MOL.20100608.0022 XA:NA

DOE/RW-0184-R1 Volume 4

HQ0.19920827.0004

CHARACTERISTICS OF POTENTIAL REPOSITORY WASTES

JULY 1992

Prepared for the U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT Washington, D.C. 20585

> Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-84OR21400

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401. Ŧ

ł

ł

:

ļ

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Characteristics of Potential Repository Wastes

July 1992

Appendix 4A.	Nuclear Reactors at Educational Institutions of the United States
Appendix 4B.	Data Sheets for Nuclear Reactors at Educational Institutions
Appendix 4C.	Supplemental Data for Fort St. Vrain Spent Fuel
Appendix 4D.	Supplemental Data for Peach Bottom 1 Spent Fuel
Appendix 4E.	Supplemental Data for Fast Flux Test Facility

Prepared for the U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT Washington, D.C. 20585

> Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-84OR21400

CONTENTS - VOLUME 4

LIST OF ACRO	NYMS	iii
APPENDIX 4A.	NUCLEAR REACTORS AT EDUCATIONAL INSTITUTIONS IN THE UNITED STATES	4A-1
PART 1.		4B-1 4B-7 4B-43
APPENDIX 4C.	SUPPLEMENTAL DATA FOR FORT ST. VRAIN SPENT FUEL	4C-1
APPENDIX 4D.	SUPPLEMENTAL DATA FOR PEACH BOTTOM 1 SPENT FUEL	4D-1
APPENDIX 4E.	SUPPLEMENTAL DATA FOR FAST FLUX TEST FACILITY	4E-1

.

iii

LIST OF ACRONYMS

AC	Allis Chalmers
AC	Advanced Nuclear Fuels Corporation
ANL	Argonne National Laboratory
ANL	Activation products
APSR	Axial power shaping rod
ASTM	American Society for Testing and Materials
B-C	Battelle-Columbus
B&W	Babcock and Wilcox
BPRA	Burnable poison rod assembly
BWR	Boiling-water reactor
CC	Complexant concentrate
CDB	Characteristics Data Base
CE	Combustion Engineering
CEA	Control element assembly
CEU	Consolidated Edison uranium
CFR CH	Code of Federal Regulations
CWMS	Contact handled Civilian Waste Management System
	· ·
DHLW	Defense high-level waste
DOE	Department of Energy
DWPF	Defense Waste Processing Facility
ECF	Expended Core Facility
EFPD	Equivalent full-power days
EIA	Energy Information Administration
EIS	Environmental impact statement
EPRI	Electric Power Research Institute
FFTF	Fast Flux Test Facility
FIS	Federal Interim Storage
FP	Fission products
FSV	Fort St. Vrain
GAPSR	Gray axial power shaping rod
GE	General Electric
GTCC	Greater than Class C
GWd	Gigawatt-days
GW(e)	Gigawatts (electric)
HANF	Hanford Site
HEDL	Hanford Engineering Development Laboratory
HEPA	High-efficiency particulate air
HLW	High-level waste
HTGR	High-temperature gas-cooled reactor
HWVP	Hanford Waste Vitrification Plant
ICPP	Idaho Chemical Processing Plant
IDB	Integrated Data Base
INEL	Idaho National Engineering Laboratory
LANL	Los Alamos National Laboratory
LER	Licensee Event Report
LLW	Low-level waste
LTA	Lead test assembly
LWBR	Light-water breeder reactor
LWR	Light-water reactor
MOX	Mixed oxide
MRS	Monitored retrievable storage

.

.

LIST OF ACRONYMS (continued)

MEDE	Malten Calt Deaster Description
MSRE MT	Molten Salt Reactor Experiment
MTIHM	Metric tons
MTR	Metric tons of initial heavy metal Materials Test Reactor
MW(t)	Megawatts (thermal) Megawatts (electric)
MW(e) NCAW	Neutralized current acid waste
NCRW	Neutralized current acid waste Neutralized cladding removal waste
NFA	Non-fuel assembly
NFB	Non-fuel bearing
NFS	Nuclear Fuel Services, Inc.
NMMSS	Nuclear Materials Management and Safeguards System
NPR	New Production Reactor
NRC	Nuclear Regulatory Commission
NRF	Naval Reactors Facility
NWTSP	National Waste Terminal Storage Program
O/U	Oxygen/uranium atom ratio
OCRWM	Office of Civilian Radioactive Waste Management
OFA	Optimized fuel assembly
ORA	Orifice rod assembly
ORNL	Oak Ridge National Laboratory
PB1	Peach Bottom Unit 1
PC	Personal computer
PCI	Pellet-clad interaction
PFP	Plutonium finishing plant
PIE	Postirradiation examination
PNL	Pacific Northwest Laboratory
PNS	Primary neutron source
PWR	Pressurized-water reactor
QA	Quality assurance
QC	Quality control
RH	Remotely handled
RNS	Regenerative neutron source
SAS	Statistical Analysis System
SFD	Spent fuel disassembly
SNF	Spent nuclear fuel
SRL	Savannah River Laboratory
SRP	Savannah River Plant
SRS	Savannah River Site
SS	Stainless steel
SST	Single-shell tanks
TMI-2	Three Mile Island 2
TRIGA	Training Research Isotopes – General Atomics
TRU	Transuranic (waste)
TRUW	Transuranic waste
UN	United Nuclear
VEPCO	Virginia Electric Power Co.
WAC	Waste acceptance criteria
WAPS	Waste Acceptance Preliminary Specification
WE or \underline{W}	Westinghouse
WIPP	Waste Isolation Pilot Plant
WVDP	West Valley Demonstration Project

.

APPENDIX 4A. NUCLEAR REACTORS AT EDUCATIONAL INSTITUTIONS IN THE UNITED STATES

4A. NUCLEAR REACTORS AT EDUCATIONAL INSTITUTIONS IN THE UNITED STATES

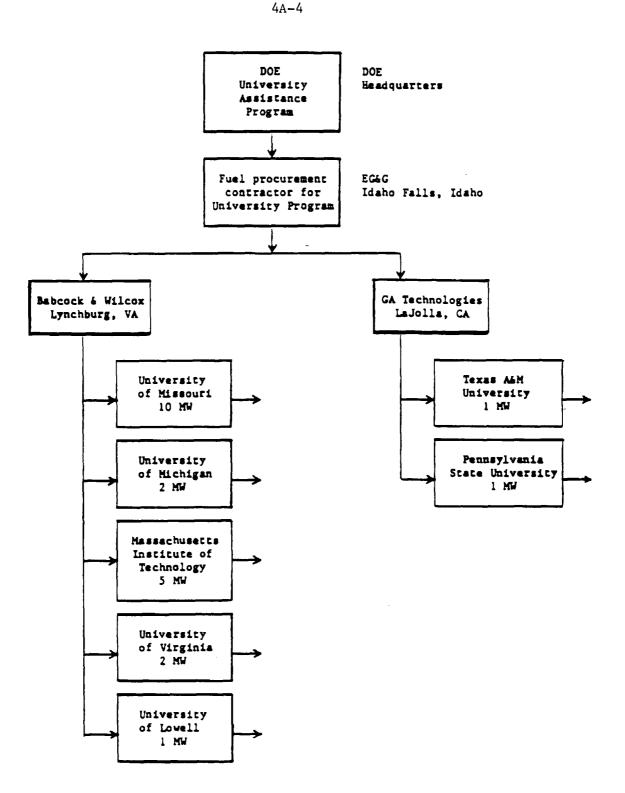
4A.1 INTRODUCTION

There are 61 reactors at educational institutions in the United States, 35 operational and 26 shut down. These reactors may be categorized into five general types, as follows: (1) open pool type with plate fuel assemblies, (2) open pool AGN type with fuel elements consisting of UO_2 -polyethylene discs, (4) open pool type fuel pin arrays containing UO_2 pellets, and (5) aqueous liquid fuel type reactors. Tables 4A.1 and 4A.2 summarize the operating and permanently shut-down reactors in each of these categories, respectively.

4A.2 FUEL SUPPLY ARRANGEMENTS

Under DOE's university assistance program, DOE supplies the fuel for university and educational reactors and retains ownership of the fuel; thus DOE is responsible for disposal of the fuel when it is removed from a reactor. Figure 4A.1 is a schematic representation of the fuel supply arrangements for reactors under this program. The fuel procurement contractor is EG&G, Idaho Falls, Idaho, and procurement arrangements are made by EG&G with the fuel manufacturers. When an order for fuel is received from EG&G, the fuel manufacturer ships the desired number of fuel elements directly to the university reactor. Each university contacts EG&G when it needs to order fuel, and describes the type and number of fuel elements needed. Figure 4A.1 shows only those university reactors that regularly order fuel in appreciable quantities. Many university reactors require fueling only infrequently; for others, no refueling is planned in the foreseeable future. Table 4A.3 shows the approximate refueling rates for some of the major university reactors. Information for this paragraph and Table 4A.3 was supplied by EG&G (Brown 1991).

4A.3 FUEL ELEMENT SERIAL NUMBERS


Tables 4A.4 through 4A.8 list fuel element serial numbers for reactors that use plate-type elements manufactured by Babcock and Wilcox and supplied to the reactors under the EG&G subcontract with DOE. Some of these elements have already been shipped to the reactors and some have not yet been shipped but are being stored at the B&W plant (Brown 1991).

4A.4 REACTOR DATA SHEETS

Appendix 4B consists of detailed data sheets on the 61 university/educational reactors listed in Tables 4A.1 and 4A.2. Supplemental information is included in these data sheets to amplify on the data contained in Sect. 4.4 of this report.

4A.5 REFERENCES

<u>Brown 1991</u>. Keith Brown, EG&G Idaho Falls, Idaho, telephone conversations with R. Salmon, Oak Ridge National Laboratory, June 1991.

Γ

Fig. 4A.1. Typical fuel supply arrangements under the DOE University Assistance Program. Only a few of the larger reactors are shown here. (Arrows leaving reactors indicate discharged fuel.)

Fuel type and location	Power, kW
Highly-enriched, plate-type fuels	
Georgia Institute of Technology	5,000
Iowa State University	10
Manhattan College	Negligible
Massachusetts Institute of Technology	4,900
Ohio State University	10
Purdue University	10
University of Florida	100
University of Lowell	1,000
University of Michigan	2,000
University of Missouri (Columbia)	10,000
University of Missouri (Rolla)	200
University of Virginia	2,000
Worcester Polytechnic Institute	10
TRIGA type (U-Zr-H fuel)	
Cornell University	500
Kansas State University	250
Oregon State University	1,000
Pennsylvania State University	1,000
Reed College	250
Texas A&M University	1,000
University of Arizona	100
University of California, Irvine	250
University of Illinois LOPRA	10
University of Illinois	1,500
University of Maryland	250
University of Texas	1,100
University of Utah	250
University of Wisconsin	1,000
Washington State University	1,000
UO ₂ -polyethylene fuel	
Idaho State University	Negligible
Texas A&M University	Negligible
University of New Mexico	Negligible
Low-enriched UO_2 pin-type fuel	
Cornell University zero-power reactor	Negligible
North Carolina State University	1,000
Rensselaer Polytechnic Institute	Negligible
State University of New York (Buffalo)	2,000

Table 4A.1. Operational university/educational reactors -- summary^a

^aTotal number of reactors in this table is 35. Reactors that have been permanently shut down are not included. For a list of reactors shut down, see Table 4A.2. Data and references for this table are from Sect. 4.4 of this report (see Table 4.4.18).

Type and location	Power level	Shutdown date	Fuel still at reactor?
High-enriched U-Al plate fuel			
University of California (LA)	100 kW	1984	Shipped to INEL ^b
University of Kansas	10 kW	1987	Shipped to SRP ^C
University of Virginia	100 kW	1987	Still at U. of Virginia
Virginia Polytechnic Institute	100 kW	1984	Shipped to SRP ^d
University of Washington	100 kW	1988	Shipped to INEL ^e
TRIGA type			
Michigan State University	4900 kW	1989	Shipped to USGS and INEL ^f
Columbia University	250 kW	1985	Noneg
University of Illinois		1968	All shipped ^b
University of California (Berkeley)	1000 kW	1987	Shipped to INEL ^h
University of Texas (Austin)	250 kW	1990	Fuel is still at U. of Texas ⁱ
UO ₂ -polyethylene fuel			
Catholic University	Negligible	1986	Will be shipped to DOE
Memphis State University	Negligible	1985	
University of Utah	Negligible	1990	In cask for shipping to DOE ^k
University of Oklahoma	Negligible	1988	Shipped to Oak Ridge
Calif. Polytech. Inst.	Negligible	1980	-
University of Delaware	Negligible	1978	Shipped to Oak Ridge ^b
Georgia Inst. of Tech.	Negligible	1986	Shipped to Oak Ridge ^m
Colorado State University	Negligible	1974	Shipped to South Korea ⁿ
Oregon State University	Negligible	1981	Still at Oregon State ^O
Polytech. Inst. of N.Y.	Negligible	1974	Shipped to Oak Ridge ^b
Tuskeegee Institute	Negligible	1984	Returned to DOE ^b
W. Virginia University	Negligible	1972	Shipped to Univ. of Okla. ^b
Rice University	Negligible	1965	Shipped to Texas A&M ^b
Aqueous liquid fuel			
University of California (Santa Barbara)	Negligible	1986	Shipped to INEL ^P
Brigham Young University	Negligible	1987	Shipped to INEL9
University of Wyoming	Negligible	1974	Shipped to Atomics Int'i.b

Table 4A.2. Educational reactors permanently shut down^a

^aList of shut down reactors was compiled from Burn 1988 and OSTI 1990. For a more complete list of university/educational reactors shut down, see OSTI 1990.

^bBurn 1988.

^cTelephone conversation, Harold Rosson, Univ. of Kansas, and R. Salmon, ORNL, June 7, 1991.

^dTelephone conversation, Thomas F. Parkinson, Virginia Polytech, and R. Salmon, ORNL, June 10, 1991. ^eTelephone conversation, D. L. Fry, Univ. of Washington, and R. Salmon, ORNL, June 7, 1991.

^fTelephone conversation, Bruce Wilkinson, Mich. State Univ., and R. Salmon, ORNL, June 7, 1991. About one-third was sent to USGS (Denver) and two-thirds to INEL.

^gNo fuel was ever procured for this reactor (Burn 1988).

^hTelephone conversation, Keith Brown, EG&G Idaho, and R. Salmon, ORNL, March 6, 1989

ⁱTelephone conversation, Tom Bauer, Univ. of Texas, and R. Salmon, ORNL, December 11, 1990. Fuel is being used in the 1100 kW TRIGA at Univ. of Texas.

Telephone conversation, Harold Keene, Catholic Univ., and R. Salmon, ORNL, June 7, 1991.

^kTelephone conversation, Gary Sandquist, Univ. of Utah, and R. Salmon, ORNL, December 11, 1990.

¹Telephone conversation, Paul Skierkowski, Univ. of Okla., and R. Salmon, ORNL, June 7, 1991.

^mTelephone conversation, R. Karam, Georgia Inst. of Tech., and R. Salmon, ORNL, June 10, 1991.

ⁿTelephone conversation, James Johnson, Colorado State, and R. Salmon, ORNL, June 7, 1991.

^OTelephone conversation, Brian Dodd, Oregon State, and R. Salmon, ORNL, June 10, 1991.

PTelephone conversation, A. E. Profio, Univ. of Calif., and R. Salmon, ORNL, June 10, 1991.

^qTelephone conversation, Gary Jensen, Brigham Young, and R. Salmon, ORNL, June 7, 1991.

Reactor location	Power (kW)	Type of fuel element	Average number of new fuel elements shipped per year	U-235 content per element (g)
Georgia Inst. of Tech. Atlanta, Georgia	5,000	Plate	2–5	188
Massachusetts Inst. of Tech. Cambridge, Massachusetts	4,900	Plate	6–8	510
University of Missouri Columbia, Missouri	10,000	Plate	24	750
University of Michigan Ann Arbor, Michigan	2,000	Plate	18	167
University of Virginia Charlottesville, Virginia	2,000	Plate	6	195
University of Lowell Lowell, Massachusetts	1,000	Plate	4–5	126
University of Illinois Urbana, Illinois	1,500	TRIGA	1–2	38
Texas A&M University College Station, Texas	1,000	TRIGA	0	120
Pennsylvania State University University Park, Pennsylvania	1,000	TRIGA	1	38
State University of N.Y. Buffalo, N.Y.	2,000	UO2 pin array	5-10	760

Table 4A.3. Shipments of replacement fuel to some of the larger university reactors^a

^aData provided by EG&G, Idaho Falls, Idaho, and by personnel at educational institutions.

Table 4A.4. University of Michigan fuel element serial numbers ^a

	Table 4A	.4. Oniversity	of Michigan fue						
Reactor locati	Reactor location:University of Michigan; Ann Arbor, Michigan2 MW								
Total number	of elements lis	ted: 121							
Element num	bers:								
MI-01	MI-21	MI-41	MI-205	MI-223	MI-241	MI-259			
02	22	42	206	224	242	260			
03	23	43	207	225	243	261			
04	24	44	208	226	. 244	262			
05	25	45	209	227	245	263			
06	28	46	210	228	246	264			
07	29	47	211	229	247	265			
09	30	48	212	230	248	266			
10	31	49	213	231	249	267			
11	32	50	214	232	250	268			
12	33	51	215	233	251	269			
13	34	53	216	234	252	270			
15	35	54	217	235	253	271			
16	36	200	218	236	254				
17	37	201	219	237	255				
18	38	202	220	238	256				
19	39	203	221	239	257				
20	40	204	222	240	258				

^aSource: EG&G, Idaho Falis, Idaho. Date: June 24, 1991.

4A-8

F

Reactor	location:		University of 10 MW	f Missouri; (Columbia, M	issouri			
Total nu	umber of o	elements lis	ted: 301						
Elemen	t numbers	:							
MO-01	MO-32	MO-67	MO- 99	MO-131	MO-164	MO-229	MO-260	MO-291	MO-322
02	33	68	100	132	165	230	261	292	323
03	34	69	101	133	200	231	262	293	324
04	35	70	102	134	201	232	263	294	325
05	36	71	103	135	202	233	264	2 95	326
06	37	72	104	136	203	234	26 5	298	327
07	38	73	105	138	205	235	266	29 7	328
08	39	74	106	138	205	236	267	298	329
09	40	75	107	140	206	237	268	299	330
10	41	76	108	141	207	238	269	300	331
11	42	77	109	142	208	239	270	301	332
12	43	78	111	143	209	240	271	302	333
13	44	79	112	144	210	241	272	303	334
14	45	80	113	145	21 1	242	273	304	335
15	46	81	114	146	212	243	274	305	336
16	47	82	115	1 47	213	244	275	306	337
17	48	83	116	148	214	245	2 76	. 307	338
18	53	84	117	149	215	246	277	308	339
19	54	85	118	150	216	247	278	309	340
20	55	87	119	151	217	248	279	310	341
21	56	88	120	152	218	249	280	311	342
22	57	89	12 1	153	219	250	281	312	343
23	58	90	122	154	220	251	282	313	
24	59	91	123	155	221	252	283	314	
25	60	92	124	156	222	253	284	315	
26	61	93	125	157	223	254	285	316	
27	62	94	126	158	224	255	286	317	
28	63	95	127	159	225	256	287	318	
29	64	96	128	160	226	257	288	319	
30	65	97	129	161	227	258	289	320	
31	66	98	130	162	228	259	290	321	

Table 4A.5. University of Missouri fuel element serial numbers^a

^aSource: EG&G, Idaho Fails, Idaho. Date: June 24, 1991.

Rhode Island Nu 2 MW	iclear Science Centei	r; Narragansett, Rho	de Island
University of Lov 1 MW	well; Lowell, Massac	husetts	
ents listed: 64			
RI-142	RI-158	RI-174	RI-189
144	159	175	190
145	160	176	191
146	161	177	192
147	162	178	
148	163	179	
149	164	. 180	
150	166	181	
151	167	182	
153	169	184	
154	170	185	
155	171	186	
156	172	187	
157	173	188	
	2 MW University of Lor 1 MW ents listed: 64 RI-142 144 145 146 147 148 149 150 151 153 154 155 156	2 MW University of Lowell; Lowell, Massact 1 MW ents listed: 64 RI-142 RI-158 144 159 145 160 146 161 147 162 148 163 149 164 150 166 151 167 153 169 154 170 155 171 156 172	2 MW University of Lowell; Lowell, Massachusetts 1 MW ents listed: 64 RI-142 RI-158 RI-174 144 159 175 145 160 176 146 161 177 147 162 178 148 163 179 149 164 180 150 166 181 151 167 182 153 169 184 154 170 185 155 171 186 156 172 187

Table 4A.6. Rhode Island Nuclear Science Center and University of Lowell fuel element serial numbers^a

^aSource: EG&G, Idaho Falls, Idaho. These fuel elements are usable in both of the reactors listed here. The Rhode Island Nuclear Science Center reactor is owned by the State of Rhode Island and is not listed as a university reactor in this report.

F

Reactor location:	University of Virginia; (2 MW	Charlottesville, Virginia	
Total number of eler	ments listed: 26		
Element numbers:			
	VI-001	VI-014	
	002	015	
	003	016	
	004	017	
	005	018	
	006	019	
	007	020	
	008	021	
	009	023	
	010	024	
	011	025	
	012	026	
	013	027	

Table 4A.7. University of Virginia fuel element serial numbers^a

^aSource: EG&G, Idaho Falls, Idaho. Date: January 13, 1986.

4A-	1	2
-----	---	---

Γ

Reactor location:	Massachusetts Institute of Technology; Cambridge, Massachusetts 4.9 MW		
Total number of eleme	nts listed: 60		
Element numbers:			
MIT-01	MIT-16	MIT-37	MIT-204
02	17	38	205
03	18	39	206
04	19	40	207
05	20	41	208
06	21	42	209
07	22	43	210
08	23	44	211
09	24	45	212
10	25	46	213
11	32	47	214
12	33	200	215
13	34	201	216
14	35	202	217
	36	203	218

Table 4A.8. Massachusetts Institute of Technology fuel element serial numbers^a

^aSource: EG&G, Idaho Falls, Idaho. Date: June 24, 1991.

APPENDIX 4B. DATA SHEETS FOR NUCLEAR REACTORS AT EDUCATIONAL INSTITUTIONS IN THE UNITED STATES

APPENDIX 4B. DATA SHEETS FOR NUCLEAR REACTORS AT EDUCATIONAL INSTITUTIONS IN THE UNITED STATES

This Appendix presents additional details on the educational reactors listed in Tables 4A.1 and 4A.2 of Appendix 4A. Data sheets on currently operational reactors are given first, followed by data sheets on shut-down reactors. Tables 4B.1 and 4B.2 list the operational and recently shut-down reactors, respectively.

One new reactor has been added since the original issue of this report. This is the 1,100 kW TRIGA Mark II reactor at the University of Texas, Austin, which started up in 1988. This will use the same type of TRIGA fuel elements as those used in the 250 kW TRIGA reactor at the same university that was shut down in 1990; that is, the fuel elements of these two reactors are interchangeable.

Reactor No.	Fuel type and location	Power, kW
<u>,</u>	Highly-enriched, plate-type fuels	
PL-1	Georgia Institute of Technology	5,000
PL-2	Iowa State University	10
PL-3	Manhattan College	Negligible
PL-4	Massachusetts Institute of Technology	4,900
PL-5	Ohio State University	10
PL-6	Purdue University	10
PL-7	University of Florida	100
PL-8	University of Lowell	1,000
PL-9	University of Michigan	2,000
PL-10	University of Missouri (Columbia)	10,000
PL-11	University of Missouri (Rolla)	200
PL-12	University of Virginia	2,000
PL-13	Worcester Polytechnic Institute	10
	TRIGA type (U-Zr-H fuel)	,
TR-1	Cornell University	500
TR-2	Kansas State University	250
TR-3	Oregon State University	1,000
TR-4	Pennsylvania State University	1,000
TR-5	Reed College	250
TR-6	Texas A&M University	1,000
TR-7	University of Arizona	100
TR-8	University of California, Irvine	250
TR-9	University of Illinois LOPRA	10
TR-10	University of Illinois	1,500
TR-11	University of Maryland	250
TR-12	University of Texas	1,100
TR-13	University of Utah	250
TR-14	University of Wisconsin	1,000
TR-15	Washington State University	1,000
	UO ₂ -polyethylene fuel	
AGN-1	Idaho State University	Negligible
AGN-2	Texas A&M University	Negligible
AGN-3	University of New Mexico	Negligible
	Low-enriched UO ₂ pin-type fuel	
UPIN-1	Cornell University zero-power reactor	Negligible
UPIN-2	North Carolina State University	1,000
UPIN-3	Rensselaer Polytechnic Institute	Negligible
UPIN-4	State University of New York (Buffalo)	2,000

Table 4B.1. Operational university/educational reactors — summary^a

^aThe reactors listed in this table are the same as those listed in Tables 4.4.18 and 4A.1.

4B-4

-

Reactor No.	Type and location	Power level	Shutdown date	Fuel still at reactor?
	High-enriched U-Al plate fuel			
SPL-1	University of California (LA)	100 kW	1984	Shipped to INEL ^b
SPL-2	University of Kansas	10 kW	1988	Shipped to SRP ^C
SPL-3	Virginia Polytechnic Institute	100 kW	1984	Shipped to SRP ^d
SPL-4	University of Washington	100 kW	1988	Shipped to INEL ^e
SPL-5	University of Virginia	100 W	1987	Still at U. of Virginia
	TRIGA type			_
STR-1	Michigan State University	4900 kW	1989	Shipped to USGS and INEL ^f
STR-2	Columbia University	250 kW	1985	Noneg
STR-3	University of Illinois		1968	All shipped ^b
STR-4	Univ. of California (Berkeley)	1000 kW	1987	Shipped to INEL ^h
STR-5	University of Texas (Austin)	250 kW	1990	Fuel is still at U. of Texas ¹
	UO ₂ -polyethylene fuel			
SAGN-1	Catholic University	Negligible	1986	Will be shipped to DOE ^J
SAGN-2	Memphis State University	Negligible	1985	
SAGN-3	University of Utah	Negligible	1990	In cask for shipping to DOE ^k
SAGN-4	University of Oklahoma	Negligible	1988	Shipped to Oak Ridge
SAGN-5	Calif. Polytech. Inst.	Negligible	1980	Shipped to Oak Ridge ^m
SAGN-6	University of Delaware	Negligible	1978	Shipped to Oak Ridge ^b
SAGN-7	Georgia Inst. of Tech.	Negligible	1986	Shipped to Oak Ridge ⁿ
SAGN-8	Colorado State University	Negligible	1974	Shipped to South Korea ⁰
SAGN-9	Oregon State University	Negligible	1981	Still at Oregon State ^p
SAGN-10	Polytech. Inst. of N.Y.	Negligible	1974	Shipped to Oak Ridgeb
SAGN-11	Tuskeegee Institute	Negligible	1984	Returned to DOE ^b
SAGN-12	W. Virginia University	Negligible	1972	Shipped to Univ. of Okla. ^b
SAGN-13	Rice University	Negligible	1965	Shipped to Texas A&M ^b
	Aqueous liquid fuel			
SAQ-1	Univ. of Calif. (Santa Barbara)	Negligible	1986	Shipped to INEL9
SAQ-2	Brigham Young University	Negligible	1987	Shipped to INEL ^r
SAQ-3	University of Wyoming	Negligible	1974	Shipped to Atomics Int'l.b

Table 4B.2. Educational reactors permanently shut down	Table 4B.2.	Educational	reactors	permanenth	y shut	down ^a
--	-------------	-------------	----------	------------	--------	-------------------

^aThis list of 26 shutdown reactors was compiled from Burn 1988 and OSTI 1990. ^bBurn 1988.

^cTelephone conversation, Harold Rosson, Univ. of Kansas, and R. Salmon, ORNL, June 7, 1991.

^dTelephone conversation, Thomas F. Parkinson, Virginia Polytech, and R. Salmon, ORNL, June 10, 1991.

^eTelephone conversation, D. L. Fry, Univ. of Washington, and R. Salmon, ORNL, June 7, 1991.

^fTelephone conversation, Bruce Wilkinson, Mich. State Univ., and R. Salmon, ORNL, June 7, 1991. About one-third was sent to USGS (Denver) and two-thirds to INEL.

^gNo fuel was ever procured for this reactor (Burn 1988).

^hTelephone conversation, Keith Brown, EG&G Idaho, and R. Salmon, ORNL, March 6, 1989

ⁱTelephone conversation, Tom Bauer, Univ. of Texas, and R. Salmon, ORNL, December 11, 1990. Fuel is being used in the 1100 kW TRIGA at Univ. of Texas.

JTelephone conversation, Harold Keene, Catholic Univ., and R. Salmon, ORNL, June 7, 1991.

^kTelephone conversation, Gary Sandquist, Univ. of Utah, and R. Salmon, ORNL, December 11, 1990.

Telephone conversation, Paul Skierkowski, Univ. of Okla., and R. Salmon, ORNL, June 7, 1991.

^mTelephone conversation, Bob Adamson, Cal Poly, and R. Salmon, ORNL, June 13, 1991. Reactor has been dismantled and all fuel shipped to Oak Ridge.

ⁿTelephone conversation, R. Karam, Georgia Inst. of Tech., and R. Salmon, ORNL, June 10, 1991.

^oTelephone conversation, James Johnson, Colorado State, and R. Salmon, ORNL, June 7, 1991.

PTelephone conversation, Brian Dodd, Oregon State, and R. Salmon, ORNL, June 10, 1991.

^qTelephone conversation, A. E. Profio, Univ. of Calif., and R. Salmon, ORNL, June 10, 1991.

^rTelephone conversation, Gary Jensen, Brigham Young, and R. Salmon, ORNL, June 7, 1991.

