

Determination of the Accuracy of Utility Spent Fuel Burnup Records (Interim Report)

Technical Report

Determination of the Accuracy of Utility Spent Fuel Burnup Records – Interim Report

TR-109929

Interim Report, May 1998

Prepared for **Electric Power Research Institute** 3412 Hillview Avenue Palo Alto, California 94304

EPRI Project Manager J. M. Yedidia

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS REPORT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) NAMED BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS REPORT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS REPORT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS REPORT.

ORGANIZATION(S) THAT PREPARED THIS REPORT

Duke Engineering & Services 580 Main Street Bolton, Massachusetts 01740

ORDERING INFORMATION

Requests for copies of this report should be directed to the EPRI Distribution Center, 207 Coggins Drive, P.O. Box 23205, Pleasant Hill, CA 94523, (510) 934-4212.

Electric Power Research Institute and EPRI are registered service marks of the Electric Power Research Institute, Inc. EPRI. POWERING PROGRESS is a service mark of the Electric Power Research Institute, Inc.

Copyright © 1998 Electric Power Research Institute, Inc. All rights reserved.

REPORT SUMMARY

This report summarizes the results of an initial investigation into the uncertainties associated with the burnup records maintained by nuclear power plants. The results indicate that there is an overall uncertainty of about 2 percent in the burnup records, which must be accounted for in spent fuel applications.

Background

Operators of Pressurized Water Reactors maintain records of the assembly average burnup for each assembly at their plants. The assembly burnup records are currently used by commercial reactor operators and vendors for special nuclear material accountability, placement of spent fuel in storage pools, and dry storage cask design and analysis. The uncertainty of a particular burnup record depends on the uncertainty of the method used to develop the record. Such records are based on core neutronic analysis coupled with measured in-core detector data. An NRC-licensable burnup credit methodology being developed by the Department of Energy will require that utilities provide data on burnup uncertainty in reactor records.

Objectives

To identify a specific methodology and possible alternatives for determining the average uncertainty in reactor burnup records; to facilitate discussion and lead development of a utility consensus on the methodologies appropriate to each reactor type and to illustrate these methodologies with typical records.

Approach

The project team used three cycles of plant in-core detector data for a PWR to determine assembly power and burnup distributions. They used a standard nodal code to calculate three cycles of assembly power distributions. They used the relative differences between the measured and calculated nodal code data to statistically determine the uncertainty of the burnup records.

Results

Based on burnup records at a typical Westinghouse PWR, the uncertainty in the assembly average reaction rate in instrumented locations was found to be 2.21%. This value represents a direct comparison between measurement and calculation and allows determination of the uncertainty in average power distribution. Interpolating for all

locations, the uncertainty in relative assembly power was calculated to be 1.79%. The difference in the two uncertainty values is not considered important, but their similarity does indicate the robustness of both the conversion from reaction rate to power and the translation from instrumented locations to un-instrumented locations. The uncertainty in burnup evaluated over three cycles of operation decreases in uncertainty with an increase in residence time or burnup. For assemblies discharged after one cycle of burnup, the uncertainty is 1.90%: after two cycles of burnup, the uncertainty is 0.98%: and after three cycles of burnup the uncertainty is 1.02%. This decrease in uncertainty after two cycles of burnup is indicative of the self-correcting nature of burnup.

EPRI Perspective

During the past ten years, EPRI has supported various projects aimed at obtaining regulatory acceptance for the burnup credit concept in the design of spent fuel storage and transportation systems. These projects included the documentation of spent fuel burnup measurements with the FORK system (EPRI reports TR-103591 and TR-106305) and development of a more advanced system capable of measuring burnup independently of utility burnup records, the FORK+ system (TR-108759). The present project has been initiated to estimate the uncertainties present in utility burnup records and to support estimates for burnup uncertainty included in DOE's "Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages." Revision 1 of that Topical Report was submitted to the NRC in May 1997 and is expected to be approved by the end of 1998. The DOE report assumes that the uncertainty in plant burnup records is at most 5%. A technically sound measurement-based methodology for quantifying the actual uncertainty level for various reactor types is needed. The results of the present study on one reactor type indicate that the 5% uncertainty assumption exceeds the uncertainties actually present in utility burnup records. In anticipation of NRC approval of the burnup credit concept, EPRI plans to support the licensing of a Dry Storage and Transportation System that incorporates the burnup credit method.

TR-109929

Interest Categories

Spent fuel storage and transportation Fuel assembly reliability and performance

Key Words

Burnup credit Burnup records Criticality SIMULATE-3 Reaction rates Burnup

ABSTRACT

In order to develop a NRC-licensable burnup credit methodology, the pedigree and uncertainty of commercial spent nuclear fuel assembly burnup records needs to be established. Typically the assembly average burnup for each assembly is maintained in the plant records. It is anticipated that the repository for the disposal of spent fuel will utilize burnup credit and will require knowledge of the uncertainty of reactor burnup records. The uncertainty of the assembly average burnup record depends on the uncertainty of the method used to develop the record. Such records are generally based on core neutronic analysis coupled with analysis of in-core power detector data. This report evaluates the uncertainties in the burnup of fuel assemblies utilizing in-core measurements and core neutronic calculations for a Westinghouse PWR.

To quantify the uncertainty, three cycles of in-core movable detector data were used. The data represents a first cycle of operation, a transition cycle and a low leakage cycle. These three cycles of data provide a true test of the uncertainty methodology. Three separate sets of results were used to characterize the burnup uncertainty of the fuel assemblies.

- The first set of results compared the measured and calculated reaction rates in instrumented assemblies and determined the uncertainty in the reaction rates. The use of reaction rates provides a direct comparison between measurement and calculation in the instrumented locations prior to conversion to power and burnup. This uncertainty is indicative of the uncertainty in the burnup. The results show that uncertainty in the average reaction rate for the instrumented locations is 2.21%.
- The second set of results determined the uncertainty in relative assembly power for both the instrumented and un-instrumented assemblies. The uncertainty is found to be 1.79%. The similarity in the first and second set of results validates the robustness of both the conversion of reaction rates to assembly power and the translation from instrumented to un-instrumented assemblies.
- The third set of results determined the burnup uncertainty of the discharged fuel in each cycle. The uncertainty in burnup evaluated over three cycles of operation demonstrates a decrease in uncertainty with an increase in residence time or burnup. For assemblies discharged after one cycle of burnup, the uncertainty is 1.90%, after two cycles of burnup, the uncertainty is 0.98% and three cycle of

burnup is 1.02%. This decrease in uncertainty after two cycles of burnup is indicative of the self-correcting nature of burnup.

ACKNOWLEDGMENTS

The authors wish to thank Mike Tremblay and Joe Gorski for the technical assistance provided in analysis of the in-core data. The authors also wish to thank Dale Lancaster and Mitch Crosswaite for their discussions, which led to the initiation of this project. Special thanks go to Barrie McLeod for his thoughtful insights and constructive comments in the review of this report.

Finally, the support of Odelli Ozer and Joe Yedidia of EPRI throughout the course of this program, their comments and guidance are gratefully acknowledged.

