	l pin			
OVERALL D	IMENSIONS3.7	3 cm diam x 72.14 cm long			
kg U-235	PER ELEMENT	0.056			
ELEMENTS	ELEMENTS PER REACTOR 95				
ENRICHMEN	ENRICHMENT (% U-235)20				
DRAWING N	0				
SUPPLIER		General Atomic			
INVENTORY OF U	-235	FUEL ELEMENTS	kg U-235		
IN REACTO	R	95	3.42		
OUT OF RE	ACTOR, FRESH FUEL	0	0		
OUT OF RE	ACTOR, SPENT FUEI	0	0		
TOTAL		95	3.42		
TOTAL PER	NMMSS RECORDS				
DERVER ING. COUR					
COUNT WHE OUT	DOLE About	6 elements every 2 years			
SPENT FUEL SHL	rmenio Spent	iuer stored on site	()()		
NAMES OF PERSO	N5 TU CUNTACT:	Samuel H. Levine, Director, 814-865-	1020		
		Ira B. McMaster, Deputy Director			

	7 0 0 0 8 2 6 9 7					
REACTOR NO.	18	<u></u>				
REACTOR NAME	Purdue University Reactor					
LOCATION	ATION School of Nuclear Engineering, Purdue University,					
	West Lafayette, Indiana 47907					
POWER	10 kW					
LICENSE NO. NRC	C DOCKET NO. R-87 50-182					
Түре	Open pool, plate fuel					
STATUS	Operational					
FUEL ELEMENT						
DESCRIPTIO	ON 10 plates per fuel element					
OVERALL DI	IMENSIONS 7.52 cm x 7.52 cm x 81.92 cm					
kg U-235 P	PER ELEMENT 0.17					
ELEMENTS P	PER REACTOR					
ENRICHMENT	r (% u-235) 93					
DRAWING NO	0.					
SUPPLIER _		······································				
INVENTORY OF U-	-235 FUEL ELEMENTS	<u>kg U-235</u>				
IN REACTOR	R					
OUT OF REA	ACTOR, FRESH FUEL					
OUT OF REA	ACTOR, SPENT FUEL					
TOTAL	TOTAL					
TOTAL PER NMMSS RECORDS						
REFUELING SCHED	DULE Not stated					
SPENT FUEL SHIP	PMENTS					
NAMES OF PERSON	NS TO CONTACT: Paul S. Lyroudis, 317-494-5764					
	Frank M. Clikeman					
	Eldon R. Stansberry					

×

7	0 0 0 8 2 6 9 8	
REACTOR NO. 19		
REACTOR NAME Reed Reactor Fa	cility	
LOCATION Reed College, P	Portland, Oregon 97202	
POWER 250 kW		
LICENSE NO. NRC DOCKET NO.	R-112 50-288	-*
TYPE Open pool, TRIG	A Mk I	
STATUS Operational		
FUEL ELEMENT		
DESCRIPTIONCy	lindrical pin	
OVERALL DIMENSIONS3.	73 cm diam x 72.14 cm long	
kg U-235 PER ELEMENTap	prox. 0.038	
ELEMENTS PER REACTOR 60) 	
ENRICHMENT (% U-235) 20) 	
DRAWING NO.		
SUPPLIERGe	neral Atomic	
INVENTORY OF U-235	FUEL ELEMENTS	kg_U-23
IN REACTOR	60	2.3
OUT OF REACTOR, FRESH FUE	L 0	0
OUT OF REACTOR, SPENT FUE	L 0	0
TOTAL	60	2.3
TOTAL PER NMMSS RECORDS		
REFUELING SCHEDULEAb	out l element every 5 years	
SPENT FUEL SHIPMENTS		
NAMES OF PERSONS TO CONTACT:	M. A. Kay, Director, 503-771-1112	
_	C. A. Grant	

Ross Mercer

.

			7 0	3 0 3	2	6 9	9
REACT	OR NO.	20					
REACT	OR NAME	Rensselaer Critical Experiment Facility					
LOCAT	10N	Nuclear Eng	ineering	Department	, Renssela	er Polyte	chnic Institute,
	<u></u>	Troy, New Y	ork 12181	L			
POWER	۲ <u></u>	100 W					
LICEN	ISE NO. NR	C DOCKET NO.	CX-2	22	50-225		
TYPE		Tank type c	ritical f	facility		• • • • • • • • • • • • • • • • • • •	
STATU	IS	Operational					
FUEL	ELEMENT						
	DESCRIPTI	ON	MTR-type	e plate fu	el, 9 plate	s per eler	nent
	OVERALL D	IMENSIONS	7.54 cm	x 7.54 cm	x 68.58 cm		
	kg U-235 1	PER ELEMENT					
	ELEMENTS	PER REACTOR					
	ENRICHMEN	r (% U-235)	93.0)7			
	DRAWING N	0					
	SUPPLIER						
INVEN	TORY OF U	-235		FU	EL ELEMENTS	-	<u>kg</u> U-235
	IN REACTO	R					
	OUT OF RE	ACTOR, FRESH	FUEL				
	OUT OF RE	ACTOR, SPENT	FUEL				
	TOTAL						
	TOTAL PER	NMMSS RECOR	DS				
REFUE	LING SCHE	DULE					
SPENT	C FUEL SHI	PMENTS					
NAMES	S OF PERSO	NS TO CONTAC	T: Dr.	Donald R.	Harris, Di	rector, 5	18-393-4281
			Dr.	Frank Wic	ks, Supervi	.sor, 518-	270-6403

	0 0 8 2729
REACTOR NO	
REACTOR NAME Rhode Island Nucles	ar Science Center
LOCATION Rhode Island Nuclear Sc.	ience Center, Narragansett, Rhode Island 02882
POWER 2 MW	
LICENSE NO. NRC DOCKET NO. R-9.	5 50-193
TYPE open pool, plate fuel	
STATUS operational	
FUEL ELEMENT	
DESCRIPTION 18 flat plates	per element
OVERALL DIMENSIONS 7.62 cm	m x 7.62 cm x 100.33 cm
kg U-235 PER ELEMENT0.12	
ELEMENTS PER REACTOR35	
ENRICHMENT (% U-235) 93	
DRAWING NO.	
SUPPLIER Babcock and Wil	cox, Lynchburg, VA
INVENTORY OF 11-235	FURI FIRMENTS bo 11-235
	25 2 / 7
IN REACTOR EDUCIL EUR	35 5•47
OUT OF REACTOR, FRESH FUEL	15
OUT OF REACTOR, SPENT FUEL	
TOTAL	
TOTAL PER NMMSS RECORDS	
REFUELING SCHEDULE about 18 el	ements/vr
SPENT FUEL SHIPMENTS shipped to	SRP in BMI-1 cask
NAMES OF PERSONS TO CONTACT.	Francis DiMeglio Director RTAFC 401-780-0301
	P Doulo
<u>M</u>	• P. Doyle

7 0 0 0 0 2 7 2 0				
REACTOR NO. 49				
REACTOR NAME Worcester Polytechnic Institute Reactor				
LOCATION Worcester Polytechnic Institute, Worcester, Massachusetts 01609				
POWER10 KW				
LICENSE NO. NRC DOCKET NO. R-61 50-134				
TYPE open pool, plate fuel				
STATUS operational				
FUEL ELEMENT				
DESCRIPTION 10 flat plates per element				
OVERALL DIMENSIONS 7.75 cm x 7.75 cm x 101.6 cm				
kg U-235 PER ELEMENT 0.14				
ELEMENTS PER REACTOR 24				
ENRICHMENT (% U-235) 93				
DRAWING NO.				
SUPPLIER General Electric				

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	24	3.26
OUT OF REACTOR, FRESH FI	JEL	
OUT OF REACTOR, SPENT FI	JEL	
TOTAL	24	3.26
TOTAL PER NMMSS RECORDS		
REFUELING SCHEDULE none	anticipated	
SPENT FUEL SHIPMENTS none	shipped	
NAMES OF PERSONS TO CONTACT:	Prof. Leslie C. Wilbur, 617-793-52	276
	617-793-56	588

70003 2727				
REACTOR NO. 48				
REACTOR NAME Washington State University Reactor				
LOCATION Washington State University, Pullman, Washington 99164				
POWER 1 MW				
LICENSE NO. NRC DOCKET NO. R-76 50-27				
TYPE open pool, TRIGA				
STATUS operational				
FUEL ELEMENT				
DESCRIPTION cylindrical pin, one pin per element				
OVERALL DIMENSIONS (cluster of 4) 7.92 cm x 7.92 cm x 93.9 cm				
kg U-235 PER ELEMENTapproximately 0.061				
ELEMENTS PER REACTOR 110				
ENRICHMENT (% U-235) 20 and 70				
DRAWING NO.				
SUPPLIER GA Technologies				

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	110	6.7
OUT OF REACTOR, FRESH FUE	3L	
OUT OF REACTOR, SPENT FUE	3L	
TOTAL	110	6.7
TOTAL PER NMMSS RECORDS		
REFUELING SCHEDULE		
SPENT FUEL SHIPMENTS		
NAMES OF PERSONS TO CONTACT: _	Dr. R. Filby, 509-335-8317	
_	W. E. Wilson	
	J. Neidiger	

7 0 0 0 3 2726

REACTOR NO.	47			Υ.		
	Virginia Polyt	echnic Ins	titute	and State	University	,
REACTOR NAME	Research React	or		1 0.		·
LOCATION	Virginia Polyt Blacksburg VA	echnic ins	titute	and State	University,	
	blacksbuig, vr	24000				
POWER	100 KW					
LICENSE NO. NRC	DOCKET NO.	-62	50-124			
TYPE ARGONAUT						
STATUS operat	ional					
FUEL ELEMENT						
DESCRIPTIO	N rectangular	fuel plat	es, 12	plates pe	r element	
OVERALL DI	MENSIONS 7.62	cm x 15.2	4 cm x	66.04 cm		
kg U-235 P	er element <u>af</u>	proximatel	y 0.266)		
ELEMENTS P	ER REACTOR					L
ENRICHMENT	(% U-23 5) 90)				
DRAWING NO	•					
SUPPLIER	American Stand	lard				
INVENTORY OF U-	235		FUEL	ELEMENTS		kg U-235
IN REACTOR				12		3.19
OUT OF REA	CTOR, FRESH FUI	EL		2 plates		
OUT OF REA	CTOR, SPENT FUI	8L				
TOTAL				12		
TOTAL PER NMMSS RECORDS						
REFUELING SCHED	ULEapproxim	nately ever	y 2 yea	irs		
SPENT FUEL SHIP	MENTS none			<u></u>		
NAMES OF PERSON	S TO CONTACT:	T. F. Par	kinson,	, 703-961-	6510	
		P. D. Hol	ian			

n and a second a se	7 0 0	0 3	[°] 2 7	25		
46		· · · · · · · · · · · · · · · · · · ·				
University o	f Wiscons	in Nuclear	Reactor			
University o Building, Ma	i Wiscons dison, Wi	in, Mechan sconsin 53	ical Engir 706	neering		
1 MW						
C DOCKET NO.	R-74	50-156				
ol, TRIGA FLI	Р					
tional						
ON cylindr	ical pin	(one pin p	er element	t)		
IMENSIONS 3	•58 cm di	am x 68.3	cm			
PER ELEMENT	~0.348	(8.5% tota	1 U)			
PER REACTOR	91					
r (% U-235) _	70					
0.						
GA Technolo	gies					
-235		FUEL	ELEMENTS		kg	<u>U-235</u>
R			91			8.0
	46 University o University o Building, Ma 1 MW C DOCKET NO. ol, TRIGA FLI tional ON Cylindr IMENSIONS3 PER ELEMENT PER REACTOR T (% U-235) O GA Technolo	46 University of Wiscons University of Wiscons Building, Madison, Wi 1 MW C DOCKET NO. <u>R-74</u> ol, TRIGA FLIP tional ON <u>cylindrical pin</u> IMENSIONS <u>3.58 cm di</u> PER ELEMENT <u>~0.348</u> PER REACTOR <u>91</u> T (% U-235) <u>70</u> O GA Technologies R	46 University of Wisconsin Nuclear University of Wisconsin, Mechan Building, Madison, Wisconsin 53 1 MW C DOCKET NO. R-74 50-156 ol, TRIGA FLIP tional ON cylindrical pin (one pin p IMENSIONS 3.58 cm diam x 68.3 PER ELEMENT ~0.348 (8.5% tota PER REACTOR 91 T (% U-235) 70 O.	46 University of Wisconsin Nuclear Reactor University of Wisconsin, Mechanical Engine Building, Madison, Wisconsin 53706 1 MW C DOCKET NO. R-74 50-156 ol, TRIGA FLIP tional ON cylindrical pin (one pin per element) IMENSIONS 3.58 cm diam x 68.3 cm PER ELEMENT ~0.348 (8.5% total U) PER REACTOR 91 T (% U-235) 70 O.	46 University of Wisconsin, Nuclear Reactor University of Wisconsin, Mechanical Engineering Building, Madison, Wisconsin 53706 1 MW C DOCKET NO. R-74 50-156 ol, TRIGA FLIP tional ON	46 University of Wisconsin, Nuclear Reactor University of Wisconsin, Mechanical Engineering Building, Madison, Wisconsin 53706 1 MW C DOCKET NO 50-156 ol, TRIGA FLIP tional ON cylindrical pin (one pin per element) IMENSIONS 3.58 cm diam x 68.3 cm PER ELEMENT ~0.348 (8.5% total U) PER REACTOR 91 T (% U-235) 70 O GA Technologies FUEL ELEMENTS kg

OUT OF REACTOR,	FRESH FUEL	18
OUT OF REACTOR,	SPENT FUEL	116
TOTAL.		225
TOTAL PER NMMSS	RECORDS	
REFUELING SCHEDULE	10 years	
SPENT FUEL SHIPMENTS		