APPENDIX 4B. DATA SHEETS FOR NUCLEAR REACTORS AT EDUCATIONAL INSTITUTIONS IN THE UNITED STATES

PART 1. OPERATIONAL REACTORS

REACTOR NO.	PL-1		
REACTOR NAME	Georgia Tech Research Reactor		
LOCATION	Georgia Institute of Technology, Nucl 900 Atlantic Dr., NW, Atlanta, Georg		
POWER	5 MW		
LICENSE NO. NRC DOCKET NO.	R-97 50-160		
ТҮРЕ	Tank type, heavy water moderated and	i cooled	
STATUS	Operational		
FUEL ELEMENT			
DESCRIPTION	18 curved plates per element (16 fuele	ed, 2 unfueled)	
OVERALL DIMENSIONS	7.52 cm × 7.04 cm × 219.41 cm		
U-235 PER ELEMENT, kg	0.19		
ELEMENTS/REACTOR	17		
ENRICHMENT (% U-235)	93 (conversion to <20% is in planning)		
DRAWING NO.			
SUPPLIER			
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>	
IN REACTOR	17	3.04	
FRESH FUEL	0	0	
SPENT FUEL	0	0	
TOTAL	17	3.04	
REFUELING SCHEDULE	2–5 elements/year		
SPENT FUEL SHIPMENTS	Spent fuel has been shipped to SRS in BMI-1 cask		

Dr. R. Karam, 404-894-3620

CONTACTS

4B-8

Г

,

REACTOR NO.	PL-2		
REACTOR NAME	Iowa State University Research Reactor		
LOCATION	Iowa State University, Ames, Iowa		
POWER	10 kW		
LICENSE NO. NRC DOCKET NO.			
ТҮРЕ	ARGONAUT		
STATUS	Operational		
FUEL ELEMENT			
DESCRIPTION	Rectangular fuel plates, 12 plates per el	ement	
OVERALL DIMENSIONS	$7.62 \text{ cm} \times 14.06 \text{ cm} \times 66.04 \text{ cm}$		
U-235 PER ELEMENT, kg	Approximately 0.266		
ELEMENTS/REACTOR	12		
ENRICHMENT (% U-235)	Approximately 93	<u> </u>	÷,
DRAWING NO.			
SUPPLIER	American Standard		
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>	
IN REACTOR	12	3.19	
FRESH FUEL	2 plates		
SPENT FUEL			
TOTAL	12		
REFUELING SCHEDULE	Approximately every 2 years		
SPENT FUEL SHIPMENTS	Fuel has been shipped to Oak Ridge		
CONTACTS	Dr. C. Hendrickson, 515-294-6422		

,

DEACTOR NO	PL-3	
REACTOR NO.		
REACTOR NAME	Manhattan College Zero Power Reac	tor
LOCATION	Manhattan College, Leo Engineering Riverdale, New York 10471	Building,
POWER	0.1 W	
LICENSE NO. NRC DOCKET NO.	R-94 50-199	
TYPE	Open pool	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	6 concentric cylinders of 3 plates each	n, plate is 120° arc
OVERALL DIMENSIONS	8.89 cm diam \times 93.98 cm long (outer	rmost cylinder)
U-235 PER ELEMENT, kg	Approximately 0.19	
ELEMENTS/REACTOR	16 (15 full and 1 partial)	
ENRICHMENT (% U-235)	92%; replacing with <20% in 1991	
DRAWING NO.	There are 6 concentric circular shells	
SUPPLIER	Sylcor, Hicksville, New York	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	16	3.02
FRESH FUEL	0	0
SPENT FUEL	0	0

.

TOTAL

REFUELING SCHEDULE	None anticipated. Reactor is used about 4 h/week	
SPENT FUEL SHIPMENTS	None	
CONTACTS	Dr. Ronald S. Kane, 212-920-0145	
	Dr. Robert Berlin, 212-920-0145	

16

ſ

mittametikainen kunnen er

,

3.02

4B-11

REACTOR NO.	PL-4	
REACTOR NAME	MIT Research Reactor (MITR-II)	
LOCATION	Massachusetts Inst. of Tech. Nuclear, Rea 138 Albany St., Cambridge, Massachusetts	
POWER	4.9 MW	
LICENSE NO. NRC DOCKET NO.	R-37 50-20	
TYPE	Tank type, plate fuel	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Flat plates, 15 per element	
OVERALL DIMENSIONS	Rhomboid; each face is 6.98 cm wide and	66.7 cm long
U-235 PER ELEMENT, kg	0.51	
ELEMENTS/REACTOR	24	<u> </u>
ENRICHMENT (% U-235)	93	
DRAWING NO.	Cross-section of element is 60-120 degree parallelogram	
SUPPLIER	Babcock and Wilcox	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	24	12.2
FRESH FUEL	0	0
SPENT FUEL	0	0
TOTAL	24	12.2
REFUELING SCHEDULE	One element every 17 operating days	
SPENT FUEL SHIPMENTS	SRS in Aiken, South Carolina, or INEL in Idaho	
CONTACTS	O. K. Harling, 617-253-4202	

L. Clark, Jr.

J. Bernard

REACTOR NO.	PL-5	
REACTOR NAME	Ohio State University Research Reactor	or
LOCATION	Ohio State University, 1298 Kinnear R Columbus, Ohio 43212	Road,
POWER	10 kW	
LICENSE NO. NRC DOCKET NO.	R-75 50-150	
ТҮРЕ	Open pool type, plate fuel	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	18 plates per element (16 fueled, 2 du	mmy)
OVERALL DIMENSIONS	$7.62 \text{ cm} \times 7.62 \text{ cm} \times 88.9 \text{ cm}$	
U-235 PER ELEMENT, kg	0.14	
ELEMENTS/REACTOR	20 (16 standard, 4 control)	
ENRICHMENT (% U-235)	19.5	
DRAWING NO.		
SUPPLIER	Texas Instruments, Dallas, Texas	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	20	4.2

IN REACTOR FRESH FUEL SPENT FUEL TOTAL

FUEL ELEMENTS	kg U-235
20	4.2
0	0
0	0
20	4.2

REFUELING SCHEDULE SPENT FUEL SHIPMENTS CONTACTS

No	ne anticipated
No	ne
Do	n W. Miller, Director, 614-422-6755
Bri	ian K. Hajek
Ric	chard D. Myser

4B-13

_

REACTOR NO.	PL-6		
REACTOR NAME	Purdue University Reactor		
LOCATION	School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907		
POWER	1 kW		
LICENSE NO. NRC DOCKET NO.	R-87 50-182		
TYPE	Open pool, plate fuel		
STATUS	Operational		
FUEL ELEMENT			
DESCRIPTION	10 plates per fuel element		
OVERALL DIMENSIONS	$7.52 \text{ cm} \times 7.52 \text{ cm} \times 81.92 \text{ cm}$		
U-235 PER ELEMENT, kg	0.17		
ELEMENTS/REACTOR			
ENRICHMENT (% U-235)	93		
DRAWING NO.			
SUPPLIER			
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235	
IN REACTOR	16	2.65	
FRESH FUEL			
SPENT FUEL			
TOTAL			
REFUELING SCHEDULE	N		
SPENT FUEL SHIPMENTS	None	·	
CONTACTS	Paul S. Lyroudis, 317-494-5764		
	Frank M. Clikeman		
	Eldon R. Stansberry		

1

.

4B-	1	4
-----	---	---

REACTOR NO.	PL-7	
REACTOR NAME	University of Florida Training React	or
LOCATION	University of Florida, Nuclear Science Gainesville, Florida 32611	es Center,
POWER	100 kW	· · · · · · · · · · · · · · · · · · ·
LICENSE NO. NRC DOCKET NO.	R-56 50-83	
TYPE	ARGONAUT (modified)	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	11 flat plates per element	
OVERALL DIMENSIONS	7.23 cm × 5.44 cm × 65.09 cm	
U-235 PER ELEMENT, kg		
ELEMENTS/REACTOR	24	
ENRICHMENT (% U-235)	93	
DRAWING NO.		
SUPPLIER	Babcock and Wilcox	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	24	3.35
FRESH FUEL		0.17
SPENT FUEL		0.00
TOTAL		3.52
REFUELING SCHEDULE	Refueled once to change from 20% t	o 93% enrichment
SPENT FUEL SHIPMENTS	Shipment made to SRS in National Lead Cask	
CONTACTS	W. H. Chen, 904-392-1429	
	J. A. Wethington	<u>,,, , , , , , , , , , , , , , , , , , </u>
	W. G. Vernetson	
	W. G. Verneusen	

PL-8 **REACTOR NO.** REACTOR NAME University of Lowell Nuclear Reactor LOCATION University of Lowell, North Campus, Lowell, Massachusetts 01854 POWER 1 MW LICENSE NO. R-125 NRC DOCKET NO. 50-233 TYPE **Open pool**, plate fuel **STATUS** Operational FUEL ELEMENT DESCRIPTION 18 flat plates per element **OVERALL DIMENSIONS** 7.62 cm \times 7.62 cm \times 101.6 cm U-235 PER ELEMENT, kg 0.14 ELEMENTS/REACTOR 26 ENRICHMENT (% U-235) 93 DRAWING NO. SUPPLIER Babcock and Wilcox

INVENTORY OF U-235 IN REACTOR FRESH FUEL SPENT FUEL TOTAL

FUEL ELEMENTS	<u>kg U-235</u>
26	3.5
0	Ŋ
0	0
26	3.5

REFUELING SCHEDULE
SPENT FUEL SHIPMENTS
CONTACTS
Leon Beghian, 627-542-0500, ext. 2232 and 2245
Thomas Wallace

George Chabot

4B-15

REACTOR NO.	PL-9		
REACTOR NAME	University of Michigan Ford Nuclear Reac	tor	
LOCATION	University of Michigan, North Campus, Ann Arbor, Michigan 48109		
POWER	2 MW		
LICENSE NO. NRC DOCKET NO.	R-28 50-2		
ТҮРЕ	Open pool, plate type fuel		
STATUS	Operational		
FUEL ELEMENT			
DESCRIPTION	Curved plates, 18 plates per element		
OVERALL DIMENSIONS	7.47 cm \times 8.25 cm \times 87.38 cm		
U-235 PER ELEMENT, kg	0.167		
ELEMENTS/REACTOR	40 (35 standard, 5 control)		
ENRICHMENT (% U-235)	19.5		
DRAWING NO.			
SUPPLIER	Babcock and Wilcox, Lynchburg, West Virg	ginia	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235	
IN REACTOR	35	~ 5.84	
FRESH FUEL	43		
SPENT FUEL	66		
TOTAL	144		
REFUELING SCHEDULE	One element per 28 days		
SPENT FUEL SHIPMENTS			
CONTACTS	William Kerr, 313-764-6223	<u> </u>	
	Reed R. Burn	<u></u>	
	Gary M. Cook		
	·	·····	

Į.

REACTOR NO.	PL-10	
REACTOR NAME	University of Missouri Research Reactor	
LOCATION	University of Missouri, Research Park, Columbia, Missouri 65211	
POWER	10 MW	
LICENSE NO. NRC DOCKET NO.	R-103 50-186	
ТҮРЕ	Open pool, plate fuel	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	24 curved plates per element	
OVERALL DIMENSIONS	$7.04 \text{ cm} \times 14.63 \text{ cm} \times 82.55 \text{ cm}$	
U-235 PER ELEMENT, kg	0.78	· · · · · · · · · · · · · · · · · · ·
ELEMENTS/REACTOR	Eight elements form a circular cylinder 30.5 cm diam	
ENRICHMENT (% U-235)	93.15; no change to $<20\%$ is expected	
DRAWING NO.	Element cross-section is 45° sector of circle	
SUPPLIER	EG&G, Idaho	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	8	6.2

24 elements/year
Shipped to SRS in GE-700 cask
Don Alger, 314-882-4211
Rolly Hultsch, 314-882-5205
Charles McKibben
R. Brugger

27

35

4B-17

- ---

FRESH FUEL SPENT FUEL

TOTAL

PL-11 **REACTOR NO. REACTOR NAME** University of Missouri-Rolla Reactor LOCATION University of Missouri, Rolla, Missouri 65401 POWER 200 kW LICENSE NO. R-79 NRC DOCKET NO. 50-123 TYPE Open pool, plate type fuel **STATUS** Operational FUEL ELEMENT DESCRIPTION 10 curved plates per element **OVERALL DIMENSIONS** 7.57 cm \times 8.74 cm \times 87.0 cm U-235 PER ELEMENT, kg 0.17 ELEMENTS/REACTOR 28 ENRICHMENT (% U-235) 89-93 DRAWING NO. **SUPPLIER** W. R. Grace & Co., Erwin, Tennessee **INVENTORY OF U-235** FUEL ELEMENTS kg U-235 IN REACTOR 28 2.85 FRESH FUEL SPENT FUEL TOTAL 2.85 **REFUELING SCHEDULE** None anticipated SPENT FUEL SHIPMENTS

Albert E. Bolon, Director, 314-341-4236

CONTACTS

REACTOR NO.	PL-12	
REACTOR NAME	University of Virginia Reactor	
LOCATION	University of Virginia Reactor Facility, Charlottesville, Virginia 22901	
POWER	2 MW	
LICENSE NO. NRC DOCKET NO.	R-66 50-62	
ТҮРЕ	Open pool, plate fuel	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Either 18 curved plates or 12 flat plates	;
OVERALL DIMENSIONS	7.61 cm × 8.26 cm × 93.66 cm	
U-235 PER ELEMENT, kg	0.19 (curved) or 0.17 (flat)	
ELEMENTS/REACTOR	20	
ENRICHMENT (% U-235)	93; to be converted to <20% in 1991	
DRAWING NO.		
SUPPLIER	Atomics International	·
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	20	3.3
FRESH FUEL		
SPENT FUEL		
TOTAL	20	3.3
REFUELING SCHEDULE	Reactor is used 30 h/week or more	
SPENT FUEL SHIPMENTS	Shipped to SRS in BMI-1 cask	
CONTACTS	Dr. Robert Mulder, 804-924-7136	
	J. P. Farrar	

.

4B-20

REACTOR NO.	PL-13		
REACTOR NAME	Worcester Polytechnic Institute Reactor		
LOCATION	Worcester Polytechnic Institute, Worcester, Massachusetts 01609		
POWER	10 kW		
LICENSE NO. NRC DOCKET NO.	R-61 50-134		
ТҮРЕ	Open pool, plate fuel		
STATUS	Operational		
FUEL ELEMENT			
DESCRIPTION	18 flat plates per element		
OVERALL DIMENSIONS	7.75 cm × 7.75 cm × 101.6 cm		
U-235 PER ELEMENT, kg	0.17		
ELEMENTS/REACTOR	24		
ENRICHMENT (% U-235)	19.75		
DRAWING NO.			
SUPPLIER	General Electric		
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>	
IN REACTOR	24	4.08	
FRESH FUEL		. ·	
SPENT FUEL			
TOTAL	24	4.08	
REFUELING SCHEDULE	None anticipated		
SPENT FUEL SHIPMENTS	None shipped		
CONTACTS Prof. Leslie C. Wilbur, 617-793-5276 or 617-793-5688		517-793-5688	

4B-	2	1
-----	---	---

REACTOR NO.	TR-1		
REACTOR NAME	Cornell University TRIGA Mk II		
LOCATION	Cornell University, Ward Laboratory, Ithaca, New York 14853		
POWER	500 kW		
LICENSE NO. NRC DOCKET NO.	R-80 50-157		
ТҮРЕ	TRIGA Mk II		
STATUS	Operational		
FUEL ELEMENT			
DESCRIPTION	Cylindrical pin		
OVERALL DIMENSIONS			
U-235 PER ELEMENT, kg		······	
ELEMENTS/REACTOR			
ENRICHMENT (% U-235)	••••••		
DRAWING NO.			
SUPPLIER	General Atomic		
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>	
IN REACTOR			
FRESH FUEL			
SPENT FUEL			
TOTAL			
REFUELING SCHEDULE	None	· · · · · · · · · · · · · · · · · · ·	
SPENT FUEL SHIPMENTS			
CONTACTS	David Clark, 607-256-3480		
	Howard Aderhold		

Ţ,

REACTOR NO.	TR-2	
REACTOR NAME	Kansas State University Nuclear Rea	ctor Facility
LOCATION	Kansas State University, Manhattan, Kansas 66506	
POWER		Kalisas 00500
	250 kW	
LICENSE NO. NRC DOCKET NO.	R-88 50-188	
ТҮРЕ	TRIGA	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin, 3.74 cm diam \times 72.05	5 cm long
OVERALL DIMENSIONS	$3.74 \text{ cm} \times 72.05 \text{ cm}$	
U-235 PER ELEMENT, kg	0.034	
ELEMENTS/REACTOR	80	
ENRICHMENT (% U-235)	<20%	
DRAWING NO.		
SUPPLIER	General Atomic	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	80	2.70
FRESH FUEL	0	0
SPENT FUEL	8	0.27
TOTAL	88	2.97
REFUELING SCHEDULE	None	
SPENT FUEL SHIPMENTS	None stated	· · · · · · · · · · · · · · · · · · ·
CONTACTS	Richard E. Faw, Director, 913-532-56	24
		· · · · · · · · · · · · · · · · · · ·

Timothy M. DeBey, Reactor Supervisor

REACTOR NO.	TR-3		
REACTOR NAME	Oregon State TRIGA Reactor		
LOCATION	Oregon State University, Radiation Center, Corvallis, Oregon 97331		
POWER	1 MW		
LICENSE NO. NRC DOCKET NO.	R-106 50-243		
түре	Open pool, TRIGA type		
STATUS	Operational		
FUEL ELEMENT			
DESCRIPTION	Cylindrical pin		
OVERALL DIMENSIONS	3.73 cm diam × 72.06 cm		
U-235 PER ELEMENT, kg	Approximately 0.13		
ELEMENTS/REACTOR	85		
ENRICHMENT (% U-235)	70%; will be converted to 20% about 1994		
DRAWING NO.			
SUPPLIER	General Atomic	·····	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235	
IN REACTOR	85	11.17	
FRESH FUEL	0	0	
SPENT FUEL	0	0	
TOTAL	85		
REFUELING SCHEDULE	About 1 element/year		
SPENT FUEL SHIPMENTS	One shipment made to HEDL in BMI-1 cask		
CONTACTS	Dr. C. H. Wang, Director, 503-737-2341		
	Prof. A. G. Johnson		

Dr. B. Dodd

4B-23

DE LOTOR NO	TTD 4	
REACTOR NO.	TR-4	
REACTOR NAME	Pennsylvania State University Brazeale Reactor	
LOCATION	Brazeale Nuclear Reactor, Pennsylvania State University, University Park, Pennsylvania 16802	
POWER	1 MW	
LICENSE NO. NRC DOCKET NO.	R-2 50-5	
ТҮРЕ	Open pool, TRIGA Mk III	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin	
OVERALL DIMENSIONS	3.73 cm diam × 72.14 cm long	
U-235 PER ELEMENT, kg	0.056	
ELEMENTS/REACTOR	87	
ENRICHMENT (% U-235)	<20%	
DRAWING NO.		- -
SUPPLIER	General Atomic	
		•
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	87	4.87
FRESH FUEL	0	0
SPENT FUEL	0	0
TOTAL	87	4.87
REFUELING SCHEDULE	About 6 elements every 2 years	
SPENT FUEL SHIPMENTS	Spent fuel stored on site	
CONTACTS	Samuel H. Levine, Director, 814-865-6351	
	Ira B. McMaster, Deputy Director	

REACTOR NO.	TR-5	
REACTOR NAME	Reed Reactor Facility	
LOCATION	Reed College, Portland, Oregon 9720	2
POWER	250 kW	
LICENSE NO. NRC DOCKET NO.	R-112 50-288	
TYPE	Open pool, TRIGA Mk I	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin	
OVERALL DIMENSIONS	3.73 cm diam × 72.14 cm long	
U-235 PER ELEMENT, kg	Approximately 0.038	······································
ELEMENTS/REACTOR	60	
ENRICHMENT (% U-235)	20	
DRAWING NO.	······	
SUPPLIER	General Atomic	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	60	2.3
FRESH FUEL	0	0
SPENT FUEL	0	0
TOTAL	60	2.3
REFUELING SCHEDULE	About 1 element every 5 years; operation	tes 10-15 h/week
SPENT FUEL SHIPMENTS	·	······
CONTACTS	Michael Pollock, Acting Director	

REACTOR NO.	TR-6	
REACTOR NAME	Texas A&M Nuclear Science Center Reactor	
LOCATION	Texas A&M University, Nuclear Science Center, College Station, Texas 77843	
POWER	1 MW	
LICENSE NO. NRC DOCKET NO.	R-83 50-128	
ТҮРЕ	Open pool, TRIGA	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin	
OVERALL DIMENSIONS	3.58 cm diam × 76.2 cm	
U-235 PER ELEMENT, kg	Approximately 0.12	
ELEMENTS/REACTOR	90	
ENRICHMENT (% U-235)	70%; will be changed to 19.8% about 1994	
DRAWING NO.		
SUPPLIER	GA Technologies	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	90	10.48
FRESH FUEL	1	0.122
SPENT FUEL	84	
TOTAL	175	
REFUELING SCHEDULE	None	
SPENT FUEL SHIPMENTS		
CONTACTS	Donald E. Feltz, Director, 409-845-590	7

.

÷

REACTOR NO.	TR-7	
REACTOR NAME		
	University of Arizona TRIGA React	· · · · · · · · · · · · · · · · · · ·
LOCATION	University of Arizona, Department o Engineering, Tucson, Arizona 85721	f Nuclear and Energy
POWER	100 kW	
LICENSE NO. NRC DOCKET NO.	R-52 50-113	
ТҮРЕ	Open pool TRIGA	
STATUS	Operational	
FUEL ELEMENT		<u> </u>
DESCRIPTION	Cylindrical pin	
OVERALL DIMENSIONS	3.73 cm diam × 72.31 cm long	
U-235 PER ELEMENT, kg	Approximately 0.038	
ELEMENTS/REACTOR	87	
ENRICHMENT (% U-235)	19.8	
DRAWING NO.	an <u>. – Ann yn An</u> , e ann <u>e</u>	
SUPPLIER	GA Technologies	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	87	3.31
FRESH FUEL	0	0
SPENT FUEL	0	0
TOTAL	87	3.31
REFUELING SCHEDULE	None anticipated	
SPENT FUEL SHIPMENTS	<u> </u>	
CONTACTS	R. L. Seale, 602-626-3903	
	G. W. Nelson	
	H. J. Doane	

4B-	2	8
-----	---	---

and so the

REACTOR NO.	TR-8		
REACTOR NAME	University of California Irvine TRIGA Mk I		
LOCATION	University of California Irvine, Irvine, California 92717		
POWER	250 kW		
LICENSE NO. NRC DOCKET NO.	R-116 50-326		
ТҮРЕ	Open pool, TRIGA Mk I		
STATUS	Operational		
FUEL ELEMENT			
DESCRIPTION	Cylindrical pin, stainless steel clad		
OVERALL DIMENSIONS	3.81 cm diam × 71.12 cm		
U-235 PER ELEMENT, kg	(8.5 wt % U)		
ELEMENTS/REACTOR	81		
ENRICHMENT (% U-235)	19.8		
DRAWING NO.			
SUPPLIER	GA Technologies		
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>	
IN REACTOR	81	2.9	
FRESH FUEL			
SPENT FUEL			
TOTAL			
REFUELING SCHEDULE	None needed. Reactor runs about 10	h/month	
SPENT FUEL SHIPMENTS			
CONTACTS	F. S. Rowland, 714-833-6015		
	G. E. Miller		

REACTOR NO. **TR-9 REACTOR NAME** University of Illinois Low Power Reactor LOCATION University of Illinois, Nuclear Reactor Laboratory, Urbana, Illinois 61801 POWER 10 kW LICENSE NO. R-117 NRC DOCKET NO. 50-356 TYPE Open pool, TRIGA **STATUS** Operational FUEL ELEMENT DESCRIPTION Cylindrical pin **OVERALL DIMENSIONS** $3.73 \text{ cm diam} \times 71.12 \text{ cm long}$ U-235 PER ELEMENT, kg Approximately 0.038 (7.0 g/cc U235) ELEMENTS/REACTOR 55 ENRICHMENT (% U-235) 19.8 DRAWING NO. SUPPLIER **GA** Technologies **INVENTORY OF U-235** FUEL ELEMENTS kg U-235 IN REACTOR 55 2.09 FRESH FUEL 0 0

REFUELING SCHEDULE	None	<u> </u>
SPENT FUEL SHIPMENTS		
CONTACTS	Gerald P. Beck, 217-333-0866	
	Craig Pohlod, 217-333-7755	
	Jerome J. Steerman	

0

55

0

2.09

SPENT FUEL

TOTAL

1

Y

REACTOR NO.	TR-10	
REACTOR NAME	University of Illinois TRIGA	
LOCATION	University of Illinois, Nuclear Reactor Laboratory, Urbana, Illinois 61801	
POWER	1.5 MW	
LICENSE NO. NRC DOCKET NO.	R-115 50-151	
ТҮРЕ	Open pool, TRIGA	
STATUS	Operational	<u> </u>
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin	
OVERALL DIMENSIONS	3.73 cm diam × 71.12 cm long	
U-235 PER ELEMENT, kg	About 0.038 (7.0 g/cc U235)	
ELEMENTS/REACTOR	100	
ENRICHMENT (% U-235)	19.8	
DRAWING NO.		
SUPPLIER	GA Technologies	
INVENTORY OF U-235	FUEL ELEMENTS	ha 11 025
IN REACTOR	<u>1002 ELEMENTS</u>	<u>kg U-235</u> 3.8
FRESH FUEL	8	5.8 0.30
SPENT FUEL	o	- 0
TOTAL	108	4.10
REFUELING SCHEDULE	About 2 elements/year	
SPENT FUEL SHIPMENTS		
CONTACTS	Gerald P. Beck, 217-333-0866	
	Craig Pohlod, 217-333-7755	
	Jerome J. Steerman	

REACTOR NO.	TR-11	
REACTOR NAME	Maryland University Training Reactor	
LOCATION	University of Maryland, College Park, Maryland 20740	
POWER	250 kW	
LICENSE NO. NRC DOCKET NO.	R-70 50-166	
ТҮРЕ	Open pool, TRIGA	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin	
OVERALL DIMENSIONS	3.58 cm diam × 68.58 cm	
U-235 PER ELEMENT, kg	Approximately 0.0354	
ELEMENTS/REACTOR	96	
ENRICHMENT (% U-235)	19.8	
DRAWING NO.		
SUPPLIER	GA Technologies	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	96	3.4
FRESH FUEL	0	0
SPENT FUEL	0	0
TOTAL	96	3.4
REFUELING SCHEDULE	None	
SPENT FUEL SHIPMENTS		
CONTACTS	Ralph L. Belcher, Director, 301-454-2436	

•

......

•

٢

REACTOR NO.	TR-12	
REACTOR NAME	University of Texas TRIGA Mk-II	
LOCATION	University of Texas, Austin, Texas	
POWER	1100 kW	
LICENSE NO. NRC DOCKET NO.		
ТҮРЕ	TRIGA Mk II	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin, stainless steel cladding	
OVERALL DIMENSIONS	3.76 cm diam. × 72.06 cm long	
U-235 PER ELEMENT, kg		
ELEMENTS/REACTOR		
ENRICHMENT (% U-235)	19.8	
DRAWING NO.		
SUPPLIER	GA Technologies	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR		2.8
FRESH FUEL		
SPENT FUEL		
TOTAL		
REFUELING SCHEDULE	Two to five elements per year, but prob before 1995	bably no new fuel needed
SPENT FUEL SHIPMENTS		
CONTACTS	Dr. Tom Bauer, 512-471-5787	

Dr. Tom Bauer, 512-471-5787

REACTOR NO.	TR-13	
REACTOR NAME	University of Utah TRIGA Reactor	<u></u>
LOCATION	University of Utah, Salt Lake City, Uta	ah 84112
POWER	100 kW	
LICENSE NO. NRC DOCKET NO.	R-126 50-407	
ТҮРЕ	Open pool, TRIGA	
STATUS	Operational	
FUEL ELEMENT	·····	
DESCRIPTION	Cylindrical pin, one pin per element	
OVERALL DIMENSIONS	3.75 cm diam × 72.2 cm long	
U-235 PER ELEMENT, kg	0.037	
ELEMENTS/REACTOR	84	
ENRICHMENT (% U-235)	19.8	
DRAWING NO.		
SUPPLIER	GA Technologies	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	84	3.11
FRESH FUEL	2	0.074
SPENT FUEL		
TOTAL	86	3.18
REFUELING SCHEDULE	None anticipated	
SPENT FUEL SHIPMENTS		
CONTACTS	H. R. Jacobs, 801-581-7109	
	Gary M. Sandquist	
	Craig M. Jensen	

, Jink re

- Harana Marine

REACTOR NO.	TR-14	
REACTOR NAME	University of Wisconsin Nuclear React	lor
LOCATION	University of Wisconsin, Mechanical E Madison, Wisconsin 53706	
POWER	1 MW	
LICENSE NO. NRC DOCKET NO.	R-74 50-156	
ТҮРЕ	Open pool, TRIGA FLIP	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin (one pin per element)	
OVERALL DIMENSIONS	3.58 cm diam × 68.3 cm	
U-235 PER ELEMENT, kg	0.088 (8.5% total U)	
ELEMENTS/REACTOR	91	
ENRICHMENT (% U-235)	70% FLIP, changing to 19.8% LEU	
DRAWING NO.		<u> </u>
SUPPLIER	GA Technologies	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	91	8.0
FRESH FUEL (19.8% enriched)	116	
SPENT FUEL		
TOTAL	207	
REFUELING SCHEDULE	10 years	
SPENT FUEL SHIPMENTS		
CONTACTS	R. J. Cashwell, Director, 608-262-3392	
	S. M. Matusewic	

REACTOR NO. TR-15 REACTOR NAME Washington State University Reactor LOCATION Washington State University, Pullman, Washington 99164 POWER 1 MW LICENSE NO. **R-76** NRC DOCKET NO. 50-27 TYPE Open pool, TRIGA **STATUS** Operational FUEL ELEMENT DESCRIPTION Cylindrical pin, one pin per element **OVERALL DIMENSIONS** (Cluster of 4) 7.92 cm \times 7.92 cm \times 93.9 cm U-235 PER ELEMENT, kg Approximately 0.066 ELEMENTS/REACTOR 102 ENRICHMENT (% U-235) 20 and 70 DRAWING NO. **SUPPLIER GA** Technologies **INVENTORY OF U-235** FUEL ELEMENTS kg U-235 IN REACTOR 102 6.7 FRESH FUEL SPENT FUEL TOTAL 102 6.7 **REFUELING SCHEDULE** SPENT FUEL SHIPMENTS None CONTACTS Dr. R. Filby, 509-335-8317 W. E. Wilson J. Neidiger

•		
REACTOR NO.	AGN-1	
REACTOR NAME	Idaho State University AGN-201 M	
LOCATION	Idaho State University, Lillibridge E Pocatello, Idaho 83209	ngineering Laboratory,
POWER	5 W	-
LICENSE NO. NRC DOCKET NO.	R-110 50-284	
ТҮРЕ	Aerojet General Nucleonics AGN-20	01 M
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Discs of dispersed UO ₂ in polyethyle	ne
OVERALL DIMENSIONS	25.0 cm diam; thickness 5.0, 2.5, or 1	.0 cm
U-235 PER ELEMENT, kg		
ELEMENTS/REACTOR	Nine discs per reactor	
ENRICHMENT (% U-235)	19.88	
DRAWING NO.		
SUPPLIER	· .	
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	9	0.67
FRESH FUEL		0
SPENT FUEL		0
TOTAL	9	0.67
REFUELING SCHEDULE	None anticipated	
SPENT FUEL SHIPMENTS	None	
CONTACTS	Albert E. Wilson, Reactor Administr	ator, 208-236-2417
	Terry W. Smith, Reactor Supervisor,	

.