CONTENTS

1 INTRODUCTION	1-1
2 PLANT DESCRIPTION	2-1
2.1 General	2-1
2.2 Movable In-Core Instrumentation	
2.3 Measured In-Core Data	
2.4 Measurement of Thermal Power	2-3
3 ANALYSIS/METHODOLOGY OVERVIEW	3-1
3.1 General	
3.2 CASMO-3/SIMULATE-3 Methodology	3-3
3.2.1 CASMO-3/SIMULATE-3 Model	3-3
3.3 INCORE-3 Methodology	
3.3.1 INCORE-3 Model	
3.4 Post-Processing Codes	
3.4.1 UNCERT	3-5
3.4.2 BURN2D	3-5
4 RESULTS	4-1
4.1 General	4-1
4.2 Movable Detector Reproducibility	4-2
4.3 Uncertainty in Instrumented Locations	4-3
4.4 Uncertainty in Relative Assembly Power	4-4
4.5 Assembly Burnup by Cycle	4-5
4.6 Axial Uncertainty	4-6
5 CONCLUSION	5-1

6 REFERENCES	6-1
A MEASURED DATA	A-1
B MEASURED AND SIMULATE-3 ASSEMBLY AVERAGE REACTION RATE VALUES FOR INSTRUMENTED LOCATIONS	B-1
C MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER	C-1
D ASSEMBLY BURNUP DISTRIBUTION AT THE END OF EACH CYCLE	D-1

LIST OF FIGURES

Figure 2-1 Cycle 1 Batch Loading Pattern	2-4
Figure 2-2 Cycle 2 Batch Loading Pattern	2-5
Figure 2-3 Cycle 3 Batch Loading Pattern	2-6
Figure 2-4 Radial Locations of Instrument Thimbles	2-7
Figure 2-5 Movable Detector Drive Assemblies	2-8
Figure 3-1 Flow Chart of UNCERT	3-6
Figure 3-2 Flow Chart of BURN2D	3-7
Figure B-1 Flux Map: CY1-FM01, Measured and Calculated Assembly Average Reaction Rates	B-2
Figure B-2 Flux Map: CY1-FM02, Measured and Calculated Assembly Average Reaction Rates	B-3
Figure B-3 Flux Map: CY1-FM03, Measured and Calculated Assembly Average Reaction Rates	B-4
Figure B-4 Flux Map: CY1-FM04, Measured and Calculated Assembly Average Reaction Rates	B-5
Figure B-5 Flux Map: CY1-FM05, Measured and Calculated Assembly Average Reaction Rates	B-6
Figure B-6 Flux Map: CY1-FM06, Measured and Calculated Assembly Average Reaction Rates	B-7
Figure B-7 Flux Map: CY1-FM07, Measured and Calculated Assembly Average Reaction Rates	B-8
Figure B-8 Flux Map: CY1-FM08, Measured and Calculated Assembly Average Reaction Rates	B-9
Figure B-9 Flux Map: CY1-FM09, Measured and Calculated Assembly Average Reaction Rates	B-10
Figure B-10 Flux Map: CY1-FM10, Measured and Calculated Assembly Average Reaction Rates	B-11
Figure B-11 Flux Map: CY1-FM11, Measured and Calculated Assembly Average Reaction Rates	B-12
Figure B-12 Flux Map: CY1-FM12, Measured and Calculated Assembly Average Reaction Rates	B-13
Figure B-13 Flux Map: CY1-FM13, Measured and Calculated Assembly Average Reaction Rates	B-14

Figure Re	B-14 Flux Map: eaction Rates	CY1-FM14,	Measured a	nd Calculated	Assembly A	Average	B-15
Figure Re	B-15 Flux Map: eaction Rates	CY1-FM15,	Measured a	nd Calculated	Assembly A	Average	B-16
Figure Re	B-16 Flux Map: eaction Rates	CY2-FM01,	Measured a	nd Calculated	Assembly A	Average	B-17
Figure Re	B-17 Flux Map: eaction Rates	CY2-FM02,	Measured a	nd Calculated	Assembly A	Average	B-18
Figure Re	B-18 Flux Map: eaction Rates	CY2-FM03,	Measured a	nd Calculated	Assembly A	Average	B-19
Figure Re	B-19 Flux Map: eaction Rates	CY2-FM04,	Measured a	nd Calculated	Assembly A	Average	B-20
Figure Re	B-20 Flux Map: eaction Rates	CY2-FM05,	Measured a	nd Calculated	Assembly A	Average	B-21
Figure Re	B-21 Flux Map: eaction Rates	CY2-FM06,	Measured a	nd Calculated	Assembly A	Average	B-22
Figure Re	B-22 Flux Map: eaction Rates	CY2-FM07,	Measured a	nd Calculated	Assembly A	Average	B-23
Figure Re	B-23 Flux Map: eaction Rates	CY2-FM08,	Measured a	nd Calculated	Assembly A	Average	B-24
Figure Re	B-24 Flux Map: eaction Rates	CY2-FM09,	Measured a	nd Calculated	Assembly A	Average	B-25
Figure Re	B-25 Flux Map: eaction Rates	CY2-FM10,	Measured a	nd Calculated	Assembly A	Average	B-26
Figure Re	B-26 Flux Map: eaction Rates	CY2-FM11,	Measured a	nd Calculated	Assembly A	Average	B-27
Figure Re	B-27 Flux Map: eaction Rates	CY3-FM01,	Measured a	nd Calculated	Assembly A	Average	B-28
Figure Re	B-28 Flux Map: eaction Rates	CY3-FM02,	Measured a	nd Calculated	Assembly A	Average	B-29
Figure Re	B-29 Flux Map: eaction Rates	CY3-FM03,	Measured a	nd Calculated	Assembly A	Average	B-30
Figure Re	B-30 Flux Map: eaction Rates	CY3-FM04,	Measured a	nd Calculated	Assembly A	Average	B-31
Figure Re	B-31 Flux Map: eaction Rates	CY3-FM05,	Measured a	nd Calculated	Assembly A	Average	B-32
Figure Re	B-32 Flux Map: eaction Rates	CY3-FM06,	Measured a	nd Calculated	Assembly A	Average	B-33
Figure	B-33 Flux Map: eaction Rates	CY3-FM07,	Measured a	nd Calculated	Assembly A	Average	B-34
Figure	B-34 Flux Map: eaction Rates	CY3-FM08,	Measured a	nd Calculated	Assembly A	Average	B-35