NAMES OF PERSONS TO CONTACT: ______R. J. Cashwell, Director, 608-262-3392

S. M. Matusewic

		70008 2724			
REACT	OR NO	45			
REACT	OR NAME	University of Washington Nuclear Reactor University of Washington Nuclear Reactor Bldg., Seattle, Washington 98195			
POWER		100 KW			
LICEN	SE NO. NF	RC DOCKET NO. R-73 50-139			
TYPE -	Argona	ut			
STATU	S _operat	ional			
FUEL ELEMENT					
DESCRIPTIONflat plates, ll plates per element					
OVERALL DIMENSIONS 7.11 cm x 6.1 cm x 65.09 cm					
kg U-235 PER ELEMENT ~0.143					
ELEMENTS PER REACTOR24					
ENRICHMENT (% U-235) 93					
]	DRAWING N	10.			
SUPPLIER Babcock & Wilcox					

INVENTORY OF U-235		FUEL ELEMENTS	kg U-235
IN REACTOR		24	3.43
OUT OF REACTOR,	FRESH FUEL		
OUT OF REACTOR,	SPENT FUEL		
TOTAL		24	3.43
TOTAL PER NMMSS	RECORDS		
REFUELING SCHEDULE	no refueling anti	icipated	
SPENT FUEL SHIPMENTS			
NAMES OF PERSONS TO (CONTACT: William	S. Chalk, Director, 2	06-543-4170

William P. Miller

70003 2723				
REACTOR NO. 44				
REACTOR NAME University of Virginia Reactor				
LOCATION _ University of Virginia Reactor Facility, Charlottesville, VA 22901				
POWER 2 MW				
LICENSE NO. NRC DOCKET NO. R-66 50-62				
TYPE open pool, plate fuel				
STATUS operational				
FUEL ELEMENT				
DESCRIPTION either 18 curved plates or 12 flat plates				
OVERALL DIMENSIONS 7.61 cm x 8.26 cm x 93.66 cm				
kg U-235 PER ELEMENT 0.19 (curved) or 0.17 (flat)				
ELEMENTS PER REACTOR				
ENRICHMENT (% U-235)93				
DRAWING NO.				
SUPPLIER Atomics International				

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	20	3.3
OUT OF REACTOR, FRESH FUEL		
OUT OF REACTOR, SPENT FUEL		
TOTAL	20	3.3
TOTAL PER NMMSS RECORDS		
REFUELING SCHEDULE		
SPENT FUEL SHIPMENTS	to SRP in BMI-l Cask	
NAMES OF PERSONS TO CONTACT:	Dr. J. S. Brenizer, 804-924-7136	
	J. P. Farrar	

20083 2722
REACTOR NO. 43
REACTOR NAME University of Virginia CAVALIER
LOCATIONUniversity of Virginia Reactor Facility, Charlottesville, VA 22901
POWER 100 W
LICENSE NO. NRC DOCKET NO. R-123 50-396
TYPE open pool, plate type fuel
STATUS operational
FUEL ELEMENT
DESCRIPTION flat plates, 12 plates per element
OVERALL DIMENSIONS 7.61 cm x 8.26 cm x 93.66 cm
kg U-235 PER ELEMENT 0.165
ELEMENTS PER REACTOR
ENRICHMENT (% U-235) 93
DRAWING NO.
SUPPLIER
INVENTORY OF U-235 FUEL ELEMENTS kg U-235
IN REACTOR
OUT OF REACTOR, FRESH FUEL
OUT OF REACTOR, SPENT FUEL
TOTAL
TOTAL PER NMMSS RECORDS
REFUELING SCHEDULE
SPENT FUEL SHIPMENTS
NAMES OF PERSONS TO CONTACT: Dr. J. S. Brenizer, 804-924-7136

J. P. Farrar

N 9 0 0 8 2 7 2 1					
REACTOR NO. 42					
REACTOR NAME University of Utah TRIGA Reactor					
LOCATION University of Utah, Salt Lake City, Utah 84112					
POWER 100 KW					
LICENSE NO. NRC DOCKET NO. <u>R-126</u> 50-407					
TYPE open pool, TRIGA					
STATUS operational					
FUEL ELEMENT					
DESCRIPTION cylindrical pin, one pin per element					
OVERALL DIMENSIONS 3.75 cm diam x 72.2 cm long					
kg U-235 PER ELEMENT0.037					
ELEMENTS PER REACTOR 87					
ENRICHMENT (% U-235)					
DRAWING NO.					
SUPPLIER GA Technologies					

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg</u> U-235
IN REACTOR	84	2.90
OUT OF REACTOR, FRESH FUEL	- 2	0.074
OUT OF REACTOR, SPENT FUEL		
T OTAL	86	2.974
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE none	anticipated
SPENT FUEL SHIPMENTS	
NAMES OF PERSONS TO CONTACT:	H. R. Jacobs, 801-581-7109
	Gary M. Sandquist
	Craig M. Jensen

	7 0 0 0 3	2.7	2.0	
REACTO	DR NO. 41	• •		وروا الإسرار الأسور فالمراجع الأستان والمراجع
REACTO	OR NAME University of Utah AGN-20	1-107		
LOCATI	ION <u>University of Utah, Merrill Engi</u>	neering Bldg.	, Salt Lake City,	UT 84112
POWER	5 W			
LICENS	SE NO. NRC DOCKET NO	50-72		
TYPE	AGN-201 homogeneous disc fuel			
STATUS	5 _operational			
FUEL E	ELEMENT			
D	DESCRIPTIONU02-polyethylene discs			
0	OVERALL DIMENSIONS 25.6 cm diam	x 4.0, 2.0, an	nd 1.0 cm thick	
k	kg U-235 PER ELEMENT			
E	ELEMENTS PER REACTOR 9			
E	ENRICHMENT (% U-235) 19.5			
D	DRAWING NO.			
SUPPLIER Aerojet General Nucleonics				
INVENT	TORY OF U-235	FUEL ELEMENT	<u>5</u>	kg U-235
I	IN REACTOR	9		0.69
0	OUT OF REACTOR, FRESH FUEL			
0	OUT OF REACTOR, SPENT FUEL			
T	TOTAL			
Т	TOTAL PER NMMSS RECORDS			
REFUEL	LING SCHEDULE none anticipated			
SPENT	FUEL SHIPMENTS			
NAMES	OF PERSONS TO CONTACT: Dr. Gray M	. Sandquist,	801-581-7109	
	Dr. H. R.	Jacobs. 801-5	81-7372	

70003 2719				
REACTOR NO. 40				
REACTOR NAME University of Texas TRIGA Mk I				
LOCATION Austin, Texas 78712				
250 KW				
LICENSE NO. NRC DOCKET NO. R-92 50-192				
TYPEopen_pool, TRIGA				
STATUS operational				
UEL ELEMENT				
DESCRIPTION cylindrical pin, one pin per element				
OVERALL DIMENSIONS 3.76 cm diam x 72.06 cm long				
kg U-235 PER ELEMENT (8.5 wt % U)				
ELEMENTS PER REACTOR				
ENRICHMENT (% U-235)				
DRAWING NO.				
SUPPLIER GA Technologies				
INVENTORY OF U-235 FUEL ELEMENTS kg U-235				
IN REACTOR				
OUT OF REACTOR, FRESH FUEL				
OUT OF REACTOR, SPENT FUEL				
TOTAL				
TOTAL PER NMMSS RECORDS				
REFUELING SCHEDULE				
SPENT FUEL SHIPMENTS				
AMES OF PERSONS TO CONTACT: Dr. Dale Klein, 512-471-5136				
Dr. T. L. Bauer				

.

2713 2713					
REACTOR NO. 39					
REACTOR NAMEUniversity of Oklahoma AGN-211P					
LOCATION _ University of Oklahoma, Nuclear Reactor Laboratory, Norman, OK 73019					
POWER 15 W					
LICENSE NO. NRC DOCKET NO. R-53 50-112					
TYPE open_pool, AGN-211					
STATUS operational					
FUEL ELEMENT					
DESCRIPTIONuranium oxide-polyethylene blocks (two blocks per element)					
OVERALL DIMENSIONS 7.32 cm x 7.77 cm x 70.17 cm					
kg U-235 PER ELEMENT					
ELEMENTS PER REACTOR 12					
ENRICHMENT (% U-235)19.84					
DRAWING NO.					
SUPPLIER _ Aerojet General Nucleonic					

INVENTORY OF U-235		FUEL ELEMENTS	kg U-235
IN REACTOR		12	0.81
OUT OF REACTOR,	FRESH FUEL		
OUT OF REACTOR,	SPENT FUEL		
TOTAL		12	0.81
TOTAL PER NMMSS	RECORDS		
REFUELING SCHEDULE	none anticipated		

."

70008 2717
REACTOR NO. 38
REACTOR NAME University of New Mexico AGN-201
University of New Mexico, Nuclear Engineering Laboratory, LOCATION <u>Albuquerque, New Mexico 87131</u>
POWER 5 W
LICENSE NO. NRC DOCKET NO. <u>R-102</u> 50-252
TYPE open pool, AGN-201
STATUS operational
FUEL ELEMENT
DESCRIPTIONuranium_oxide-polyethylene_disc
25.6 cm diam, height 4.0, 2.0, and 1.0 cm, OVERALL DIMENSIONS
kg U-235 PER ELEMENT
ELEMENTS PER REACTOR 9
ENRICHMENT (% U-235) 20
DRAWING NO.
SUPPLIER Aerojet General Nucleonics
INVENTORY OF U-235 FUEL ELEMENTS kg U-235
IN REACTOR
OUT OF REACTOR, FRESH FUEL
OUT OF REACTOR, SPENT FUEL
TOTAL
TOTAL PER NMMSS RECORDS
REFUELING SCHEDULE noneanticipated
SPENT FUEL SHIPMENTS
NAMES OF PERSONS TO CONTACT: Dr. Craig Robertson, 505-277-5431
Dr. David Woodall

7)	<u> </u>	0	2	7	ţ	6

*
REACTOR NO. 37
REACTOR NAME University of Missouri-Rolla Reactor
LOCATION University of Missouri, Rolla, Missouri 65401
POWER 200 KW
LICENSE NO. NRC DOCKET NO. R-79 50-123
IYPE open pool, plate type fuel
STATUS operational
FUEL ELEMENT
DESCRIPTION 10 curved plates per element
OVERALL DIMENSIONS 7.57 cm x 8.74 cm x 87.0 cm
kg U-235 PER ELEMENT 0.17
ELEMENTS PER REACTOR
ENRICHMENT (% U-235) 89-93
DRAWING NO.
SUPPLIERW. R. Grace & Co., Erwin, Tennessee
INVENTORY OF U-235 FUEL ELEMENTS kg U-235
IN REACTOR 28 2.85
OUT OF REACTOR, FRESH FUEL
OUT OF REACTOR, SPENT FUEL

TOTAL

TOTAL PER NMMSS RECORDS

REFUELING SCHEDULE not	ne anticipated
SPENT FUEL SHIPMENTS	
NAMES OF PERSONS TO CON	Albert E. Bolon, Director, 314-341-4236

2.85

7 0 0 0	3 2715	
REACTOR NO. 36		
REACTOR NAME University of Missouri R	esearch Reactor	
LOCATION University of Missouri, Researc	h Park, Columbia, Missouri 65	211
POWER 10 MW		
LICENSE NO. NRC DOCKET NO. R-103	50-186	
TYPE open pool, plate fuel		
STATUS operational		
FUEL ELEMENT		
DESCRIPTION _ 24 curved plates per e	lement	······
OVERALL DIMENSIONS 7.04 cm x 14.6	3 cm x 82.55 cm	
kg U-235 PER ELEMENT0.78	······································	······
ELEMENTS PER REACTOR 8		
ENRICHMENT (% U-235) 93.15		
DRAWING NO.		
SUPPLIER Atomic International/EG	×G	*****
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	8	6.2
OUT OF REACTOR, FRESH FUEL		
OUT OF REACTOR, SPENT FUEL	27	
TOTAL	35	
TOTAL PER NMMSS RECORDS	÷	

REFUELING SCHEDULE 8 elements	every 2 weeks
SPENT FUEL SHIPMENTS	to SRP in GE-700 cask
NAMES OF PERSONS TO CONTACT:	Don Alger, 314-882-4211
	Charles McKibben
	R. Brugger

.