Ţ

31(0) - 510

4B-37

REACTOR NO.	AGN-2	
REACTOR NAME	Texas A&M AGN-201 Training React	or Facility
LOCATION	Texas A&M University, Department o College Station, Texas 77843	f Nuclear Engineering,
POWER	5 W	
LICENSE NO. NRC DOCKET NO.	R-23 50-59	
TYPE	AGN-201 homogeneous disc-type fuel,	critical facility
STATUS	Operational	
FUEL ELEMENT		······
DESCRIPTION	Homogeneous disc, UO ₂ - polyethylend	e
OVERALL DIMENSIONS	25 cm diam × 3.9, 2.3, or 1.0 cm thick	
U-235 PER ELEMENT, kg		
ELEMENTS/REACTOR	9	
ENRICHMENT (% U-235)	20	
DRAWING NO.	······································	
SUPPLIER		
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	9	0.69
FRESH FUEL		
SPENT FUEL		
TOTAL		
REFUELING SCHEDULE	None	
SPENT FUEL SHIPMENTS		
CONTACTS	Dr. Carl A. Erdman, 713-845-4161	

REACTOR NO.	AGN-3	
REACTOR NAME	University of New Mexico AGN-201	
LOCATION	University of New Mexico, Nuclear En Albuquerque, New Mexico 87131	ngineering Laboratory,
POWER	5 W	
LICENSE NO. NRC DOCKET NO.	R-102 50-252	
ТҮРЕ	Open pool, AGN-201	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Uranium oxide-polyethylene disc	
OVERALL DIMENSIONS	25.6 cm diam, height 4.0, 2.0, and 1.0	cm
U-235 PER ELEMENT, kg		
ELEMENTS/REACTOR	9	
ENRICHMENT (% U-235)	20	
DRAWING NO.		
SUPPLIER	Aerojet General Nucleonics	
INVENTORY OF U-235 IN REACTOR FRESH FUEL	FUEL ELEMENTS	<u>kg U-235</u> 0.67
SPENT FUEL		
TOTAL		
REFUELING SCHEDULE	None anticipated	
SPENT FUEL SHIPMENTS		
CONTACTS	Dr. Craig Robertson, 505-277-5431	
	Dr. David Woodall	

.

4B-38

and the second se

and from

a transformer

•

REACTOR NO.	UPIN-1	
REACTOR NAME	Cornell University Zero Power Reactor	or
LOCATION	Cornell University, Ward Laboratory,	Ithaca, New York 14850
POWER	100 W	
LICENSE NO. NRC DOCKET NO.	R-89 50-97	
ТҮРЕ	Open tank critical facility	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	Cylindrical pin	
OVERALL DIMENSIONS	1.69 cm diam × 158.0 cm long	
U-235 PER ELEMENT, kg		
ELEMENTS/REACTOR		
ENRICHMENT (% U-235)	2.1	
DRAWING NO.		
SUPPLIER		
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR	815	35.0
FRESH FUEL		
SPENT FUEL		
TOTAL		
	•	
REFUELING SCHEDULE		·····
SPENT FUEL SHIPMENTS		
CONTACTS	David Clark, 607-256-3480	
	Howard Aderhold	

REACTOR NO.	UPIN-2		
REACTOR NAME			
LOCATION	North Carolina State University PULSTAR North Carolina State University, Department of Nuclear		
LOCATION	Engineering, Raleigh, North Carolina		
POWER	1 MW		
LICENSE NO. NRC DOCKET NO.	R-120 50-297		
ТҮРЕ	PULSTAR, pool type		
STATUS	Operational		
FUEL ELEMENT	,		
DESCRIPTION	Element consists of 25 pins in 5×5 a	ггау	
OVERALL DIMENSIONS	8.0 cm \times 6.96 cm \times 96.47 cm		
U-235 PER ELEMENT, kg	0.57		
ELEMENTS/REACTOR	25		
ENRICHMENT (% U-235)	4		
DRAWING NO.			
SUPPLIER	Westinghouse Canada		
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg_U-235</u>	
IN REACTOR	25	12.7	
FRESH FUEL			
SPENT FUEL			
TOTAL			
REFUELING SCHEDULE	Not stated		
SPENT FUEL SHIPMENTS	None	<u> </u>	
CONTACTS	Dr. Robert G. Cockrell, 919-737-2322	and 2323	
	Thomas C. Bray		
	David P. Coccamo		
DRAWING NO. SUPPLIER INVENTORY OF U-235 IN REACTOR FRESH FUEL SPENT FUEL TOTAL REFUELING SCHEDULE SPENT FUEL SHIPMENTS	Westinghouse Canada <u>FUEL ELEMENTS</u> 25 Not stated None Dr. Robert G. Cockrell, 919-737-2322 a Thomas C. Bray	12.7	

ŗ

REACTOR NO.	UPIN-3
REACTOR NAME	Rensselaer Critical Experiment Facility
LOCATION	Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12181
POWER	<100 W
LICENSE NO. NRC DOCKET NO.	CX-22 50-225
TYPE	Tank type critical facility
STATUS	Operational
FUEL ELEMENT	· · · · · · · · · · · · · · · · · · ·
DESCRIPTION	SPERT-type fuel pins in square array
OVERALL DIMENSIONS	1.18 cm diam \times 105.73 cm long
U-235 PER ELEMENT, kg	
ELEMENTS/REACTOR	497 fuel pins
ENRICHMENT (% U-235)	4.81%
DRAWING NO.	
SUPPLIER	· · · · · · · · · · · · · · · · · · ·
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	
SPENT FUEL	
TOTAL	
REFUELING SCHEDULE	
SPENT FUEL SHIPMENTS	
CONTACTS	Dr. Donald R. Harris, Director, 518-393-4281
	Dr. Frank Wicks, Supervisor, 518-270-6403

REACTOR NO.	UPIN-4	
REACTOR NAME	State University of New York NSTF	
LOCATION	State University of New York, Rotary Road Buffalo, New York 14214	,
POWER	2 MW	
LICENSE NO. NRC DOCKET NO.	R-77 50-57	
ТҮРЕ	Open pool, tank type PULSTAR	
STATUS	Operational	
FUEL ELEMENT		
DESCRIPTION	25 cylindrical pins in 5 \times 5 array	
OVERALL DIMENSIONS	6.96 cm \times 8.0 cm \times 96.52 cm	
U-235 PER ELEMENT, kg	0.76	
ELEMENTS/REACTOR	24	
ENRICHMENT (% U-235)	6	
DRAWING NO.		
SUPPLIER		<u></u>
INVENTORY OF U-235	FUEL ELEMENTS	kg U-235
IN REACTOR	24	18.2
FRESH FUEL		
SPENT FUEL		
TOTAL		
REFUELING SCHEDULE	>10 years	
SPENT FUEL SHIPMENTS	Shipment made to INEL in BMI-1 cask	
CONTACTS	Lewis G. Henry, 716-831-2826	
	Philip Orlosky	

f

APPENDIX 4B. DATA SHEETS FOR NUCLEAR REACTORS AT EDUCATIONAL INSTITUTIONS IN THE UNITED STATES

PART 2. SHUT-DOWN REACTORS

.

REACTOR NO.	SPL-1	
REACTOR NAME	University of California Los Angeles Training	Reactor
LOCATION	University of California Los Angeles, Boelter Los Angeles, California 90024	Hall,
POWER	100 kW	· · · · · · ·
LICENSE NO. NRC DOCKET NO.	R-71 50-142	
TYPE	ARGONAUT	
STATUS	Shut down since 1984	
FUEL ELEMENT		
DESCRIPTION	MTR plate-type fuel, 11 plates/element	
OVERALL DIMENSIONS	6.03 cm × 7.23 cm × 68.56 cm	
U-235 PER ELEMENT, kg	0.14	
ELEMENTS/REACTOR	24	
ENRICHMENT (% U-235)	93	
DRAWING NO.		
SUPPLIER	Atomics International	
INVENTORY OF U-235		he 11 225
IN REACTOR	FUEL ELEMENTS	<u>kg U-235</u>
FRESH FUEL		
SPENT FUEL	All fuel shipped to INEL	
TOTAL	* *	
REFUELING SCHEDULE	Reactor has been shut down	
SPENT FUEL SHIPMENTS	Shipped to INEL in GE-700 cask	
CONTACTS	Ivan Catton, Director, 213-825-2040	
	Neill Ostrander, 213-825-2825	
	Tony Zane	

SPL-2 **REACTOR NO. REACTOR NAME** University of Kansas, Bendix Research and Training Reactor LOCATION Nuclear Reactor Center, University of Kansas, Lawrence, Kansas 66045 POWER 10 kW LICENSE NO. **R-78** NRC DOCKET NO. 50-148 TYPE Open pool, plate type fuel **STATUS** Shut down since 1987 FUEL ELEMENT DESCRIPTION Flat plate type, 10 plates/element **OVERALL DIMENSIONS** 7.62 cm \times 7.62 cm \times 86.31 cm U-235 PER ELEMENT, kg 0.17 ELEMENTS/REACTOR 16 ENRICHMENT (% U-235) 90 DRAWING NO. **SUPPLIER INVENTORY OF U-235** FUEL ELEMENTS kg U-235 IN REACTOR FRESH FUEL SPENT FUEL All fuel shipped to Savannah River Site TOTAL **REFUELING SCHEDULE** SPENT FUEL SHIPMENTS Shipped to Savannah River Site CONTACTS Russell Mesler, 913-864-3938 Harold Rosson **Benjamin Friesen**

4B-46

and Balance

i

-121111

4B-47	
-------	--

REACTOR NO.	SPL-3
REACTOR NAME	Virginia Polytechnic Institute and State University Research Reactor
LOCATION	Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060
POWER	100 kW
LICENSE NO. NRC DOCKET NO.	R-62 50-124
TYPE	ARGONAUT
STATUS	Shut down since 1984
FUEL ELEMENT	
DESCRIPTION	Rectangular fuel plates, 12 plates per element
OVERALL DIMENSIONS	$7.62 \text{ cm} \times 15.24 \text{ cm} \times 66.04 \text{ cm}$
U-235 PER ELEMENT, kg	Approximately 0.266
ELEMENTS/REACTOR	12
ENRICHMENT (% U-235)	90
DRAWING NO.	
SUPPLIER	American Standard
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	
SPENT FUEL	All fuel shipped to Savannah River Site
TOTAL	
REFUELING SCHEDULE	Shut down
SPENT FUEL SHIPMENTS	All shipped to Savannah River Site
CONTACTS	T. F. Parkinson, 703-961-6510
	P. D. Holian

.

REACTOR NO.	SPL-4
REACTOR NAME	University of Washington Nuclear Reactor
LOCATION	University of Washington Nuclear Reactor Building, Seattle, Washington 98195
POWER	100 kW
LICENSE NO. NRC DOCKET NO.	R-73 50-139
ТҮРЕ	ARGONAUT
STATUS	Shut down since 1988
FUEL ELEMENT	
DESCRIPTION	Flat plates, 11 plates per element
OVERALL DIMENSIONS	7.11 cm \times 6.1 cm \times 65.09 cm
U-235 PER ELEMENT, kg	~0.143
ELEMENTS/REACTOR	24
ENRICHMENT (% U-235)	93
DRAWING NO.	
SUPPLIER	Babcock & Wilcox
	······································
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	
SPENT FUEL	All fuel shipped to INEL
TOTAL	
REFUELING SCHEDULE	Shut down
SPENT FUEL SHIPMENTS	All shipped to INEL
CONTACTS	William S. Chalk, Director, 206-543-4170
	William P. Miller

.

ļ

SPL-5 **REACTOR NO. REACTOR NAME** University of Virginia CAVALIER LOCATION University of Virginia Reactor Facility, Charlottesville, Virginia 22901 POWER 100 W LICENSE NO. **R-123** NRC DOCKET NO. 50-396 TYPE Open pool, plate type fuel CAVALIER **STATUS** Shut down; decommissioned 1987 FUEL ELEMENT DESCRIPTION Flat plates, 12 plates per element **OVERALL DIMENSIONS** 7.61 cm \times 8.26 cm \times 93.66 cm U-235 PER ELEMENT, kg 0.165 ELEMENTS/REACTOR ENRICHMENT (% U-235) 93 DRAWING NO. SUPPLIER **INVENTORY OF U-235** FUEL ELEMENTS kg U-235 IN REACTOR **FRESH FUEL** SPENT FUEL TOTAL **REFUELING SCHEDULE** SPENT FUEL SHIPMENTS CONTACTS Dr. Robert Mulder, 804-924-7136 J. P. Farrar

REACTOR NO.	STR-1
REACTOR NAME	Michigan State University TRIGA Mk I
LOCATION	Michigan State University, Nuclear Reactor Laboratory, East Lansing, Michigan 48824
POWER	250 kW
LICENSE NO. NRC DOCKET NO.	R-114 50-294
ТҮРЕ	Pool type, TRIGA Mk I
STATUS	Shut down since 1989
FUEL ELEMENT	
DESCRIPTION	Cylindrical pin
OVERALL DIMENSIONS	3.76 cm diam × 72.39 cm long
U-235 PER ELEMENT, kg	
ELEMENTS/REACTOR	
ENRICHMENT (% U-235)	20
DRAWING NO.	
SUPPLIER	General Atomic
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	
SPENT FUEL	Fuel was shipped to U.S. Geological Survey (1/3) and INEL (2/3)
TOTAL	
REFUELING SCHEDULE	None
SPENT FUEL SHIPMENTS	Shipped to USGS and INEL
CONTACTS	Dr. Bruce Wilkinson, 517-769-2836

.

a interaction

REACTOR NO.	STR-2
REACTOR NAME	Columbia University TRIGA Mk II
LOCATION	Columbia University, 520 W. 120 St., New York, New York 10027
POWER	250 kW
LICENSE NO. NRC DOCKET NO.	R-128 50-208
ТҮРЕ	Open pool, TRIGA Mk II
STATUS	Built but never operated; shut down and decommissioned
FUEL ELEMENT	
DESCRIPTION	Cylindrical pins, 3.74 cm diam × 72.05 cm long
OVERALL DIMENSIONS	
U-235 PER ELEMENT, kg	
ELEMENTS/REACTOR	65-80
ENRICHMENT (% U-235)	19.8%
DRAWING NO.	
SUPPLIER	General Atomic
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	This reactor was never started up, and no fuel was ever procured
FRESH FUEL	
SPENT FUEL	
TOTAL	
REFUELING SCHEDULE	None anticipated
SPENT FUEL SHIPMENTS	None
CONTACTS	Prof. Charles F. Bonilla, 212-280-4441
	Prof. Edward Melkonian, 212-280-4442

REACTOR NO.	STR-3	
REACTOR NAME	University of Illinois TRIGA Mk1	
LOCATION	Urbana, Illinois	
POWER		
LICENSE NO. NRC DOCKET NO.	R-69 50-151	
TYPE	TRIGA Mark 1	
STATUS	Shut down and decommissioned in 1968	
FUEL ELEMENT		
DESCRIPTION		
OVERALL DIMENSIONS		······································
U-235 PER ELEMENT, kg		······································
ELEMENTS/REACTOR		
ENRICHMENT (% U-235)	<20%	
DRAWING NO.		
SUPPLIER	GA Technologies	
INVENTORY OF U-235 IN REACTOR FRESH FUEL	FUEL ELEMENTS	<u>kg U-235</u>
SPENT FUEL TOTAL	All fuel was shipped to Michigan State	
REFUELING SCHEDULE	Shut down in 1968	
SPENT FUEL SHIPMENTS		
CONTACTS	Craig Pohlod, 217-333-0866	

REACTOR NO.	STR-4
REACTOR NAME	University of California Berkeley Research Reactor
LOCATION	Department of Nuclear Engineering, University of California, Berkeley, California 94720
POWER	1 MW
LICENSE NO. NRC DOCKET NO.	R-101 50-224
ТҮРЕ	Open pool TRIGA
STATUS	Shut down since 1987; decommissioned 1988
FUEL ELEMENT	
DESCRIPTION	Cylindrical pin
OVERALL DIMENSIONS	3.63 cm diam × 38.1 cm long
U-235 PER ELEMENT, kg	Approximately 0.034 (8.5 wt % U)
ELEMENTS/REACTOR	106
ENRICHMENT (% U-235)	19.8%
DRAWING NO.	
SUPPLIER	GA Technologies
INVENTORY OF U-235	FUEL ELEMENTS kg_U-235
IN REACTOR	
FRESH FUEL	
SPENT FUEL	Fuel was all shipped to INEL
TOTAL	
REFUELING SCHEDULE	Reactor is shut down
SPENT FUEL SHIPMENTS	Shipped to INEL
CONTACTS	Selig N. Kaplan, 415-642-5213
	Tek H. Lim, 415-642-5224
	Harry G. Braun

REACTOR NO.	STR-5
REACTOR NAME	University of Texas TRIGA Mk-I
LOCATION	University of Texas, Nuclear Engineering Teaching Laboratory, Austin, Texas 78712
POWER	250 kW
LICENSE NO. NRC DOCKET NO.	R-92 50-192
TYPE	Open pool, TRIGA
STATUS	Decommissioned Dec. 31, 1988
FUEL ELEMENT	
DESCRIPTION	Cylindrical pin, one pin per element
OVERALL DIMENSIONS	3.76 cm diam × 72.06 cm long
U-235 PER ELEMENT, kg	(8.5 wt % U)
ELEMENTS/REACTOR	
ENRICHMENT (% U-235)	19.8%
DRAWING NO.	
SUPPLIER	GA Technologies
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR FRESH FUEL	
SPENT FUEL	The fuel from this reactor has been been kept at the University of Texas for use in another reactor (1100 kW TRIGA)
TOTAL	
REFUELING SCHEDULE	None
SPENT FUEL SHIPMENTS	
CONTACTS	Dr. Dale Klein, 512-471-5136
	Dr. T. L. Bauer, 512-471-5787

.

4B-54

T

s - standing an out of

REACTOR NO.	SAGN-1
REACTOR NAME	Catholic University AGN-201 CU
LOCATION	The Catholic University of America, Washington, DC 20064
POWER	0.1 W
LICENSE NO. NRC DOCKET NO.	R-31 50-77
TYPE	Aerojet General Nucleonics AGN-201
STATUS	Shut down since 1986; decommissioned 1987
FUEL ELEMENT	
DESCRIPTION	UO ₂ – polyethylene discs
OVERALL DIMENSIONS	25.75 cm diam, thickness 3.9, 2.3, and 1.0 cm
U-235 PER ELEMENT, kg	
ELEMENTS/REACTOR	Nine discs per reactor
ENRICHMENT (% U-235)	19.9
DRAWING NO.	
SUPPLIER	Aerojet General Nucleonics
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	All fuel is to be sent to DOE
SPENT FUEL	
TOTAL	
REFUELING SCHEDULE	None anticipated; reactor is shut down
SPENT FUEL SHIPMENTS	None; fuel is to be sent to DOE
CONTACTS	Edward Jordan, Reactor Administrator, 202-635-5170
	Y. C. Whang, Chairperson, Mech. Eng. Dept.
	D. D. Ebert, Reactor Supervisor

4B-56

10 - DA- MA

REACTOR NO.	SAGN-2
REACTOR NAME	Memphis State University AGN-201-108
LOCATION	Memphis State University, Center for Nuclear Studies, Memphis, Tennessee 38152
POWER	0.1 W
LICENSE NO. NRC DOCKET NO.	R-127 50-538
ТҮРЕ	Aerojet General Nucleonics AGN-201
STATUS	Shut down since 1985; decommissioned 1987
FUEL ELEMENT	
DESCRIPTION	UO_2 – polyethylene discs
OVERALL DIMENSIONS	25.4 cm diam, thickness 4.0, 2.0, and 1.0 cm
U-235 PER ELEMENT, kg	
ELEMENTS/REACTOR	Nine discs per reactor
ENRICHMENT (% U-235)	19.9
DRAWING NO.	
SUPPLIER	Fuel available from decommissioned reactors
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	All fuel has been shipped to ORNL
SPENT FUEL	
TOTAL	
REFUELING SCHEDULE	None anticipated; shut down in 1985
SPENT FUEL SHIPMENTS	To Oak Ridge National Laboratory, Oak Ridge, Tennessee, in DOT type 6J drums
CONTACTS	Dr. D. W. Jones, 901-454-2687
	R. L. Dietz

REACTOR NO. SAGN-3 **REACTOR NAME** University of Utah AGN-201-107 LOCATION University of Utah, Merrill Engineering Building, Salt Lake City, Utah 84112 POWER 5 W LICENSE NO. **R-25** NRC DOCKET NO. 50-72 TYPE AGN-201 homogeneous disc fuel **STATUS** Decommissioned 1988 FUEL ELEMENT DESCRIPTION UO₂ - polyethylene discs **OVERALL DIMENSIONS** 25.6 cm diam \times 4.0, 2.0, and 1.0 cm thick U-235 PER ELEMENT, kg **ELEMENTS/REACTOR** Nine, about 0.69 kg U-235 total ENRICHMENT (% U-235) 19.5% DRAWING NO. SUPPLIER Aerojet General Nucleonics **INVENTORY OF U-235** FUEL ELEMENTS kg U-235 IN REACTOR FRESH FUEL All fuel has been put into a shipping cask and will be sent to a DOE site SPENT FUEL TOTAL **REFUELING SCHEDULE** None anticipated; reactor is shut down SPENT FUEL SHIPMENTS CONTACTS Dr. Gray M. Sandquist, 801-581-7109 Dr. H. R. Jacobs, 801-581-7372

REACTOR NO. SAGN-4 **REACTOR NAME** University of Oklahoma AGN-211P LOCATION University of Oklahoma, Nuclear Reactor Laboratory, Norman, Oklahoma 73019 POWER 15 W LICENSE NO. R-53 NRC DOCKET NO. 50-112 TYPE Open pool, AGN-211 **STATUS** Shut down since 1988 FUEL ELEMENT DESCRIPTION Uranium oxide-polyethylene blocks (two blocks per element) **OVERALL DIMENSIONS** $7.32 \text{ cm} \times 7.77 \text{ cm} \times 70.17 \text{ cm}$ U-235 PER ELEMENT, kg Approximately 0.7 kg U-235 ELEMENTS/REACTOR 12 ENRICHMENT (% U-235) 19.84% DRAWING NO. SUPPLIER Aerojet General Nucleonic **INVENTORY OF U-235** kg U-235 FUEL ELEMENTS IN REACTOR **FRESH FUEL** All fuel has been sent to Oak Ridge National Laboratory SPENT FUEL TOTAL **REFUELING SCHEDULE** None anticipated SPENT FUEL SHIPMENTS Shipped to Oak Ridge National Laboratory CONTACTS Dr. C. W. Terrell, 405-325-5084 Johnny James Dr. Duaine Lindstrom

The first statement of the

÷.

REACTOR NO. SAGN-5 **REACTOR NAME** California Polytechnic Institute AGN-201 LOCATION San Luis Obispo, California POWER Negligible LICENSE NO. **R-121** NRC DOCKET NO. 50-394 TYPE STATUS Shut down 1980 and decommissioned FUEL ELEMENT DESCRIPTION UO_2 – polyethylene discs **OVERALL DIMENSIONS** U-235 PER ELEMENT, kg ELEMENTS/REACTOR Total of about 0.67 kg U-235 ENRICHMENT (% U-235) <20% DRAWING NO. SUPPLIER **INVENTORY OF U-235** FUEL ELEMENTS kg U-235 IN REACTOR FRESH FUEL All fuel has been shipped to Oak Ridge SPENT FUEL TOTAL **REFUELING SCHEDULE** Reactor is shut down and dismantled SPENT FUEL SHIPMENTS CONTACTS Prof. R. W. Adamson, 805-756-1346

REACTOR NO.	SAGN-6		
REACTOR NAME	University of Delaware AGN-201		
LOCATION	Newark, Delaware		
POWER	Negligible		
LICENSE NO. NRC DOCKET NO.	R-43 50-98		
ТҮРЕ			
STATUS	Shut down and decommissioned 1978		
FUEL ELEMENT			
DESCRIPTION	UO ₂ - polyethylene		
OVERALL DIMENSIONS			
U-235 PER ELEMENT, kg			
ELEMENTS/REACTOR			
ENRICHMENT (% U-235)	<20%		
DRAWING NO.			
SUPPLIER			
INVENTORY OF U-235	FUEL ELEMENTS kg U-235		
IN REACTOR			
FRESH FUEL	All fuel has been shipped to Oak Ridge National Laboratory		
SPENT FUEL			
TOTAL			
REFUELING SCHEDULE	None		
SPENT FUEL SHIPMENTS			
	All fuel shipped to ORNL		
CONTACTS			

,

REACTOR NO.	SAGN-7		
REACTOR NAME	Georgia Institute of Technology AGN-201		
LOCATION	Atlanta, Georgia		
POWER	Negligible		
LICENSE NO. NRC DOCKET NO.	R-111 50-276		
TYPE			
STATUS	Shut down and decommissioned 1987		
FUEL ELEMENT			
DESCRIPTION	UO ₂ - polyethylene		
OVERALL DIMENSIONS			
U-235 PER ELEMENT, kg			
ELEMENTS/REACTOR			
ENRICHMENT (% U-235)	<20%		
DRAWING NO.			
SUPPLIER			
INVENTORY OF U-235 IN REACTOR	FUEL ELEMENTS kg U-235		
FRESH FUEL	All fuel shipped to Oak Ridge National Laboratory		
SPENT FUEL			
TOTAL			
REFUELING SCHEDULE	None		
SPENT FUEL SHIPMENTS			
CONTACTS	Dr. R. Karam. 404-894-3620		

Dr. R. Karam, 404-894-3620

REACTOR NO. SAGN-8 **REACTOR NAME** Colorado State University AGN-201 LOCATION Fort Collins, Colorado POWER Negligible LICENSE NO. NRC DOCKET NO. TYPE **STATUS** Shut down in 1974; decommissioned 1976 FUEL ELEMENT DESCRIPTION UO_2 – polyethylene **OVERALL DIMENSIONS** U-235 PER ELEMENT, kg **ELEMENTS/REACTOR** ENRICHMENT (% U-235) <20% DRAWING NO. **SUPPLIER INVENTORY OF U-235** FUEL ELEMENTS kg U-235 IN REACTOR Information is not available, but AGN-201 reactors typically have 9 fuel elements and a total core loading of about 0.67 kg U-235 **FRESH FUEL** SPENT FUEL TOTAL

REFUELING SCHEDULE	Shut down; reactor and fuel were shipped to South Korea
SPENT FUEL SHIPMENTS	
CONTACTS	Dr. James Johnson, 303-491-5380

4B-62

REACTOR NO. SAGN-9 **REACTOR NAME** Oregon State University AGN-201 LOCATION Corvallis, Oregon POWER Negligible LICENSE NO. R-51 NRC DOCKET NO. 50-106 TYPE **AGN-201 STATUS** FUEL ELEMENT DESCRIPTION UO_2 – polyethylene **OVERALL DIMENSIONS** U-235 PER ELEMENT, kg ELEMENTS/REACTOR ENRICHMENT (% U-235) DRAWING NO. SUPPLIER **INVENTORY OF U-235** FUEL ELEMENTS <u>kg U-235</u> IN REACTOR Fuel is being held at Oregon State University FRESH FUEL SPENT FUEL TOTAL **REFUELING SCHEDULE** Shut down and decommissioned SPENT FUEL SHIPMENTS Fuel is being held at site CONTACTS Dr. Brian Dodd, 503-737-7047

4B-63

REACTOR NO.	SAGN-10
REACTOR NAME	Polytechnic Institute of New York AGN-201
LOCATION	New York, New York
POWER	Negligible
LICENSE NO. NRC DOCKET NO.	R-105 50-126
ТҮРЕ	AGN-201
STATUS	
FUEL ELEMENT	
DESCRIPTION	UO ₂ -polyethylene
OVERALL DIMENSIONS	
U-235 PER ELEMENT, kg	About 0.7 kg U-235
ELEMENTS/REACTOR	
ENRICHMENT (% U-235)	
DRAWING NO.	
SUPPLIER	
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	All fuel has been shipped to Oak Ridge National Laboratory
SPENT FUEL	
TOTAL	
REFUELING SCHEDULE	Decommissioned
SPENT FUEL SHIPMENTS	
CONTACTS	

- ----

REACTOR NO.	SAGN-11	
REACTOR NAME	Tuskeegee Institute AGN-201	
LOCATION		
POWER	Negligible	
LICENSE NO. NRC DOCKET NO.	R-122 50-406	
түре		
STATUS	Shut down and decommissioned 1982	
FUEL ELEMENT		
DESCRIPTION	UO ₂ – polyethylene	
OVERALL DIMENSIONS		
U-235 PER ELEMENT, kg		
ELEMENTS/REACTOR		
ENRICHMENT (% U-235)	<20%	
DRAWING NO.		
SUPPLIER	Aerojet General Nucleonics	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR		
FRESH FUEL	All fuel has been returned to DOE	
SPENT FUEL		
TOTAL		
REFUELING SCHEDULE	None; reactor is decommissioned	
SPENT FUEL SHIPMENTS		
CONTACTS		

	÷	4 B -66

REACTOR NO.	SAGN-12
REACTOR NAME	West Virginia University AGN-201
LOCATION	west virginia Oniversity ACIV201
POWER	Negligible
LICENSE NO. NRC DOCKET NO.	R-158 50-129
ТҮРЕ	
STATUS	Shut down and decommissioned 1972
FUEL ELEMENT	
DESCRIPTION	UO_2 – polyethylene
OVERALL DIMENSIONS	
U-235 PER ELEMENT, kg	Approximately 0.7 kg U-235
ELEMENTS/REACTOR	
ENRICHMENT (% U-235)	
DRAWING NO.	
SUPPLIER	Aerojet General Nucleonics
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	All fuel has been sent to the University of Oklahoma
SPENT FUEL	
TOTAL	
REFUELING SCHEDULE	Reactor is decommissioned
SPENT FUEL SHIPMENTS	
CONTACTS	

REACTOR NO.	SAGN-13
REACTOR NAME	Rice University AGN-201
LOCATION	
POWER	Negligible
LICENSE NO. NRC DOCKET NO.	R-54 50-101
ТҮРЕ	· · · · · · · · · · · · · · · · · · ·
STATUS	Shut down and decommissioned
FUEL ELEMENT	
DESCRIPTION	UO ₂ – polyethylene
OVERALL DIMENSIONS	
U-235 PER ELEMENT, kg	Approximately 0.7 kg U-235
ELEMENTS/REACTOR	
ENRICHMENT (% U-235)	
DRAWING NO.	
SUPPLIER	Aerojet General Nucleonics
INVENTORY OF U-235	FUEL ELEMENTS kg U-235
IN REACTOR	
FRESH FUEL	All fuel has been shipped to Texas A&M University
SPENT FUEL	
TOTAL	
REFUELING SCHEDULE	Reactor was shut down in 1965
SPENT FUEL SHIPMENTS	

۰.