Figure B-35 Flux Map: CY3-FM09, Measured and Calculated Assembly Average Reaction Rates	B-36
Figure B-36 Flux Map: CY3-FM10, Measured and Calculated Assembly Average Reaction Rates.	B-37
Figure B-37 Flux Map: CY3-FM11, Measured and Calculated Assembly Average Reaction Rates.	B-38
Figure B-38 Flux Map: CY3-FM12, Measured and Calculated Assembly Average Reaction Rates.	B-39
Figure C-1 Flux Map: CY1-FM01, Measured and Calculated Relative Assembly Power	C-2
Figure C-2 Flux Map: CY1-FM02, Measured and Calculated Relative Assembly Power	C-3
Figure C-3 Flux Map: CY1-FM03, Measured and Calculated Relative Assembly Power	C-4
Figure C-4 Flux Map: CY1-FM04, Measured and Calculated Relative Assembly Power	C-5
Figure C-5 Flux Map: CY1-FM05, Measured and Calculated Relative Assembly Power	
Figure C-6 Flux Map: CY1-FM06, Measured and Calculated Relative Assembly Power	C-7
Figure C-7 Flux Map: CY1-FM07, Measured and Calculated Relative Assembly Power	C-8
Figure C-8 Flux Map: CY1-FM08, Measured and Calculated Relative Assembly Power	C-9
Figure C-9 Flux Map: CY1-FM09, Measured and Calculated Relative Assembly Power	C-10
Figure C-10 Flux Map: CY1-FM10, Measured and Calculated Relative Assembly Power	C-11
Figure C-11 Flux Map: CY1-FM11, Measured and Calculated Relative Assembly	C-12
Figure C-12 Flux Map: CY1-FM12, Measured and Calculated Relative Assembly	C-13
Figure C-13 Flux Map: CY1-FM13, Measured and Calculated Relative Assembly	C-14
Figure C-14 Flux Map: CY1-FM14, Measured and Calculated Relative Assembly	C 15
Figure C-15 Flux Map: CY1-FM15, Measured and Calculated Relative Assembly	
Figure C-16 Flux Map: CY2-FM01, Measured and Calculated Relative Assembly	
Figure C-17 Flux Map: CY2-FM02, Measured and Calculated Relative Assembly Power	C-17

Figure Po	C-18 wer	Flux	Map:	CY2-FI	M03,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-19
Figure Po	C-19 wer	Flux	Map:	CY2-FI	M04,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-20
Figure Po	C-20 wer	Flux	Map:	CY2-FI	M05,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-21
Figure Po	C-21 wer	Flux	Map:	CY2-FI	M06,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-22
Figure Po	C-22 wer	Flux	Map:	CY2-FI	M07,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-23
Figure Po	C-23 wer	Flux	Map:	CY2-FI	M08,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-24
Figure Po	C-24 wer	Flux	Map:	CY2-FI	M09,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-25
Figure Po	C-25 wer	Flux	Map:	CY2-FI	V10,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-26
Figure Po	C-26 wer	Flux	Map:	CY2-FI	VI11,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-27
Figure Po	C-27 wer	Flux	Map:	CY3-FI	M01,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-28
Figure Po	C-28 wer	Flux	Map:	CY3-FI	M02,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-29
Figure Po	C-29 wer	Flux	Map:	CY3-FI	M03,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-30
Figure Po	C-30 wer	Flux	Map:	CY3-FI	M04,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-31
Figure Po	C-31 wer	Flux	Map:	CY3-FI	M05,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-32
Figure Po	C-32 wer	Flux	Map:	CY3-FI	M06,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-33
Figure Po	C-33 wer	Flux	Map:	CY3-FI	M07,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-34
Figure Po	C-34 wer	Flux	Map:	CY3-FI	M08,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-35
Figure Po	C-35 wer	Flux	Map:	CY3-FI	M09,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-36
Figure Po	C-36 wer	Flux	Map:	CY3-FI	V10,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-37
Figure Po	C-37 wer	Flux	Map:	CY3-FI	VI11,	Measured	d and	Calculat	ed Relat	tive As	sembly		C-38
Figure Po	C-38 wer	Flux	Map:	CY3-FI	M12,	Measured	d and	Calculat	ed Relat	tive As	sembly	C	C-39

Figure D-1 Flux Map: C Burnup	CY1-FM15, Measured and Calculated Average Assembly)-2
Figure D-2 Flux Map: C Burnup	CY2-FM11, Measured and Calculated Relative Assembly)-3
Figure D-3 Flux Map: C Burnup	CY3-FM12, Measured and Calculated Relative Assembly)-4

LIST OF TABLES

Table	4-1 Detector Reproducibility Uncertainty	4-3
Table	4-2 Uncertainty in the Assembly Average Reaction Rates	4-4
Table	4-3 Uncertainty in Assembly Average Power for all Locations	4-5
Table	4-4 Burnup Uncertainty of Discharged Assemblies	4-6
Table B	4-5 Burnup Uncertainty for Assemblies Receiving One and Two Cycles of Jurnup	4-6
Table	4-6 Axial Reaction Rate Uncertainty for the Top 20% of the Core	4-7
Table	4-7 Axial Reaction Rate Uncertainty for the Middle 60% of the Core	4-8
Table	4-8 Axial Reaction Rate Uncertainty for the Bottom 20% of the Core	4-8
Table	A-1 Cycle 1 In-Core Measurements	A-2
Table	A-2 Cycle 2 In-Core Measurements	A-3
Table	A-3 Cycle 3 In-Core Measurements	A-4

1 INTRODUCTION

Typically the assembly average burnup for each assembly is maintained in the plant records. The assembly burnup records are currently used by commercial reactor operators and vendors for a number of purposes, including; 1) special nuclear material accountability; 2) placement of spent fuel in storage pools and; 3) dry storage cask design/analyses. It is anticipated that the repository for the disposal of spent fuel will utilize burnup credit and will require knowledge of the uncertainty of reactor burnup records. The uncertainty of a particular burnup record depends on the uncertainty of the method used to develop the record. Such records are generally based on core neutronics analysis coupled with in-core power detector data. In May of 1997, the DOE submitted to the NRC, DOE/RW-0472 Rev. 1, "Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages."¹ Based on that report, the DOE indicates at most a 5% uncertainty for plant burnup records.

A NRC-licensable burnup credit methodology being developed by the Department of Energy (DOE) will require that the utilities provide data on burnup uncertainty in reactor records. The loading curve presented in the Topical Report does not include an allowance for burnup record uncertainty. Therefore, the utility is responsible for quantifying and accounting for burnup uncertainty prior to cask loading. The objective of this report is to identify a specific methodology and possible alternatives for determining the average uncertainty in the reactor burnup records.

It is neither necessary nor practical to measure 100% of the fuel assemblies. However, if only a fraction of the fuel assemblies are measured, such measurements are relative, rather than absolute measurements. Neutronic calculations are required to convert the relative measurements to absolute. Therefore, the only method that can be used to determine the burnup uncertainty in both instrumented and un-instrumented locations must rely on a utilization of measured and calculated data with the assumption that the differences in calculational methods are comparable in both the instrumented and uninstrumented locations. This approach also addresses the uncertainty associated with converting the measured signals to relative assembly power in the instrumented locations by distance weighting. By comparing the measured signal responses to the modern nodal code responses, it is possible to determine a total uncertainty prior to conversion to relative assembly power. This total uncertainty includes the uncertainty in both the

Introduction

measurement and calculational methods. The uncertainty in the measurements can be determined independently from the reproducibility of the measured signals.

The current generation of neutronic codes are based on advanced nodal methods. Therefore, the primary focus of this project is to determine the uncertainty in the burnup calculation in a nodal code. This report evaluates the uncertainty associated with the plant burnup records and the uncertainty associated with the analytical methodology.