7 3 3 0 3 2 7 1 4
REACTOR NO. 35
REACTOR NAME University of Michigan Ford Nuclear Reactor
LOCATION University of Michigan, North Campus, Ann Arbor, Michigan 48109
POWER 2 MW
LICENSE NO. NRC DOCKET NO. R-28 50-2
TYPE open pool, plate type fuel
STATUSoperational
FUEL ELEMENT
DESCRIPTION curved plates, 18 plates per element
OVERALL DIMENSIONS 7.47 cm x 8.25 cm x 87.38 cm
kg II

	0.107
ELEMENTS PER REACTOR	39
ENRICHMENT (% U-235)	93 and 19.5
DRAWING NO.	
SUPPLIER Babcock and	nd Wilcox, Lynchburg, WV

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg</u> U-235
IN REACTOR	35	6.35
OUT OF REACTOR, FRESH FUEL	43	
OUT OF REACTOR, SPENT FUEL	66	
TOTAL	144	
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE 1 elemen	t per 17 days
SPENT FUEL SHIPMENTS	d to SRP in BMI-1 or GE USA-5942 cask
NAMES OF PERSONS TO CONTACT:	William Kerr, 313-764-6223
	Reed R. Burn
-	Gary M. Cook

270003 2713	
SACTOR NO. 34	
ACTOR NAME Maryland University Training Reactor	
CATION University of Maryland, College Park, Maryland 20740	
DWER 250 KW	
CENSE NO. NRC DOCKET NO. R-70 50-166	- <u></u>
YPEopen pool, TRIGA	
CATUS operational	
JEL ELEMENT	
DESCRIPTION cylindrical pin	
OVERALL DIMENSIONS 3.58 cm diam x 68.58 cm	
kg U-235 PER ELEMENTapprox. 0.0354	
ELEMENTS PER REACTOR 96	
ENRICHMENT (% U-235)	
DRAWING NO.	
SUPPLIER GA Technologies	

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	96	3.4
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	96	3.4
TOTAL PER NMMSS RECORDS		
REFUELING SCHEDULE		

REFUEI	ING SCHEDULE	
SPENT	FUEL SHIPMENTS	
NAMES	OF PERSONS TO CONTACT: _	Ralph L. Belcher, Director, 301-454-2436

7 A A B B 2 7 1 2			
REACTOR NO. 33			
REACTOR NAMEUniversity of Lowell Nuclear Reactor			
LOCATION _University of Lowell, North Campus, Lowell, Mass. 01854			
POWER 1 MW			
LICENSE NO. NRC DOCKET NO. <u>R-125</u> 50-233			
TYPE open pool, plate fuel			
STATUS operational			
FUEL ELEMENT			
DESCRIPTION 18 flat plates per element			
OVERALL DIMENSIONS 7.62 cm x 7.62 cm x 101.6 cm			
kg U-235 PER ELEMENT 0.14			
ELEMENTS PER REACTOR26			
ENRICHMENT (% U-235) 93			
DRAWING NO.			
SUPPLIER Atomics International			

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	26	3.5
OUT OF REACTOR, FRESH FUR	3L 0	0
OUT OF REACTOR, SPENT FUR	EL 0	0
TOTAL	26	3.5
TOTAL PER NMMSS RECORDS		
REFUELING SCHEDULE		
SPENT FUEL SHIPMENTS		
NAMES OF PERSONS TO CONTACT:	Leon Beghian, 617-45205000, ext.	2232 and 2245
	Thomas Wallace	

George Chabot

70003 2711			
REACTOR NO. 32			
REACTOR NAME University of Kansas, Bendix Research and Training Reactor			
LOCATION Nuclear Reactor Center, University of Kansas, Lawrence, Kansas 66045			
POWER10 KW			
LICENSE NO. NRC DOCKET NO. R-78 50-148			
TYPE open pool, plate type fuel			
STATUS operational			
FUEL ELEMENT			
DESCRIPTIONflat plate type, 10 plates/element			
OVERALL DIMENSIONS 7.62 cm x 7.62 cm x 86.31 cm			
kg U-235 PER ELEMENT			
ELEMENTS PER REACTOR 16			
ENRICHMENT (% U-235) _90			
DRAWING NO.			
SUPPLIER			

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	16	2.50
OUT OF REACTOR, FRESH FUEL	2	0.34
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	18	2.84
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE		
SPENT FUEL SHIPMENTS		
NAMES OF PERSONS TO CONTACT:	Russell Mesler, 913-864-3938	
	Harold Rosson	
-		

Benjamin Friesen

7 0 0 0 8 2 7 1 0			
REACTOR NO. 31			
REACTOR NAME University of Illinois TRIGA			
LOCATION University of Illinois, Nuclear Reactor Laboratory, Urbana, IL 61801			
POWER 1.5 MW			
LICENSE NO. NRC DOCKET NO. R-115 50-151			
TYPE open pool, TRIGA			
STATUS operational			
FUEL ELEMENT			
DESCRIPTION cylindrical pin			
OVERALL DIMENSIONS 3.73 cm diam x 71.12 cm long			
kg U-235 PER ELEMENT about 0.038 (7.0 g/cc U235)			
ELEMENTS PER REACTOR 100			
ENRICHMENT (% U-235)			
DRAWING NO.			
SUPPLIER GA Technologies			

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	100	3.8
OUT OF REACTOR, FRESH FUEL	8	0.30
OUT OF REACTOR, SPENT FUEL		0
TOTAL	108	4.10
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE about 2	elements/yr	
SPENT FUEL SHIPMENTS		
NAMES OF PERSONS TO CONTACT:	Gerald P. Beck, 217-333-0866	
	Craig Pohlod, 217-333-7755	
	Jerome J. Steerman	

7 0 0 0 8 2 7 0 9			
REACTOR NO. 30			
REACTOR NAME University of Illinois Low Power Reactor			
LOCATION University of Illinois, Nuclear Reactor Laboratory, Urbana, IL 61801			
POWER 10 kW			
LICENSE NO. NRC DOCKET NO. R-117 50-356			
TYPE open pool, TRIGA			
STATUS operational			
FUEL ELEMENT			
DESCRIPTION cylindrical pin			
OVERALL DIMENSIONS 3.73 cm diam x 71.12 cm long			
kg U-235 PER ELEMENT approx 0.038 (7.0 g/cc U235)			
ELEMENTS PER REACTOR 55			
ENRICHMENT (% U-235) 20			
DRAWING NO.			
SUPPLIER GA Technologies			

and the second second

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	55	2.09
OUT OF REACTOR, FRESH FUEL	0	0
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	55	2.09
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	none	
SPENT FUEL SHIPMENT	'S	
NAMES OF PERSONS TO	CONTACT:	Gerald P. Beck, 217-333-0866
		Craig Pohlod, 217-333-7755
		Jerome J. Steerman

7 0 0 0 8 2 7 0 8
REACTOR NO. 29
REACTOR NAME University of Florida Training Reactor
LOCATION University of Florida, Nuclear Sciences Center, Gainesville, FL 32611
POWER 100 KW
LICENSE NO. NRC DOCKET NO. R-56 50-83
TYPEArgonaut (modified)
STATUS _operational
FUEL ELEMENT
DESCRIPTION 11 flat plates per element
OVERALL DIMENSIONS 7.23 cm x 5.44 cm x 65.09 cm
kg U-235 PER ELEMENT
ELEMENTS PER REACTOR _ 24
ENRICHMENT (% U-235) _93
DRAWING NO.
SUPPLIERBabcock and Wilcox

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	24	3.35
OUT OF REACTOR, FRESH FUEL		0.17
OUT OF REACTOR, SPENT FUEL		0.00
TOTAL		3.52
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	refueled once	to change from 2	0% to 93% enrichment
SPENT FUEL SHIPMENTS	shipment made	to SRP in Nation	al Lead Cask
NAMES OF PERSONS TO CO	NTACT: W. H.	Chen, 904-392-142	9
	J. A.	Vethington	

W.	G.	Vernetson
N•	J.	Diaz

70008	2707
REACTOR NO. 28	
REACTOR NAME University of California Santa Barba	ra L-77
LOCATION University of Santa California, Santa Bar	bara, CA 93106
POWER 10 W	
LICENSE NO. NRC DOCKET NO. R-124 50-433	
TYPE liquid fuel	
STATUS shut down	
FUEL ELEMENT	
DESCRIPTION spherical core, liquid fuel	
OVERALL DIMENSIONS 30.3 cm diameter	
kg U-235 PER ELEMENT	
ET EMENTS DER PRACTOR	
ENALCHMENI (% U~233)09	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DRAWING NO.	
SUPPLIER Atomics International	

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR		1.23
OUT OF REACTOR, FRESH FUEL		0
OUT OF REACTOR, SPENT FUEL		0
TOTAL		1.23
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE Reactor has been disassembled and fuel has been shipped to a DOE site

SPENT FUEL SHIPMENTS
NAMES OF PERSONS TO CONTACT: Prof. A. E. Profio, 805-961-4146
805-961-3412

:	n en de	7 0 0 0 3 2	7 8 6	
REACTOR NO.	27		عود: م. 	
REACTOR NAME	University of	E California Los Angeles Tra	ining Reac	tor
LOCATION	University of	f California Los Angeles, Bo	elter Hall	3
	Los Angeles,	California 90024		·
POWER	100 kW		: 	
LICENSE NO. NRC	DOCKET NO.	R-71 50-142		
Туре	Argonaut			
STATUS	Operational			
FUEL ELEMENT				
DESCRIPTION	MTR plate-	type fuel, ll plates/elemen	t	
OVERALL DIM	ENSIONS 6.03	3 cm x 7.23 cm x 68.56 cm		
kg U-235 PE	R ELEMENT	0.14		
ELEMENTS PE	R REACTOR	24		
ENRICHMENT	(% U-235)	93		
DRAWING NO.				
SUPPLIER		Atomics International		
INVENTORY OF U-2	35	FUEL ELEMENTS		kg U-235
IN REACTOR		24		3.56
OUT OF REAC	TOR, FRESH FUEL	20		
OUT OF REAC	TOR, SPENT FUEL	. 0		
OUT OF REAC	TOR, SPENT FUEL	• 0 44		
OUT OF REAC TOTAL TOTAL PER N	TOR, SPENT FUEL MMSS RECORDS	• 0 44		
OUT OF REAC TOTAL TOTAL PER N	TOR, SPENT FUEL MMSS RECORDS	• 0 44		
OUT OF REAC TOTAL TOTAL PER N REFUELING SCHEDU	TOR, SPENT FUEL MMSS RECORDS	• 0 44 .ement per refueling		
OUT OF REAC TOTAL TOTAL PER N REFUELING SCHEDU SPENT FUEL SHIPM	TOR, SPENT FUEL MMSS RECORDS LE1 el ENTSShip	• 0 44 ement per refueling oped to INEL in GE-700 cask		
OUT OF REAC TOTAL TOTAL PER N REFUELING SCHEDU SPENT FUEL SHIPM NAMES OF PERSONS	TOR, SPENT FUEL MMSS RECORDS LEl el ENTSShip TO CONTACT:	. 0 44 .ement per refueling oped to INEL in GE-700 cask Ivan Catton, Director, 213-4	825-2040	

Tony Zane

		an a	7 0 0 0 8 2 7 0 5
REACTOR	NO	26	
REACTOR	NAME	University	of California Irvine TRIGA Mk I
LOCATION	I	University	of California Irvine, Irvine, California 92717
POWER		250 kW	
LICENSE	NO. NRC	DOCKET NO.	R-116 50-326
TYPE		Open pool,	TRIGA Mk I
STATUS		Operational	L
FUEL ELE	MENT		
DES	CRIPTION		Cylindrical pin
OVE	RALL DIM	ENSIONS	3.81 cm diam x 71.12 cm
kg	U-235 PEI	R ELEMENT	(8.5 wt% U)
ELE	MENTS PE	R REACTOR	81
ENR	ICHMENT	(% U-235)	19.9

DRAWING NO.	
SUPPLIER	GA Technologies

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	81	2.9
OUT OF REACTOR, FRESH FUEL	1	0.038
OUT OF REACTOR, SPENT FUEL		0.99
TOTAL		3.928
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE	not stated	
SPENT FUEL SHIPMENTS		
NAMES OF PERSONS TO CONTACT:	F. S. Rowland, 714-833-6015	
_	G. E. Miller	

7	0	9 3	27) 4

REACTOR NO.	25
REACTOR NAME	University of California Berkeley Research Reactor
LOCATION	Department of Nuclear Engineering, University of California,
<u></u>	Berkeley, California 94720
POWER	1 MW
LICENSE NO. NE	RC DOCKET NO. R-101 50-224
TYPE	Open pool TRIGA
STATUS	Operational
FUEL ELEMENT	
DESCRIPTI	Cylindrical pin
OVERALL I	DIMENSIONS 3.63 cm diam
kg U-235	PER ELEMENT approx. 0.034 (8.5 wt% U)
ELEMENTS	PER REACTOR 106
ENRICHMEN	NT (% U-235) 20
DRAWING N	10.
SUPPLIER	GA Technologies

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	106	3.6
OUT OF REACTOR, FRESH FUEL	12	0.41
OUT OF REACTOR, SPENT FUEL	0	0
TOTAL	118	4.01

TOTAL PER NMMSS RECORDS

REFUELING SCHEDULE	
SPENT FUEL SHIPMENTS	
NAMES OF PERSONS TO CONTACT:	Selig N. Kaplan, 415-642-5213
_	Tek H. Lim, 415-642-5224
	Harry G. Braun

	7	0 0 3	27	1 3	
REACTOR NO.	24			****	·
REACTOR NAME	University of A	rizona TRIGA Read	ctor		
LOCATION	University of A	rizona, Dept. of	Nuclear and	Energy Engi	neering,
	Tucson, Arizona	85721		7-78-81-81-81-81-91-9	
POWER					
LICENSE NO. NRC	DOCKET NO.	R-52 50	0-113		
T Y PE	Open pool TRIGA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
STATUS	Operational				
FUEL ELEMENT					
DESCRIPTION	Cyli	ndrical pin			
OVERALL DIM	ENSIONS3.73	cm diam x 72.31	cm long		
kg U-235 PE	R ELEMENT appr	ox. 0.038			
ELEMENTS PE	R REACTOR	87			
ENRICHMENT	(% U-235)	20			
DRAWING NO.					
SUPPLIER	GA '	Technologies			
INVENTORY OF U-2	35	FUEL H	LEMENTS		kg U-235
IN REACTOR			87		3.31
OUT OF REAC	TOR, FRESH FUEL		0		0
OUT OF REAC	TOR, SPENT FUEL		0		0
TOTAL			87		3.31
TOTAL PER N	MMSS RECORDS				
REFUELING SCHEDU	LE None	e anticipated			
SPENT FUEL SHIPM	ENTS				
NAMES OF PERSONS	TO CONTACT:	R. L. Seale, 60)2-626-3903		
		G. W. Nelson		······································	
		H. J. Doane			_

		· · · · · · · · ·	7 0 0 0 3 2 7 0 2		
REACTOR	NO	23	·		
REACTOR	NAME	Texas A&M	Nuclear Science Center Reactor		
LOCATIO	Texas A&M University, Nuclear Science Center,				
		College St	ation, Texas 77843		
POWER		1 MV			
LICENSE	NO. NRC	DOCKET NO.	R-83 50-128		
TYPE		Open pool,	TRIGA		
STATUS		Operationa	1		
FUEL EL	EMENT				
DE	SCRIPTION	I	Cylindrical pin		
ov	ERALL DIM	ENSIONS	3.58 cm diam x 76.2 cm		
kg	U-235 PF	R ELEMENT	approx. 0.12		
EL	EMENTS PE	R REACTOR	90		
EN	RICHMENT	(% U-235)	20% standard, 70% FLIP		
DR	AWING NO.	·			
SU	PPLIER	<u> </u>	GA Technologies		
INVENTO	RY OF U-2	235	FUEL ELEMENTS kg U-235		

INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	90	10.48
OUT OF REACTOR, FRESH FUEL	1	0.122
OUT OF REACTOR, SPENT FUEL TOTAL	84 175	
TOTAL PER NMMSS RECORDS		

REFUELING SCHEDULE		
SPENT FUEL SHIPMEN	TS	
NAMES OF PERSONS 1	CONTACT:	Donald E. Feltz, Director, 713-845-7551
		Gary Waldrep
		Dan Rodgers

		7 0 0	0 0	27	7 0 1	
REACTOR NO.	22					
REACTOR NAME	Texas A&M A	AGN-201 Trair	ing Reacto	r Facility		
LOCATION	Texas A&M [Jniversity, J)epartment	of Nuclear	Engineerin	g,
	College Sta	ation, Texas	77843			
POWER	5 W					
LICENSE NO. NRC	DOCKET NO	R-23	50-	59		
TYPEAGN-2	01 homogeneo	ous disc-type	e fuel, cri	tical facil	lity	
STATUS	Operationa					
FUEL ELEMENT						
DESCRIPTION	Homog	geneous disc,	UO ₂ - pol	yethylene		
OVERALL DIM	ENSIONS	25 cm diam	<u>x 3.9, 2.3</u>	<u>, or 1.0 cm</u>	thick	
kg U-235 PE	R ELEMENT					
ELEMENTS PE	R REACTOR	9				
ENRICHMENT	(% U-235)	20				
DRAWING NO.		,				
SUPPLIER						
INVENTORY OF U-2	35		FUEL ELE	MENTS		kg U-235
IN REACTOR			9			0.69
OUT OF REAC	TOR, FRESH I	UEL				
OUT OF REAC	TOR, SPENT I	UEL				
TOTAL						
TOTAL PER N	MMSS RECORDS	3				
REFUELING SCHEDU	LE					
SPENT FUEL SHIPM	IENTS					- <u></u>
NAMES OF PERSONS	TO CONTACT	Dr. (Carl A. Erd	man, 713-84	45-4161	

	7 0 0 8 2 7 0 0		
REACTOR NO. 21			
REACTOR NAME State Unive	rsity of New York NSTF		
LOCATION State Universit	y of New York, Rotary Road, Buffalo, New York 14214		
POWER 2 MW			
LICENSE NO. NRC DOCKET NO.	R-77 50-57		
TYPE Open pool,	tank type PULSTAR		
STATUS Operational			
FUEL ELEMENT			
DESCRIPTION	25 cylindrical pins in 5 x 5 array		
OVERALL DIMENSIONS	6.96 cm x 8.0 cm x 96.52 cm		
kg U-235 PER ELEMENT	0.76		
ELEMENTS PER REACTOR	24		

ENRICHMENT (% U-235)6
RAWING NO.
SUPPLIER

INVENTORY OF U-235	FUEL ELEMENTS	<u>kg</u> U-235
IN REACTOR	24	18.2
OUT OF REACTOR, FRESH FUE	L	
OUT OF REACTOR, SPENT FUE	L	
TOTAL		
TOTAL PER NMMSS RECORDS		
REFUELING SCHEDULE	>10 years	
SPENT FUEL SHIPMENTS	Shipment made to INEL in BMI-1 cask	
NAMES OF PERSONS TO CONTACT: _	Lewis G. Henry, 716-831-2826	
	Philip Orlosky	

7 0 0 3 2 7 3 0

APPENDIX 4C. SUPPLEMENTAL DATA FOR FORT ST. VRAIN SPENT FUEL

7 0 0 0 3 2731

4C-1

4C. SUPPLEMENTAL DATA FOR FORT ST. VRAIN SPENT FUEL

This appendix contains additional data on inventory, fuel element description, fuel types and markings, and postirradiation condition.

4C.1 INVENTORY OF FORT ST. VRAIN FUEL

Three reactor segments have been discharged from the FSV Reactor as of September 1987.

The discharge dates and number of elements were

Discharge l	February 1, 1979	245 elements
Discharge 2	May 13, 1981	240 elements
Discharge 3	January 2, 1984	240 elements

The serial numbers for the above 725 fuel elements are provided in Tables 4C.1, 4C.2, and 4C.3. The remains of one element which was destructively examined are at General Atomics, San Diego. The remaining 724 are located at INEL.

The future discharge rate is obviously uncertain, but if the reactor average power level is 50% of rating, and if the average burnup of discharged fuel is 100,000 MWD/MTIHM, the discharge rate will be 1.54 MTIHM per year, which is roughly equivalent to 136 fuel elements.

The present contract between General Atomics and Public Service of Colorado calls for 10 fuel reloads, of which three have been supplied. If this contract runs to completion, another seven reloads will be discharged. Should there be no further reloads, the total discharge would then be 1 2/3 full cores (since each reload is 1/6 core) plus the final full core discharge, for a total of 2 2/3 cores, or about 3900 elements. At four elements per canister, this is just under 1000 canisters.

Burnups are available on the floppy discs as cited in Section 4.2.4 (FSV Radiological Characteristics) of the report.
7.00003 2732

4C-2

4C.2 FSV REACTOR FUEL ELEMENT

The following general fuel description was taken from (Bingham and Evans 1976):

"A Fort St. Vrain fuel element consists of a 300 lb hexagonal, needle-coke graphite block, 14.2 in. across the flats and 31.2-in.-high. Each graphite fuel block (see Fig. 4.2.1) contains 108 coolant channels and 210 fuel holes, all drilled from the top face of the element. The coolant holes extend through the element; the fuel holes extend to within about 0.3 in. of the bottom face. The fuel holes occupy alternating positions with the coolant channels in a triangular array within the element structure and contain the active fuel. After the fuel is inserted in a fuel hole, the hole is sealed with a graphite plug cemented into place.

The fresh fuel itself is in the form of carbide particles coated with layers of pyrolytic carbon and silicon carbide, loosely bonded by a carbonaceous matrix material into fuel sticks. The fuel bed contains a homogeneous mixture of two types of particles, called fissile and fertile. Fresh fissile particles contain thorium and 93.5% enriched uranium; fresh fertile particles contain only thorium. The important parameters of fresh particles are:

Parameter	<u>Fissile</u>	Fertile
Th/U (atomic ratio)	4.25	All Th
Particle composition	(Th/U)C ₂	Th C ₂
Average fuel particle diameter, μ m	200	450
Average total coating thickness, μ m	130	140

Besides fission products, the irradiated fuel contains thorium, U-233, U-235, other uranium isotopes, and a small quantity of plutonium. In the fertile particles, the fissile material is essentially U-233, while the fissile particles contain the residual U-235 and bred U-233." 7 0 0 0 8 2 7 3 3

4C-3

4C.3 FUEL TYPES AND IDENTITY MARKINGS

This information is from Bingham 1976, GA 1985, and Kowal 1984. The initial core loading consisted 84 different types of fuel elements. The large number of different types was due to variations in design of the blocks, different fuel loadings in blocks of the same design, variations in positioning of the burnable poison rods, and the neutron sources. Each fuel element has a permanent three digit type number engraved on the side of the hexagonal block. This type number identifies the specific contents of the element. In addition, each element has a permanent serial number engraved on the side of the hexagonal block. The serial number is unique for each element and can be used to trace the entire fabrication history of the components within an element. Table 4C.4 shows a listing of the various types of fuel elements along with their corresponding drawing numbers.

The fuel element assembly type number, as illustrated in Fig. 4C.1 is painted on the top surface of each initial core fuel element. The assembly type number and serial number are engraved on the side of each element for all segments.

The format of the serial number is as follows:

Y - XXXX for H-327 graphite

and

Y - XXXXX for H-451 graphite.

The "X's" represents a 4-digit or 5-digit manufacturer's serial number for fuel elements made from H-327 or H-451 graphite, respectively. The "Y" denotes the style of fuel block, as follows:

- Y = 1 denotes standard fuel block
 - 2 denotes control fuel block
 - 3 denotes bottom control fuel block
 - 4 denotes neutron source block
 - 5 denotes standard block with enlarged handling hole
 - 6 denotes control block with enlarged handling hole
 - 7 denotes bottom control with enlarged handling hole
 - 8 denotes fuel test elements
 - 11 denotes Cf neutron source block

7 3 3 3 8 2734

4C-4

Certain selected elements within the core are designated as surveillance elements and as fuel test elements. The element identification includes the core location number and identification as shown in Fig. 4C.1.

4C.3.1 Standard Fuel Element

Figures 4C.2 through 4C.8 depict variations of the standard fuel element design. This design has been used not only for conventional fuel element service, but also for surveillance elements, neutron source elements, and test elements. Considering differences in fuel loadings, there are 64 types of standard fuel elements as listed in Table 4C.4.

All standard fuel elements have 210 fuel holes containing a total of 3132 fuel rods, and 108 coolant passages. All the graphite blocks for the regular elements have a 0.500-in. diameter hole in each of their six corners. Some of these elements contain burnable poison rods in selected corner holes (see Figs. 4C.4 through 4C.7) and some elements have an enlarged fuel pickup hole as shown in Fig. 4C.3.

Surveillance elements were extensively characterized prior to loading into the reactor core, including a detailed characterization of the fuel rods, burnable poison rods, and the graphite blocks. In addition, these fuel elements include small temperature and fluence monitors in selected fuel rod stacks. The purpose of the preirradiation characterization of fuel and reflector elements was to provide a means for future evaluation of the in-core element performance, as a part of the overall development program for future FSV and other HTGR fuel.

The test elements are designed to operate within the limits of peak fuel temperature, neutron fluence, and burn-up specified for the initial core and reload fuel elements. Instrumentation is included in the test elements to measure each of these parameters. The purpose of these fuel test elements is to test new graphites and fuel forms for commerical HTGRs and to test improved fuel contemplated for use in future FSV reload segments.

2735

The bottom of the fuel handling hole has been extended in some of the regular fuel elements to accommodate a neutron source. Sources are placed in neutron source elements as shown in Fig. 4C.6.

Two startup neutron sources consisting of Californium-252 encapsulated in platinum and stainless steel were originally installed in the core. A third source consisting of Californium-252 doubly encapsulated in stainless steel was added during the second refueling outage, and a fourth source was added during the third refueling outage. The Californium neutron source element is shown in Fig. 4C.8.

4C.3.2 Control Fuel Elements

The center control rod fuel element in each region is similar to the surrounding fuel elements, but contains enlarged channels for the two control rods and the reserve shutdown absorber material. The control rod channels have a 9.72 in. centerline spacing and a diameter of 4.00 in. The reserve shutdown channel has a diameter of 3.75 in. Each control rod fuel element contains 120 fuel holes loaded with a total of 1782 fuel rods, and 57 coolant channels.

All control fuel elements have a 0.500-in. diameter hole in four corners of the hexagonal block for burnable poison rods. None of the control elements in the initial core contain burnable poison rods.

Figure 4C.9 depicts a control fuel element with an enlarged fuel pickup hole. Some of the control fuel elements are surveillance elements as described above. Considering differences in fuel loadings, there are 13 types of control fuel elements as listed in Table 4C.4.

4C.3.3 Bottom Control Fuel Elements

The bottom element in the control rod column extends below the core about 7.5 in. The fuel holes in the bottom control rod element are 22.3 in. deep so the bottom of the fuel holes of all elements at the bottom of the core are at the same elevation. The reserve shutdown absorber channel hole is also 22.3 in. deep. Each bottom control fuel element ° 70008 2735

4C-6

contains 120 fuel holes loaded with a total of 1302 fuel rods. All bottom control elements have a 0.500-in. diameter hole in four corners of the hexagonal block for burnable poison rod loading. None of the bottom control fuel elements in the initial core contain burnable poison rods.

Figure 4C.10 depicts a bottom control fuel element with an enlarged fuel pickup hole. Considering differences in fuel loadings, there are seven types of bottom control fuel elements as listed in Table 4C.4.

4C.4 POSTIRRADIATION CONDITION OF FUEL

A nondestructive examination of various fuel elements was performed once the elements were removed from the core. Nearly all of the exa mined elements shrank slightly in both axial and radial dimensions. The inspected elements were in good condition.

4C.4.1 Segment 1 Discharge

<u>Common Fuel Elements</u> (Miller 1980). No cracks were observed on any of the element surfaces. With the exception of two large chips on chamfers (both noted during preirradiation visual inspection), all observed abnormalities were surface markings only. These markings had not etched the graphite to any harmful extent. Most blemishes observed on the elements were stains, rub marks, interface marks, soot deposits, scratches, and fingerprints.

The average axial and radial shrinkages measured for fuel elements which attained maximum burnup were 0.073 and 0.031 in., respectively. A few of the elements expanded slightly in the radial direction. The maximum expansion was 0.004 in. The maximum observed bow was 0.012 in. <u>Surveillance Element</u> (Saurwein 1981). A postirradiation examination and evaluation was performed on surveillance element 1-0743. All observed abnormalities were surface markings only and had not etched the graphite to any harmful extent. Observed abnormalities included rub marks, soot deposits, scrapes, and scratches. No evidence of mechanical interaction between the fuel rods and fuel body was found. Although minor cracking in the matrix end caps and some surface debonding were observed, the fuel rods were in good condition. About 3% of the rods were broken, but the majority were broken during unloading, and the evidence indicates that the remainder were broken prior to (or during) assembly of the element.

4C-7

7 8 8 0 8 2737

4C.4.2 Segment 2 Discharge (Saurwein 1982).

Little evidence was observed of graphite oxidation or erosion. Most blemishes observed on the elements were stains, scratches, scrapes, rub marks, and flow marks. The maximum average shrinkages observed for the elements were 0.115 in. in the length and 0.037 in. between opposing side faces. The maximum observed bow was 0.017 in.

Two fuel elements each had a single localized crack. The more prominent crack, observed in element 1-2415, was located in the center of the face adjacent to the single large dowel and extended the length of the element. The second crack was observed in fuel element 1-0172, which was located directly beneath element 1-2415 in the core. This crack was also located in the center of the face adjacent to the large dowel and ran vertically down the element.