; !

CONTACTS

ş

REACTOR NO.	SAQ-1		
REACTOR NAME	University of California Santa Barbara L-77		
LOCATION	University of Santa California, Santa Barbara, California 93106		
POWER	10 W		
LICENSE NO. NRC DOCKET NO.	R-124 50-433		
ТҮРЕ	Liquid fuel		
STATUS	Shut down since 1986; decommissioned in 1987		
FUEL ELEMENT			
DESCRIPTION	Spherical core, liquid fuel		
OVERALL DIMENSIONS	30.3 L		
U-235 PER ELEMENT, kg			
ELEMENTS/REACTOR			
ENRICHMENT (% U-235)	89		
DRAWING NO.	·		
SUPPLIER	Atomics International		
INVENTORY OF U-235	FUEL ELEMENTS kg U-235		
IN REACTOR			
FRESH FUEL	Fuel has been sent to INEL		
SPENT FUEL			
TOTAL			
REFUELING SCHEDULE	Reactor has been disassembled and fuel has been shipped to INEL		
SPENT FUEL SHIPMENTS			
CONTACTS	Prof. A. E. Profio, 805-961-4146 or 805-961-3412		

REACTOR NO.	SAQ-2		
REACTOR NAME	Brigham Young University Reactor L-77		
LOCATION	Bringham Young University, Provo, Utah 84602		
POWER	10 W		
LICENSE NO. NRC DOCKET NO.	R-109 50-262		
TYPE	Atomics International Model L-77		
STATUS	Shut down since 1987		
FUEL ELEMENT			
DESCRIPTION	Liquid fuel		
OVERALL DIMENSIONS			
U-235 PER ELEMENT, kg			
ELEMENTS/REACTOR			
ENRICHMENT (% U-235)	<20%		
DRAWING NO.			
SUPPLIER	Atomics International		
INVENTORY OF U-235 IN REACTOR	FUEL ELEMENTS kg U-235		
FRESH FUEL	Fuel has been sent to INEL		
SPENT FUEL			
TOTAL			
REFUELING SCHEDULE	None; shut down		
SPENT FUEL SHIPMENTS			
CONTACTS	Fuel has been sent to INEL		
	J. Rex Goates, Administrator, 801-378-2093		
	Dwight R. Dixon, Facility Chief, 801-378-2093		
	Gary Lee Jensen, Sr., Operator, 801-378-2093		

·

REACTOR NO.	SAQ-3	
REACTOR NAME	University of Wyoming L-77	
LOCATION	Laramie, Wyoming	
POWER		
LICENSE NO. NRC DOCKET NO.		
TYPE	Liquid fuel L-77	
STATUS	Shut down since 1974	
FUEL ELEMENT		
DESCRIPTION		
OVERALL DIMENSIONS		
U-235 PER ELEMENT, kg		
ELEMENTS/REACTOR		
ENRICHMENT (% U-235)		
DRAWING NO.		
SUPPLIER	Atomics International	
INVENTORY OF U-235	FUEL ELEMENTS	<u>kg U-235</u>
IN REACTOR		
FRESH FUEL	Liquid fuel has been shipped to Atomics Intern	national
SPENT FUEL		
TOTAL		
REFUELING SCHEDULE	Reactor has been dismantled	
SPENT FUEL SHIPMENTS		
CONTACTS	······································	

APPENDIX 4C. SUPPLEMENTAL DATA FOR FORT ST. VRAIN SPENT FUEL

•

4C. SUPPLEMENTAL DATA FOR FORT ST. VRAIN SPENT FUEL

4C.1 INTRODUCTION

The Fort St. Vrain (FSV) reactor is discussed in Sect. 4.2 of the main body of this report. The reactor is of the high-temperature, helium-gas-cooled type with a rated thermal power of 842 MW. It started up in 1979 and was permanently shut down in August 1989. The fuel is scheduled to be removed by the end of 1991. This appendix contains additional data on inventory, fuel element description, fuel types and markings, and postirradiation condition.

4C.2 INVENTORY OF FORT ST. VRAIN FUEL

As of September 1987, three reactor segments had been discharged from the FSV reactor. The discharge dates and the number of elements discharged were as follows:

Discharge 1	February 1, 1979	245 elements
Discharge 2	May 13, 1981	240 elements
Discharge 3	January 2, 1984	240 elements

The serial numbers for the above 725 fuel elements are provided in Tables 4C.1, 4C.2, and 4C.3. The remains of one element, which was destructively examined, are at General Atomics, San Diego. The remaining 724 are in storage at INEL (Morissette 1986).

Table 4C.4 shows the complete schedule of spent fuel discharged from the FSV reactor through the end of 1989 and the projected schedule through 1991. The total in-core inventory at the time of shutdown was 1,482 elements. All this fuel is scheduled to be removed by the end of 1991, giving a total cumulative discharge of 2,208 elements (Brey 1990, DOE 1990). All spent fuel discharged prior to December 31, 1988, is located at the Idaho Chemical Processing Plant (ICPP). Fuel removed from the core in 1989 and 1990 remains on-site in temporary storage wells until shipment to the ICPP can be accomplished or an independent spent fuel storage installation is built for permanent storage.

Burnups of fuel elements are available on floppy discs, as discussed in Sect. 4.2.4 of this report.

4C.3 FSV REACTOR FUEL ELEMENT

The following description of FSV fuel is from a report by Bingham and Evans (Bingham 1976):

A Fort St. Vrain fuel element consists of a 300 lb hexagonal, needle-coke graphite block, 14.2 in. across the flats and 31.2-in.-high. Each graphite fuel block (see Fig. 4.2.1) contains 108 coolant

channels and 210 fuel holes, all drilled from the top face of the element. The coolant holes extend through the element; the fuel holes extend to within about 0.3 in. of the bottom face. The fuel holes occupy alternating positions with the coolant channels in a triangular array within the element structure and contain the active fuel. After the fuel is inserted in a fuel hole, the hole is sealed with a graphite plug cemented into place.

The fresh fuel itself is in the form of carbide particles coated with layers of pyrolytic carbon and silicon carbide, loosely bonded by a carbonaceous matrix material into fuel sticks. The fuel bed contains a homogeneous mixture of two types of particles, called fissile and fertile. Fresh fissile particles contain thorium and 93.5% enriched uranium; fresh fertile particles contain only thorium. The important parameters of fresh particles are:

Parameter	Fissile	Fertile.
Th/U (atomic ratio)	4.25	All Th
Particle composition	(Th/U)C ₂	Th C ₂
Average fuel particle	200	450
diameter, µm		
Average total coating	130	140
thickness, µm		

Besides fission products, the irradiated fuel contains thorium, U-233, U-235, other uranium isotopes, and a small quantity of plutonium. In the fertile particles, the fissile material is essentially U-233, while the fissile particles contain the residual U-235 and bred U-233.

4C.4 FUEL TYPES AND IDENTITY MARKINGS

This information is from Bingham 1976, GA 1985, and Kowal 1984. The initial core loading consisted of 84 different types of fuel elements. The large number of different types was due to variations in design of the blocks, different fuel loadings in blocks of the same design, variations in positioning of the burnable poison rods, and the neutron sources. Each fuel element has a permanent three-digit-type number engraved on the side of the hexagonal block. This type number identifies the specific contents of the element. In addition, each element has a permanent serial number engraved on the side of the hexagonal block. The serial number is unique for each element and can be used to trace the entire fabrication history of the components within an element. Table 4C.5 shows a listing of the various types of fuel elements, along with their corresponding drawing numbers.

The fuel element assembly type number, as illustrated in Fig. 4C.1, is painted on the top surface of each initial core fuel element. The assembly type number and serial number are engraved on the side of each element for all segments.

The format of the serial number is as follows:

Y – XXXX for H-327 graphite

and

Y - XXXXX for H-451 graphite.

The "X's" represent a 4-digit or 5-digit manufacturer's serial number for fuel elements made from H-327 or H-451 graphite, respectively. The "Y" denotes the style of fuel element, as follows:

- Y = 1 denotes standard fuel element,
 - 2 denotes control fuel element,
 - 3 denotes bottom control fuel element,
 - 4 denotes neutron source element,
 - 5 denotes standard fuel element with enlarged handling hole,
 - 6 denotes control fuel element with enlarged handling hole,
 - 7 denotes bottom control fuel element with enlarged handling hole,
 - 8 denotes fuel test elements,
 - 11 denotes californium neutron source fuel element.

Certain selected elements within the core are designated as surveillance elements and as fuel test elements. The element identification includes the core location number and identification as shown in Fig. 4C.1.

4C.4.1 Fuel Element Types

Figures 4C.2 through 4C.8 depict variations of the basic fuel element design. This basic design has been used not only for standard fuel element service, but also for surveillance elements, neutron source elements, and test elements. Considering differences in fuel loadings, there are 64 types of fuel elements, as listed in Table 4C.5.

All fuel elements have 210 fuel holes, containing a total of 3,132 fuel rods and 108 coolant passages. All the graphite blocks for the regular elements have a 0.500-in. diameter hole in each of their six corners. Some of these elements contain burnable poison rods in selected corner holes (see Figs. 4C.4 through 4C.7) and some elements have an enlarged fuel pickup hole as shown in Fig. 4C.3.

Surveillance elements were extensively characterized prior to loading into the reactor core, including a detailed characterization of the fuel rods, burnable poison rods, and the graphite blocks. In addition, these fuel elements include small temperature and fluence monitors in selected fuel rod stacks. The purpose of the preirradiation characterization of fuel and reflector elements was to provide a means for future evaluation of the in-core element performance, as a part of the overall development program for future FSV and other HTGR fuel.

A line and a second state of the

The test elements are designed to operate within the limits of peak fuel temperature, neutron fluence, and burnup specified for the initial core and reload fuel elements. Instrumentation is included in the test elements to measure each of these parameters. The purpose of these fuel test elements is to test new graphites and fuel forms for commercial HTGRs and to test improved fuel contemplated for use in future FSV reload segments.

The bottom of the fuel handling hole has been extended in some of the fuel elements to accommodate a neutron source. Sources are placed in neutron source elements as shown in Fig. 4C.6.

Two startup neutron sources consisting of californium-252 encapsulated in platinum and stainless steel were originally installed in the core. A third source consisting of californium-252 doubly encapsulated in stainless steel was added during the second refueling outage, and a fourth source was added during the third refueling outage. The californium neutron source element is shown in Fig. 4C.8.

4C.4.2 Control Fuel Elements

The center control rod fuel element in each region is similar to the surrounding fuel elements, but contains enlarged channels for the two control rods and the reserve shutdown absorber material. The control rod channels have a 9.72 in. centerline spacing and a diameter of 4.00 in. The reserve shutdown channel has a diameter of 3.75 in. Each control rod fuel element contains 120 fuel holes, loaded with a total of 1,782 fuel rods and 57 coolant channels.

All control fuel elements have a 0.500-in. diameter hole in four corners of the hexagonal block for burnable poison rods. None of the control elements in the initial core contain burnable poison rods.

Figure 4C.9 depicts a control fuel element with an enlarged fuel pickup hole. Some of the control fuel elements are surveillance elements as described above. Considering differences in fuel loadings, there are 13 types of control fuel elements, as listed in Table 4C.5.

4C.4.3 Bottom Control Fuel Elements

The bottom element in the control rod column extends below the core about 7.5 in. The fuel holes in the bottom control rod element are 22.3 in. deep so the bottom of the fuel holes of all elements at the bottom of the core are at the same elevation. The reserve shutdown absorber channel hole is also 22.3 in. deep. Each bottom control fuel element contains 120 fuel holes loaded with a total of 1,302 fuel rods. All bottom control elements have a 0.500-in. diameter hole in four corners of the hexagonal block for burnable poison rod loading. None of the bottom control fuel elements in the initial core contain burnable poison rods.

Figure 4C.10 depicts a bottom control fuel element with an enlarged fuel pickup hole. Considering differences in fuel loadings, there are seven types of bottom control fuel elements, as listed in Table 4C.5.

4C.5 POSTIRRADIATION CONDITION OF FUEL

A nondestructive examination of various fuel elements was performed once the elements were removed from the core. Nearly all of the examined elements shrank slightly in both axial and radial dimensions. The inspected elements were in good condition.

4C.5.1 Segment 1 Discharge

Common fuel elements. No cracks were observed on any of the element surfaces. With the exception of two large chips on chamfers (both noted during preirradiation visual inspection), all observed abnormalities were surface markings only. These markings had not etched the graphite to any harmful extent. Most blemishes observed on the elements were stains, rub marks, interface marks, soot deposits, scratches, and fingerprints.

The average axial and radial shrinkages measured for fuel elements which attained maximum burnup were 0.073 and 0.031 in., respectively. A few of the elements expanded slightly in the radial direction. The maximum expansion was 0.004 in. The maximum observed bow was 0.012 in (Miller 1980).

Surveillance element. A postirradiation examination and evaluation was performed on surveillance element 1-0743. All observed abnormalities were surface markings only and had not etched the graphite to any harmful extent. Observed abnormalities included rub marks, soot deposits, scrapes, and scratches.

No evidence of mechanical interaction between the fuel rods and fuel body was found. Although minor cracking in the matrix end caps and some surface debonding were observed, the fuel rods were in good condition. About 3% of the rods were broken, but the majority of these were broken during unloading, and the evidence indicates that the remainder were broken prior to (or during) assembly of the element (Saurwein 1981).

4C.5.2 Segment 2 Discharge

Little evidence was observed of graphite oxidation or erosion. Most blemishes observed on the elements were stains, scratches, scrapes, rub marks, and flow marks. The maximum average shrinkages observed for the elements were 0.115 in. in the length and 0.037 in. between opposing side faces. The maximum observed bow was 0.017 in. Two fuel elements each had a single localized crack. The more prominent crack, observed in element 1-2415, was located in the center of the face adjacent to the single large dowel and extended the length of the element. The second crack was observed in fuel element 1-0172, which was located directly beneath element 1-2415 in the core. This crack was also located in the center of the face adjacent to the large dowel and ran vertically down the element.

The preirradiation inspection reports indicate that neither element was cracked prior to insertion into the core, and there is no record of any damage having been done during handling. Therefore, these cracks are assumed to have developed during irradiation (Saurwein 1982).

4C.5.3 Segment 3 Discharge

Little evidence was observed of graphite oxidation or erosion. Most blemishes observed on the elements were typical scratches, scrapes, rub marks, interface marks, and flow marks. The core Segment 3 maximum element average shrinkages in length and between-flats dimensions were 0.23 and 0.08 in., respectively. The maximum observed bow was 0.027 in. One H-327 graphite fuel element expanded slightly (0.001 in.) between flats.

There were a few small nicks and chips on the elements. Most of these were very minor and insignificant. However, element 1-1228 had minor damage to all three of its dowel pins. Element 2-1707 had damage to one dowel socket. A small chip of the graphite web between that socket and the central coolant hole on the nearest face edge was missing (McCord 1985).

4C.6 REFERENCES

Beavan 1973. L. A. Beavan, Boronated Graphite – Lumped Burnable Poison Compacts, SPE 18-R-09, Issue G, Gulf General Atomic Company, September 7, 1973.

Bingham 1976. G. E. Bingham and T. K. Evans, 1976. Final Safety Analysis Report for the Irradiated Fuels Storage Facility, ICP-1052, Allied Chemical Corporation.

Brey 1990. H. L. Brey, Public Service Company of Colorado, Denver, Colorado, letter to R. C. Ashline, Oak Ridge National Laboratory, Oak Ridge, Tennessee, "Fort St. Vrain Spent Fuel Data," Docket No. 50-267, dated Apr. 2, 1990.

Disselhorst 1972. B. F. Disselhorst, Spec for Fuel Element and Reflector Graphite, SPE 396-FO-1M, Issue E-8, Gulf General Atomic Company, March 2, 1972.

DOE 1990. Integrated Data Base for 1990: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 6, September 1990. Fort St. Vrain Nuclear Generating Station Updated Final Safety Analysis Report, Vol. 1, Rev. 3.

<u>GA 1971</u>. ³⁵²Cf Start-up Neutron Source, SPE 18-R-22, Issue B, Gulf General Atomic Company, July 12, 1971.

GA 1975. FSV Fuel Specification, SPE GA-10600, Issue A, GA Technologies Inc., March 15, 1975.

GA 1981. ³⁵²Cf Start-up Neutron Source, SPE-18-R-22, Issue D, General Atomic Company, June 2, 1981.

GA 1985. Specification for FSV Reactor Core General Assembly, SPE 18-R-24, Issue J, GA Technologies Inc., March 26, 1985.

Graul 1982. W. A. Graul, GA letter to D. W. Warembourg, "Transmittal of Spent Fuel Shipping Data," GP-1356, February 17, 1982.

Kapernick 1973. R. J. Kapernick and R. J. Nirschl, 1973, *Fuel Fabrication Acceptance Report FSV-Initial Core*, Gulf General Atomic Report, GA-B1297 (UC-80), December 1, 1973.

Kowal 1984. D. J. Kowal, GA letter to D. J. Warembourg, "Segment 3-Fuel Receipt Criteria/Part A," GP-2230, March 29, 1984.

McCord 1985. F. McCord, Nondestructive Examination of 62 Fuel and Reflector Elements from Fort St. Vrain Core Segment 3, RTE 907785, GA Technologies Inc., January 24, 1985. <u>Miller 1980</u>. C. M. Miller and J. J. Saurwein, Nondestructive Examination of 51 Fuel and Reflector Elements from Fort St. Vrain Core Segment 1, DOE Report GA-A16000 (UC-77), General Atomic Company, December 1980. ī

Moore 1978. R. L. Moore, GA letter to F. L. McMillian, "Segment 1 Fuel Receipt Criteria," December 20, 1978.

Morissette 1986. R. P. Morissette and N. Tomsio, General Atomic Technologies, Inc., *Characterization of Fort St. Vrain Fuel*. A draft report prepared for Martin Marietta Energy Systems, Inc., ORNL/Sub/86-22047/1.

Nirschl 1973. R. Nirschl, Design Criteria-Reload Segments, DC-18-8, Issue A, Gulf General Atomic Company, November 2, 1973.

Salmon and Notz 1990. Royes Salmon and Karl J. Notz, Non-LWR and Special LWR Spent Fuels: Characteristics and Criticality Aspects of Packaging and Disposal, ORNL/TM-111016, January 1990.

Saurwein 1981. J. J. Saurwein, C. M. Miller, and C. A. Young, *Postirradiation Examination and Evaluation* of Fort St. Vrain Fuel Element 1-0743, DOE Report GA-A16258 (UC-77), General Atomic Company, May 1981.

Saurwein 1982. J. J. Saurwein, Nondestructive Examination of 54 Fuel and Reflector Elements from Fort St. Vrain Core Segment 2, DOE Report GA-A16829 (UC-77), General Atomic Company, October 1982.

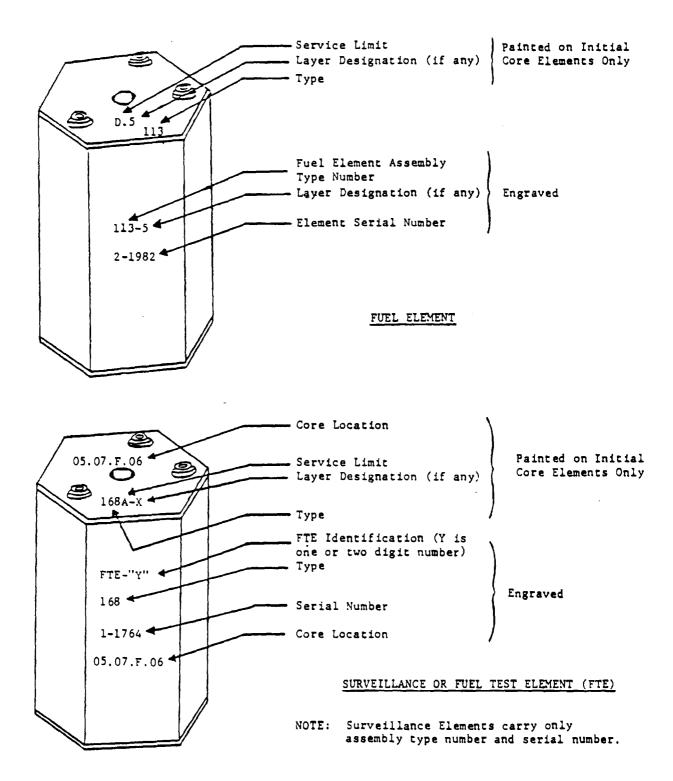


Fig. 4C.1. FSV fuel element identification system.

F

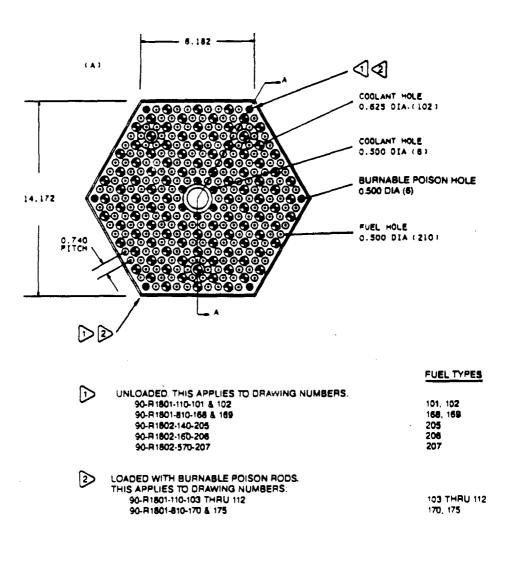


Fig. 4C.2. Standard fuel element with Type I burnable poison loading.

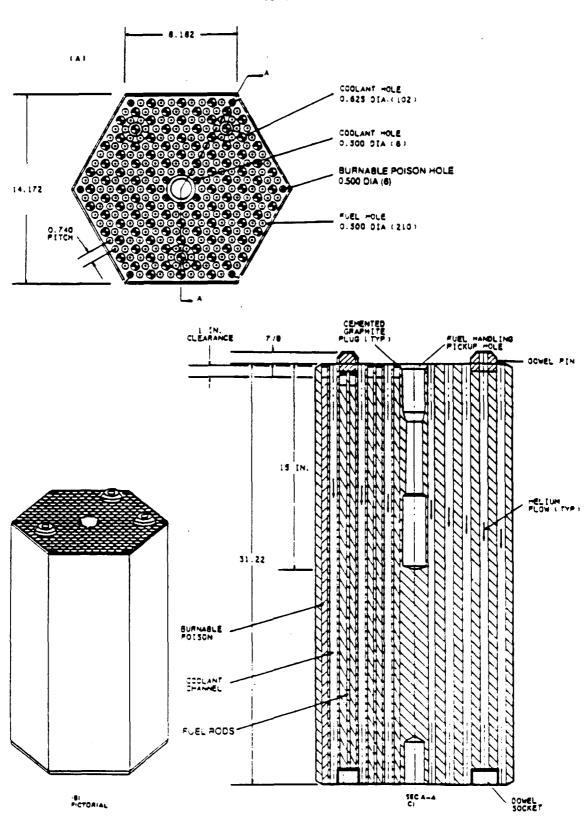


Fig. 4C.3. Standard fuel element with enlarged pickup hole.

÷

4C-9

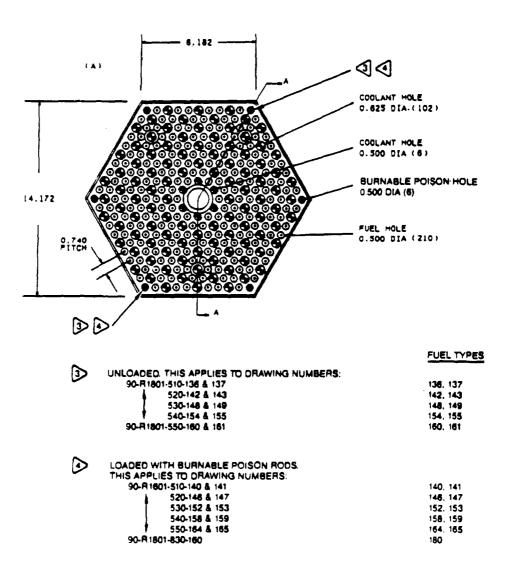


Fig. 4C.4. Standard fuel element with enlarged pickup hole and Type II burnable poison loading.

a na Picklineae

÷

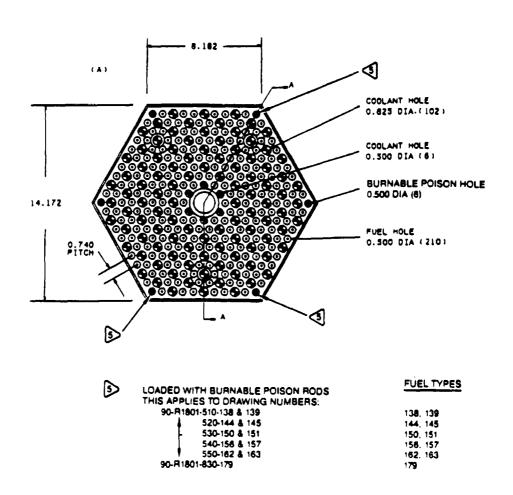


Fig. 4C.5. Standard fuel element with enlarged pickup hole and Type III burnable poison loading.

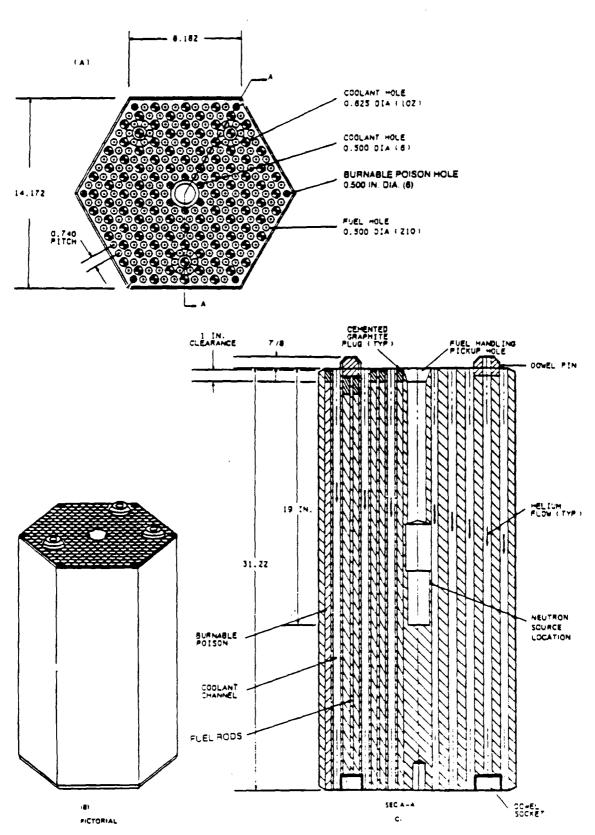


Fig. 4C.6. Standard fuel element modified for neutron source.