2 PLANT DESCRIPTION

2.1 General

To illustrate the approach to determine the uncertainty in the assembly burnup, a Westinghouse design plant with movable in-core instrumentation was chosen for this analysis. The reactor contains four coolant loops with a thermal power of 3411 MW and the core consists of 193 fuel assemblies with a 17x17 rod array. The rod array consists of 264 fuel rods, 24 control rod guide tubes and a center instrument thimble. The fuel rods are constructed of slightly enriched UO2 fuel pellets with Zircaloy cladding. The cycles of data chosen contained borosilicate glass and Integral Fuel Burnable Absorber (IFBA) rods to help regulate the local peaking and reduce the soluble boron concentrations at the beginning of the cycle.

The core has a set of 57 control rods called Rod Cluster Controlled Assemblies (RCCA). These rods contain a silver, indium, cadmium alloy that is used as the neutron absorber material. Each cluster is composed of 24 fingers, which fit into the 24 guide tubes. The 24 guide tubes are symmetrically positioned within the assembly. During normal full power operation, all of the control rods are essentially removed and reactivity control is maintained by altering the soluble boron concentration.

To provide a solid basis for the burnup uncertainty methodology, three cycles of operation were chosen. The three cycles consists of an initial cycle, a transition second cycle and a low leakage third cycle. Figures 2-1 through 2-3 display the batch loading for the three cycles.

The initial cycle, Cycle 1, consisted of all fresh fuel with borosilicate glass as the burnable absorber and operated for a cycle average burnup of 12,715 MWD/MTU. Sixty assemblies were discharged from Cycle 1. In Cycle 2, the borosilicate glass burnable absorber was removed from the once burned fuel and the fresh fuel contained IFBA rods. The fuel loading for this cycle had a higher enrichment than the first cycle. Cycle 2 operated for a cycle average burnup of 12,159 MWD/MTU and discharged 76 assemblies. Cycle 3 loading provided a further increase in fuel enrichment and continued the use of IFBA rods. Cycle 3 operated for a cycle average burnup of 16,820 MWD/MTU and discharged 72 assemblies.

2.2 Movable In-Core Instrumentation

In-core instrument thimbles are inserted into 58 assemblies within the core. Figure 2-4 displays the core location of the instrument tubes. The thimbles are inserted from the bottom of the core after the assemblies are loaded. The in-core detectors are used to perform surveillance on the power distribution within the core. Local radial and axial power peaking and quadrant tilts are some of the information monitored with this system.

Six miniature movable fission chamber detectors can be remotely positioned to enter the core through the 58 thimbles. The drive system for the insertion of the movable miniature detectors consist of six drive assemblies, five path transfer assemblies, and ten path transfer assemblies, as shown in Figure 2-5. The detectors are driven into the reactor core through conduits extending from the bottom of the reactor vessel through the concrete shield area and then up to a thimble seal table. The drive system pushes hollow helical wrapped drive cables into the core with the miniature detectors attached to the leading ends of the cables with a small diameter sheathed coaxial cable threaded through the hollow centers back to the trailing end of the drive cables.

Once the detectors are inserted into the core, flux maps are obtained by recording the signal from the movable miniature detectors as they traverse the selected instrument thimbles from top to bottom. This signal is proportional to the neutron flux at the detector and is recorded in volts. Detector plateau curves are generated at the start of a detector mapping to calibrate the voltage range for the current reactor conditions. Cross calibration of the six detectors occurs by insertion into the common thimble. The signal is recorded every 6 centimeters for a total of 61 axial measurements per thimble.

During the flux mapping operation, the reactor power level and control rod positions are maintained constant. The power level and control rod positions are recorded along with the detector signals for post-processing.

2.3 Measured In-Core Data

During each cycle, the plant performed an in-core flux map approximately every 30 effective full power days. For each core map, all control rods were removed except Bank D, which remains partially inserted at the top of the core. A control rod bank is considered fully withdrawn when at position 226. Appendix A present the reactor condition at the time of the in-core map. The movable in-core detector signals contained in the flux map data files were converted into reaction rates and relative assembly power utilizing the Westinghouse in-core analysis methodology.

2.4 Measurement of Thermal Power

The nodal computer codes that calculate power distributions and burnup are based on the presumption that absolute core power is a known, common denominator for all reactors. Thus, a comparison of calculated and measured data and their uncertainty requires knowledge of core power level and its uncertainty. Specifically the random uncertainty in the core thermal power is one of the components that needs to be appropriately added to the total uncertainty in fuel burnup. However, the measurement of total core thermal power for calculation of burnup increments is done at least daily and each measurement has a random measurement uncertainty of about 1%2. The statistical error in total measured power from, for example, 100 days, gives a factor of ten reduction in the single 1% uncertainty to about 0.1%. This work has therefore not included an explicit calculation of the burnup uncertainty contribution from the measurement uncertainty associated with total core power.

	192,															
	R	P	N	м	L	×	1	н	G	F	E	0	С	8	А	
۱	[Loop 4			a	3	э	3	3	3	3			Loo	φ1	
2	N	:41	3 3		3		з	1	з	,	£	3	ŧ	N!4	13	
3		3	1	2	1	2	1	2	1	2	1	2	з	3		
4		з	2	2	2		ż	1	2	1	2	2	2	a		
5	3	э	ı	2	1	2	1	2	1	2	1	2	1	3	3	
б	э	1	2	1	2		z	1	2	1	2	I	2	1	3	
7	3	а	1	2	1	2	1	2	1	2	1	2	1	3	3	
6	э	1	2	1	2	ı	\$	1	2	۱	2	1	2	1	3	270
Ð	3	з	ı	Ŷ		2	1	2	I	2	1	2	1	з	з	
50	3	1	2	ı	2	1	2	1	2	1	2	1	2	1	3	
11	40	з	I	2	1	2	t.	2	1	\$	1	2	-	3	з	
12		ņ	2	2	2	1	2	1	2	:	2	2	2	э		
13		3	3	2	1	2	I	2	I	2	1	2	\$	с. С		
14	4 Loop 3		a	3	э	1	2	1	э	1	3	з	3		p2	
15					3	3	3	4	э	3	3					
	B	атсн а:	84 Asser	nolies				~								
	B	ATCH 2:	64 Aseer	nblies				Ŭ								
	8	ATCH I:	65 Asser	niplies												

Figure 2-1 Cycle 1 Batch Loading Pattern

-	
- 1	sm.
•	ww.