The preirradiation inspection reports indicate that neither element was cracked prior to insertion into the core, there is no record of any damage having been done during handling. Therefore, these cracks are assumed to have developed during irradiation.

4C.4.3 Segment 3 Discharge (McCord 1985)

Little evidence was observed of graphite oxidation or erosion. Most blemishes observed on the elements were typical scratches, scrapes, rub marks, interface marks, and flow marks. The core Segment 3 maximum element average shrinkages in length and between-flats dimensions were 0.23 and 0.08 in, respectively. The maximum observed bow was 0.027 in. One H-327 graphite fuel element expanded slightly (0.001 in.) between flats.

7 0 0 0 3 27 3 8

4C-8

There were a few small nicks and chips on the elements. Most of these were very minor and insignificant. However, element 1-1228 had minor damage to all three of its dowel pins. Element 2-1707 had damage to one dowel socket. A small chip of the graphite web between that socket and the central coolant hole on the nearest face edge was missing.

4C.5 REFERENCES

References for this appendix may be found in Section 4.2 of the body of this report.

Fig. 4C.1. FSV fuel element identification system.

Fig. 4C.2. Standard fuel element with Type I burnable poison loading.

Fig. 4C.3. Standard fuel element with enlarged pickup hole.

Fig. 4C.4. Standard fuel element with Type II burnable poison loading.

Fig. 4C.5. Standard fuel element with Type III burnable poison loading.

7 3 3 0 8

Fig. 4C.6. Standard fuel element modified for neutron source.

Fig. 4C.7. Standard fuel element with Type IV burnable poison loading.

7 0 0 0 3 274 5

Fig. 4C.8. Standard fuel element modified for Californium neutron source.

Fig. 4C.9. Control fuel element with enlarged pickup hole.

Fig. 4C.10. Bottom control fuel element with enlarged pickup hole.

Table 4C.1.	FSV fuel dischar	ge No. 1
Serial	Fuel	
No.	type	Location
1-0003	101	TODD

1-0003	101	ICPP
1-0022	102	TCPP
1 0022	100	
1-0030	102	ICPP
1-0052	101	ICPP
1-0089	102	ICPP
1-0094	101	TCDD
1 0000	101	
1-0099	102	ICPP
1-0126	102	ICPP
1-0148	101	ICPP
1-0204	101	TOPP
1-0205	102	
1-0205	102	1077
1-0215	102	ICPP
1-0239	102	ICPP
1-0242	102	ICPP
1-0323	101	TODD
1 0020	101	IOFF
1-0326	102	ICPP
1-0343	102	ICPP
1-0344	101	ICPP
1-0411	102	TCPP
1-0424	101	
1 0440	101	
1-0449	101	ICPP
1-0457	101	ICPP
1-0467	101	ICPP
1-0469	102	ICPP
1-0478	101	ICPP
1_0404	101	
1-0494	101	IOFF
1-0529	102	ICPP
1-0537	101	ICPP
1-0551	102	ICPP
1-0552	101	TCPP
1-0590	101	TOPP
1-0599	101	TOLL
1-0041	101	ICPP
1-0666	101	ICPP
1-0681	101	ICPP
1-0733	101	ICPP
1-0768	101	TOPP
1-0771	101	TOPP
1-0771	101	IULL
1-0/91	LUI	ICPP
1-0794	101	ICPP
1-0867	169	ICPP
1-0890	101	TCPP
1-0801	102	TOPP
1.0004	102	
1-0904	102	IUPP
1-0938	101	ICPP

Serial	Fuel	
No.	type	Locatio n
1-0963	102	ICPP
1-0990	111	ICPP
1-0993	101	ICPP
1-1006	101	ICPP
1-1021	101	
1-1021	101	
1-1036	102	
1 1042	101	
1 1043	102	
1-1054	102	ICPP
1-1062	102	
1-1060	102	
1-1005	101	
1-1075	102	
1-11099	101	
1-1100	102	ICPP
1-1125	101	
1-1135	101	ICPP
1-1130	102	
1-114/	101	
1-1101	102	
1-1192	101	
1-1196	101	
1-1215	102	IUFF
1-1223	101	ICFF
1-1223	169	ICPP
1-1200	107	
1-1264	107	
1-1204	101	
1-1279	102	
1-12/0	102	
1 1 3 1 1	101	
1 1 1 3 3 1	101	ICII
1-1345	101	ICPP
1-1346	101	ICPP
1-1349	101	ICPP
1-1440	101	ICPP
1-1446	102	ICPP
1-1450	102	ICPP
1-1459	101	ICPP
1-1544	102	ICPP
1-1574	102	ICPP
1-1585	101	ICPP
1-1589	101	ICPP
1-1593	102	ICPP
1-1614	102	ICPP

Serial	Fuel	
No.	type	Location
1-1624	101	ICPP
1-1625	102	ICPP
1-1649	102	ICPP
1-1658	101	ICPP
1-1669	101	ICPP
1-1676	101	ICPP
1-1677	102	ICPP
1-1678	102	ICPP
1-1690	102	ICPP
1-1714	102	ICPP
1-1741	102	ICPP
1-1782	101	ICPP
1-1822	101	ICPP
1-1861	102	ICPP
1-1894	101	ICPP
1-1903	102	ICPP
1-1908	102	ICPP
1-1923	102	ICPP
1-1949	102	ICPP
1-1977	102	ICPP
1-1985	102	ICPP
1-1989	169	ICPP
1-2008	102	ICPP
1-2035	102	ICPP
1-2068	102	ICPP
1-2080	102	ICPP
1-2086	102	ICPP
1-2119	102	ICPP
1-2120	101	ICPP
1-2140	168	ICPP
1-2143	102	ICPP
1-2175	102	ICPP
1-2179	102	ICPP
1-2230	101	ICPP
1-2243	102	ICPP
1-2255	101	ICPP
1-2309	102	ICPP
1-2336	102	ICPP
1-2337	101	ICPP
1-2352	102	ICPP
1-2368	101	ICPP
1-2407	102	ICPP
1-2427	102	ICPP
1-2485	101	ICPP
1-2543	102	ICPP
1-2551	101	ICPP

Serial	Fuel	
No .	type	Location
1-2642	102	ICPP
1-2665	102	ICPP
1-2674	101	ICPP
1-2682	101	ICPP
1-2718	102	ICPP
1-2735	101	ICPP
1-2755	101	ICPP
1-2758	102	ICPP
1-2767	101	ICPP
1-2773	102	ICPP
1-2798	102	ICPP
1-2865	102	ICPP
1-2873	102	ICPP
1-2928	107	ICPP
1-2935	101	
1-2942	102	
1-4381	102	ICPP
1-5198	102	ICPP
2-0047	113	ICPP
2-0095	113	ICPP
2-0211	113	ICPP
2-0286	113	ICPP
2-0455	113	ICPP
2-0688	113	ICPP
2-0732	113	ICPP
2-0827	114	ICPP
2-0980	114	ICPP
2-1324	114	
2-1520	114	TCPP
2-2102	113	קקיז
2-2138	114	ICPP
2-2158	113	ICPP
2-2169	114	ICPP
2-2187	176	ICPP
2-2209	114	ICPP
2-2260	113	ICPP
2-2385	113	ICPP
2-2548	113	ICPP
2-2683	113	ICPP
2-2722	114	ICPP
2-2733	114	1CPP
2-200U 3-0574	113	TCPP
3-00/4	120	TOLL
2 0913	160	ICLL

Serial	Fuel	
No.	type	Location
3-1282	125	ICPP
3-1711	125	ICPP
3-2422	125	TOPP
<i>A</i> _0101	191	
4-0101	101	IOFF
4-0/10	131	ICPP
4-1050	131	ICPP
4-1055	131	ICPP
4-2464	131	ICPP
5-0068	148	ICPP
5-0279	155	ICPP
5-0365	155	ICPP
5-0375	137	ICPP
5-0430	148	ICPP
5-0541	154	ICPP
5-0610	137	ICPP
5-0683	154	ICPP
5-0704	155	ICPP
5-0766	142	ICPP
5-0773	143	ICPP
5-0785	142	ICPP
5-0799	155	ICPP
5-0819	149	ICPP
5-0825	149	ICPP
5-0965	143	ICPP
5-1014	155	ICPP
5-1024	149	ICPP
5-1269	148	ICPP
5-1486	160	ICPP
5-1515	148	ICPP
5-1818	155	ICPP
5-1997	143	TCPP
5-1979	160	זכייי
5-1097	197	
5-1907	143	
5-2020	140	
5-2035	156	
5-2089	100	
5-2110	101	
5-2154	136	
5-2165	142	ICPP
5-2238	142	ICPP
5-2353	161	ICPP
5-2417	148	ICPP
5-2436	154	ICPP
5-2456	149	ICPP
5-2481	154	ICPP
5-2528	136	ICPP

Serial	Fuel	
No.	type	Location
5-2579	154	ICPP
5-2608	149	ICPP
5-2670	143	ICPP
5-2685	154	ICPP
5-2703	148	ICPP
5-2728	136	ICPP
5-2736	142	ICPP
5-2802	149	ICPP
5-2813	142	ICPP
5-2826	161	ICPP
5-2838	143	ICPP
6-0111	166	ICPP
6-0488	166	ICPP
6-0820	166	ICPP
6-0844	166	ICPP
6-2792	166	ICPP
7-1451	167	ICPP

Table 4C.2. FSV fuel discharge No. 2.

Serial	Fuel	
No.	type	Location
1-0023	101	ICPP
1-0033	102	ICPP
1-0048	102	ICPP
1-0108	101	ICPP
1-0140	102	ICPP
1-0143	102	ICPP
1-0166	101	
1-0169	102	ICPP
1-0172	102	ICPP
1-0175	101	ICPP
1-0199	101	ICPP
1-0212	102	ICPP
1-0238	102	ICPP
1-0250	102	ICPP
1-0272	102	ICPP
1-0276	101	ICPP
1-0284	102	
1-0294	101	ICPP
1-0308	101	ICPP
1-0342	102	ICPP
1-0347	101	ICPP
1-0351	102	ICPP
1-0368	101	ICPP
1-0380	101	ICPP
1-0393	102	ICPP
1-0396	101	ICPP
1-0419	101	
1-0471	102	TCPP
1-0510	102	ICPP
1-0515	101	ICPP
1-0538	101	ICPP
1-0542	102	ICPP
1-0553	169	ICPP
1-0589	101	ICPP
1-0612	102	ICPP
1-0623	102	
1-0649	102	TCPP
1-0658	101	ICPP
1-0702	102	ICPP
1-0711	102	ICPP

. . .

Serial	Fuel	
No.	type	Location
1-0727	101	ICPP
1-0736	101	ICPP
1-0778	102	ICPP
1-0792	101	ICPP
1-0798	101	ICPP
1-0811	102	ICPP
1-0812	101	ICPP
1-0839	102	ICPP
1-0858	101	ICPP
1-0874	101	ICPP
1-0882	102	ICPP
1-0901	101	ICPP
1-0910	102	
1-0951	102	
1-0989	102	
1-1011	102	TCPP
1-1015	102	ICPP
1-1030	102	ICPP
1-1033	102	ICPP
1-1057	102	ICPP
1-1142	101	ICPP
1-1177	102	ICPP
1-1184	101	ICPP
1-1210	101	ICPP
1-1212	102	ICPP
1-1243	102	ICPP
1-1251	102	ICPP
1-1268	101	ICPP
1-1296	101	ICPP
1-1315	102	
1-1321	102	
1-1329	101	TCPP
1-1357	102	ICPP
1-1361	102	ICPP
1-1367	102	ICPP
1-1374	101	ICPP
1-1421	102	ICPP
1-1497	101	ICPP
1-1516	101	ICPP
1-1535	101	ICPP
1-1571	101	ICPP
1-1694	102	ICPP
1-1706	102	ICPP

Serial	Fuel	
No.	type	Location
1-1717	102	ICPP
1-1720	101	ICPP
1-1727	101	ICPP
1-1742	102	ICPP
1-1767	100	
1-1780	101	ICPP
1-1787	169	ICPP
1-1797	101	ICPP
1-1825	102	ICPP
1-1829	102	ICPP
1-1832	102	ICPP
1-1869	102	ICPP
1-1913	101	ICPP
1-1914	102	TCPP
1-1952	102	ICPP
1-1961	101	ICPP
1-1969	102	ICPP
1-2000	102	ICPP
1-2017	101	ICPP
1-2038	101	ICPP
1-2087	102	ICPP
1-2155	101	ICPP
1-2157	102	ICPP
1-2199	101	ICPP
1-2223	101	ICPP
1-2256	101	ICPP
1-2281	101	ICPP
1-2284	102	ICPP
1-2364	101	ICPP
1-2371	101	ICPP
1-2373	101	ICPP
1-2377	101	ICPP
1-2392	102	ICPP
1-2423	101	ICPP
1-2440	102	TCPP
1-2515	101	ICPP
1-2535	101	ICPP
1-2561	101	ICPP
1-2650	101	ICPP
1-2676	102	ICPP

Serial	Fuel	
No .	type	Location
1-2719	102	ICPP
1-2731	102	ICPP
1-2738	101	ICPP
1-2759	101	ICPP
1-2///	101	ICPP
1-2920	102	
1-2832	102	
1-2842	102	ICPP
1-2857	101	ICPP
1-2869	102	ICPP
1-2929	102	ICPP
1-2931	102	ICPP
1-2936	101	ICPP
1-4361	102	ICPP
1-4/10	101	
1-4987	102	ICFF
2-0228	114	ICPP
2-0298	113	ICPP
2-0400	114	ICPP
2-0415	113	ICPP
2-0518	113	ICPP
2-0552	113	ICPP
2-0806	113	ICPP
2-0962	113	ICPP
2-1131	113	ICPP
2-1133	114	ICPP
2-1299	113	ICPP
2-1529	114	ICPP
2-1532		ICPP
2-1590	114	ICPP
2-1835	113	ICPP
2-2084	113	ICPP
2-2350	113	ICPP
2-2501	114	ICPP
2-2531	113	ICPP
2-2093	113	LCPP
2-2109	113	TCPP
2-2893	114	TCPP
3-1171	125	ICPP
3-1412	125	ICPP

7 0 0 0 8 2 7 5 9 Table 4C.2. (continued)

-

Fuel	
type	Location
125	ICPP
125	ICPP
128	ICPP
131	ICPP
131	
140	
148	ICPP
149	ICPP
143	ICPP
161	ICPP
161	ICPP
137	ICPP
155	
155	
149	TCPP
155	ICPP
154	ICPP
137	ICPP
148	ICPP
148	ICPP
155	ICPP
154	ICPP
160	ICPP
154	ICPP
143	ICPP
142	ICPP
142	ICPP
136	ICPP
136	ICPP
148	
148	ICPP
142	ICPP
155	ICPP
143	ICPP
142	ICPP
143	ICPP
155	ICPP
143	1UPP
140	TCPP
142	ICPP
149	ICPP
	Fuel type 125 125 128 131 131 148 149 143 161 137 50 54 155 154 137 148 149 155 154 137 148 142 136 155 154 160 154 142 142 143 144 145 148 144 145 144 145 148 144 145 148 144 145 155 154 148 146 155 155 154 148 146 155 155 155 155 155 155 155 155 155 15

7 0 0 0 8 2 7 6 0

.