Ĩ

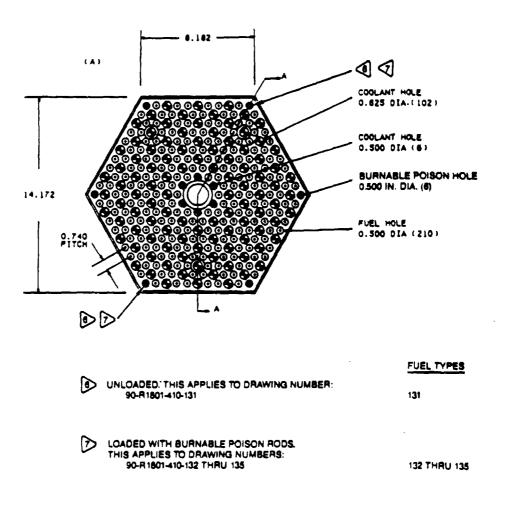


Fig. 4C.7. Standard fuel element with Type IV burnable poison loading.

i.

n det stellet i

Į

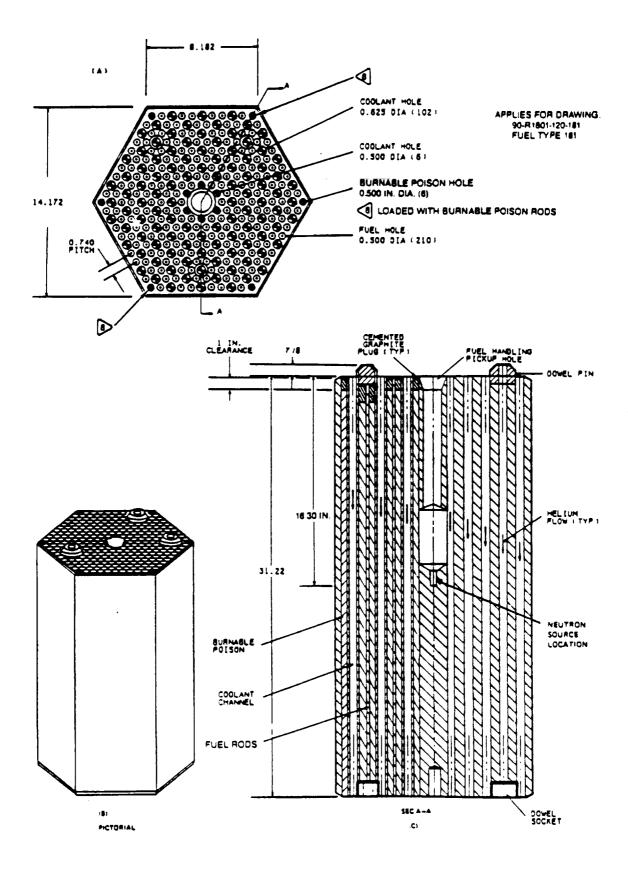


Fig. 4C.8. Standard fuel element modified for californium neutron source.

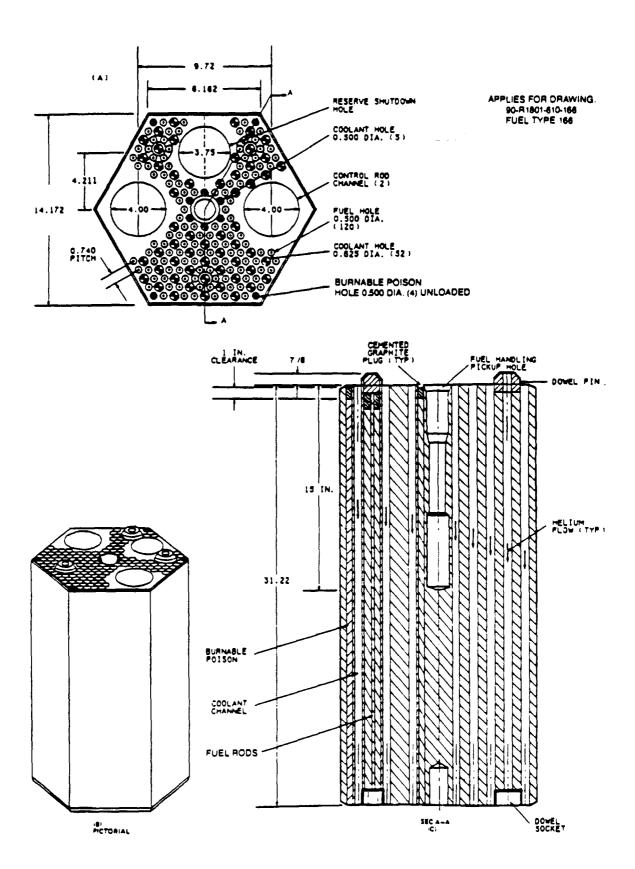


Fig. 4C.9. Control fuel element with enlarged pickup hole.

- 2

-

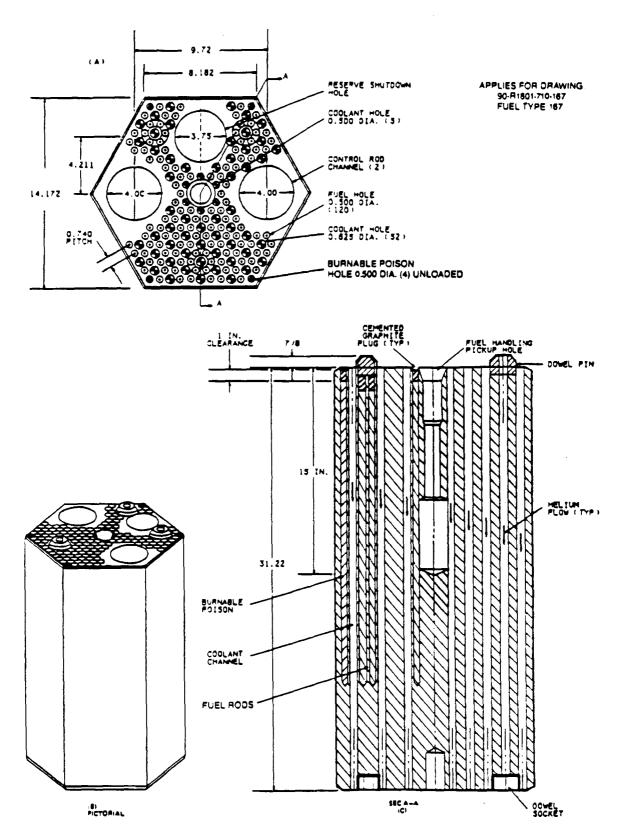


Fig. 4C.10. Bottom control fuel element with enlarged pickup hole.

í

.

The second se

-

		· · · · · · · · · · · · · · · · · · ·		<u>С.2. ГЗУ</u>	fuel discharge				
Serial	Fuel	Serial	Fuel	Serial	Fuel	Serial	Fuel	Serial	Fuel
No.	type	No.	type	No.	type	No.	type	No.	type
1-0023	101	1-0798	101	1-1787	169	1-2869	102	5-0700	155
1-0033	102	1-0811	102	1-1797	101	1-2929	102	5-0782	160
1-0048	102	1-0812	101	1-1825	102	1-2931	102	5-0801	155
1-0108	101	1-0839	102	1-1829	102	1-2936	101	5-0836	149
1-0140	102	1-0858	101	1-1832	102	1-4361	102	5-0850	155
1-0143	102	1-0874	101	1-1869	102	1-4716	101	5-0903	154
1-0161	101	1-0882	102	1-1913	101	1-4834	102	5-0928	137
1-0166	102	1-0901	101	1-1914	102	1-4987	101	5-0957	148
1-0169	102	1-0910	102	1-1931	102	2-0228	114	5-1008	148
1-0172	102	1-0931	102	1-1952	102	2-0298	113	5-1039	155
1-0175	101	1-0951	102	1-1961	101	2-0400	114	5-1086	154
1-0199	101	1-0989	101	1-1969	102	2-0415	113	5-1144	161
1-0212	102	1-1011	102	1-2000	102	2-0518	113	5-1192	160
1-0238	102	1-1015	102	1-2017	101	2-0532	113	5-1225	154
1-0250	102	1-1030	102	1-2038	101	2-0655	114	5-1307	143
1-0272	102	1-1033	102	1-2087	102	2-0806	113	5-1388	142
1-0276	101	1-1057	102	1-2155	101	2-0962	113	5-1417	142
1-0284	102	1-1142	101	1-2156	101	2-1131	113	5-1628	136
1-0294	101	1-1177	102	1-2157	102	2-1133	114	5-1682	136
1 -030 4	101	1-1184	101	1-2199	101	2-1299	113	5-1722	148
1 -030 8	101	1-1210	101	1-2223	101	2-1529	114	5-1837	154
1-0342	102	1-1212	102	1-2256	101	2-1532	114	5-1844	148
1-0347	101	1-1243	102	1-2281	101	2-1570	114	5-1912	142
1-0351	102	1-1251	102	1-2284	102	2-1590	114	5-1954	155
1-0368	101	1-1268	101	1-2306	101	2-1835	113	5-1963	143
1-0380	101	1-1296	101	1-2364	101	2-2084	113	5-2037	142
1-0393	102	1-1305	102	1-2371	101	2-2350	113	5-2151	143
1 -0396	101	1-1315	102	1-2373	101	2-2501	114	5-2181	155
1-0419	101	1-1321	101	1-2377	101	2-2531	113	5-2360	143
1-0456	102	1-1329	101	1-2392	102	2-2693	113	5-2478	148
1-0471	101	1-1357	102	1-2423	101	2-2769	176	5-2549	149
1-0510	102	1-1361	102	1-2445	102	2-2851	113	5-2692	142
1-0 515	101	1-1367	102	1-2458	102	2-2893	113	5-2713	142
1-0538	101	1-1374	101	1-2515	101	3-1171	125	5-2839	137
1-0542	102	1-1421	102	1-2535	101	3-1412	125	5-2841	154
1-0553	169	1-1497	101	1-2561	101	3-1814	125	5-2846	134
1-0589	101	1-1516	101	1-2650	101	3-1965	125	5-28 7 9	143
1-0612	101	1-1535	101	1-2676	101	3-2852	123	5-2879 5-2907	160
1-0613	102	1-1555	101	1-2719	102	3-2832 4-09 3 0	128	5-4764	
1-0623	102	1-1694	101	1-2731	102		1		149
1-0649	102	1-1706	102	1-2731	102	4-2646	131	5-4837	136
1-0658	102	1-1700	102			5-0100	148	6-0675	166
1-0702	101	1-1720		1-2759	101	5-0255	154	6-0735	166
1-0702	102		101	1-2777	101	5-0268	148	6-1715	166
1-0727	102	1-1727	101	1-2783	102	5-0333	149	6-2222	166
1-0727		1-1742	102	1-2820	168	5-0373	143	6-2285	166
	101	1-1764	168	1-2832	102	5-0401	161	7-1670	167
1-0778	102	1-1767	101	1-2842	102	5-0517	161	8-0085	205
1-0792	101	1-1780	101	1-2857	101	5-0654	137	8-0139	101

Table 4C.2. FSV fuel discharge No. 2^a

^aFuel in storage at ICPP unless indicated otherwise. Source: Morissette 1986.

4C-	1	7
-----	---	---

Table 4C.1. FSV fuel discharge No.1^a

Serial No.	Fuel type	Serial No.	Fuel type	Serial No.	Fuel type	Serial No.	Fuel type	Serial No.	Fuel type
1-0003	101	1-1032	102	1-1690	102	1-2865	102	5-0610	13
1-0022	102	1-1035	101	1-1714	102	1-2873	102	5-0683	15
1-0030	102	1-1043	102	1-1741	102	1-2928	107	5-0704	15
1-0052	101	1-1054	102	1-1782	101	1-2935	101	5-0766	14
1-0089	102	1-1062	102	1-1822	101	1-2942	101	5-0773	14
1-0094	101	1-1066	102	1-1861	102	1-2952	102	5-0785	14
1-0099	102	1-1069	101	1-1894	101	1-4381	101	5-0799	15
1-0126	102	1-1075	102	1-1903	102	1-5198	101	5-0819	14
1-0148	101	1-1099	101	1-1908	102	2-0047	113	5-0825	14
1-0204	101	1-1108	102	1-1923	102	2-0095	113	5-0965	14
1-0205	102	1-1116	102	1-1949	102	2-0075	113	5-1014	15
1-0205	102	1-1135	101	1-1977	102	2-0211	113	5-1014	14
1-0239	102	1-1136	101	1-1985	102	2-0255	113	5-1024	14
1-0242	102	1-1130	102	1-1985	162	2-0433	113	5-1486	
1-0242	102	1-1147	101						10
1-0326	101	1-1161	102	1-2008 1-2035	102	2-0732	113	5-1515	14
1-0320 1-0343					102	2-0827	114	5-1818	15
1-0343	102	1-1183	101	1-2068	102	2-0980	114	5-1887	14
	101	1-1186	102	1-2080	102	2-1324	114	5-1979	10
1-0411	102	1-1215	101	1-2086	102	2-1468	114	5-1987	13
1-0424	101	1-1223	102	1-2119	102	2-1520	114	5-2020	14
L-0449	101	1-1253	168	1-2120	101	2-2102	113	5-2039	16
-0457	101	1-1262	107	1-2140	168	2-2138	114	5-2089	15
1-0467	101	1-1264	101	1-2143	102	2-2158	113	5-2110	16
1-0469	102	1-1271	101	1-2175	102	2-2169	114	5-2154	13
1-0478	10 1	1-1278	102	1-2179	102	2-2187	176	5-2165	14
-0494	101	1-1301	101	1-2230	101	2-2209	114	5-2238	14
-0529	102	1-1311	101	1-2243	102	2-2260	113	5-2353	16
-0537	101	1-1331	101	1-2255	101	2-2385	113	5-2417	14
L -05 51	102	1-1345	101	1-2309	102	2-2548	113	5-2436	15
-0552	101	1-1346	101	1-2336	102	2-2683	113	5-2456	14
L-0599	101	1-1349	101	1-2337	101	2-2722	114	5-2481	15
-0641	101	1-1440	101	1-2352	102	2-2733	114	5-2528	13
-0666	101	1-1446	102	1-2368	101	2-2880	113	5-2579	15
I- 068 1	101	1-1450	102	1-2407	102	3-0574	125	5-2608	14
-0733	101	1-1459	101	1-2427	102	3-0919	125	5-2670	14
-0768	101	1-1544	102	1-2485	101	3-1282	125	5-2685	15
-0771	101	1-1574	102	1-2543	102	3-1711	125	5-2703	14
-0791	101	1-1585	102	1-2551	102	3-2422	125	5-2728	13
-0794	101	1-1589	101	1-2642	101	4-0101	131	5-2736	13
-0867	169	1-1593	102	1-2665	102	4-0716	131	5-2802	14
-0890	101	1-1614	102	1-2674	102			5-2813	
-0891	101	1-1624	102			4-1050	131		14
				1-2682	101	4-1055	131	5-2826	16
-0904	102	1-1625	102	1-2718	102	4-2464	131	5-2838	14
-0938	101	1-1649	102	1-2735	101	5-0068	148	6-0111	16
1-0963	102	1-1658	101	1-2755	101	5-0279	155	6-0488	16
-0990	111	1-1669	101	1-2758	102	5-0365	155	6-0820	16
-0993	101	1-1676	101	1-2767	101	5-0375	137	6-0844	16
-1006	101	1-1677	102	1-2773	102	5-0430	148	6-2792	16
-1021	101	1-1678	102	1-2798	102	5-0541	154	7-1451	16

^aFuel in storage at ICPP unless indicated otherwise. Source: Morissette 1986.

t till i

Table 4C.3. FSV fuel discharge No. 3^a

Serial No.	Fuel type	Serial No.	Fuel type	Serial No.	Fuel type	Serial No.	Fuel type	Serial No.	Fuel type
		<u> </u>		<u> </u>		<u> </u>		<u> </u>	
1-0024	110	1-0877	111	1-1850	109	1-4304	110	5-0723	146
1-0034	109	1-0912	112	1-1872	112	1-4318	110	5-0731	152
1-0043	109	1-0921	112	1-1876	109	1-4430	110	5-0746	158
1-0057	109	1-0932	112	1-1890	110	1-4715	110	5-0749	140
1-0065	109	1-0940	109	1-1904	110	1-5152	110	5-0751	158
1-0088	110	1-0948	109	1-1918	109	1-5217	110	5-0805	146
1-0091	110	1-0974	109	1-1940	112	2-0265	122	5-0831	159
1-0137	109	1-0975	112	1-1988	109	2-0577	122	5-0854	152
1-0152	111	1-0994	110	1-1990	109	2-0642	124	5-0862	152
1-0157	111	1-1004	111	1-1998	109	2-0673	121	5-0892	164
1-0162	109	1-1018	109	1-2019	112	2-1028	124	5-1058	158
1-0191	110	1-1023	112	1-2021	110	2-1044	122	5-1095	147
1-0192	109	1-1049	- 110	1-2044	109	2-1120	121	5-1148	147
1-0195	112	1-1053	109	1-2106	110	2-1182	123	5-1176	140
1-0251	110	1-1101	109	1-2134	112	2-1471	123	5-1249	147
1-0285	109	1-1111	112	1-2142	109	2-1489	122	5-1460	159
1-0292	110	1-1117	111	1-2174	112	2-1519	121	5-1563	141
1-0305	109	1-1121	111	1-2206	109	2-1606	122	5-1739	147
1-0324	110	1-1153	109	1-2228	109	2-1707	121	5-1799	158
1-0335	175	1-1163	111	1-2282	109	2-1726	124	5-1801	159
1-0337	109	1-1204	109	1-2351	109	2-1792	123	5-1865	153
1-0367	109	1-1224	112	1-2396	110	2-1950	122	5-1974	153
1-0409	112	1-1235	111	1-2400	111	2-2088	123	5-2001	153
1-0420	111	1-1273	110	1-2403	112	2-2263	121	5-2022	158
1-0428	110	1-1288	109	1-2440	109	2-2424	121	5-2031	153
1-0443	110	1-1336	109	1-2447	109	2-2781	178	5-2104	146
1-0459	112	1-1337	110	1-2455	111	2-2815	121	5-2159	147
1-0462	109	1-1353	112	1-2474	110	2-2836	124	5-2191	180
1-0504	112	1-1378	111	1-2519	110	2-2882	123	5-2213	140
1-0530	110	1-1397	109	1-2521	109	2-2891	123	5-2235	112
1-0536	110	1-1403	111	1-2529	112	2-5178	121	5-2275	146
1-0556	111	1-1410	109	1-2560	109	3-0787	121	5-2349	153
1-0580	109	1-1458	111	1-2563	110	3-0898	130	5-2416	165
1-0581	110	1-1555	109	1-2570	109	3-1719	130	5-2410	158
1-0587	110	1-1584	105	1-2606	109	3-1766	129	5-2430 5-2460	158
1-0614	110	1-1612	109	1-2640	110	3-2850	129	5-2400	152
1-0647	109	1-1621	110	1-2040	110	3-2830 4-0463	130	5-2530 5-2556	
1-0661	111	1-1673		1-2720	110	4-0463	134	5-2556 5-2688	141
1-0667	110	1-1692	110	1-2720					141
1-0670	109	1-1701	110	1-2795	110	4-0981	134	5-2908	164
1-0676	109	1-1701	110	1-2795	110	4-1994	135	5-2933	147
1-0715	110	1-1750	110	1-2919 1-2920	109	4-2339	134	5-4278	146
1-0720	112	1-1750			111	5-0026	146	6-0067	166
1-0725			109	1-2923	112	5-0027	164	6-0209	166
1-0723	110	1-1773	110	1-2939	110	5-0036	153	6-0961	166
	112	1-1796	110	1-2940	110	5-0127	159	6-1984	166
1-0834	110	1-1805	110	1-2943	175	5-0129	165	6-2288	166
1-0843	111	1-1806	112	1-2944	110	5-0190	159	7-2499	167
1-0873	109	1-1817	110	1-2946	110	5-0427	152	8-0206 ^b	206

^aFuel in storage at ICPP unless indicated otherwise. Source: Morissette 1986. ^bIn storage at GA Technologies, La Jolla, California.

ſ

÷

End of calendar year		fuel assemblies harged	Mass of fuel discharged (MTIHM)		
	Annual	Cumulative	Annual	Cumulative	
1979	246 ^b	246	2.80	2.80	
1980	0	246	0.00	2.80	
1981	240	486	2.77	5.57	
1982	0	486	0.00	5.57	
1983	0	486	0.00	5.57	
1984	240	726	2.85	8.42	
1985	0	726	0.00	8.42	
1986	0	726	0.00	8.42	
1987	0	726	0.00	8.42	
1988	0	726 ^c	0.00	8.42	
1989	126 ^d	852	1.32	9.74	
1990	615 ^{d,e}	1,467	6.47	16.21	
1991	741 ^f	2,208	7.49	24.00	

Table 4C.4. Historical and projected spent fuel discharged from the Fort St. Vrain HTGR^a

^aBased on Brey 1990 and DOE 1990.

^bThis refueling replaced 246 spent fuel elements made up of 240 standard fuel elements and 6 fuel test elements.

^cAll spent fuel discharged prior to December 31, 1988 is located at the

ICPP. ^dFuel removed from the core in 1989 and 1990 remains on-site in temporary storage wells until shipment to the ICPP can be accomplished or an independent spent fuel storage installation is built for permanent storage.

^e1990: 330 fuel blocks have been removed from the core prior to February 28, 1990.

^fIt is expected that the entire core will be defueled by the end of 1991.

Element description	Assembly drawing No.	Assembly type No.	
Standard fuel elements	90-R1801-110	101-112	
Control rod elements	90-R1801-210	113-124	
Bottom control rod elements	90-R1801-310	125-130	
Neutron source fuel element	90-R1801-410	131-135	
Standard fuel elements with enlarged	90-R1801-510	136-141	
pickup hole	90-R1801-520	142-147	
	90-R1801-530	148-153	
	90-R1801-540	154-159	
	90-R1801-550	160-165	
Control rod elements with enlarged pickup hole	90-R1801-610	166	
Bottom control rod elements with enlarged pickup hole	90-R1801-710	167	
Surveillance fuel elements	90-R1801-810	168-175	
Surveillance control elements	90-R1801-820	176-178	
Surveillance fuel elements with enlarged pickup hole	90-R1801-830	179-180	
Californium neutron source fuel element	90-R1801-120	181	
Fuel test elements	90-R1801-130	205	
	90-R1801-150	206	
	90-R1801-560	207	

Table 4C.5.	FSV f	uel types	and	drawings ^a
-------------	-------	-----------	-----	-----------------------

^aSource: GA 1985.

APPENDIX 4D. SUPPLEMENTAL DATA FOR PEACH BOTTOM 1 SPENT FUEL

4D.1 INTRODUCTION

The Peach Bottom Unit 1 reactor is described in Sect. 4.3 of this report. It was a high-temperature, gas-cooled reactor with a rated capacity of 115 MW(t). It was located at Peach Bottom, Pennsylvania, and operated from 1966 to 1974. The reactor contained 804 fuel elements per fuel load. The total number of fuel elements irradiated in the core was 1,639, which exceeds two times 804 because of replacement fuel and test fuel. The graphite-based fuel elements were 3.5 in. in diameter and 12 ft in length, containing varying amounts of uranium and thorium. These heavy metals were present as carbon-coated uranium carbide and thorium carbide particles that had been formed into compacts by sintering with carbonaceous materials.

Two cores were used during the lifetime of the reactor. These cores had total initial heavy metal loadings of 1.686 and 1.419 MT of U + Th, respectively. Design burnup was ~73,000 MWd/MTIHM. Fuel failures experienced during operation of Core 1 resulted in removal of that core at about half the design burnup. The fuel failure was attributed to the fuel particle coating system. This system was modified for the second core, which performed satisfactorily and reached design burnup. The reactor was shut down at this point. This appendix gives additional data on the fuel.

4D.2 INSTRUMENTED FUEL ELEMENT -- CORE 1

Thirty-six fuel elements were instrumented for temperature measurement in various locations of the core. Each of these elements was instrumented with two thermocouples, and eight also contained acoustic thermometers. An acoustic thermometer is an instrument which utilizes the proportionality between resonance frequency of a transmitted sound wave and the temperature of helium gas in a cavity within the fuel element to determine the temperature. Table 4D.1 lists the number of instrumented fuel elements in each of the fuel loading types 1 through 4. Figure 4D.1 is a schematic of a typical Core 1 instrumented fuel element (without the canister) as stored at INEL.

The instrumented fuel elements are very similar to the standard fuel elements. The differences involve the bottom connector and certain internal components which are slightly modified to allow passage of the thermocouple leads. These leads extend to different axial locations in the element as listed in Table 4D.1.

4D.3 STANDARD FUEL ELEMENT -- CORE 2

Figure 4D.2 shows the Core 2 standard element as currently stored at INEL. The elements are stored in canisters located in the Irradiated Fuels Storage Facility at INEL.

The Core 2 standard fuel elements are essentially the same as the Core 1 elements. The only design difference is in the coated particles and the external appearance of fuel compacts. The coated particles in Core 1 used monolithic laminar pyrolytic coatings whereas the Core 2 coated particles consisted of an inner, low density, pyrolytic carbon coating. The coated particles are between 340 and 630 μ m in diameter with a total coating thickness of 90 to 130 μ m. The Core 2 compacts do not have the axial grooves included in the Core 1 compacts (see Fig. 4D.3) and have slots on the ends which were not included in the Core 1 compacts.

In the as-stored configuration, the Core 2 element differs from the Core 1 element in that the top 18 in. of the upper reflector was cut off at INEL prior to storage in the facility. This is shown as Fig. 4D.2. Note that the bottom connector for the element, placed in the B1610 position (within the core), is somewhat different from a standard fuel element.

4D.4 INSTRUMENTED FUEL ELEMENT - CORE 2

Core 2 shared its instrumented core locations with instrumented fuel elements and instrumented test elements. The instrumented fuel elements for Core 2 are of the same design as the Core 1, with the exceptions noted in the previous sections concerning fuel compact design and the cut off upper reflector. Figure 4D.4 shows a typical Core 2 instrumented fuel element as stored at INEL.

4D.5 TEST FUEL ELEMENTS

Since the PB Unit 1 reactor offered unique capabilities as a test facility for HTGR type fuel, test assemblies were tested in the core to evaluate interactions of fuel particles, fuel beds, and graphite structures. Test elements were included in both Core 1 and Core 2. Figure 4D.5 shows two configurations currently in storage at INEL and ORNL.

Two test elements of the proof test element (PTE) type were irradiated in Core 1. The first, PTE-1, did not

perform correctly, and was removed and shipped to INEL for storage. The second, PTE-2, remained in the core for further irradiation with Core 2.

An additional 32 test elements were constructed and irradiated in Core 2. These were manufactured in three classes of test elements: fuel test elements (FTEs)/fuel bed test elements (FBTEs), PTEs, and fuel pin test elements (FPTEs). Of the total 33 elements, 30 were of the FTE/FBTE design, one was of the PTE design, and two of the FPTE design. The FPTEs were irradiated for UKAEA and were returned to the United Kingdom following their irradiation in the PB core and subsequent postirradiation examination (PIE) in the United States.

Table 4D.2 lists the 33 test elements, along with important parameters of each one of these elements.

The PTE test elements are hexagonal in shape, as shown in Fig. 4D.5, and do not utilize graphite sleeves. The element is made up of four separate fuel sections containing fuel holes and coolant holes. These four sections, along with a top reflector, bottom reflector, and bottom connector, were threaded together to form an assembly approximately 3.5 in. across flats and 140 in. long. The top and bottom reflectors were specially designed to allow a special handling tool and coolant flow inlets and exits. The element was instrumented with two thermocouples. A description of the PTEs is given in Christie 1976.

The remaining test elements in storage are similar in external appearance to the standard and instrumented fuel elements. The fueled portion of some elements contain six fuel bodies, as shown in Fig. 4D.6, while others contain only three. Each fuel body has eight fuel holes surrounding a central hole. The fuel holes contain either fuel rods or loose fuel particles. Descriptions of the test elements are included in Scheffel 1972c, Scheffel 1972a, Scheffel 1972b, Sanders 1973, Wallroth 1980, Christie 1976, Wallroth 1974, Wallroth 1977, Wallroth 1976, Fitzgerald 1976, Morissette 1971, and Long 1974.

4D.6 CORE 1 STORAGE CANISTERS

Figures 4D.7 and 4D.8 are sketches of two fuel element storage canister types not described in Section 4.3.

4D.7 CORE 1 PACKAGE TYPES

Removal and canning of the failed Core 1 fuel resulted in a number of package types. These are described in Table 4D.3 (USAEC 1971).

4D.8 INVENTORY-RELATED DATA

The data received from INEL (Denney 1986) on the PB1 spent fuel does not allow a detailed inventory of each element by serial number or type. The elements are stored in groups of 18 or less. Table 4D.4 is the listing received

from INEL on Core 1, which includes 814 elements (813 regular elements and one test element). Table 4D.5 is the listing on Core 2 which accounts for 785 elements. Additional information was provided to INEL by Philadelphia Electric for Core 1 (Denney 1986).

4D.9 ADDITIONAL ACCOUNTABILITY DATA

Tables 4D.6, 4D.7, and 4D.8 provide data on heavy metal loadings of the various Core 1 package types and the many types of test elements.

4D.10 REFERENCES FOR SECTION 4D

<u>Christie 1976</u>. G. E. Christie, *The Irradiation of MK3 HTR Fuel in Peach Bottom HTGR Reactor, Irradiation History of Main Experiment — IE-486/3*, UKAEA Report TRG 2748(S), February 1976.

Denney 1986. Letter No. RRDD-71-86 from R. D. Denney, Westinghouse, Idaho Nuclear Company, Inc., to N. Tomsio, GA Technologies, Inc., April 30, 1986.

<u>Fitzgerald 1975.</u> C. L. Fitzgerald, Head-End Reprocessing Studies with Irradiated HTGR-Type Fuels: III. Studies with RTE-7: TRISO $UC_2 - TRISO ThC_2$, ERDA Report ORNL-5090, Oak Ridge National Laboratory, November 1975.

ł

Long 1974. E. L. Long et al., Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Post irradiation Examinations of Recycle Test Elements 7 and 4, USAEC Report ORNL/TM-4477, Oak Ridge National Laboratory, September 1974.

Morissette 1971. R. P. Morissette and K. P. Stewart, Recycle Test Element Program Design, Fabrication, and Assembly, Gulf General Atomic Report GA-10109, September 1971.

Scheffel 1972c. W. J. Scheffel, Design and Operational Evaluation for Fuel Test Elements No. 14 and 15, USAEC Informal Report Gulf-GA-B12344, Gulf General Atomic, November 3, 1972.

Scheffel, 1972a. W. J. Scheffel, Phase III – Final Progress Report, Part I of Two Parts, Design and Operational Evaluation for the Plutonium Test Element (FTE-13), Gulf General Atomic Report Gulf-GA-B12271, August 18, 1972.