	R	Ρ	N	м	L	к	J	н	G	F	E	D	с	8	٨		
1	L	Loop 4 Ni 41 3 2		3				•	3	4	3	•	3			Loop 1	
2	N			2	4	4	э	3	з	4	4	2	з		13		
З		3	L	4	э	2	а	1	з	2	3	•	4	з			
4		2	4	2	2	4	2	ş	2	4	r	2	4	2			
5	a	4	ŧ	2	3	2	4	ź	4	2	3	ż	3	4	з		
6	4	4	2	4	2	7	2	ţ	2	2	2	4	2	4	•		
7	3	3	3	2	4	2	٩	2	+	2	4	2	а	3	Е		
â	a	\$	1	3	3	ş	2	L	3	3	2	3	1	3	4		
ß	а	3	ŧ	2	4	ż	د	2	4	2	4	2	з	\$	à		
10	٠	٩	2		2	2	2	J	2	2	2	4	2	4	4		
11	3	4	ş	2	â.	2	4	2	4	2	3	2	. 7	٩	3		
12		2	4	2	2	4	2	а	2	4	Ż	2	4	2			
13		3	4	4	3	2	э	1	3	2	3	4	4	а			
14	Loop 3		3	2	a	4	3	з	C	4	4	2	ы		02		
15					а	4	3	4	3	4	э						
	8,	ATCH 4.	eo Asaan	nD iAs													
	Ð	ATCH 3:	64 Assen	noios				ď									
	В. 	A)CH2	E4 Assen	n., 1464													
	8	ATCH \;	5 Asaam	ici a s													

Figure 2-2 Cycle 2 Batch Loading Pattern 270

	193"														
	R	P	N	м	L	к	1	н	6	F	E	D	С	в	A
I	Loop 4 Ni 4:		cp 4		٠	3	5	4	5	3	•				φı
2			4	4	5	5	з	5	а	5	5	4	4	<u>M</u> 4	13
1	4		5	5	4	3	5	3	5	3	4	5	5	•	
4		+	5	3	4	5	3	4	a	s	4	a	5	4	
5	4	5	a	4	5	3	Ê	9	5	3	5	د	4	5	4
8	3	5	a	6	з	s	4	4	•	5	3	5	3	5	з
7	5	3	5	3	5		3	5	3	4	5	э	5	3	5
8	4	5	з	4	з	4	5	3	5	4	ş	4	3	5	4
9	5	3	5	a	5	٠	a	5	đ	4	5	з	s	з	5
10	3	5	з	5	\$	5		4	4	5	3	5	3	5	3
11	•	5	4	•	5	3	5	J	5	з	5	4	٢	5	4
12		4	5	з	4	\$	э	4	3	5	•	3	5	•	
13		4	5	5	4	3	5	а	5	£	4	5	5	a	
14	14 Loop 5		4	4	5	Ê	3	5	3	5	5	4	4	Loo	p.2
15	Ľ				4	з	5	4	5	5	4				•
												-			

o

270

BATCH 5. 76 Assemblies BATCH 4: 80 Assemblies

BATCH 3: S7 Assemblios

Figure 2-3 Cycle 3 Batch Loading Pattern

	R	۲	Б	м	1	к	J	ч	С	F	F	D	С	e	٨
1							0 29			0				. cop (NI 43	
2			0 19			υÚ)) 51							
3								р 10		о в		039		റ ജ	
L		0	い 36					.) 43							
,					0 11				ر. ۲۳		60		¥ C		
Ŀ	0 17		103			(] 14		0						0 e	
7				04			្ន			() 16			0 47		
ė	() 23		0 58		0 29		0 46			() 46	-	0 50	0 49	0 94	
s		0 57							0 22		0 a				0 56
u.					0		0					0 :2			
15	с зъ				ن. 40			0 25			0 21				0 13
12						0 41			្នះ			0 7			
13			0 45		0 35			:) 20						0 25	
14	Loop 3		 ر. اع				:) 27			0 62		0 97)p 2 12
15	Ľ				:) 53			0 2				1			
								61							

O Denotes manufacture Thirds Considering Soft & Vendoe Pasitions & Food Databas Oring

Figure 2-4 Radial Locations of Instrument Thimbles 273°

Figure 2-5 Movable Detector Drive Assemblies

ANALYSIS/METHODOLOGY OVERVIEW

3.1 General

Assembly burnup is calculated from measured data: core power level, duration at that power level, and the assembly relative power. The first two values can be readily measured. The assembly relative power on the other hand is not readily available. It appears initially that two methods can be utilized to determine the relative assembly power. The first method utilizes direct measurements by a movable detector inside an assembly. In this measurement, the detector returns a signal that is proportional to neutron reaction rates that are closely related to the relative power. This method is very accurate in the locations where the detector measurements are taken. Unfortunately, the measurements are only performed in instrumented locations. These measured results must also be applicable to the un-instrumented assemblies, but there is no basis for making such correlation without reliance on calculation. Therefore, this method is not sufficient.

The second method utilizes measurement and analytical tools to calculate the relative powers and is the basic method that can be used to determine burnup uncertainty in both the instrumented and un-instrumented assemblies. Currently, the utility industry relies on advanced nodal methods for analysis of relative assembly power distributions. Since nodal methods allow for the calculation of the three dimensional core wide power distributions, assembly burnups can be easily calculated. Therefore, the uncertainty in the burnup records can be determined by comparing the calculated and measured reaction rates at the instrumented locations and using analytical methods and nearby measurements to infer "measurements" in the un-instrumented locations. The basic calculational process is as follows:

- Using trapezoidal integration, axially integrate the pointwise measured reaction rates to produce measured assembly average reaction rates. Axially integrate the pointwise calculated reaction rates to produce calculated assembly average reaction rates.
- Determine the measurement reproducibility (i.e., uncertainty) by comparing all duplicate measurements and using the calculated values as a convenient frame of

reference. These data are used only as a confirmation of the total of measurement uncertainty.

- Convert the measured assembly average reaction rates into measured relative assembly powers using calculated conversion factors to interpret the measurements. From these data, determine the uncertainty in measured and calculated reaction rates.
- Determine the relative assembly power in the un-instrumented assemblies by using the calculated power distribution, the ratio between measured and calculated relative assembly power in the instrumented assemblies and distance weighting. The uncertainty in relative assembly power is the percent difference between measured and calculated relative assembly power.
- Convert and time-integrate the measured and calculated assembly power into measured and calculated burnup. The uncertainty in assembly average burnup is the percent difference between measured and calculated burnup at the end of each cycle.

The statistical evaluation is as follows:

- For all measured and calculated assembly data analyzed, determine the percent difference as calculation minus measurement divided by measurement times 100%.
- Determine the arithmetic mean and standard deviation for the group of assemblies being evaluated. The standard deviation is the measure of data uncertainty at the one-sigma level. The equation is provided in Section 4.
- Determine the one-sided tolerance to provide a 95% probability with a 95% confidence. The equation for the one-sided tolerance is provided in Section 4.

With this as a basic description, to perform the uncertainty evaluation required both neutronic and data analysis codes. The codes were used to determine the reaction rate, relative assembly power and burnup uncertainties. The neutronic codes, CASMO-3³ and SIMULATE-34, calculate relative neutron reaction rates, relative assembly power in three dimensions utilizing nodal methods. The data analysis code INCORE-3⁵ utilize the Westinghouse in-core methodology to take the raw detector signals and convert them into reaction rates and relative assembly power with data constants derived from SIMULATE-3. For this project, a set of post-processing codes was developed to compare the results from SIMULATE-3 and INCORE-3. Below are short descriptions of the methodology utilized in these codes.

3.2 CASMO-3/SIMULATE-3 Methodology

CASMO-3 performs burnup calculation on an entire fuel assembly. This code handles geometry consisting of cylindrical fuel rods with varying compositions in a square pitch array. It allows for the modeling of IFBA rods, water gaps, water holes, and control rods. CASMO-3 utilizes multi-group transport theory to calculate the two-dimensional space energy distribution of flux within a lattice. It performs the depletion calculation and produces effective two-group cross sections, homogenized over the assembly. CASMO-3 also generates assembly discontinuity factors for use in SIMULATE-3.