Serial	Fuel	Teestfor
110.	суре	Location
5-2839	137	ICPP
5-2841	154	ICPP
5-2846	143	ICPP
5-2879	160	ICPP
5-2907	149	ICPP
5-4764	149	ICPP
5-4837	136	ICPP
6-0675	166	ICPP
6-0735	166	ICPP
6-1715	166	ICPP
6-2222	166	ICPP
6-2285	166	ICPP
7-1670	167	ICPP
8-0085	205	ICPP
8-0139	101	ICPP

N 270008 2761

Table 4C.3. FSV fuel discharge No. 3.

0 1		
No.	fuel type	Location
1-0024	110	TOPP
1-0034	109	TCPP
1-0043	109	ICPP
1-0057	109	ICPP
1-0065	109	ICPP
1-0088	110	ICPP
1-0091	110	ICPP
1-0137	109	ICPP
1-0152	111	ICPP
1-0157	111	ICPP
1-0162	109	ICPP
1-0191	110	ICPP
1-0192	109	
1-0195	112	
1-0285	109	TCPP
1-0292	110	ICPP
1-0305	109	ICPP
1-0324	110	ICPP
1-0335	175	ICPP
1-0337	109	ICPP
1-0367	109	ICPP
1-0409	112	ICPP
1-0420	111	ICPP
1-0428	110	ICPP
1-0443	112	
1-0409	109	ICPP
1-0504	112	ICPP
1-0530	110	ICPP
1-0536	110	ICPP
1-0556	111	ICPP
1-0580	109	ICPP
1-0581	110	ICPP
1-0587	110	ICPP
1-0614	110	ICPP
1-0647	109	ICPP
1-0667		ICPP
1-0670	109	ICPP
1-0684	109	TCPP
1-0715	110	ICPP
1-0720	112	ICPP
1-0725	110	ICPP
1-0824	112	ICPP

Serial	Fuel	
No.	type	Location
1-0834	110	ICPP
1-0843	111	ICPP
1-0873	109	ICPP
1-0877	111	ICPP
1-0912	112	ICPP
1-0921	112	ICPP
1-0932	112	ICPP
1-0940	109	
1-0974	109	ICPP
1-0975	112	ICPP
1-0994	110	ICPP
1-1004	111	ICPP
1-1018	109	ICPP
1-1023	112	ICPP
1-1049	110	ICPP
1-1053	109	
1-1111	112	
1-1117	111	ICPP
1-1121	111	ICPP
1-1153	109	ICPP
1-1163	111	ICPP
1-1204	109	ICPP
1-1224	112	ICPP
1-1230		ICPP
1-1288	109	ICFF
1-1336	109	ICPP
1-1337	110	ICPP
1-1353	112	ICPP
1-1378	111	ICPP
1-1397	109	ICPP
1-1403	111	ICPP
1-1410	109	ICPP
1-1555	109	ICPP
1-1584	111	ICPP
1-1612	109	ICPP
1-1621	110	ICPP
1-1673	110	ICPP
1-1692	111	ICPP
1-1701	110	ICPP
1-1737	110	ICPP
1-1750	112	ICPP

Serial No.	Fuel type	Location
1-1771	109	TOPP
1-1773	110	ICPP
1-1796	110	ICPP
1-1805	110	ICPP
1-1806	112	ICPP
1-1817	110	ICPP
1-1850	109	ICPP
1-1872	112	ICPP
1-1876	109	ICPP
1-1890	110	
1-1904	109	
1-1910	112	ICPP
1-1988	109	ICPP
1-1990	109	ICPP
1-1998	109	ICPP
1-2019	112	ICPP
1-2021	110	ICPP
1-2044	109	ICPP
1-2106	110	1CPP
1-2134 1-2142	112	
1-2144	112	ICPP
1-2206	109	ICPP
1-2228	109	ICPP
1-2282	109	ICPP
1-2351	109	ICPP
1-2396	110	ICPP
1-2400	111	ICPP
1-2403	112	ICPP
1-2440	109	ICPP
1-2455	111	TCPP
1-2474	110	ICPP
1-2519	110	ICPP
1-2521	109	ICPP
1-2529	112	ICPP
1-2560	109	ICPP
1-2563	110	ICPP
1-2570	109	IUPP
1-2640	110	TOPP
1-2715	111	ICPP
1-2720	110	ICPP
1-2760	110	ICPP
1-2795	110	ICPP

Serial	Fuel	
No .	type	Location
1-2919 1-2920	109 111	ICPP ICPP
1-2923	112	ICPP
1-2939	110	ICPP
1-2940	110	ICPP
1-2943	175	ICPP
1-2944	110	ICPP
1-4304	110	
1-4318	110	ICPP
1-4430	110	ICPP
1-4715	110	ICPP
1-5152	110	ICPP
1-5217	110	ICPP
2-0200	122	
2-0642	122	ICPP
2-0673	121	ICPP
2-1028	124	ICPP
2-1044	122	ICPP
2-1120	121	ICPP
2-1182	123	
2-14/1	123	ICFF
2-1519	121	ICPP
2-1606	122	ICPP
2-1707	121	ICPP
2-1726	124	ICPP
2-1792	123	ICPP
2-1950	122	ICPP
2-2088	123	
2-2203	121	ICPP
2-2781	178	ICPP
2-2815	121	ICPP
2-2836	124	ICPP
2-2882	123	ICPP
2-2891	123	ICPP
2-5178	121	ICPP
3-0898	130	IUPP TOPP
3-1719	129	TCPP
3-1766	129	ICPP
3-2850	130	ICPP
4-0463	134	ICPP
4-0765	135	ICPP

Serial	Fuel	
No.	type	Location
4-0981	134	ICPP
4-1994	135	ICPP
4-2339	134	ICPP
5-0026	146	ICPP
5-0027	164	ICPP
5-0036	153	ICPP
5-0127	159	ICPP
5-0129	165	ICPP
5-0190	159	ICPP
5-0427	152	ICPP
5-0723	146	ICPP
5-0731	152	ICPP
5-0746	158	ICPP
5-0749	140	ICPP
5-0751	158	ICPP
5-0805	146	ICPP
5-0831	159	ICPP
5-0854	152	ICPP
5-0862	152	ICPP
5-0892	164	ICPP
5-1058	158	ICPP
5-1095	147	ICPP
5-1148	147	ICPP
5-1176	140	ICPP
5-1249	150	
5-1562	109	
5-1505	141	
5-1799	159	
5-1801	159	
5-1865	153	ICPP
5-1974	153	ICPP
5-2001	153	ICPP
5-2022	158	ICPP
5-2031	153	ICPP
5-2104	146	ICPP
5-2159	147	ICPP
5-2191	180	ICPP
5-2213	140	ICPP
5-2235	112	ICPP
5-2275	146	ICPP
5-2349	153	ICPP
5-2416	165	ICPP
5-2430	158	ICPP
5-2460	152	ICPP
5-2530	165	ICPP

.

Serial	Fuel	
No.	type	Location
5-2556	141	ICPP
5-2688	141	ICPP
5-2908	164	LCPP
5-2933	147	ICPP
5-4278	146	ICPP
6-0067	166	ICPP
6-0209	166	ICPP
6-0961	166	ICPP
6-1984	166	ICPP
6-2288	166	ICPP
7-2499	167	ICPP
8-0206	206	GA

Table 4C.4.	FSV fuel	types	and	drawings	(Ref.	GA	Technologies	1985)	

	Type No.	and Assembly Drawing No.	Type No.
Fuel elements	101	Fuel elements with	136
90-R1801-110	102	enlarged pickup hole	137
	103	90-R1801-510	138
	104		139
	105		140
	106		141
	107		
	108	90-R1801-520	142
	109		143
	110		144
	111		145
	112		146
			147
Control rod elements	113		
90-R1801-210	114	90-R1801-530	148
	115		149
	116		150
	117		151
	118		152
	119		153
	120		
	121	90-R1801-540	154
	122		155
	123		156
	124		157
			158
Bottom control rod	125		159
elements	126		
90-R1801-310	127	90-R1801-550	160
	128		161
	129		162
	130		163
			164
Neutron source fuel	131		165
element	132		
90-R1801-410	133	Control rod elements	166
	134	with enlarged pickup	
	135	hole	
		90-R1801-610	
7 8 0 0 8 27 6 8

Element Description and Assembly Drawing No.	Assembly Type No.	Element Description and Assembly Drawing No.	Assembly Type No.
Bottom control rod elements with enlarged pickup hole 90-R1801-710	167	Surveillance fuel elements with enlarged pickup hole 90-R1801-830	179 180
Surveillance fuel elements 90-R1801-810	168 169 170 171	Californium neutron source fuel element 90-R1801-120	181
	172 173 174	Fuel test elements 90-R1802-130	205
	175	90-R1802-150	206
Surveillance control elements 90-R1801-820	176 177 178	90-R1802-560	207

Table 4C.4 (continued)

APPENDIX 4D. SUPPLEMENTAL DATA FOR PEACH BOTTOM 1 SPENT FUEL

...

4D-1

4D.1 INSTRUMENTED FUEL ELEMENT - CORE 1

Thirty-six fuel elements were instrumented for temperature measurement in various locations of the core. Each of these elements was instrumented with two thermocouples, and eight also contained acoustic thermometers. An acoustic thermometer is an instrument which utilizes the proportionality between resonance frequency of a transmitted sound wave and the temperature of helium gas in a cavity within the fuel element to determine the temperature. Table 4D.1 lists the number of instrumented fuel elements in each of the fuel loading types 1 through 4. Figure 4D.1 is a schematic of a typical core 1 instrumented fuel element (without the canister) as stored at INEL.

The instrumented fuel elements are very similar to the standard fuel elements. The differences involve the bottom connector and certain internal components which are slightly modified to allow passage of the thermocouple leads. These leads extend to different axial locations in the element as listed in Table 4D.1.

4D.2 STANDARD FUEL ELEMENT - CORE 2

Figure 4D.2 shows the Core 2 standard element as currently stored at INEL. The elements are stored in canisters located in the Irradiated Fuels Storage Facility at INEL.

The Core 2 standard fuel elements are essentially the same as the Core 1 elements. The only design difference is in the coated particles and the external appearance of fuel compacts. The coated particles in Core 1 used monolithic laminar pyrolytic coatings whereas the Core 2 coated particles consisted of an inner, low density, pyrolytic carbon coating surrounded by an outer isotropic pyrolytic carbon coating. The coated particles are between 340 and 630 microns in diameter with a total coating thickness of 90 to 130 microns. The Core 2 compacts do not have the axial grooves included in the Core 1 compacts (see Fig. 4D.3) and have slots on the ends which were not included in the Core 1 compacts.

x - 7 0 0 0 8 x 2 7 7 1

4D-2

In the as-stored configuration, the Core 2 element differs from the Core 1 element in that the top 18 in. of the upper reflector was cut off at INEL prior to storage in the facility. This is shown as Fig. 4D.2. Note that the bottom connector for the element placed in the Bl610 position (within the core), is somewhat different from a standard fuel element.

4D.3 INSTRUMENTED FUEL ELEMENT - CORE 2

Core 2 shared its instrumented core locations with instrumented fuel elements and instrumented test elements. The instrumented fuel elements for Core 2 are of the same design as the Core 1 with the exceptions noted in the previous sections concerning fuel compact design and the cut off upper reflector. Figure 4D.4 shows a typical Core 2 instrumented fuel element as stored at INEL.

4D.4 TEST FUEL ELEMENTS

Since the PB Unit 1 reactor offered unique capabilities as a test facility for HTGR type fuel, test assemblies were tested in the core to evaluate interactions of fuel particles, fuel beds, and graphite structures. Test elements were included in both Core 1 and Core 2. Figure 4D.5 shows two configurations currently in storage at INEL and ORNL.

Two test elements of the proof test element (PTE) type were irradiated in Core 1. The first, PTE-1, did not perform correctly, and was removed, and shipped to INEL for storage. The second, PTE-2, remained in the core for further irradiation with Core 2.

An additional 32 test elements were constructed and irradiated in Core 2. These were manufactured in three classes of test elements fuel test elements (FTEs)/fuel bed test elements (FBTEs), PTEs, and fuel pin test elements (FPTEs). Of the total 33 elements, 30 were of the FTE/FBTE design, one was of the PTE design, and two of the FPTE design.

4D-3

The FPTEs were irradiated for UKAEA and were returned to the United Kingdom following their irradiation in the PB core and subsequent postirradiation examination (PIE) in the United States.

Table 4D.2 lists the 33 test elements, along with important parameters of each one of these elements.

The PTE test elements are hexagonal in shape as shown in Fig. 4D.5 and do not utilize graphite sleeves. The element is made up of four separate fuel sections containing fuel holes and coolant holes. These four sections along with a top reflector, bottom reflector, and bottom connector were threaded together to form an assembly approximately 3.5 in. across flats and 140 in. long. The top and bottom reflectors were specially designed to allow a special handling tool and coolant flow inlets and exits. The element was instrumented with two thermocouples. A description of the PTEs is given in Ref. 1.