Scheffel 1972b. W. J. Scheffel, Phase III – Final Progress Report, Part II of Two Parts, Design and Fabrication of the Plutonium Fuels for the Plutonium Fuel Test Element (FTE-13), Gulf General Atomic Report the Gulf-GA-B12288, August 22, 1972. Sanders 1973. C. F. Sanders and J. D. Sease, Fabrication and Characteristics of Plutonium Test FTE-13: An HTGR Test Element Containing PuO_2 -x, $Th_0 25$, $Pu_0 25O_f x$, and ThO_7 " USAEC Report ORNL/TM-4207, Oak Ridge National Laboratory, August 1973.

1

<u>USAEC 1971</u>. Agreement between USAEC and Philadelphia Electric Company for Master Terms and Conditions for Financial Settlement for Spent Fuels Appendix A to Contract No. AT(10-1)-1314, March 1971.

<u>Wallroth 1980.</u> C. F. Wallroth et al., *Thermal, Nuclear, and Fission Product Evaluation of Fuel Pin Test Element FPTE-1 and FPTE-3*, General Atomic Report GA-A13849, December 1980. <u>Wallroth 1974</u>. C. F. Wallroth, *Postirradiation Examination* of *Peach Bottom Fuel Test Element FTE-3*, USAEC Report GA-A13004, General Atomic, August 15, 1974.

<u>Wallroth 1977</u>. C. F. Wallroth, *Postirradiation Examination* of *Peach Bottom Fuel Test Element FTE-4*, General Atomic Report GA-A13452, July 1977.

Wallroth 1976. C. F. Wallroth, Posturadiation Examination of Peach Bottom Fuel Test Element FTE-18, General Atomic Report GA-A13699, July 1977.

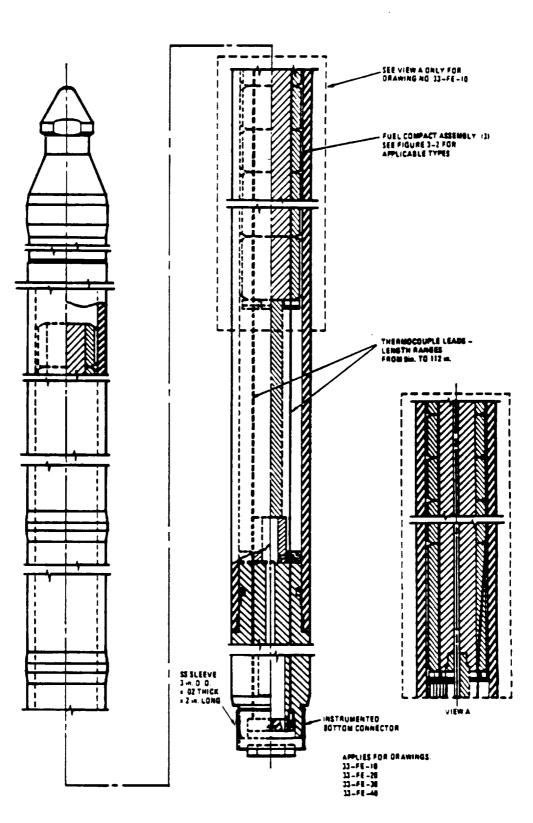


Fig. 4D.1. PB1/1 instrumented fuel element.

.

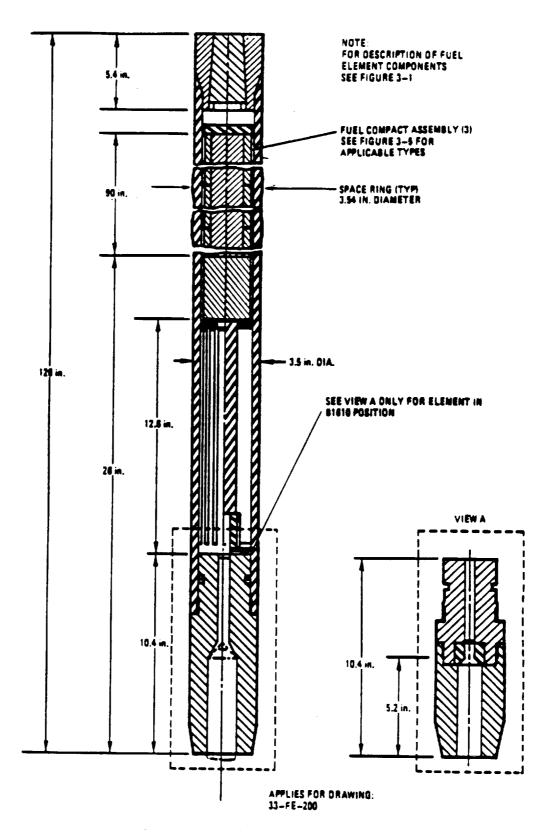
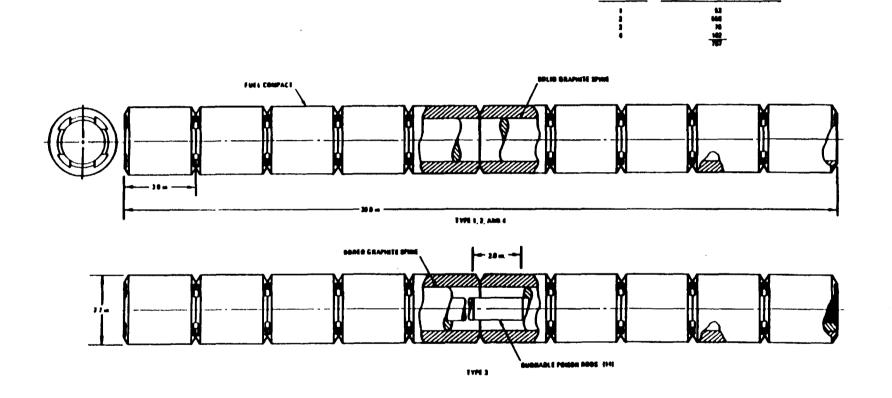



Fig. 4D.2. PB1/2 fuel element.

.

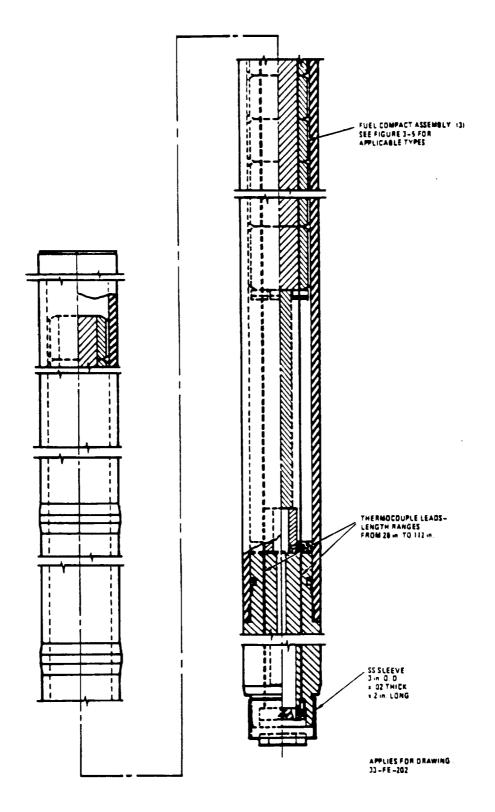
FREL TYPE

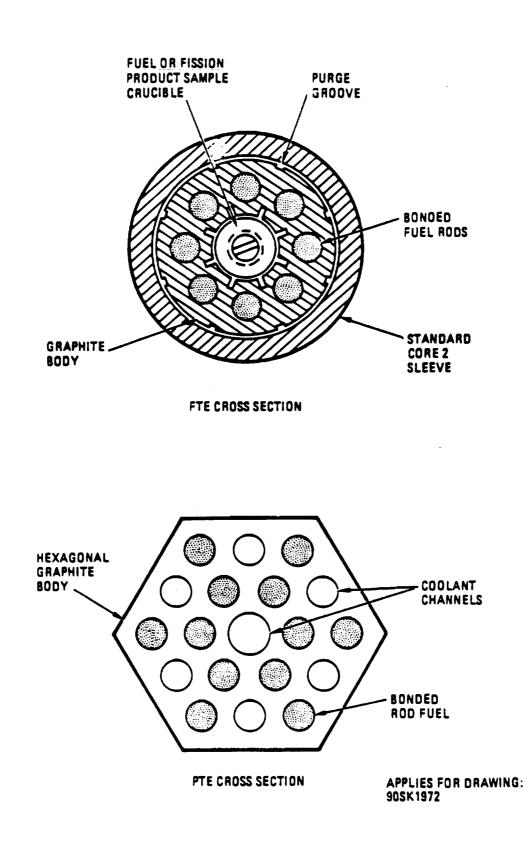
NUMBER OF ELEMENTS REQUIRED

Fig. 4D.3. PB1/2 fuel compact assembly.

•

Sui Salanda antisti




Fig. 4D.4. PB1/2 instrumented fuel element.

3

- a

.

I

Shirk and and the second second

: : :

÷

1.11

i

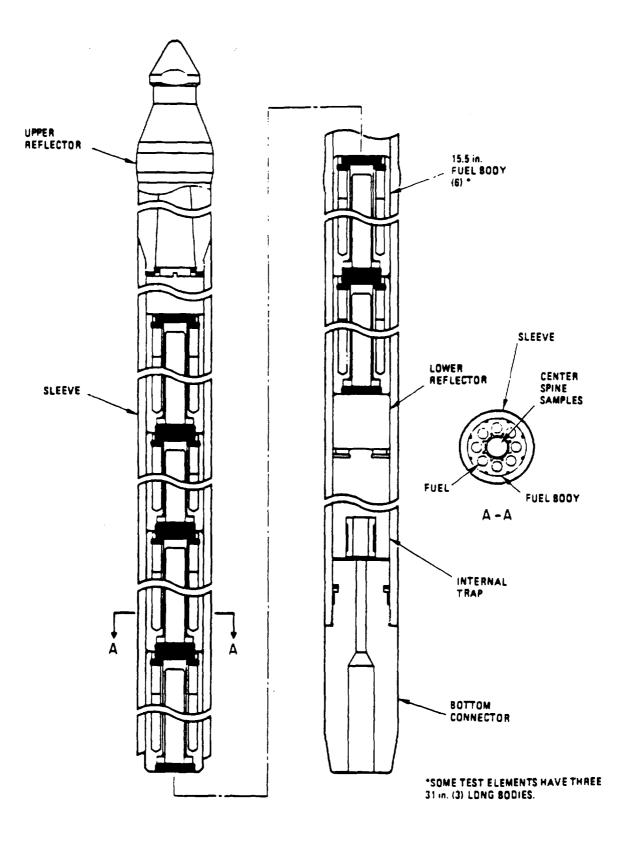


Fig. 4D.6. PB1 typical fuel test element assembly.

.

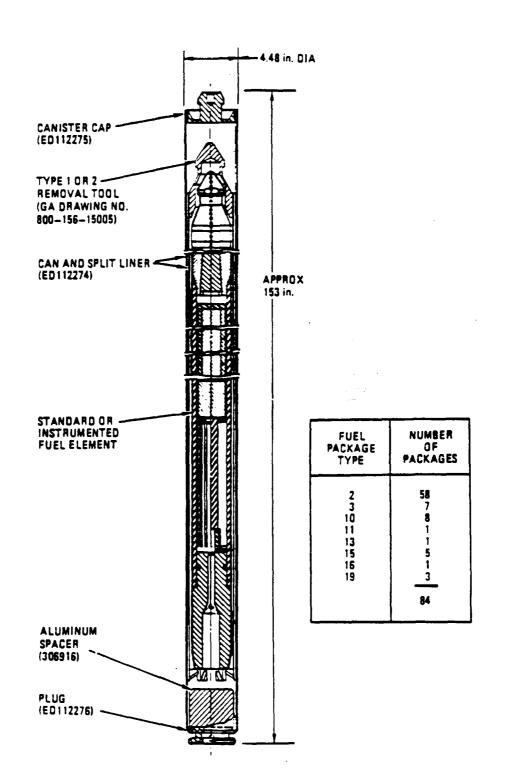


Fig. 4D.7. PB1/1 fuel element in storage canister with removal tool.

2

3

7 (7).

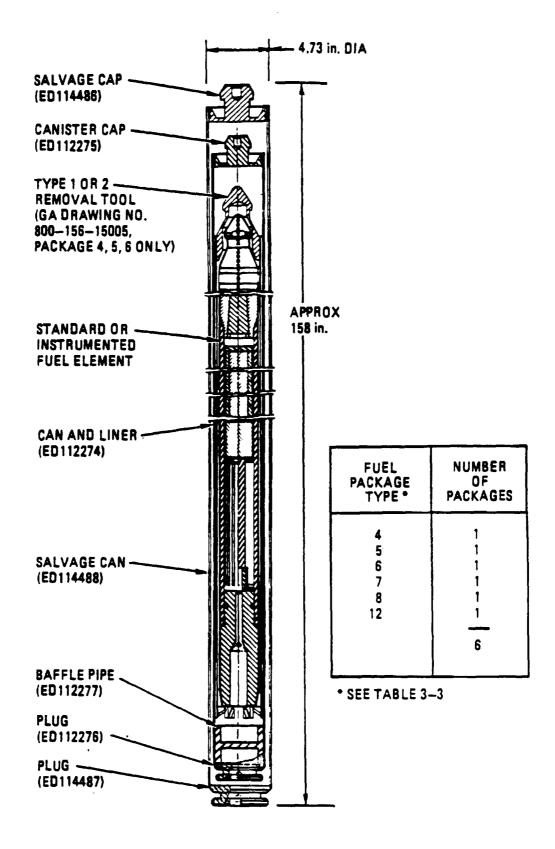


Fig. 4D.8. PB1/1 failed fuel element in storage canister with removal tool in salvage canister.

No. of instrumented fuel elements	Fuel loading type	Use of thermocouples	Reference drawing No.		
8	1 and 2	Spine and sleeve temperature. Also acoustic thermometer at center, hot spot height	33-FE-10		
3	1	Axial profile of center of core – spine temperature	33-FE-20		
5	1, 2, 3, and 4	Radial profile – spine plus internal trap inlet temperature	33-FE-20		
7	1, 2, and 3	Radial profile – both thermo- couples for spine temperature	33-FE-20		
3	2	Both thermocouples for spine temperature	33-FE-20		
2	4	Low U loading – both thermo- couples for spine temperature	33-FE-20		
2	1 and 2	Internal trap inlet and outlet let temperature	33-FE-40		
2 2 and 4		Standoff and bottom reflector temperature	33-FE-30		
3	2	Axial profile at edge of core – spine temperature	33-FE-20		
1	3	Boron loaded – both thermo- couples for spine temperature	33-FE-20		

ı.

•

Table 4D.1. Uses of thermocouples in instrumented fuel elements

ľ

â

.....

Element	Phase ^a	Thermocouples	Fuel bed	Description/fuel type
PTE-2 ^b	1	Yes	Rods ^c	Proof test element for FSV - rods
FBTE-1	1	Yes	Rods	Fuel bed test element for LHTGRs - bonded rods
FBTE-2	1	Yes	Rods	Fuel bed test element for LHTGRs - bonded rods
FBTE-3	1	Yes	Rods	Fuel bed test element for LHTGRs - bonded rods
FBTE-4	1	Yes	Rods	Fuel bed test element for LHTGRs - bonded rods
FBTE-5	1	No	Blended ^d	Fuel bed test element for LHTGRs - blended bed
FBTE-6	1	Yes	Blended	Fuel bed test element for LHTGRs - blended bed
FTE-1	1	Yes	Blended	Fuel test element for LHTGRs - blended bed
FTE-2	1	Yes	Blended	Fuel test element for LHTGRs - blended bed
FTE-5	1	Yes	Rods	Fuel test element for LHTGRs - bonded rods
RTE-2	1	No	Mixed	Recycle test element for ORNL - 1/2 beds, 1/2 rod
RTE-4	1	No	Mixed	Recycle test element for ORNL - 1/2 beds, 1/2 rods
RTE-5	1	No	Rods	Recycle test element for ORNL - bonded rods
RTE-6	1	No	Rods	Recycle test element for ORNL - bonded rods
RTE-7	1	No	Rods	Recycle test element for ORNL - bonded rods
RTE-8	1	No	Rods	Recycle test element for ORNL - 1/6 beds, 5/6 rods
FPTE-1	1	Yes	Compacts	Fuel pin test element for UKAEA - fuel pins
FTE-3	2	Yes	Rods	Fuel test element for LHTGRs
FTE-4	2	?	Rods	Fuel test element for LHTGRs
FTE-6	2	Yes	Rods	Fuel test element for LHTGRs
FTE-7	2	Yes	Rods	Fuel test element for LHTGRs
FTE-8	2	Yes	Rods	Fuel test element for LHTGRs
FTE-9	2	Yes	Rods	Fuel test element for LHTGRs
FTE-10	2	Yes	Rods	Proof test element for FSV
FTE-11	2	No	Rods	Recycle test element for ORNL
FTE-12	2	Yes	Rods	Fuel test element for LHTGRs
FPTE-3	2	Yes	Compacts	Fuel pin test element for UKAEA
FTE-13	3	Yes	Rods	Plutonium fuel test
FTE-14	3	Yes	Rods	Large HTGR fuel test
FTE-15	3	Yes	Rods	Large HTGR fuel test
FTE-16	3	Yes	Rods	FSV fuel proof test
FTE-17	3	Yes	Rods	FSV fuel proof test
FTE-18	3	Yes	Monolithic	HOBEG/KFA molded fuel body test

Table 4D.2. Peach Bottom test elements irradiated in Core 2

^aPhase 1 loaded at 0 EFPD of Core 2, Phase 2 loaded at 252 EFPD of Core 2, and Phase 3 loaded at

 385 of Core 2.
 ^bPTE-2 was irradiated 152 EFPD in Core 1, prior to irradiation in Core 2.
 ^cA fuel rod, as used here, is a close-packed assembly of coated fuel particles bonded together with a carbonaceous matrix. ^dA blended bed, as used here, is a close-packed assembly of unbonded, coated fuel particles.

Fuel package type	No. of elements	Description
1	528	Type I or II fuel element, regular can and liner
2	58	Type I or II fuel element, failed sleeve, normal can, split liner, spacer, type 2 removal tool
3	7	Fuel assembly type 2 with a type 1 removal tool
4	1	Type II fuel element (No. 263) broken and stored in 2 containers
		Upper portion of element with 21 compacts is in a salvage can with unmarked salvage cap with partial type 2 removal tool, special spacer, component canister, 4.25 in. spacer and 50 lb of steel shot
		Lower portion of element with 9 compacts is in a regular canister (cap No. 120) with a 3.25 in. spacer and a special GGA pulling tool
5	1	Type II fuel element (No. 451), failed sleeve, normal can, split liner, spacer, type 1 removal tool. Due to leaking canister, recanned in salvage canister with special vented cap, unmarked
6	1	Type II fuel element (No. 576), failed sleeve, type 2 removal tool, component canister and spacer in salvage canister, cap No. 8
7	1	Type 2 fuel assembly in a salvage canister (cap No. 851, fuel element No. 731).
8	1	Type 2 fuel element (No. 848) less upper reflector canned in salvage canister (component canister and 4 in. spacer inside). Salvage cap is unmarked
9	71	Type 3 fuel element, regular can and liner
10	8	Fuel assembly type 2 with a type 3 fuel element
11	1	Fuel assembly type 10 with a hollowed out cap (No. 90) due to a removal tool positioned too high (element No. 126)
12	1	Fuel assembly type 10 recanned in salvage canister with cap C5 (element No. 306)
13	1	Type 10 fuel assembly (element No. 870) in can No. 14 (cap unmarked) with type 1 removal tool
14	98	Type 4 fuel element, regular can and liner

Table 4D.3. Peach Bottom Unit 1 - Core 1 spent fuel package types

.

T

Se pleise

4D-	1	7
-----	---	---

Table 4D.3 (continued)

Fuel package type	No. of elements	Description
15	5	Type 2 fuel assembly with acoustic thermometer installed
16	1	Type 15 fuel assembly (fuel element No. 807) in can 01, cap unmarked, with a type 1 removal tool
17	1	Type 1 fuel assembly (fuel element No. 808 and cap No. 252R) with acoustic thermometer installed
18	18	Type 1 fuel assembly with thermocouple installed
19	3	Type 2 fuel assembly (element No. 848) with thermocouple installed
20	3	Type 9 fuel assembly with thermocouple installed
21	4	Type 14 fuel assembly with thermocouple installed

an Nit

Uranium, g	U-235, g	No. of element
4853		18
4662	3516	18
4761	3621	18
4857	3718	18
4960	3884	18
4719	3574	18
4972	3890	18
4919	3804	18
4823	3667	18
4705	3623	18
4804	3643	18
4777	3593	18
4822	3687	18
4939	3854	18
4814	3679	18
4794	3685	18
4749	3672	18
4835	3751	18
4957	3869	18
4884	3755	18
4840	3681	18
4865	3721	18
4519	3414	18
4776	3599	18
4309	3176	18
4335	3216	18
4823	3709	18
4919	3871	18
4780	3712	18
4253	3185	18
3442	2352	18
3480	2352	18
	2444	18
3482	1754	18
2805 3785	2721	18
4874	3738 3680	18 18
4836		
4099	2950	18
2932	1869	18
4687	3546	18
4744	3624	18
4702	3612	18
4923	3848	18
4879	3760	18
4815	3738	18
1084	842	4
Total		814

Table 4D.4. Peach Bottom Unit 1 - Core 1 inventory at INEL

7 9

Uranium, g	U-235, g	No. of elements
3053	618	18
2355	657	18
1854	678	18
1855	680	18
2470	623	18
3184	468	18
2446	570	18
2508	562	18
2449	570	18
2657	565	18
2441	548	17
2722	562	18
2833	539	18
2790	567	18
2919	551	18
299 5	594	18
2997	610	18
3004	61 0	18
3001	609	18
3027	605	18
3038	61 0	18
3017	614	18
3033	617	18
3091	617	18
3009	611	18
3034	615	18
3099	620	18
3136	624	18
3037	604	18
3046	584	18
2977	580	18
2983	540	18
2978	548	18
2975	580	18
2958	582	40
2972	607	
2948	607	18
2975	595	18
2973	595	18
2971	594 594	18
2976		18
2978	578 578	18
2152	578	18
2132 2787	373	13
2101	496	17
Total		785

.

Table 4D.5. Peach Bottom Unit 1 - Core 2 inventory at INEL

0
ļ

r

.

Package type	No. of elements	Total U Average (g) Maximum (g)	U-232 Average (µg) Maximum (µg)	U-233 Average (g) Maximum (g)	U-234 Average (g) Maximum (g)	U-235 Average (g) Maximum (g)	U-236 Average (g) Maximum (g)	U-238 Average (g) Maximum (g)
1	528	268.68 303.81	1645 2081	23.99 27.10	3.71 3.89	206.46 268.84	18.46 20.76	16.06 17.10
2	58	267.46 283.83	1697 2081	24.39 27.10	3.73 3.89	204.46 226.93	18.84 20.76	16.04 16.27
3	7	279.24 282.79	883 960	17.94 19.04	3.47 3.49	227.35 230.81	14.08 14.52	16.39 16.50
4	1	256.77 256.77	1584 1584	20.42 20.42	3.71 3.71	197.31 197.31	19.06 19.06	16.27 16.27
5	1	280.85 280.85	820 820	18.24 18.24	3.44 3.44	229.11 229.11	13.75 13.75	16.31 16.31
6	1	255.80 255.80	1699 1699	21.36 21.36	3.75 3.75	194.85 194.85	19.62 19.62	16.21 16.21
7	1	278.49 278.49	1191 1191	22.71 22.71	3.53 3.53	219.86 219.86	16.25 16.25	16.14 16.14
8	1	297.20 297.20	285 285	11.00 11.00	3.36 3.36	257.31 257.31	8.60 8.60	16.93 16.93
9	71	269.79 295.62	1594 2050	23.67 27.04	3.68 3.86	208.20 258.37	18.15 20.33	16.08 16.71
10	8	268.25 274.76	1836 2050	25.70 27.04	3.77 3.86	203.54 213.19	19.27 20.33	15.96 16.05
11	1	272.57 272.57	1646 1646	25.21 25.21	3.69 3.69	209.35 209.35	18.31 18.31	16.00 16.00
12	1	274.64 274.64	1498 1498	24.36 24.36	3.63 3.63	212.99 212.99	17.61 17.61	16.05 16.05
13 ·	1	285.85 285.85	749 749	17.82 17.82	3.42 3.42	235.34 235.34	12.87 12.87	16.40 16.40
14	98	150.41 155.48	3009 3262	34.81 36.28	3.19 3.34	91.69 96.02	11.90 12.33	8.81 8.86
15	5	268.15	1715	24.53 25.57	3.73 3.84	205.07 218.51	18.79 20.25	16.03 16.13
16	1	277.75 288.17	2013 651	16.82	3.40	239.07	12.35	16.53
17	1	288.17 277.75	651 1279	16.82 23.04	3.40 3.55	239.07 218.51	12.35 16.51	16.53
18	18	277.75 270.69	1279 1550	23.04 23.62	3.55 3.66	218.51 209.37	16.51 17.95	16.13 16.09
19	3	283.63 277.57	2013 1228	25.61 22.79	3.84 3.54	226.63 218.63	20.25 16.46	16.24 16.14
20	3	278.54 268.61	1297 1378	23.00 21.33	3.57 3.61	219.94 210.09	16.90 17.35	16.14 16.23
		284.63	1559	22.54	3.68	227.42	18.55	16.26
21	4	150.60 155.48	2933 3240	34.56 36.17	3.16 3.18	92.24 96.02	11.81 11.96	8.82 8.83

Table 4D.6. Peach Bottom Unit 1 - Core 1 summary of postirradiation uranium loadings by fuel assembly package type

Test element No.	Thorium, g	Uranium, ^a g
PTE-2	2152.62	450.0
FBTE-1	1263.6	215.9
FBTE-2	566.6	235.0
FBTE-3	762.2	194.2
FBTE-4	943.7	235.7
FBTE-5	1518.1	194.4
FBTE-6	1667.7	181 .0
FTE-1	1537.8	206.1
FTE-2	1639.5	184.4
FTE-5	1082.4	203.3
RTE-2	804.0	211.9
RTE-4	1093.2	177.4
RTE-5	1083.5	186.6
RTE-6	928.2	190.6
RTE-7	1250.0	185.5
RTE-8	881.1	185.7
FPTE-1	0	1477.5 ^b
FTE-3	996.80	205.9
FTE-4	1027.63	188.42
FTE-6	855.43	222.94
FTE-7	1396.08	223.44
FTE-8	519.15	182.44
FTE-9	1114.5	179.76
FTE-10	685.1	171.81
FTE-11	891.02	224.14
FTE-12	1338.6	191.52
FPTE-3	0	1592.39 ^c
FTE-13 ^d	1352.03	99.94
FTE-14	1922.6	191.5
FTE-15	1883.7	191.85
FTE-16	1045.0	144.93
FTE-17	907.2	100.8
FTE-18	736.2	168.0 ^e

Table 4D.7. Peach Bottom Unit 1 - Core 2 test element initial heavy metal loadings

1

^a93.15% enriched, except as noted.
^b9.15% enriched.
^c14.08% enriched.
^dThis element contained 18.77 g total Pu (16.65 g Pu-239).
^e86.46% enriched.

Element No.	Th-232	Pa-231	U-232	U-233 ^b	U-234	U-235	U-236	U-238	Pu-239 ^c	Pu-240	Pu-241	Pu-242	Np-237
PTE-2	2120.76	0.010	0.003	26.34	5.14	316.77	24.34	23.65	0.80	0.17	0.10	0.009	0.93
FBTE-1	1211.22	0.007	0.008	30.03	4.96	83.11	23.83	8.93	0.26	0.09	0.14	0.060	2.03
FBTE-2	526.21	0.003	0.004	16.88	4.00	87.36	26.26	9.76	0.25	0.09	0.14	0.069	2.14
FBTE-3	727.09	0.004	0.005	19.00	3.93	67.71	22.03	8.12	0.19	0.06	0.11	0.058	1.73
FBTE-4	932.78	0.003	d	9.64	3.44	179.16	9.78	10.97	0.28	0.05	0.02	0.001	0.26
FBTE-5	1457.91	0.008	0.011	32.04	5.39	65.95	22.64	7.98	0.20	0.07	0.12	0.066	1.99
FBTE-6	1650.59	0.005	0.001	14.67	292	131.30	8.53	8.41	0.20	0.04	0.02	0.002	0.23
FTE-1	1522.48	0.005	0.001	13.40	3.21	150.84	9.49	9.58	0.23	0.05	0.02	0.002	0.26
FTE-2	1614.40	0.007	0.003	20.36	3.24	120.73	11.44	8.37	0.25	0.06	0.04	0.005	0.46
FTE-5	1039.43	0.005	0.007	23.36	4.47	72.43	22.85	8.52	0.20	0.07	0.11	0.059	1.77
RTE-2	773.80	0.004	0.004	19.43	3.75	98.30	20.55	9.07	0.27	0.09	0.12	0.036	1.43
RTE-4	1072.56	0.005	0.002	16.10	2.95	110.60	11.97	8.00	0.23	0.06	0.05	0.007	0.52
RTE-5	1022.46	0.006	0.008	25.16	4.61	61.57	21.90	7.65	0.19	0.07	0.11	0.065	1.94
RTE-6	882.06	0.005	0.007	23.66	4.57	60.31	22.70	7.78	0.19	0.07	0.12	0.069	2.05
RTE-7	1235.16	0.004	0.001	12.78	2.89	135.34	8.71	8.60	0.22	0.04	0.02	0.002	0.25
RTE-8	837.34	0.005	0.007	22.51	4.38	58.99	22.09	7.58	0.19	0.06	0.11	0.067	1.99
FPTE-1	0	0	0	0	0	107.64	5.65	1330.60	6.65	1.18	0.58	0.041	1.13
FTE-3	990.41	0.002	đ	6.00	1.54	170.22	5.13	11.75	0.20	0.02	0.005	d	0.08
FTE-4	1006.65	0.004	0.003	15.51	2.00	107.05	13.84	10.21	0.25	0.07	0.08	0.015	0.60
FTE-6	825.61	0.004	0.004	18.93	2.70	99.77	21.47	11.53	0.32	0.10	0.15	0.049	1.43
FTE-7	1359.43	0.006	0.006	23.34	3.07	100.27	21.05	11.74	0.27	0.09	0.13	0.044	1.23
FTE-8	499.05	0.002	0.002	12.67	2.02	80.83	17.31	9.58	0.22	0.07	0.10	0.037	1.01
FTE-9	1080.01	0.006	0.005	22.36	2.67	83.79	16.80	9.34	0.26	0.08	0.12	0.036	1.08
FTE-10	658.36	0.003	0.003	16.89	2.29	76.55	16.58	8.89	0.24	0.08	0.11	0.038	1.10
FTE-11	858.50	0.004	0.005	19.79	2.93	93.23	22.56	11.55	0.29	0.10	0.15	0.057	1.54
FTE-12	1301.92	0.007	0.006	23.94	2.83	90.26	17.75	9.96	0.28	0.09	0.12	0.037	1.13
FPTE-3	0	0	0	0	0	112.59	21.18	1337.45	7,15	2.26	3.05	0.933	1.19
FTE-13	1317.24	0.006	0.005	23.69	216	50.05	8.81	4.36	1.08	2.03	1.92	1.002	0.47
FTE-14	1889.32	0.007	0.002	27.83	3.51	132.15	10.45	8.69	0.23	0.05	0.03	0.003	0.35
FTE-15	1834.43	0.008	0.005	34.63	4.46	104.64	15.51	8.45	0.20	0.06	0.08	0.017	0.73
FTE-16	1018.51	0.005	0.003	18.45	2.88	75.85	12.35	6.31	0.17	0.05	0.06	0.015	0.67
FTE-17	881.11	0.004	0.003	17.70	2.41	50.00	9.01	4.37	0.11	0.04	0.05	0.012	0.51
FTE-18	712.83	0.003	0.003	15.54	4.91	75.75	15.12	14.48	0.37	0.12	0.16	0.046	0.91

Table 4D.8. Peach Bottom Unit 1 - Core 2 test element postirradiation heavy metal loadings^a

^aAssuming all test elements stay in Core 2 until Core-2 end-of-life (EOL). Loadings are given in grams.