The CASMO-3 model uses 40 neutron energy groups. The base library uses the standard ENDF/B-IV cross section set with some ENDF/B-V fission spectrum updates. It can calculate both gamma and neutron detector responses. In addition to solving the transport equation for fuel assembly lattices, CASMO-3 can also calculate the effective two-group cross sections for the baffle and reflector regions.

SIMULATE-3 is a three-dimensional nodal analysis code, which models the steady state neutronics and thermal-hydraulic behavior of the core. SIMULATE-3 uses the QPANDA6 model, which solves the three-dimensional, two-group neutron diffusion equation. The QPANDA methodology also assumes that the flux distribution is comprised of two pieces: global shapes (homogeneous smooth flux distribution) and local shapes (heterogeneous assembly flux distributions). This assumption allows assembly discontinuity factors to be edited from the same CASMO-3 calculations that produces the two-group cross sections. When used in the QPANDA model, the assembly discontinuity factors alter the neutron currents between nodes, effectively eliminating spatial homogenization differences.

3.2.1 CASMO-3/SIMULATE-3 Model

Cross sections, for use in SIMULATE-3, were generated for each fuel assembly and for the baffle and reflector utilizing CASMO-3. SIMULATE-3 models were constructed for all three cycles. The core was modeled in SIMULATE-3 with four nodes per assembly radially and 24 nodes axially. For each node in the model, SIMULATE-3 calculates relative powers, burnup distributions, and detector reaction rates. The model also has an option for axial reconstruction of the power distributions and reaction rates, allowing for 15 axial sub-divisions per node. Performing this operation allows for a total of 360 calculated axial reaction rates and relative powers.

Each cycle was depleted from beginning of cycle to the end of cycle in steps corresponding to the in-core measurements. At the end of a cycle, a restart file was created. The information contained in the restart files was then shuffled into the next cycle. Depletion of the cycles was performed with a reactivity search utilizing soluble boron. At each depletion state in which an in-core run was performed, SIMULATE-3 was set up to collect and redirect the calculated detector reaction rates and relative power by node to a summary file for later statistical processing.

3.3 INCORE-3 Methodology

The INCORE-3 code processes information obtained by in-core instrumentation in Westinghouse PWRs and converts the instrument signals into reaction rates. Conversion of the raw detector signals follows the methodology developed by Westinghouse.

Raw detector data is obtained for 61 axial positions from the movable in-core detectors in an instrumented location. INCORE-3 reads the raw detector data, scans for erroneous signals, and performs a validity check on the background levels, detector calibration factors, and duplicate traces. INCORE-3 then corrects the raw data for background levels and relative detector sensitivity and determines measured reaction rates in the instrumented locations. INCORE-3 then computes relative assembly power utilizing the measured reaction rates, the calculated reaction rates and the relative assembly power calculated by SIMULATE-3.

Once the measured relative assembly power for the instrumented location is calculated, the code then uses distance weighting of the data from the nearest instrumented assemblies to determine the relative assembly power for un-instrumented assemblies.

3.3.1 INCORE-3 Model

INCORE-3 was run for all the cases listed in Appendix A. INCORE-3 performed the analysis for 61axial measured signals in each of the instrumented locations. The stored output files were compared with SIMULATE-3 results utilizing the post-processing codes described below. These output files contain reaction rates for the instrumented locations, data to determine detector reproducibility, relative assembly power, cycle burnup, and power level of the reactor.

3.4 Post-Processing Codes

As part of this project, two post-processing codes were developed in FORTRAN to analyze the data from SIMULATE-3 and INCORE-3. The first code called UNCERT, calculates detector reproducibility uncertainty and reaction rate uncertainty. A second code called BURN2D calculates the burnup in each fuel assembly and generates the burnup uncertainty.

3.4.1 UNCERT

The *UNCERT* code is designed to read the INCORE-3 output files that contain the reaction rate and relative assembly power data and the corresponding SIMULATE-3 summary files for each flux map. A normalization is performed on the SIMULATE-3 and INCORE-3 reaction rates separately. From these normalized reaction rates, *UNCERT* calculates relative differences and the mean and standard deviations for the relative differences. *UNCERT* also performs statistical analysis on axial regions of the core. The equations used in the statistical analysis are provided in Section 4. The uncertainty calculated utilizing the reaction rates is representative of the uncertainty in the burnup. The comparison of measured and calculated reaction rates provides a direct comparison of measurement to calculation.

UNCERT checks the INCORE-3 output files for duplicate traces to determine the reproducibility uncertainty. Relative differences are calculated for the duplicate traces, along with the mean and standard deviation for all the duplicate traces. The statistics for the duplicate traces are also generated for axial regions of the core. Figure 3-1 displays a flow chart of the *UNCERT* code.

3.4.2 BURN2D

In order to calculate burnup, it is necessary to determine the relative assembly power. The relative assembly power is defined as the power in a node divided by the volume of the node, over the power of the core divided by the volume of the core. *BURN2D* reads the relative assembly power from the INCORE-3 output files for both measured and SIMULATE-3 values. *BURN2D* also reads the core average burnup for each case.

Using the "measured" and calculated relative assembly power for each assembly and the cycle average burnup, the assembly burnup can be determined. The following equation is utilized to calculate the assembly burnup,

$$BU_i(n) = BU_i(n-1) + \Delta BU * P_i(n)$$
(eq. 3-1)

where P_i is the relative power in assembly *i*, for step *n*. Δ BU is the change in the cycle average burnup from step *n*-1 to step *n*. The product of the relative assembly power and the change in the cycle average burnup are accumulated for each assembly. From this equation, both the measured and calculated relative assembly power can be utilized to determine measured and calculated assembly burnup values.

The "measured" and calculated assembly burnup values are used to calculate relative differences for each fuel assembly. Statistical analysis is then performed by the *BURN2D* code to determine the mean, standard deviation, and root mean square of the relative differences. A flow chart of the *BURN2D* code is presented in Figure 3-2.

Figure 3-1 Flow Chart of UNCERT

4 RESULTS

4.1 General

This report quantifies the uncertainty associated with the plant burnup records by evaluating the uncertainty associated with the assembly average reaction rates, relative assembly power and assembly average burnup values. It then quantifies the axial uncertainty in the burnup distribution. The axial uncertainty can be used to evaluate the reactivity effects of lower burnup on the ends of the assemblies.

To determine the statistical significance of the uncertainties, the basic statistics utilized in this analysis are presented. The first quantity defined is the percent difference.

Percent Difference =
$$\frac{(Calc.-Meas.)*100\%}{Meas.}$$
 (eq. 4-1)

The second quantity is the standard deviation. In this report the standard deviation is defined as,

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (R_i - M)^2}{n - 1}}$$
 (eq. 4-2)

where R_i represents the difference for assembly location *i*, *M* is the arithmetic mean of the difference, and *n* represents the number of assembly locations. When evaluating only measured locations, *n* is 58 (less if there are missing traces) and when evaluating all locations, *n* is 193.