The remaining test elements in storage are similar in external appearance to the standard and instrumented fuel elements. The fueled portion of some elements contain six fuel bodies as shown in Figs. 4D.6 and 4D.7, while others contain only three. Each fuel bodies has eight fuel holes surrounding a central hole. The fuel holes contain either fuel rods or loose fuel particles. Descriptions of the test elements are included in Scheffel 1972c, Sheffel 1972a, Sheffel 1972b, Sanders 1973, Wallroth 1980, Christie 1976, Wallroth 1974, Wallroth 1977, Walroth 1976, Fitzgerald 1976, Morrissette 1971, and Long 1974.

4D.5 CORE 1 STORAGE CANISTERS

Figures 4D.8 and 4D.9 are sketches of two fuel element storage canister types not described in Section 4.3.

4D.6 CORE 1 PACKAGE TYPES

Removal and canning of the failed Core 1 fuel resulted in a number of package types. These are given in Table 4D.3 (Agreement etc.).

4D-4

4D.7 INVENTORY RELATED DATA

The data received from INEL (Denney 1986) on the PB1 spent fuel does not allow a detail inventory of each element by serial number or tyep. The elements are stored in groups of 18 or less. Table 4D.4 is the listing received from INEL on Core 1 which includes 814 elements (813 regular elements and one test element). Table 4D.5 is the listing on Core 2 which accounts for 785 elements. Additional information was provided to INEL by Philadelphia Electric for Core 1 (Denney 1986).

4D.8 ADDITIONAL ACCOUNTABILITY DATA

Tables 4D.6, 4D.7, and 4D.8 provide data on heavy metal loadings of the various Core 1 package types and the many types of test elements.

4D.9 References for Section 4D

Christie 1976. G. E. Christie, "The Irradiation of MK3 HTR Fuel in Peach Bottom HTGR Reactor, Irradiation History of Main Experiment -IE-486/3," UKAEA Report TRG 2748(S), February 1976.

Denney 1986. Letter No. RRDD-71-86 from R. D. Denney, Westinghouse, Idaho Nuclear Company, Inc., to N. Tomsio, GA Technologies, Inc., April 30, 1986.

Fitzgerald 1975. C. L. Fitzgerald, "Head-End Reprocessing Studies with Irradiated HTGR-Type Fuels: III. Studies with RTE-7: TRISO UC₂ - TRISO ThC₂," ERDA Report ORNL-5090, Oak Ridge National Laboratory, November 1975.

Long 1974. E. L. Long, et al., "Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Post irradiation Examinations of Recycle Test Elements 7 and 4," USAEC Report ORNL/TM-4477, Oak Ridge National Laboratory, September 1974.

Morissette 1971. R. P. Morissette and K. P. Stewart, "Recycle Test Element Program Design, Fabrication, and Assembly," Gulf General Atomic Report GA-10109, September 1971.

Scheffel 1972c. W. J. Scheffel, "Design and Operational Evaluation for Fuel Test Elements No. 14 and 15," USAEC Informal Report Gulf-GA-B12344, Gulf General Atomic, November 3, 1972.

4D-5

Scheffel, 1972a. W. J. Scheffel, "Phase III - Final Progress Report, Part I of Two Parts, Design and Operational Evaluation for the Plutonium Test Element (FTE-13)," Gulf General Atomic Report Gulf-GA-B12271, August 18, 1972.

Scheffel 1972b. W. J. Scheffel, "Phase III - Final Progress Report, Part II of Two Parts, Design and Fabrication of the Plutonium Fuels for the Plutonium Fuel Test Element (FTE-13)," Gulf General Atomic Report the Gulf-GA-Bl2288, August 22, 1972.

Sanders 1973. C. F. Sanders and J. D. Sease, "Fabrication and Characteristics of Plutonium Test FTE-13: An HTGR Test Element Containing PuO_{2-x} , $Th_{0.25}$, $Pu_{0.25}O_{2-x}$, and ThO_2 ," USAEC Report ORNL/TM-4207, Oak Ridge National Laboratory, August 1973.

Wallroth 1980. C. F. Wallroth, et al., "Thermal, Nuclear, and Fission Product Evaluation of Fuel Pin Test Element FPTE-1 and FPTE-3," General Atomic Report GA-A13849, December 1980.

Wallroth 1974. C. F. Wallroth, "Postirradiation Examination of Peach Bottom Fuel Test Element FTE-3," USAEC Report GA-A13004, General Atomic, August 15, 1974.

Wallroth 1977. C. F. Wallroth, "Postirradiation Examination of Peach Bottom Fuel Test Element FTE-4," General Atomic Report GA-Al3452, July 1977.

Wallroth 1976. C. F. Wallroth, "Postirradiation Examination of Peach Bottom Fuel Test Element FTE-18," General Atomic Report GA-A13699, July 1977.

Agreement between USAEC and Philadelphia Electric Company for Master Terms and Conditions for Financial Settlement for Spent Fuels Appendix A to Contract No. AT(10-1)-1314, March 1971.

Fig. 4D.1. PB1/1 instrumented fuel element.

Fig. 4D.2. PB1/2 fuel element.

Fig. 4D.3. PB1/2 fuel compact assembly.

NUMBER OF ELEMENTS REQUIRED

FUEL TYPE

Fig. 4D.4. PB1/2 instrumented fuel element

FTE CROSS SECTION

Fig. 4D.5. Cross sections of PBl test element classes

?

Fig. 4D.6. PB1 typical fuel test element assembly

<u>(</u>

ية . تقديرونا

(2)

<u>ن</u>ي کړو

3

~

ليدر

0.344

long bodies.

Fig. 4.D.7. PB1 typical fuel test element fuel body

Fig. 4D.8. PB1/1 fuel element in storage canister with removal tool

Fig. 4D.9. PB1/1 failed fuel element in storage canister with removal tool in salvage canister

No. of Reference Instrumented Fuel Use of Thermocouples Drawing No. Fuel Elements Loading Type 1 and 233-FE-10 8 Spine and sleeve temperature. Also acoustic thermometer at center, hot spot height 3 1 Axial profile of center of 33-FE-20 core - spine temperature 5 1, 2, 3, and 4 Radial profile - spine plus 33-FE-20 internal trap inlet temperature 33-FE-20 7 1, 2, and 3 Radial profile - both thermocouples for spine temperature 3 2 33-FE-20 Both thermocouples for spine temperature 2 4 Low U loading - both thermo-33-FE-20 couples for spine temperature 1 and 233-FE-40 2 Internal trap inlet and outlet temperature 2 2 and 4 Standoff and bottom reflector 33-FE-30 temperature 3 2 Axial profile at edge of 33-FE-20 core - spine temperature 3 Boron loaded - both thermo-33-FE-20 1 couples for spine temperature

Table 4D.1. Uses of thermocouples in instrumented fuel elements

÷

PEACH BOTTOM TEST ELEMENTS IRRADIATED IN CORE 2

Element	Phase(a)	Thermocouples	Fuel Bed	Description/Fuel Type
PTE-2(b)	1	Yes	_{Rods} (c)	Proof test element for FSV - rods
FBTE-1	1	Yes	Rods	Fuel bed test element for LHTGRs - bonded rods
FBTE-2	1	Yes	Rods	Fuel bed test element for LHTGRs - bonded rods
FBTE-3	1	Yes	Rods	Fuel bed test element for LHTGRs - bonded rods
FBTE-4	1	Yes	Rods	Fuel bed test element for LHTGRs - bonded rods
FBTE-5	1	No	Blended(d)	Fuel bed test element for LHTGRs - blended bed
FBTE-6	1	Yes	Blended	Fuel bed test element for LHTGRs - blended bed
FTE-1	1	Yes	Blended	Fuel tets element for LHTGRs - blended bed
FTE-2	1	Yes	Blended	Fuel test element for LHTGRs - blended bed
FTE-5	1	Yes	Rods	Fuel test element for LHTGRs - bonded rods
RTE-2	1	No	Mixed	Recycle test element for ORNL - 1/2 beds, 1/2 rods
RTE-4	1	No	Mixed	Recycle test element for ORNL - $1/2$ beds, $1/2$ rods
RTE-5	1	No	Rods	Recycle test element for ORNL - bonded rods
RTE-6	1	No	Rods	Recycle test element for ORNL - bonded rods
RTE-7	1	No	Rods	Recycle test element for ORNL - bonded rods
RTE-8	1	NO	Rods	Recycle test element for ORNL - 1/6 beds, 5/6 rods
FPTE-1	1	Yes	Compacts	Fuel pin test element for UKAEA - fuel pins
FTE-3	2	Yes	Rods	Fuel test element for LHTGRs
FTE-4	2	?	Rods	Fuel test element for LHTGRs
FTE-6	2	Yes	Rods	Fuel test element for LHTGRs

-

 \sim

ು ಆ

Element	Phase(a)	Thermocouples	Fuel Bed	Description/Fuel Type
FTE-7	2	Yes	Rods	Fuel test element for LHTGRs
FTE-8	2	Yes	Rods	Fuel test element for LHTGRs
FTE-9	2	Yes	Rods	Fuel test element for LHTGRs
FTE-10	2	Yes	Rods	Proof test element for FSV
FTE-11	2	No	Rods	Recycle test element for ORNL
FTE-12	2	Yes	Rods	Fuel test element for LHTGRs
FPTE-3	2	Yes	Compacts	Fuel pin test element for UKAEA
FTE-13	3	Yes	Rods	Plutonium fuel test
FTE-14	3	Yes	Rods	Large HTGR fuel test
FTE-15	3	Yes	Rods	Large HTGR fuel test
FTE-16	3	Yes	Rods	FSV fuel proof test
FTE-17	3	Yes	Rods	FSV fuel proof test
FTE-18	3	Yes	Monolithic	HOBEG/KFA molded fuel body test

Table 4D.2. (continued)

(a) Phase 1 loaded at 0 EFPD of Core 2, Phase 2 loaded at 252 EFPD of Core 2, and Phase 3 loaded at 385 of Core 2.

(b) PTE-2 was irradiated 152 EFPD in Core 1, prior to irradiation in Core 2.

(c) A fuel rod, as used here, is a close-packed assembly of coated fuel particles bonded together with a carbonaceous matrix.

(d) A blended bed, as used here, is a close-packed assembly of unbonded, coated fuel particles.

۲ د

5

N)

0

 \odot

قدتيك

2 1 20008 2737

Table 4D.3.

PEACH BOTTOM UNIT 1 - CORE 1 SPENT FUEL PACKAGE TYPES

Fuel Package Type	No. of Elements	Description
1	528	Type I or II fuel element, regular can and liner.
2	58	Type I or II fuel element, failed sleeve, normal can, split liner, spacer, type 2 removal tool.
3	7	Fuel assembly type 2 with a type 1 removal tool.
4	1	Type II fuel element (No. 263) broken and stored in 2 containers.
		Upper portion of element with 21 compacts is in a salvage can with unmarked salvage cap with partial type 2 removal tool, special spacer, component canister, 4.25 in. spacer and 50 lb of steel shot.
		Lower portion of element with 9 compacts is in a regu- lar canister (cap No. 120) with a 3.25 in. spacer and a special GGA pulling tool.
5	1	Type II fuel element (No. 451), failed sleeve, normal can, split liner, spacer, type 1 removal tool. Due to leaking canister, recanned in salvage canister with special vented cap, unmarked.
6	1	Type II fuel element (No. 576), failed sleeve, type 2 removal tool, component canister and spacer in salvage canister, cap No. 8.
7	1	Type 2 fuel assembly in a salvage canister (cap No. 851, fuel element No. 731).
8	1	Type 2 fuel element (No. 848) less upper reflector canned in salvage canister (component canister and 4 in. spacer inside). Salvage cap is unmarked.
9	71	Type 3 fuel element, regular can and liner.
10	8	Fuel assembly type 2 with a type 3 fuel element.
11	1	Fuel assembly type 10 with a hollowed out cap (No. 90) due to a removal tool positioned too high (element No. 126).

Table 4D.3. (continued)

Fuel Package Type	No. of Elements	Description
12 .	1	Fuel assembly type 10 recanned in salvage canister with cap C5 (element No. 306).
13	1	Type 10 fuel assembly (element No. 870) in can No. 14 (cap unmarked) with type 1 removal tool.
14	98	Type 4 fuel element, regular can and liner.
15	5	Type 2 fuel assembly with acoustic thermometer installed.
16	1	Type 15 fuel assembly (fuel element No. 807) in can 01, cap unmarked, with a type 1 removal tool.
17	1	Type 1 fuel assembly (fuel element No. 808 and cap No. 252R) with acoustic thermometer installed.
18	18	Type 1 fuel assembly with thermocouple installed.
19	3	Type 2 fuel assembly (element No. 848) with thermo- couple installed.
20	3	Type 9 fuel assembly with thermocouple installed.
21	4	Type 14 fuel assembly with thermocouple installed.

20008 2739,

Table 4D.4.