^bIncludes Pa-233, ^cIncludes Np-239, ^dLess than 0.001.

4D-22

-1.4.4 4

APPENDIX 4E. SUPPLEMENTAL DATA FOR FAST FLUX TEST FACILITY

77

.

4E.1 INTRODUCTION

The purpose of this appendix is to provide data on the physical and radiological properties of the spent fuel and other assemblies discharged from the Fast Flux Test Facility and on the quantities of such materials discharged to date and projected to be discharged by the year 2020. The principal source document is a letter report prepared by Battelle Pacific Northwest Laboratories for Oak Ridge National Laboratory (Luksic and Love, 1988).

4E.2 FACILITY DESCRIPTION

The Fast Flux Test Facility (FFTF) is a 400-MWt sodium-cooled research reactor located in Hanford, Washington. The purpose of the FFTF is to provide a test facility in which fuels and materials can be subjected to fast flux conditions in order to evaluate the effects of high-energy irradiation, thus providing engineering knowledge that can be used in the design of fast reactors. Initial criticality of the FFTF was achieved in 1980.

The FFTF has seven major types of in-core assemblies:

- 1. driver fuel assemblies,
- 2. movable and fixed control rod assemblies,
- 3. in-core shim assemblies,
- 4. reflector assemblies,
- 5. materials open test assemblies,
- 6. fuels open test assemblies, and
- 7. core demonstration experiment assemblies.

The driver fuel assemblies are the fuel source for the reactor. Reactor control is provided by the movable and fixed control rod assemblies, as well as in-core shim assemblies. Radial neutron reflection is provided by reflector assemblies that surround the fueled section of the core. Special test assemblies include Materials Open Test Assemblies (MOTAs), Fuels Open Test Assemblies (FOTAs), and Core Demonstration Experiment (CDE) assemblies.

The design core arrangement of these assemblies is shown in Fig. 4E.1. Weights of each type of assembly are shown in Table 4E.1. More detailed descriptions of the various assembly types are given in the following sections.

4E2.1 DRIVER FUEL ASSEMBLY

The 74 driver fuel assemblies contain the fuel that drive the reactor. The driver assemblies are 12 ft long and consist of 217 fuel pins surrounded by a hexagonal duct tube, plus lower and upper end hardware. A typical driver fuel pin is shown in Fig. 4E.2. The fuel pellets and reflector materials are surrounded by a stainless steel cladding tube. A 0.056 in. diam wire is helically wrapped around the

outside of the clad in order to maintain spacing between the fuel pins in the assembly. The material compositions and weights of the driver assembly and fuel pin hardware are shown in Table 4E.2.

4E2.2 CONTROL ASSEMBLIFS

The movable control rod and control rod fixed shim assemblies (Figs. 4E.3, 4E.4, 4E.6) are 12 ft long and consist of 61 absorber pins surrounded by a duct tube, plus upper and lower hardware. The duct is similar to that of the driver fuel. Absorber pins are shown in Figs. 4E.5 and 4E.7. The absorber material in the pin is natural boron carbide (20% B-10). The cladding material is stainless steel. A wire is wrapped helically around the pin cladding to maintain spacing in the control assembly. The material compositions and weights of the movable control assembly and absorber pin hardware are shown in Table 4E.3.

4E2.3 IN-CORE SHIM ASSEMBLY

The in-core shim assembly (Fig. 4E.8) is basically a 12-ft-long, stainless steel hexagonal component. The assembly is similar to the driver fuel assembly, except that it is a non-fueled component. It is essentially a stainless steel duct surrounding solid stainless steel pins. The material compositions and weight of the major components of the in-core shim assembly are shown in Table 4E.4. The in-core shims substitute for operational fuel or test assemblies during operation.

4E2.4 RADIAL REFLECTOR ASSEMBLIES

There are two different sizes of radial reflector assemblies. Inner core assemblies (Row 8A) are 12 ft long and rest directly in the core basket. Outer assemblies (Rows 8B and 9) are about 11 ft in length. The reflector region (Inconel 600) and the upper and lower shields (stainless steel) consist of blocks stacked on vertical arrays of parallel coolant and structure tubes. The major hardware difference between the inner and outer assemblies is in the number and size of these tubes (Figs. 4E.9 and 4E.10). The inner reflectors have 37 small-diameter cooling tubes, while the outer reflectors have seven-large diameter flow tubes surrounding a structural stainless steel rod, creating a coolant flow annulus. The component materials are shown in Table 4E.5. The weights of the major reflector assembly components are shown in Table 4E.6.

4E2.5 MATERIALS OPEN TEST ASSEMBLY

A Materials Open Test Assembly (MOTA) is a 40-ftlong assembly with 48 small canisters attached to the main structure. When in place in the reactor, 18 of the canisters will remain above the core and 30 will be in the core region. The structure of the MOTA includes an instrument train to house the instrumentation that runs through the assembly. Like most of the other assemblies, the in-core section is surrounded by a duct similar to that of a driver fuel assembly. The major MOTA component materials and weights are shown in Table 4E.7.

4E2.6 FUELS OPEN TEST ASSEMBLY

A Fuels Open Test Assembly (FOTA) (Figs. 4E.11-4E.12) is one assembly used to test specimens of fuel. The assembly is 40 ft long, with test specimens inserted into the bottom 12 ft and instrumentation in the top 28 ft. When irradiation of a FOTA is completed, the FOTA design allows the assembly to be sheared apart at the 12-ft point. This produces a 28-ft instrument stalk and a 12-ft section that contains the tested fuel. The fuel section of the assembly is the same as the standard driver fuel assembly. The weights and material compositions of the major FOTA components are shown in Table 4E.8.

4E27 CORE DEMONSTRATION EXPERIMENT (CDE) ASSEMBLIES

There are two different types of CDE assemblies: fuel and blanket. The basic structures of the two types (Figs. 4E.13 and 4E.14) are similar to the driver fuel assemblies. The material compositions and weights of the major components are shown in Table 4E.9.

4E.3 MATERIAL DISCHARGE AND DISPOSAL

On the average, 42 driver fuel elements have been discharged from the FFTF core per year. After discharge, the spent fuel is placed in the spent fuel pool.

The fuel test assemblies are handled in a different manner. The test pins are removed from the elements and placed in pin containers. A pin container is a cylindrical carbon-steel container that can hold up to 217 pins, but a typical container currently holds between 120 and 160 pins. When full, the containers are stored in the spent fuel pool.

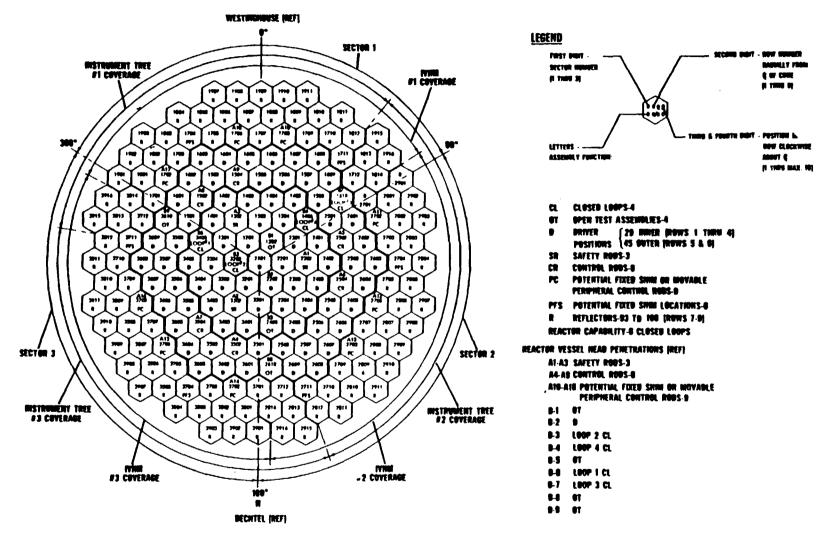
The pin containers are new hardware before they are employed to store the spent fuel pins. When full, the tops of the containers are welded shut and they are placed in the spent fuel pool for storage. The pin containers are unirradiated except for a small neutron flux from the spent fuel, so there will be little activation of the materials composing the pin container itself. Other in-core hardware is discharged at a much slower rate. The hardware and containers from experiments have been discharged at a rate of about six per year. Reflector elements are not discharged at a regular rate. Several may be discharged one year, then there may be none discharged for several more years. An overall average discharge rate would be approximately two assemblies per 100 reactor days. ÷.

It is unclear what the ultimate control rod discharge rate will be. A number of elements have been discharged thus far, but it has been found that the predicted design life of 300 full-power days was an underestimate of their useful life. There is a high probability that many of the assemblies that have already been discharged will be reused in the future.

The MOTAs are removed from the core at a rate of one per year. They are currently being stored in a 40-ft-tall vault, but the long-term plan is to cut them into 12-ft lengths and bury them in burial casks. One MOTA will fill approximately two-thirds of a burial cask of the type now being used at FFTF.

There have been only two FOTA assemblies irradiated in the FFTF core to date. After the FOTA has been sheared apart, the lower 12-ft section is treated in the same manner as a used driver fuel assembly. The upper 28-ft section is removed from the core and stored.

There are a total of 12 CDE Fuel and 6 CDE Blanket assemblies that are being used in FFTF. All of these assemblies are to be discharged by the end of cycle 12.

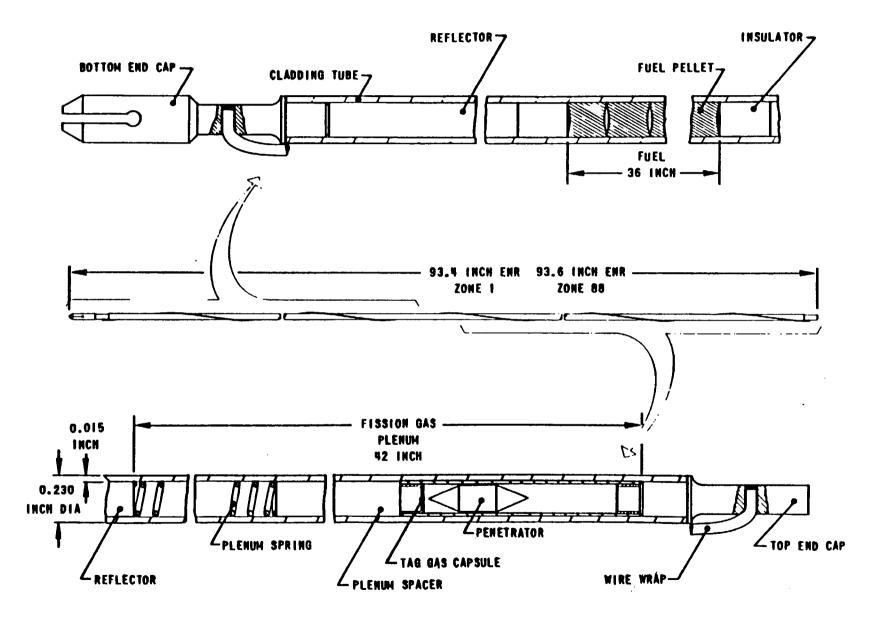

When the non-fuel elements are removed from the core, they are left intact and stored in the spent fuel pool.

The burial casks that are currently being used at FFTF for disposal of core hardware are approximately 13 ft tall and contain compartments. Each compartment is large enough to hold one in-core assembly. The current plan is to dispose of all non-fuel assemblies in these burial casks.

Table 4E.10 tabulates the amount of spent fuel and non-fuel components that have been discharged from FFTF as of early 1988. Projections for the total discharged quantities are also included, based on the best information available to us. It is difficult to estimate more precisely due to uncertainties in the future operation and changing mission of FFTF.

4E.4 REFERENCES

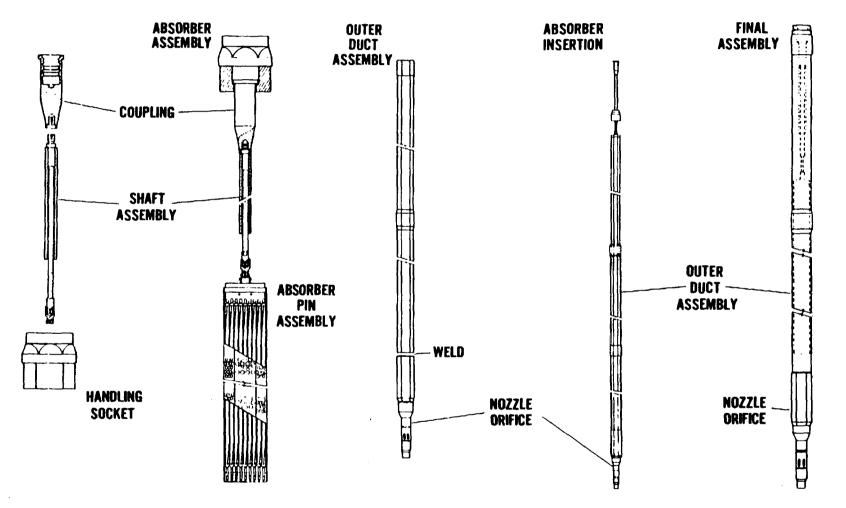
Luksic and Love 1988. A. T. Luksic and E. F. Love, FFTF Characterization Report, letter report to Oak Ridge National Laboratory, October 1988.



HEDL MOI-44

.

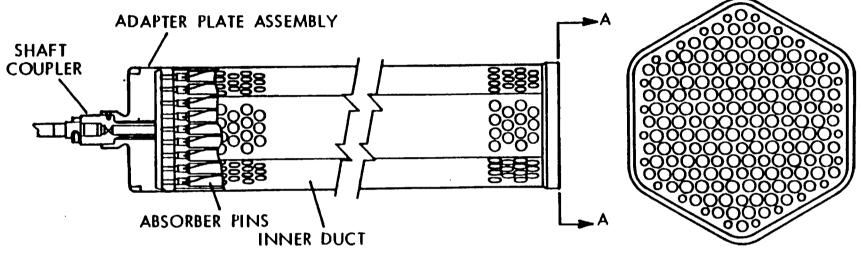
Fig. 4E.1. FFTF core map.


4E-5

4E-6

1 April

CONTROL ROD COMPONENT ASSEMBLY



4E-7

1

HEDL 7307-05.1

n' **Militia**

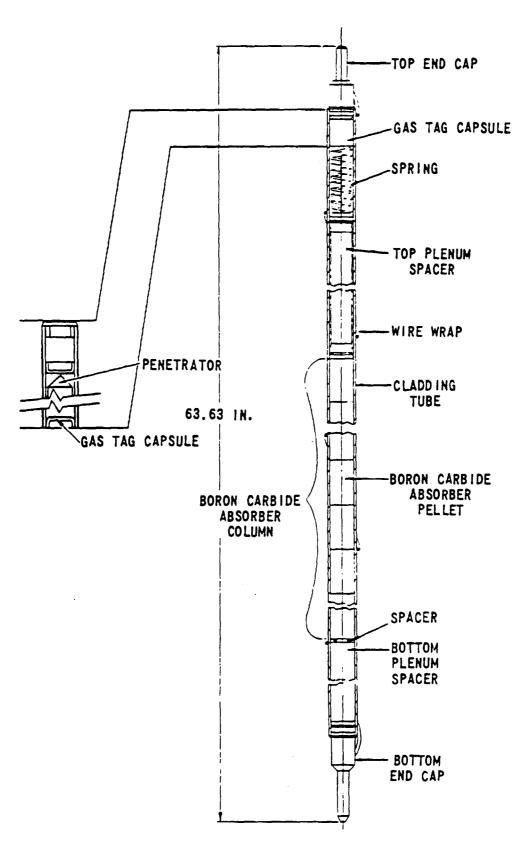


Fig. 4E.5. FFIF control rod absorber pin assembly.

T

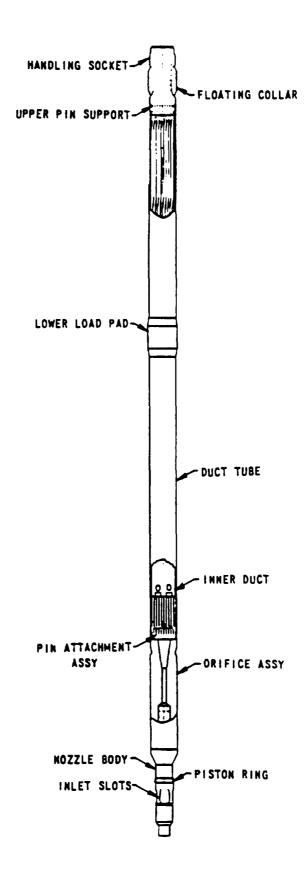


Fig. 4E.6. FFTF control rod fixed shim assembly.

designed and the second second second

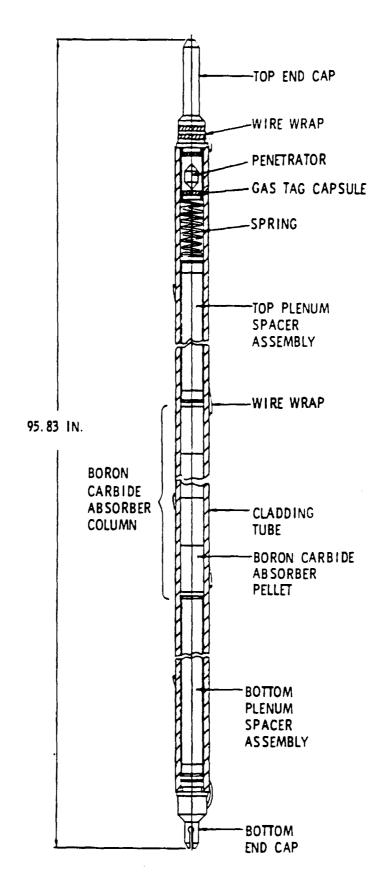


Fig. 4E.7. FFTF control rod fixed shim pin assembly.

4E-11

.

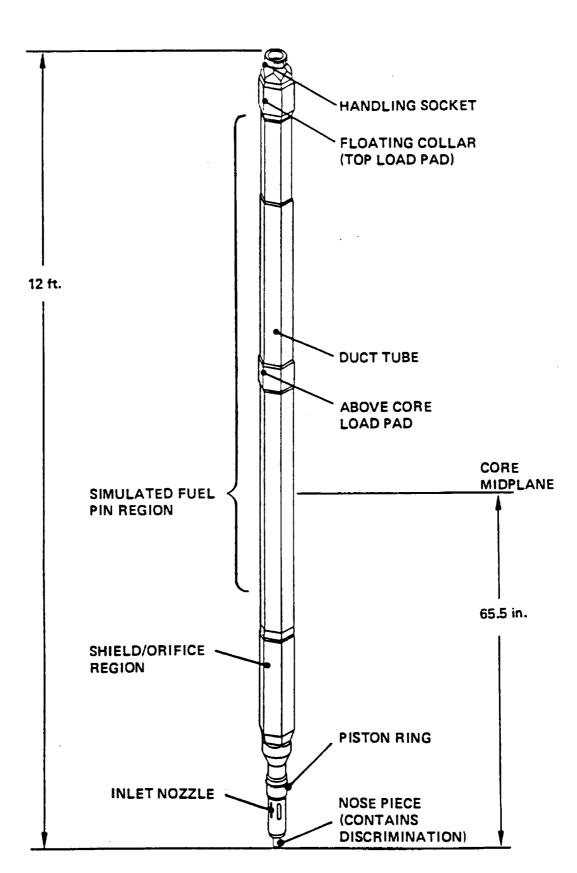
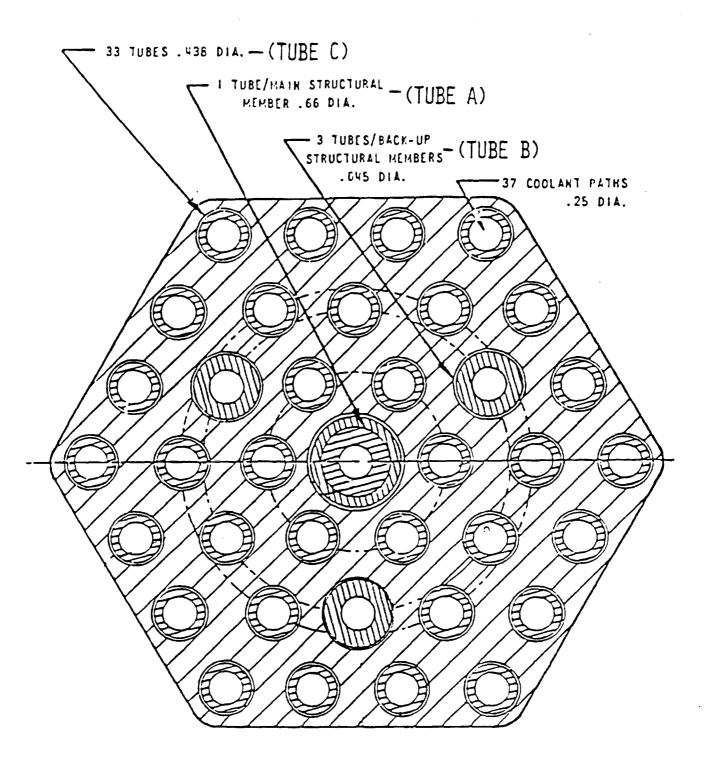
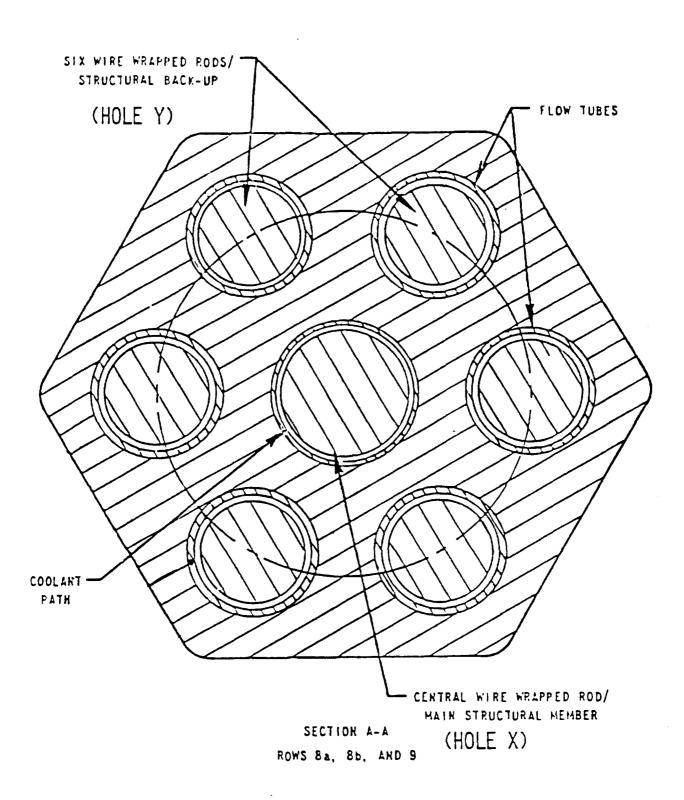
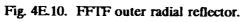
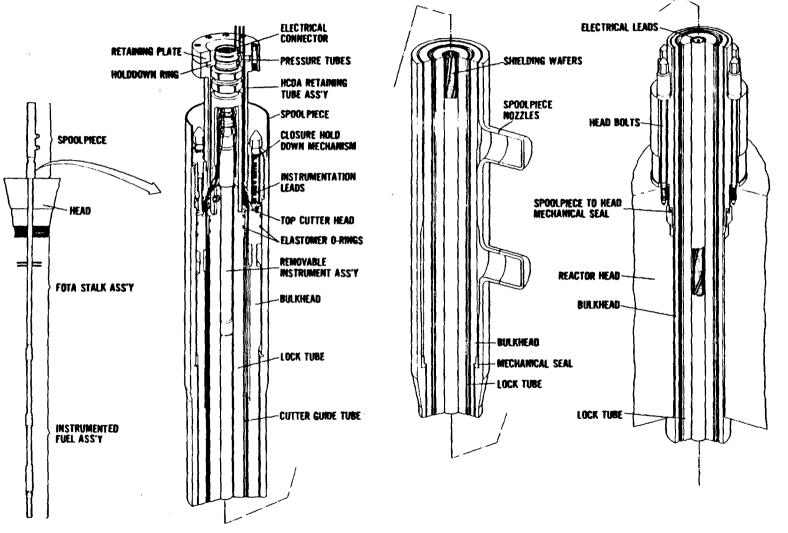


Fig. 4E.8. FFTF in-core shim assembly.

4E-12

Į


Fig. 4E.9. FFTF inner radial reflector.

4E-14

FUELS OPEN TEST ASSEMBLY (FOTA)

HER, 7400-50,7

المحمد مستعدين المحمد من المربعين ما المراجع المراجع

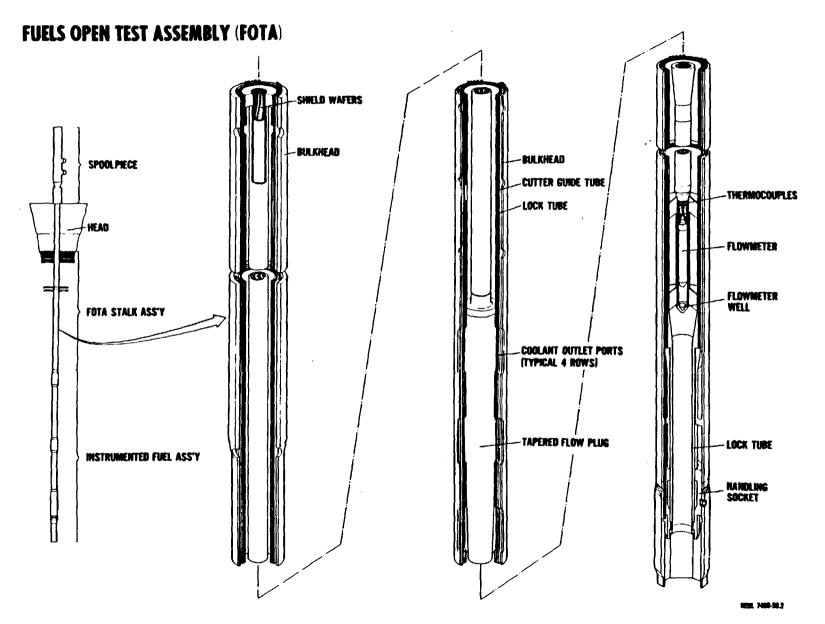


Fig. 4E.12. FFTF fuels open test assembly (FOTA).