In the case of the burnup records, the area of concern is the over-prediction of burnup. Therefore, a one-sided tolerance provides the appropriate level of probability and confidence required. In this case, a tolerance can be applied to ensure that 95% of the measurements occurs on one side of the normal distribution. Since the distribution is assumed to be normal, the 95% one-sided tolerance can be defined to include 95% of the error distribution. Therefore, the one-sided tolerance is calculated assuming a 95%

Results

confidence interval. Equation 1 shows an approximation for the 95% one-sided tolerance factor (K).⁷⁻⁸

$$K = \frac{K_{1-T} + \sqrt{K_{1-T}^2} - ab}{a}$$
(eq. 4-3)

where,

$$a=1-\frac{K_a^2}{2(n-1)}$$
 $b=K_{1-T}^2-\frac{K_a^2}{n}$ (eq. 4-4)

and,

$$K_a = K_{0.05} = 1.645$$
 $K_{1-T} = K_{1-.95} = 1.645$ (eq. 4-5)

n = Number of data points

In this analysis, a 95% confidence is defined as being 95% certain of an interval containing the true mean. The 95% tolerance is defined as an interval that contains at least 95% of the measured points. $K\sigma$ denotes the 95% probability with a 95% confidence level. *K* represents the tolerance factor determined from the number of data points and s represents the standard deviation of the sample population.

4.2 Movable Detector Reproducibility

The movable detector reproducibility is a measure of the uncertainty associated with repeated measurements of a single detector in a given location. These data provide a confirmation of the total measurement uncertainty. For each in-core flux map performed, a number of duplicate traces are obtained for reproducibility purposes at given thimble locations and at different times during the flux map. The movable detector reproducibility is a good indication of the accuracy of the measured data. In the three cycles of data analyzed, there were 441 pairs of duplicate traces. Since the reaction rate and burnup uncertainties are dependent on the plant measured data, the movable detector reproducibility is presented in conjunction with those uncertainty values of interest.

The code *UNCERT* reads the INCORE-3 output files and checks for duplicate traces. For each set of duplicate traces, *UNCERT* calculates the difference in reaction rates between the duplicate traces, the mean of the differences, the standard deviation and root mean square. The statistical information is then transferred to an *UNCERT* generated output file. Table 4-1 is a listing of the *UNCERT* detector reproducibility results.

RMS Error

0.761%

Detector Reproducibil	ity Uncertainty	

Table 4-1

441

Duplicate Traces	Mean	Standard Deviation				

-0.147%

4.3 **Uncertainty in Instrumented Locations**

This section quantifies the uncertainty associated with the instrumented locations only. The approach is to quantify the uncertainty associated with the measured reaction rates. These data provide a direct comparison between measurement and calculation prior to conversion to relative assembly power.

0.748%

To calculate the uncertainty for the assembly average reaction rates, the measured and calculated reaction rates for each of the instrumented locations are utilized. The difference between the measured and calculated values is determined. This process is performed by UNCERT using the output files from INCORE-3 and SIMULATE-3 for the three cycles of in-core flux maps. The mean and standard deviations are then computed from the differences. Since SIMULATE-3 was run at the measured core power level, any uncertainty in core power level will be included implicitly in the error of the reaction rates. Appendix B presents the normalized assembly average reaction rates for all the in-core runs. If no data was measured for a detector location, a zero is presented in the figures in Appendix B. These detector locations were also excluded from the statistical analysis.

Table 4-2 presents the results obtained from the UNCERT code for the uncertainty in assembly average reaction rate. The first column of data in Table 4-2 contains the number of traces utilized in determining the standard deviation (σ). For this calculation, the number of traces is equal to the number of instrumented locations times the number of in-core flux maps, minus the number of instrumented locations not measured. The next column contains the mean of the measured reaction rates. The one-sided tolerance factor, K, is calculated by Equation 1 using the number of traces. The standard deviation for an infinite set of data (σ_{∞}) is approximated by,

$$\sigma_{\infty} = \frac{K\sigma}{K_{\infty}} = \frac{K\sigma}{1.645}$$
 (eq. 4-6)

The final column contains the $K\sigma$ or the uncertainty with a 95% probability and a 95% confidence level.

Results

The total uncertainty is determined to be 2.21%. This uncertainty implicitly contains the detector reproducibility error in the measured data. These values indicate uncertainty between calculation and measurement prior to conversion to relative power and then to burnup.

Description	Number of Traces	Mean	σ	к	$\sigma_{_4}$	Κσ
Movable Detector Reproducibility	441	-0.147%	0.748%	1.771	0.805%	1.325%
Uncertainty in Average Reaction Rate	2127	0.082%	1.300%	1.701	1.344%	2.211%

Table 4-2Uncertainty in the Assembly Average Reaction Rates

4.4 Uncertainty in Relative Assembly Power

The previous section is concerned with the instrumented locations only. However, the burnup of all assemblies in the core is required for the plant records. To determine the burnup requires knowledge of the relative assembly power distribution. INCORE-3 determines the relative assembly power in the un-instrumented assemblies by using the calculated power distribution, the ratio between measured and calculated relative assembly power in the instrumented assemblies and distance weighting.

To analyze for the uncertainty in the relative assembly power, the *BURN2D* code is used. The output files from INCORE-3 contain both measured and SIMULATE-3 calculated relative assembly power for every location in the core. The *BURN2D* code calculates the differences in relative assembly power for each assembly and for each incore flux map. Appendix C presents the full core "measured" and calculated relative assembly power for each in-core flux map. From the data in Appendix C, the mean, standard deviation and root mean square of the differences are then calculated for all assemblies in the core. The analysis assumes that all the data is statistically independent. The analysis also assumed equal weight for each flux map.

Table 4-3 presents the statistics for the uncertainty in the assembly average power utilizing all the assemblies in the core. In Table 4-3, the number of samples for the uncertainty in the average assembly burnup is calculated by taking the 38 in-core flux maps times the 193 assemblies in the core. The assembly average power uncertainty of 1.79% is nearly equal to the uncertainty in the reaction rates obtained for the instrumented locations (2.2%). The similarity in the numbers is indicative of the robustness of the distance weighting method to generate "measured" values in uninstrumented locations. In addition the accuracy of modern nodal codes to calculate the power distribution and hence the burnup distribution is evident.

Table 4-3
Uncertainty in Assembly Average Power for all Locations

Description	Number of Traces	Mean	σ	к	σ_4	Κσ
Movable Detector Reproducibility	441	-0.147%	0.748%	1.771	0.805%	1.325%
Uncertainty in Average Reaction Rate	7334	0.016%	1.069%	1.675	1.088%	1.791%

4.5 Assembly Burnup by Cycle

The three initial cycles of core operations, which are the basis for this analysis, cover the startup cycle, a transition cycle, and a near-equilibrium cycle. At the end of each cycle approximately 1/3 of the fuel assemblies in the core are discharged. The remaining fuel is rearranged within the core, and the empty locations are filled with the new assemblies to make up the fuel loading for the next cycle. There is no requirement that assemblies from instrumented locations in one cycle be repositioned into instrumented locations in the next cycle. Since only about 30% of core locations are instrumented, an average of about 30% of the assemblies in each loading will be instrumented in any one cycle. In general, for fuel assemblies that are in the core for three cycles, approximately 34% of the assemblies have never been located in an instrumented location. Of the remaining assemblies, 44% were instrumented during one of the cycles, 19% were instrumented for two of the cycles and only 3% were instrumented for all three cycles.