PEACH BOTTOM UNIT 1 - CORE 1 INVENTORY AT INEL

Uranium	U-235		
(gm)	(gm)	Quantity	Туре
4853	3847	18 elements	Peach Bottom
4662	3516	18 elements	Peach Bottom
4761	3621	18 elements	Peach Bottom
4857	3718	18 elements	Peach Bottom
4960	3884	18 elements	Peach Bottom
4719	3574	18 elements	Peach Bottom
4972	3890	18 elements	Peach Bottom
4919	3804	18 elements	Peach Bottom
4823	3667	18 elements	Peach Bottom
4705	3623	18 elements	Peach Bottom
4804	3643	18 elements	Peach Bottom
4777	3593	18 elements	Peach Bottom
4822	3687	18 elements	Peach Bottom
4939	3854	18 elements	Peach Bottom
4814	3679	18 elements	Peach Bottom
4794	3685	18 elements	Peach Bottom
4749	3672	18 elements	Peach Bottom
4835	3751	18 elements	Peach Bottom
4957	3869	18 elements	Peach Bottom
4884	3755	18 elements	Peach Bottom
4840	3681	18 elements	Peach Bottom
4865	3721	18 elements	Peach Bottom
4519	3414	18 elements	Peach Bottom
4776	3599	18 elements	Peach Bottom
4309	31/6	18 elements	Peach Bottom
4335	3216	18 elements	Peach Bottom
4823	3709	18 elements	Peach Bottom
4919	38/1	18 elements	Peach Bottom
4/80	3/12	18 elements	Peach Bottom
4253	3185	18 elements	Peach Bottom
3442	2352	18 elements	Peach Bottom
3480	2425	18 elements	Peach Bottom
3482	2444	18 elements	Peach Bottom
2805	1/04	18 elements	Peach Bottom
3/83	2729	18 elements	Peach Bottom
40/4	3/30	10 elements	Peach Bottom
4030	3000	18 elements	Peach Bottom
4099	1960	18 elements	Peach Bottom
4687	3546	18 elemente	Peach Bottom
4007	3624	18 elements	Peach Bottom
4702	3612	18 elements	Peach Bottom
4923	3848	18 elements	Peach Bottom
4879	3760	18 elements	Peach Bottom
4815	3738	18 elements	Peach Bottom
1084	842	4 elements	Peach Bottom
1004	U72		

Table 4D.5.

. .

PEACH BOTTOM UNIT 1 - CORE 2 INVENTORY AT INEL

Uranium	U-235		m
<u>(gm)</u>	(gm)	Quantity	Туре
3053	618	18 elements	Peach Bottom
2355	657	18 elements	Peach Bottom
1854	678	18 elements	Peach Bottom
1855	680	18 elemente	Peach Bottom
2470	623	18 elements	Peach Bottom
3186	468	18 elemente	Peach Bottom
2446	570	18 elements	Peach Bottom
2508	562	18 elements	Peach Bottom
2500	570	10 elements	Peach Bottom
2449	570	10 elements	Peach Bottom
2027	505	18 elements	Peach Bottom
2441	548	1/ elements	Peach Bottom
2/22	562	18 elements	Peach Bottom
2833	539	18 elements	Peach Bottom
2/90	567	18 elements	Peach Bottom
2919	551	18 elements	Peach Bottom
2995	594	18 elements	Peach Bottom
2997	610	18 elements	Peach Bottom
3004	610	18 elements	Peach Bottom
3001	609	18 elements	Peach Bottom
3027	605	18 elements	Peach Bottom
3038	610	18 elements	Peach Bottom
3017	614	18 elements	Peach Bottom
3033	617	18 elements	Peach Bottom
3091	617	18 elements	Peach Bottom
3009	611	18 elements	Peach Bottom
3034	615	18 elements	Peach Bottom
3099	62 0	18 elements	Peach Bottom
3136	624	18 elements	Peach Bottom
3037	604	18 elements	Peach Bottom
3046	584	18 elements	Peach Bottom
2977	580	18 elements	Peach Bottom
2983	540	18 elements	Peach Bottom
2978	548	18 elements	Peach Bottom
2975	580	18 elements	Peach Bottom
2958	582	18 elemente	Peach Bottom
2070	607	18 elements	Peach Bottom
29/2	607	18 elements	Peach Bottom
2975	505	18 plemente	Peach Rottom
2973	595	18 alements	Deach Rottom
27/1	50%	18 alomenta	Peach Bottom
27/1	570	18 alements	Peach Potton
27/0	2/0		Deach Dollom
27/0	2/0	10 elements	Peach Bottom
2152	5/3	13 elements	Peach Bottom
2101	490	i/ elements	reach Borrom

7 0 0 0 0 2 7 9 1

т	ล่	h	1	e	4	D		6	
*	a	υ.	-	~	-	~	٠	v	٠

PEACH BOTTOM UNIT 1 - CORE 1 SUMMARY OF POSTIRRADIATION URANIUM LOADINGS BY FUEL ASSEMBLY PACKAGE TYPE

Package Type	No. of Elements	Total U Avarage (g) Maximum (g)	U-232 Average (µg) Maximum (µg)	U-233 Average (g) Maximum (g)	U-234 Average (g) Maximum (g)	U-235 Average (g) Maximum (g)	U-236 Average (g) Maximum (g)	U-238 Average (g) Maximum (g)
1	528	268.68 303.81	16 45 2081	23.99 27.10	3.71 3.89	206.46 268.84	18.46 20.76	16.06 17.10
2	58	267.46 283.83	1697 2081	24.39 27.10	3.73 3.89	204.46 226.93	18.84 20.76	16.04 16.27
3	7 *	279.24 282.79	883 960	17.94 19.04	3.47 3.49	227.35 230.81	14.08 14.52	16.39 16.50
4	1	256.77 256.77	1584 1584	20.42 20.42	3.71 3.71	197.31 197.31	19.06 19.06	16.27 16.27
5	1	280.85 280.85	820 820	18.24 18.24	3.44 3.44	229.11 229.11	13.75 13.75	16.31 16.31
6	1	255.80 255.80	1699 1699	21.36 21.36	3.75 3.75	194.85 194.85	19.62 19.62	16.21 16.21
7	1	278.49 278.49	1191 1191	22.71 22.71	3.53 3.53	219.86 219.86	16.25 16.25	16.14 16.14
8	1	297.20 297.20	285 285	11.00	3.36 3.36	257.31 257.31	8.60 8.60	16.93 16.93
9	71	269.79 295.62	1594 2050	23.67 27.04	3.68 3.86	208.20 258.37	18.15 20.33	16.08 16.71
10	8	268.25 274.76	1836 2050	25.70 27.04	3.77 3.86	203.54 213.19	19.27 20.33	15.96 16.05
11	1	272.57	1646 1646	25.21 25.21	3.69 3.69	209.35 209.35	18.31 18.31	16.00 16.00
12	l	274.64 274.64	Г498 1498	24.36 24.36	3.63 3.63	212.99 212.99	17.61 17.61	16.05 16.05
13	1	285.85 285.85	749 749	17.82 17.82	3.42 3.42	235.34 235.34	12.87 12.87	16.40 16.40
14	98	150.41 155.48	3009 3262	34.81 36.28	3.19 3.34	91.69 96.02	11.90 12.33	8.81 8.86
15	5	268.15 277.75	1715 2013	24.53 25.57	3.73 3.84	205.07 218.51	18.79 20.25	16.03 16.13
16	1	288.17 288.17	651 651	16.82 16.82	3.40 3.40	239.07 239.07	12.35 12.35	16.53 16.53
17	1	277.75	1279 1279	23.04 23.04	3.55 3.55	218.51 218.51	16.51 16.51	16.13 16.13
18	18	270.69 283.63	1550 2013	23.62 25.61	3.66 3.84	209.37 226.63	17.95 20.25	16.09 16.24
19	3	277.57 278.54	1228 1297	22.79 23.00	3.54 3.57	218.63 219.94	16.46 16.90	16.14 16.14
20	3	268.61 284.63	1378 1559	21.33 22.54	3.61 3.68	210.09 227.42	17.35	16.23 16.26
21	4	150.60 155.48	2933 3240	34.56 36.17	3.16 3.18	92 .24 96.02	11.81 11.96	8.82 8.83

						Tab	ole 4D	.8.				
PEACH	BOTTOM	UNIT	1 -	CORE	2	TEST	ELEMENT	POSTIRRADIATION	HEAVY	METAL	LOADINGS(a)	

	Th-232	Pa-231	U-232	U-233(b)	U-234	U-235	U-236	U-238	Pu-239(c)	Pu240	Pu-241	Pu-242	Np-237
PTE-2	2120.76	0.010	0.003	26.34	5.14	316.77	24.34	23.65	0.80	0.17	0.10	0.009	0.93
FBTE-1	1211.22	0.007	0.008	30.03	4.96	83.11	23.83	8.93	0.26	0.09	0.14	0.060	2.03
FBTE-2	526.21	0.003	0.004	16.88	4.00	87.36	26.26	9.76	0.25	0.09	0.14	0.069	2.14
FBTE-3	727.09	0.004	0.005	19.00	3.93	67.71	22.03	8.12	0.19	0.06	0.11	0.058	1.73
FBTE-4	932.78	0.003	(d)	9.64	3.44	179.16	9.78	10.97	0.28	0.05	0.02	0.001	0.26
FBTE-5	1457.91	0.008	0.011	32.04	5.39	65.95	22.64	7.98	0.20	0.07	0.12	0.066	1.99
FBTE-6	1650.59	0.005	0.001	14.67	2.92	131.30	8.53	8.41	0.20	0.04	0.02	0.002	0.23
FTE-1	1522.48	0.005	0.001	13.40	3.21	150.84	9.49	9.58	0.23	0.05	0.02	0.002	0.26
FTE-2	1614.40	0.007	0.003	20.36	3.24	120.73	11.44	8.37	0.25	0.06	0.04	0.005	0.46
FTE-5	1039.43	0.005	0.007	23.36	4.47	72.43	22.85	8.52	0.20	0.07	0.11	0.059	1.77
RTE-2	773.80	0.004	0.004	19.43	3.75	98.30	20.55	9.07	0.27	0.09	0.12	0.036	1.43
RTE-4	1072.56	0.005	0.002	16.10	2.95	110.60	11.97	8.00	0.23	0.06	0.05	0.007	0.52
RTE-5	1022.46	0.006	0.008	25.16	4.61	61.57	21.90	7.65	0.19	0.07	0.11	0.065	1.94
RTE-6	882.06	0.005	0.007	23.66	4.57	60.31	22.70	7.78	0.19	0.07	0.12	0.069	2.05
RTE-7	1235.16	0.004	0.001	12.78	2.89	135.34	8.71	8.60	0.22	0.04	0.02	0.002	0.25
RTE-8	837.34	0.005	0.007	22.51	4.38	58.99	22.09	7.58	0.19	0.06	0.11	0.067	1.99
FPTE-1	0	0	0	0	0	107.64	5.65	1330.60	6.65	1.18	0.58	0.041	1.13
FTE-3	990.41	0.002	(d)	6.00	1.54	170.22	5.13	11.75	0.20	0.02	0.005	(d)	0.08
FTE-4	1006.65	0.004	0.003	15.51	2.00	107.05	13.84	10.21	0.25	0.07	0.08	0.015	0.60
FTE-6	825.61	0.004	0.004	18.93	2.70	99.77	21.47	11.53	0.32	0.10	0.15	0.049	1.43
FTE-7	1359.43	0.006	0.006	23.34	3.07	100.27	21.05	11.74	0.27	0.09	0.13	0.044	1.23
FTE-8	499.05	0.002	0.002	12.67	2.02	80.83	17.31	9.58	0.22	0.07	0.10	0.037	1.01
FTE-9	1080.01	0.006	0.005	22.36	2.67	83.79	16.80	9.34	0.26	0.08	0.12	0.036	1.08
FTE-10	658.36	0.003	0.003	16.89	2.29	76.55	16.58	8.89	0.24	0.08	0.11	0.038	1.10
FTE-11	858.50	0.004	0.005	19.79	2.93	93.23	22.56	11.55	0.29	0.10	0.15	0.057	1.54
FTE-12	1301.92	0.007	0.006	23.94	2.83	90.26	17.75	9.96	0.28	0.09	0.12	0.037	1.13
FPTE-3	0	0	0	0	0	112.59	21.18	1337.45	7.15	2.26	3.05	0.933	1.19
FTE-13	1317.24	0.006	0.005	23.69	2.16	50.05	8.81	4.36	1.08	2.03	1.92	1.002	0.47
FTE-14	1889.32	0.007	0.002	27.83	3.51	132.15	10.45	8.69	0.23	0.05	0.03	0.003	0.35
FTE-15	1834.43	0.008	0.005	34.63	4.46	104.64	15.51	8.45	0.20	0.06	0.08	0.017	0.73
FTE-16	1018.51	0.005	0.003	18.45	2.88	75.85	12.35	6.31	0.17	0.05	0.06	0.015	0.67
FTE-17	881.11	0.004	0.003	17.70	2.41	50.00	9.01	4.37	0.11	0.04	0.05	0.012	0.51
FTE-18	712.83	0.003	0.003	15.54	4.91	75.75	15.12	14.48	0.37	0.12	0.16	0.046	0.91

(a) Assuming all test elements stay in Core 2 until Core-2 end-of-life (EOL).

(b) Includes Pa-233.

(c)_{Includes Np-239}.

(d)_{Less than 0.001.}

~

 \circ

C

シン

Table 4D.7.

PEACH BOTTOM UNIT 1 - CORE 2 TEST ELEMENT INITIAL HEAVY METAL LOADINGS

Test Element Number	Thorium	Uranium ^(a)
PTE-2	2152.62	450.0
FBTE-1	1263.6	215.9
FBTE-2	566.6	235.0
FBTE-3	762.2	194.2
FBTE-4	943.7	235.7
FBTE-5	1518.1	194.4
FBTE-6	1667.7	181.0
FTE-1	1537.8	206.1
FTE-2	1639.5	184.4
FTE-5	1082.4	203.3
RTE-2	804.0	211.9
RTE-4	1093.2	177.4
RTE-5	1083.5	186.6
RTE-6	928.2	190.6
RTE-7	1250.0	185.5
RTE-8	881.1	185.7
FPTE-1	0	1477.5 (9.15% enriched)
FTE-3	996.80	205.9
FTE-4	1027.63	188.42
FTE-6	855.43	222.94
FTE-7	1396.08	223.44
FTE-8	519.15	182.44
FTE-9	1114.5	179.76
FTE-10	685.1	171.81
FTE-11	891.02	224.14
FTE-12	1338.6	191.52
FPTE-3	0	1592.39 (14.08% enriched)
FTE-13	1352.03	99.94
	Pu-total	Pu-239
	18.77	16.65
FTE-14	1922.6	191.5
FTE-15	1883.7	191.85
FTE-16	1045.0	144.93
FTE-17	907.2	100.8
FTE-18	736.2	168.0 (86.46% enriched)

(a) 93.15% enriched except as noted.