4E-16

AN AN AN

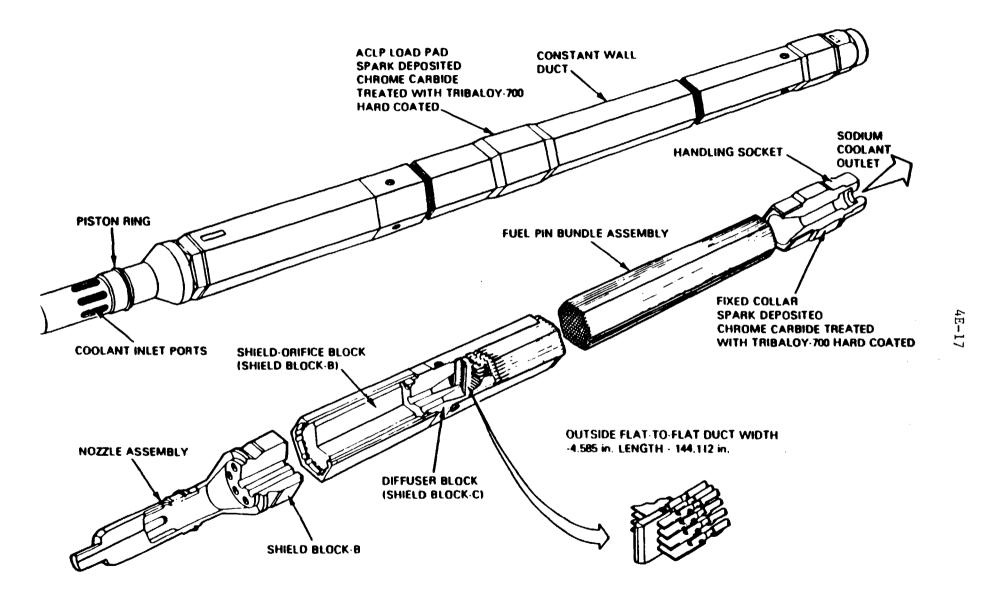
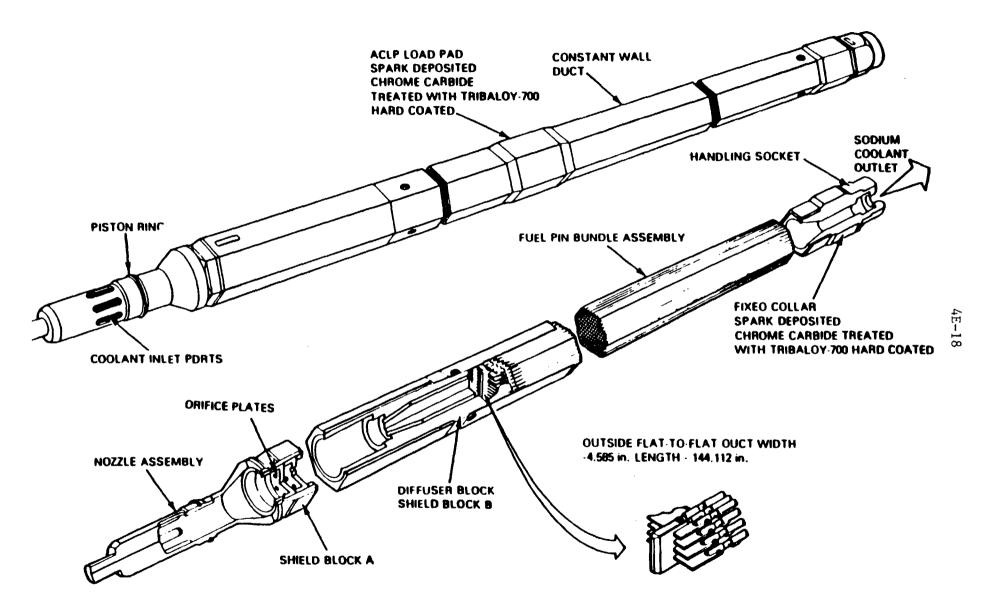



Fig. 4E.13. FFTF core demonstration experiment fuel assembly.

.

Fig. 4E.14. FFIF core demonstration experiment blanket assembly.

Component	Approximate weight per assembly (kg)
Driver fuel assembly	175.1
Control assemblies	
Series 1	136.1
Series 2	133.8
In-core shim assembly	201.8
Reflector assemblies	
Row 7	274.0
Row 8A	289.8
Rows 8B and 9	273.4
Materials open test assembly	612.2
Fuels open test assembly	905.2
Core demonstration experiment assemblies	
Fuel assembly	181.0
Blanket assembly	189.9

Table 4E.1. FFTF assembly weight summary

÷

4E-20

Y

ŗ

Component	Material	Approximate weight per assembly (kg)
Duct tube	20% CW 316 SS	25.4
Load pad hard surface coating	Chromium carbide	
Handling socket	316 SS	11.1
Collar	316 SS	
Transition ring	316 SS	
Pin	316 SS	
Ring and collar coatings	Chromium carbide	
Attachment rail	316 SS (annealed or CW, 20% max)	0.3
Driver fuel pins		
Top end cap	20% CW 316 SS	
Bottom end cap	20% CW 316 SS	
Cladding tube	20% CW 316 SS	
Wire wrap	17% CW 316 SS	
Reflector	Inconel 600	
Plenum spacer	20% CW 316 SS	
Insulator pellet	Natural UO_2	_
Fuel	PuO_2, UO_2	34.4 ^b
Top gas driver assembly		
Capsule tube	20% CW 316 SS	
Penetrator	410 SS	
Rupture cup	316 SS (annealed)	
Bottom closure cup	316 SS (annealed)	
Subtotal		41.0
Shield and inlet assembly		
Shield blocks A, B, C	316 SS (annealed)	
Orifice ring	316 SS (annealed)	
Nozzle body	316 SS (annealed)	7.7
Chrome plate	Chrome	
Subtotal		48.8
Fuel support can	316 SS (annealed)	
Pin support bar	316 SS (annealed)	
Locking bar	Inconel 718	0.54
Piston rings	Inconel 718	0.05
Total driver fuel assembly ^b		175.1

Table 4E.2. Driver fuel assembly component materials and weights^a

^aNot all component weights are available, so the total driver fuel assembly weight is greater than the sum of the weights listed. ^bPlutonium + uranium.

Component	Material	Approximate weight per assembly (kg)
Absorber pin assembly	·	49.7
Absorber	Natural B4C	
Clad	316 SS	
Pin assembly wear bands	Inconel 718	0.1
Duct tube	20% CW 316 SS	25.4
Load pad hard surface coating	Chromium carbide	
Handling socket	316 SS	3.7
Support can	316 SS (annealed)	
Pin support bar	316 SS (annealed)	
Locking bar	Inconel 718	0.54
Piston ring	Inconel 718	0.05
Nozzle body	316 SS (annealed)	7.7
Control rod coupling, shaft assembly	Inconel 718	4.9

Table 4E.3. Control assembly component materials and weights^a

1

^aTotal control assembly weights are approximately 136.1 kg for Series 1 and 133.8 kg for Series 2.

Component	Material	Approximate weight per assembly (kg)
Duct tube	20% CW 316 SS	25.4
Load pad hard surface coating	Chromium carbide	
Handling socket	316 SS	11.1
Collar	316 SS	
Transition ring	316 SS	
Pin	316 SS	
Ring and collar coatings	Chromium carbide	
Attachment rail	316 SS (annealed or	0.3
	CW, 20% max)	
Solid pins	316 SS	116.6
Shield and inlet assembly		48.8
Shield blocks A, B, C	316 SS (annealed)	
Orifice ring	316 SS (annealed)	
Nozzle body	316 SS (annealed)	
Chrome plate	Chrome	
Support can	316 SS (annealed)	
Pin support bar	316 SS (annealed)	
	Inconel 718	0.54
Piston rings	Inconel 718	0.05
Locking bar	Inconel 718	

Table 4E.4. In-core shim component materials and weights^a

^aTotal driver fuel assembly weight is approximately 201.8 kg.

Component	Material
Reflector plates (12)	Inconel 500
Upper shield region	316 SS
Nozzle	316 SS
Orifice	316 SS
Handling socket	316 SS
Upper adapter block	316 SS
Load pad	316 SS
Row 7 tubular main structural members	316 SS
Row 8a, 8b, and 9 flow tubes and main structural member rods	316 SS

Table 4E.5. Reflector assembly component materials

Component	Row 7 (kg)	Row 8a (kg)	Rows 8b and 9 (kg)
Reflector plates (12)	79.9	72.1	72.1
Shield plates (5)	73.3	55.2	55.2
Nozzle	7.9	7.9	8.1
Orifice block	47.7	47.7	31.0
Handling socket	12.9	9.4	9.4
Adapters	5.7	11.7	11.7
Load pad	5.9	6.2	6.2
Tubes	40.7	79.8	79.8
Total assembly weight	274.0	289.8	273.4

Table 4E.6. Reflector assemblies: major component weights per assembly

T

Component	Material	Approximate weight per assembly (kg)
Thermocouples	304 SS	
PIOTA stalk	316 SS ^a	453.5
Test train	316 SS	56.7
Duct/nozzle assembly/orifice assembly	316 SS	102.0
Total assembly weight		612.2

Table 4E.7. Materials open test assembly: major component materials and weights

^aFuture PIOTA assemblies will be fabricated from 304 SS.

Component	Material	Approximate weight per assembly (kg)
Support housing	SS 316	212.7
Bulkhead	SS 316	34.6
Guide tube assembly	SS 316	32.4
Tapered flow plug	SS 316	31.2
Bulkhead extension tube	SS 316	42.9
Flowmeter guide	SS 316	47.5
Flow plug extension	SS 316	11.4
Support tube (lower section)	SS 316	9.0
Flowmeter sleeve assembly	SS 316	2.1
Flowmeter well assembly	SS 316	0.7
Removable instrument assembly	SS 316	30.8
Instrument tubing (T/C, etc.)	SS 316	13.4
Bulkhead cap	SS 316	11.5
FOTA holddown parts	SS 316	25.4
Spoolpiece	SS 316	124.7
Fuel driver assembly	а	172.3
Total assembly weight		905.2

Table 4E.8. Fuels open test assembly: major component materials and weights

^aSee Table 4E.2.

6		Approxima	Approximate weights, kg	
Component	Material	Fuel assembly	Blanket assembly	
Shield/inlet nozzle assembly	316 SS	48.4	46.1	
Attachment rails	316 SS	0.3	0.4	
Duct tube	HT9	26.6	26.6	
Handling socket	316 SS	10.4	10.4	
Fuel pin hardware	316 SS	12.3	9.1	
Fuel pin end caps and cladding	Tube HT9	37.4	28.3	
Piston ring	Inconel 718	0.1	0.1	
Locking bars	Inconel 718	0.5	0.5	
Fuel (CDE fuel assembly)	PuO ₂ Depleted UO ₂	35.1 9.9	0.0 0.0	
Blanket (CDE blanket assembly)	Depleted UO ₂	0.4	68.4	
Total assembly weight		181.4	189.9	

Table 4E.9. Core demonstration experiment assembly: major component materials and weights

	Number of assemblies discharged		
Assembly type	To date ^a	20-year design life	
Driver fuel	~300	840	
Reflectors	24	120	
Control	10	40	
Materials open test assemblies	5	20	
Fuel open test assemblies	2	8	
Core demonstration experiments	18	18	
Fuel pin containers	23	92	
In-core shim		10	
Approximate total	382	1,148	

Table 4E.10. Historical and projected discharges from FFTF

÷

ţ

,

ļ

^aAs of October 1988.

4E-24

DISTRIBUTION

DOE - Office of Civilian Radioactive Waste Management, Washington, DC 20585

J. W. Bartlett	*W. Lemeshewsky
J. C. Bresee	R. Milner
S. Brocoum	*N. Montgomery
*A. B. Brownstein	*T. D. Nguyen
*J. H. Carlson	M. L. Payton
*M. Conroy	J. Roberts
W. J. Danker	S. Rousso
J. B. Easterling	J. D. Saltzman
H. J. Hale	W. Sprecher
V. King	*V. Trebules
*P. Kumar	*J. R. Williams
W. Lake	

DOE - Office of Nuclear Energy, Washington, DC 20545

F. J. Goldner	J. L. Smiley
E. F. Mastal	J. A. Turi

DOE - Office of Defense Programs; Washington, DC 20545

E. A. Jordon	R. Cooperstein
A. L. Taboas	G. H. Daly

DOE - Office of Environmental Restoration, 1000 Independence Ave., Washington, DC 20585

W. W. Bixby

DOE - Office of Environmental Restoration and Waste Management, Washington, DC 20585-0002

J. A. Coleman	A. F. Kluk
L. Duffy	M. J. Lilly
C. Frank	W. E. Murphie
R. I. Greenberg	G. P. Turi
E. A. Jordan	W. E. Wisenbaker

DOE - Energy Information Administration, 1707 H. Street, NW, Washington, DC 20006

J. A. Disbrow	*B. K. O'Brien
K. Gibbard	

DOE - Environmental Protection Agency, Washington, DC 20460

J. W. Gunther M. Halper

٠

M. Oge

R. P. Whitfield

D. M. Lund

DOE - Albuquerque Operations Office, P.O. Box 5400, Albuquerque, NM 87115

*K. Golliher

DOE - Chicago Operations Office, Bldg. 201, 9800 S. Cass Ave., Argonne, IL 60439 M. Klimas S. A. Mann DOE - Idaho Operations Office, 785 DOE Place, Idaho Falls, ID 83402 K. Svinicki M. Fisher T. J. Zielinski R. Sandwina DOE -- Idaho Operations, West Valley Project Office, P. O. Box 191, West Valley, NY 14171-0191 T. J. Rowland W. S. Ketola DOE - Yucca Mountain Site Characterization Project Office, 101 Convention Center Drive, Suite 200, Las Vegas, NV 89109 *M. Blanchard *E. Petrie *C. Gertz *D. Royer *W. Simecka *R. Dyer *D. Harrison-Giesler DOE - Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 37831 R. Collier DOE - Richland Operations Office, P.O. Box 550, Richland, WA 99352 D. C. Langstaff DOE - Richland Operations, Shippingport Project Office, P.O. Box 335, Shippingport, PA 15077 J. J. Schreiber DOE - Savannah River Operations Office, P.O. Box A, Aiken, SC 29801 J. M. Gallagher W. D. Pearson DOE - WIPP Project Office, P.O. Box 3090, Carlsbad, NM 88220 W. Walker U.S. Nuclear Regulatory Commission, 1717 H Street NW, Washington, DC 20555 Director, Div. of High-level Waste Mgmt., NMSS. OWFN, MS 4-H-3 Director, Div. of Low-Level Waste Mgmt. and Decommissioning, NMSS, OWFN, MS 5-E-4 Director, Div. of Safeguards and Transportation, NMSS, OWFN, MS 4-E-4 Director, Div. of Industrial and Medical Nuclear Safety, OWFN, MS 6-H-3 Irradiated Fuel Section, Source Containment & Devices Branch

D-3

U. S. Environmental Protection Agency, 401 M Street SW., Washington, DC 20460

Analysis and Support Division, Martin Halper (ANR-461) Criteria and Standards Division, James W. Gunther, (ANR-460W) Office of Radiation Programs, M. Oge, (ANR-450W)

Office of Technology Assessment, 600 Pennsylvania Avenue., SW., Washington, DC 20510

Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004

L.A. Ettlinger

Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439

S. Y. Chen J. Peterson

B. R. M. J. Steindler

Brookhaven National Laboratory, Upton, Long Island, NY 11973

Barletta	C. Sastre
Fullwood	R. Youngblood

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550

*J. Blink	W. R. Lloyd
*T. Buschek	R. B. Stout
L. J. Jardine	R. Van Konynenberg
H. Leider	

Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545

D. T. Oakley	J. L. Warren
K. K. S. Pillay	W. J. Whitty
L. Walker	

Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831

J. M. Begovich	K. J. Notz (50 copies)
J. T. Bell	C. V. Parks
A. G. Croff	R. L. Pearson
C. W. Forsberg	*R. B. Pope
W. Fulkerson	R. R. Rawl
R. K. Genung	W. J. Reich
H. W. Godbee	R. Salmon
D. S. Joy	S. N. Storch
•J. A. Klein	T. D. Welch
S. B. Ludwig	R. M. Westfall
A. P. Malinauskas	

Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352

S. R. Bierman	R. W. McKee
M. E. Cunningham	G. Mellinger
R. Einziger	R. I. Smith
U. Jenquin	V. W. Thomas
*A. T. Luksic	S. Vance
J. McElroy	R. C. Walling

Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185

*G. Allen	L. E. Romesberg
R. S. Case	*E. Ryder
A. W. Dennis	*T. Sanders
T. Hunter	•R. Sandoval
P. C. Reardon	

Westinghouse/Hanford Company, P.O. Box 1970, Richland, WA 99352

G. M. Bain	O. A. Turner
C. S. Clark	R. A. Watrous
F. M. Coony	R. T. Wilde
J. A. Nelson	B. A. Wolfe

Westinghouse/Idaho Nuclear Company, P.O. Box 4000, Idaho Falls, ID 83404

D. A. Knecht

G. G. Simpson

J. Lippis

Westinghouse/WIPP Project, P.O. Box 2078, Carlsbad, NM 88220

K. S. Donovan

Westinghouse/Savannah River Company, P.O. Box 616, Aiken, SC 29802

P. D. D'Entremont	S. L. Marra
W. T. Goldston	M. J. Plodinec

Advanced Nuclear Fuels Corporation, P.O. Box 90777, Bellevue, WA 98009

J. D. Floyd

Advanced Nuclear Fuels Corporation, 2101 Horn Rapids Road, Richland, WA 99352

D. L. Adams M. Valentine K. R. Merckx

Analysas Corporation, 151 Lafayette Drive, Oak Ridge, TN 37830

Debbie Gifford

Anatech Research Corp., P. O. Box 9165, La Jolla, CA 92038

A. J. Zangari

Arizona State University, Nuclear Engineering Science Program, Tempe, AZ 85287-5706

J. W. McKiveen

Automated Sciences Group, 800 Oak Ridge Turnpike, Oak Ridge, TN 37830

*C. G. CowartR. S. MoorE. A. DorseyD. Murphy

R. S. Moore (10 copies) D. Murphy Babcock and Wilcox, P.O. Box 10935, Lynchburg, VA 24506

P. Childress	D. A. Wesley
J. Matheston	G. Vames
L. Walton	

Bechtel National, Inc., P.O. Box 3965, San Francisco, CA 94119

Chin W. Ma

R. J. Tosetti

Bechtel National, 800 Oak Ridge Turnpike, Oak Ridge, TN 37831-0350

P. BradburyR. PhilipponeR. A. LangleyA. Yazdi

E. J. Bentz & Associates, Inc., 7915 Richfield Road, Springfield, VA 22153

R. Peterson

Brown Boveri Nuclear Services, Inc., 9190 Red Branch Road, Columbia, MD 21045

B. Snyder

Carolina Power and Light Co., Rt. 1, P.O. Box 327, New Hill, NC 27562

R. Wild

Chem-Nuclear Systems, Inc., 220 Stoneridge Drive, Columbia, SC 29210

P. A. Craig

Clark County - Nuclear Waste Division, 301 E. Clark, Suite 570, Las Vegas, NV 89101

J. Duke

Columbia University, Department of Applied Physics, New York, NY 10027

L. Lidofsky

Combustion Engineering, 1000 Prospect Hill Road, Windsor, CT 06095

W. Burns

D. Hayduk

Dataphile, 9121 Garrison Rd., Knoxville, TN 37931

K. E. Jones

David Andress Associates, Inc., 11008 Harriett Lane, Kensington, MD 20895

*D. Andress

Duke Engineering & Services, P. O. Box 1004, Charlotte, NC 28201

D. Anthony *R. Eble (3 copies) *V. H. Pierce *A. Segrest *J. Stringer Ebasco Environmental, 143 Union Boulevard, Suite 1010, Lakewood, CO 80228-1824

W. T. Gregory

Edison Electric Institute, 1111 19th Street NW, Washington, DC 20036

S. Kraft

EG&G Idaho, Inc., P.O. Box 1625, Idaho Falis, ID 83415

M. T. Magleby	R. L. Scott
R. R. Piscitella	H. Worle

Energy Resources International, Inc., 1015 18th St., N.W., Suite 500, Washington, DC 20036

M. H. Schwartz

EPRI - Electric Power Research Institute, P.O. Box 10412, Palo Alto, CA 94303

C. Braun	R. W. Lambert
O. Ozer	R. Williams
R. L. Yang	

E. R. Johnson Associates, Inc., 10461 White Granite Drive, Suite 204, Oakton, VA 22124

*B. M. Cole	*N. B. McLeod
E. R. Johnson	M. White
D. C. Jones	*R. R. MacDonald
*D. A. Williamson	•W. Teer

Fluor Daniel, Inc., 3333 Michelson Drive, Irvine, CA 92730

G. E. Benedict	T. O. Mallonee
S. Little	B. R. McElmurty

Foster Wheeler Development Corporation, 12 Peach Tree Hill Road, Livingston, NJ 07039

S. E. Himsl

Georgia Institute of Technology, Nuclear Engineering Program, Atlanta, GA 30332-0405

S. I. Abdel-Khalik D. B. Bullen

General Atomics, P. O. Box 85608, MS 15-219A, San Diego, CA 92186-9784

J. Boshoven

General Electric Nuclear Energy, 175 Curtner Ave., San Joe, CA 95125

S. O. Akerlund

R. E. Spicka

R. M. Grenier

H & R Technical Associates, 575 Oak Ridge Turnpike, Oak Ridge, TN 37830

W. R. Rhyne

International Atomic Energy Agency, P. O. Box 250, A-1400 Vienna, Austria

M. J. Bell A. Grigoriev

Institute of Nuclear Energy Research, P. O. Box 3-7, Lung-Tan, 32500 TAIWAN

L. C. Liu

Kaiser Engineering, P.O. Box 23210, Oakland, CA 94623

H. Isakari

Korea Atomic Energy Research Institute, P. O. Box 7, Dalduk-Danji, Taejeon, Korea 305-606

Jong Won Choi

Los Alamos Technical Associates, 6501 Americus Parkway, Suite 900, Albuquerque, NM 87110

D. Guerin

Louisiana State University, Nuclear Science Center, Baton Rouge, LA 70803-5820

E. N. Lambremont

M. L. Williams

B. F. Judson

Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 77 Massachusetts Avenue., Bldg. 24-102, Cambridge, MA 02139

M. S. Kazimi N. C. Rasmussen N. E. Todreas

Monsanto Research Corporation, Mound Facility, Miamisburg, OH 45342

J. W. Doty

National TSING HUA University, Dept. of Nuclear Engineering, 101 Section 2, Kuang-Fu Rd., Hsinchu 30043, TAIWAN

S - P. Teng

North Carolina State University, Dept. of Nuclear Engineering, 1110 Burlington Laboratories, Raleigh, NC 27695-7909

D. J. Dudziak P. J. Turinsky T. S. Elleman

Northeast Technology Corp., 26 Pearl Street, UPO Box 4178, Kingston, NY 12401

K. O. Lindquist

Northeast Utilities, 107 Selden St., P. O. Box 270, Berlin, CT 06037

G. Betancourt

B. Isakson

M. Aucoin Information Center I. F. Stuart NUS Corporation, 910 Clopper Road, Gaithersburg, MD 20878 C. Heath Y. S. Kim Nutech Engineers, 340 Six Branches Court, Roswell, GA 30076 J. D. Rollins Nutech Engineers, 14 S. Martinvale Lane, San Jose, CA 95119 N. W. Edwards Oklahoma Dept. of Libraries, U.S. Government Infor. 200 N.E. 18th St., Oklahoma City, OK 73105-3298 S. Beleu Oregon State University, Dept. of Nuclear Engineering, Radiation Center C116, Corvallis, OR 97331-5902 A. H. Robinson J. C. Ringle PAI Corporation, P.O. Box 1135, Oak Ridge, TN 37830 D. L. Phung F. E. Harrington Pacific Nuclear Fuel Services, Inc., 145 Martinvale Lane, San Jose, CA 95119 L. M. Stamm Pacific Nuclear Systems, 1010 South 336th Street, Federal Way, WA 98003 C. J. Temus Public Utility Commission of Texas, 7800 Shoal Greek Boulevard, Suite 400N, Austin, TX 78757 J. McArthur Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 V. H. Ransom

Radioactive Exchange, P.O. Box 9528, Washington, DC 20016

E. L. Helminski

Raytheon, Yucca Mountain Project, 101 Convention Center Dr., Suite P-250, Las Vegas, NV 89109

R. C. DeKlever

REECO, P.O. Box 14400, Las Vegas, NV 89114

G. W. Kendall

Nuclear Assurance Corp., 6251 Crooked Creek Road, Norcross, GA 30092

D. R. Harris

Rensselaer Polytechnic Institute, Dept. of Nuclear Engineering & Engineering Physics, Troy, NY 12180-3590

RE/SPEC Inc., 4775 Indian School Road NE, Suite 300, Albuquerque, NM 87110

Rochester Gas and Electric Corp., 89 East Avenue, Rochester, NY 14649 A. Fuierer Rockwell International Corporation, P. O. Box 800, Richland, WA 99352 K. A. Gasper Rockwell International Corp., 6633 Canoga Avenue, Canoga Park, CA 91303 J. Guon Rogers & Associates Engineering Corporation, P. O. Box 330, Salt Lake City, UT 84110-0330 B. Bailey San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132 Y. T. Mandra Science Applications International Corp., 4900 Hopyard Road, Suite 310, Pleasanton, CA 94588 J. Cohen C. Smith Science Applications International Corp., 800 Oak Ridge Turnpike, Oak Ridge, TN 37830 E. Bergman R. Best Science Applications International Corp., 20030 Century Boulevard, Suite 201, Germantown, MD 20874 R. E. Yoder Science Applications International Corp., 101 Convention Center Drive, Las Vegas, NV 89109 W. MacNabb R. D. Zimmerman *R. Morissette (3 copies) *M. Voegele (3 copies) J. Nelson Science Applications International Corp., Atlanta, GA L. Danese Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228

H. Manaktala

R. C. Block

S. Petney

Ţ

State of Washington, Department of Social and Health Services, Olympia, WA 98504

E. L. Gronemeyer

State of Nevada, Division of Health, 505 East King St., Carson City, NV 89710

S. Marshall

Texas A&M University, Dept. of Nuclear Engineering, 129 Zachry Engineering Center, College Station, TX 77843

K. L. Peddicord

J. W. Poston

The Ohio State University, Nuclear Engineering Program, 206 West 18th Avenue, Columbus, OH 43210

A. W. Fentiman

D. W. Miller

The Pennsylvania State University, Nuclear Engineering Dept., 231 Sackett Building, University Park, PA 16802

E. H. Klevans

TLG Engineering, 31 N. Pond Rd., Chesshire, CT 06410

A. Levin

TRW Environmental Safety Systems Inc., 2650 Park Tower Drive, Suite 800, Vienna, VA 22180-7306

*P. Lovett
*J. Mayer
J. Miller
*L. Rickertson
*W. Stanley
G. Vawter (2 copies)

TRW Environmental Safety Systems Inc., 600 Maryland Avenue SW, Suite 695, Washington, DC 20024

P. M. Krishna

TRW Environmental Safety Systems Inc., 101 Convention Center Drive, Suite P-110, Las Vegas, NV 89109

*H. Benton (2 copies)	J. Gauthier
J. Berg	H. Hartman
J. K. Clark	R. Jiu
*T. Doering (2 copies)	R. Low
M. Fortsch	S. Pahwa (2 copies)
*L. D. Foust	*W. D. Schutt

University of Arizona, Department of Nuclear and Energy Engineering, Tucson, AZ 85721

S. C. Crow

University of California, Dept. of Nuclear Engineering, Berkeley, CA 94720

D. R. Olander S. G. Prussin T. H. Pigford

University of California, School of Engineering and Applied Science, 405 Hilgard Ave., Los Angeles, CA 90024-1597

P. Friedmann

D. Okrent

M. E. Wacks

MI. E. WACKS

University of Cincinnati, Dept. of Mechanical, Industrial and Nuclear Engineering, Mail Location 72, Cincinnati, OH 45221

R. Eckart

Ţ

University of Colorado, Campus Box 184, Boulder, CO 80309-0184

Government Publications

University of Florida, Dept. of Nuclear Engineering Sci., 202 Nuclear Sciences Ctr, Gainesville, FL 32611

J. S. Tulenko

University of Illinois, Dept. of Nuclear Engineering, Urbana, IL 61801

R. A. Axford

B. G. Jones

University of Lowell, Dept. of Chemical and Nuclear Engineering, One University Avenue, Lowell, MA 01854

J. P. Phelps

University of Michigan, 108 Cooley Lab, North Campus, Dept. of Nuclear Engineering, Ann Arbor, MI 48109-2104

W. R. Martin

University of Missouri-Columbia, Nuclear Engineering Program, 333 Electrical Engineering Bldg., Columbia, MO 65211

J. F. Kunze

University of Missouri-Rolla, Department of Nuclear Engineering, 102 Fulton Hall, Rolla, MO 65401-0249

A.E. Bolon

N. Tsoulfanidis

University of Nevada – Las Vegas, J. R. Dickinson Library, 4505 Maryland Pkwy, Las Vegas, NV 89154

K. Schott

University of New Mexico, Dept. of Chemical and Nuclear Engineering, Farris Engineering Center, Room 209, Albuquerque, NM 87131

F. L. Williams

University of Tennessee, Knoxville, Nuclear Engineering Dept., 315 Pasqua Building, Knoxville, TN 37996-2300

H. L. Dodds	T. W. Kerlin
E. M. Katz	L. F. Miller

University of Wisconsin-Extension, Wisconsin Geological and Natural History Survey, 3817 Mineral Point Road, Madison, WI 53705

T. J. Evans

University of Wisconsin-Madison, Dept. of Nuclear Engineering and Engineering Physics, 151 Engineering Research Building, Madison, WI 53706

M. W. Carbon

M. L. Corradini

Westinghouse Electric Corp., Nuclear Waste Technology, 1501 Ardmore Blvd., Pittsburgh, PA 15221

R. Bahorich	B. R. Nair
P. J. Kersting	W. J. Severson

West Valley Demonstration Project, P.O. Box 191, West Valley, NY 14171-0191

R. L. Crocker J. Pope E. Maestas

West Valley Nuclear Services Company Inc., P. O. Box 191, West Valley, NY 14171-0191

G. G. Baker	R. E. Lawrence
S. M. Barnes	R. A. Palmer
R. L. Crocker	D. K. Ploetz
R. G. Gessner	S. J. Szalinski
D. H. Kurasch	WVDP Technical Library

Weston, 955 L'Enfant Plaza, SW, Eighth Floor, Washington, DC 20024

*P. A. Bolton	*N. A. Norman
*E. Ching	*M. Rahimi
A. Mobasheran	W. Wowak

ORNL Central Research Library ORNL Laboratory Records Department ORNL Laboratory Records, RC ORNL Y-12 Technical Library, Document Reference Section ORNL Patent Section

Given distribution as shown in document DOE/OSTI-4500-R75 under categories UC-810, 812, and 820 (299 copies including those for NTIS):

UC-810 High Level Radioactive Waste Management UC-812 Spent Fuel Storage UC-820 Transport of High Level Radioactive Waste

Extra copies for OSTI to fill orders (15).

NOTE: Asterisk by name means controlled distribution.

*U.S. GOVERNMENT PRINTING OFFICE: 1992-648-19160015

-1

i

j _____

a,

.