From the perspective of burnup uncertainty, only a small quantity of measured data is available for fuel assemblies that have been instrumented in-core for multiple cycles. The approach that has been taken in this work is to characterize individual assembly discharge burnup and their uncertainties by discharge batch and by cycles of residence time. In addition, because the measured data in the instrumented locations is use to calculate "measured" data in the un-instrumented locations, it is possible also to simply add both the calculated and the "measured" burnup increments from cycle to cycle and obtain the calculated and "measured" discharge burnup. These differences are used as the measure of burnup uncertainty. An alternative that was not used in this work would be to add the burnup uncertainty in each time step, in quadrature. Appendix D contains the three end-of-cycle burnup maps used to determine the discharge burnup uncertainty.

Table 4-4 provides the results of the foregoing evaluation of the mean burnup uncertainty of individual fuel assemblies as a function of the number of in-core cycles. The data was not weighted for different cycle lengths, all data was given equal weight. As expected, these data show that the uncertainty in assembly average burnup decreases as the in-core residence time increases.

Results

Description	Number of Traces	Mean	σ	к	$\sigma_{_4}$	Ko
Discharged at End of Cycle 1	60	-0.077%	0.941%	2.017	1.154%	1.898%
Discharged at End of Cycle 2	76	-0.176%	0.496%	1.970	0.594%	0.977%
Discharged at End of Cycle 3	57	0.207%	0.504%	2.028	0.621%	1.022%

Table 4-4Burnup Uncertainty of Discharged Assemblies

For comparison, assemblies that have both one and two cycles of burnup, regardless of discharge, can also be evaluated. There are 329 assemblies with one cycle of burnup, 193 in Cycle 1, 60 in Cycle 2 and 76 in Cycle 3. There are 193 assemblies with two cycles of burnup, 133 in Cycle 2 and 60 in Cycle 3. Those assemblies with three cycles of burnup were discharged at the end of Cycle 3 and are presented above. Table 4-5 provides the burnup uncertainty for all fuel assemblies with one and two cycles of burnup.

Table 4-5Burnup Uncertainty for Assemblies Receiving One and Two Cycles of Burnup

Description	Number of Traces	Mean	σ	к	$\sigma_{_4}$	Κσ
Once Burned Fuel	329	0.028%	0.843%	1.792	0.918%	1.511%
Twice Burned Fuel	193	0.064%	0.614%	1.840	0.687%	1.130%

4.6 Axial Uncertainty

The axial distribution of burnup uncertainty is determined to allow for the evaluation of reactivity effects in the ends of the assemblies⁹. This section examines axial uncertainty in reaction rates in the 58 instrumented locations. The axial distribution of the core is divided into the top 20%, middle 60% and bottom 20%. The axial detector reproducibility and the reaction rate uncertainties are provided.

The uncertainty for the top 20% of the core is calculated by trapezoidal integration of the first 13 axial detector measurements for all the instrumented locations and calculating the average reaction rate. The difference between SIMULATE-3 and

INCORE-3 region average reaction rate and standard deviation is calculated for all of the in-core flux maps using the *UNCERT* code. The reproducibility is determined in the same manner. Table 4-6 presents the uncertainty for the top 20% of the core. The reaction rate uncertainty is 6.14% in this region of the core. The higher uncertainty is due to the shape of the flux and the positioning of the detector.

In the calculation of the uncertainty for the middle 60% of the core, the INCORE-3 reaction rates for axial locations 13 through 49 are integrated and compared to the corresponding region averaged SIMULATE-3 reaction rates for all in-core flux maps. Table 4-7 presents the uncertainty for the middle 60% of the core where the uncertainty in reaction rate for the three cycles is 2.50%. As expected, the uncertainty is lower in the middle of the core.

In the calculation of the uncertainties for the bottom 20% of the core, detector measurements 49 through 61 are integrated. The uncertainty for the bottom 20% of the core is presented in Table 4-8. In the bottom of the core, the detector reproducibility has nearly the same performance as the top 20% of the core. The uncertainty in reaction rates for this region is 6.68% and is similar to the top 20%.

The low uncertainty in the reproducibility provides confidence in both the measurement and calculation. As shown earlier, the uncertainty in reaction rate is indicative of the uncertainty in burnup; therefore, the burnup uncertainty by axial region was not calculated.

Description	Number of Traces	Mean	σ	к	σ_4	Κσ
Movable Detector Reproducibility in the Top 20%	441	-0.232%	1.304%	1.771	1.404%	2.309%
Reaction Rate Uncertainty in the Top 20%	2127	-3.095%	3.610%	1.701	3.733%	6.141%

Table 4-6Axial Reaction Rate Uncertainty for the Top 20% of the Core

Table 4-7Axial Reaction Rate Uncertainty for the Middle 60% of the Core

Description	Number of Traces	Mean	σ	к	$\sigma_{_4}$	Kσ
Movable Detector Reproducibility in the Middle 60%	441	-0.142%	0.726%	1.771	0.782%	1.286%
Reaction Rate Uncertainty in the Middle 60%	2127	0.017%	1.468%	1.701	1.518%	2.497%

Table 4-8

Axial Reaction Rate Uncertainty for the Bottom 20% of the Core

Description	Number of Traces	Mean	σ	к	$\sigma_{_4}$	Κσ
Movable Detector Reproducibility in the Bottom 20%	441	-0.060%	1.210%	1.771	1.303%	2.143%
Reaction Rate Uncertainty in the Bottom 20%	2127	3.254%	3.925%	1.701	4.059%	6.676%

5 CONCLUSION

This report evaluated the uncertainty associated with the reactor burnup records. Three separate sets of results were used to characterize the burnup uncertainty: uncertainty in reaction rates, uncertainty in relative assembly power and axial variability in uncertainty.

In this study, the assembly average reaction rate uncertainty in the instrumented locations is found to be 2.21%. The use of reaction rate provides a direct comparison between measurement and calculation in the instrumented locations prior to the conversion to relative assembly power and subsequently burnup. The use of the instrumented locations eliminates any uncertainty associated with the generation of data for un-instrumented locations using distance weighting from nearest neighbors. When converted to relative assembly power, the uncertainty is 1.79%. The closeness of the values provides confidence in the conversion to relative assembly power and eventually burnup. The magnitude of this value is indicative of the accuracy of the distance weighting technique and the accuracy of the advance nodal codes for predicting assembly power and ultimately burnup. The uncertainty in burnup evaluated over three cycles of operation demonstrates a decrease in uncertainty with an increase in residence time or burnup. For assemblies discharged after one cycle of burnup, the uncertainty is 1.90%, after two cycles of burnup, the uncertainty is 0.97% and after three cycle of burnup is 1.02%. This decrease in uncertainty after two cycles of burnup is indicative of the self-correcting nature of burnup.

Since transportation and storage are concerned with end effects, an evaluation of the axial distribution of the uncertainty was performed in the instrumented locations. In this analysis, 6.14 and 6.68% uncertainty is obtained at the top and bottom ends of the assemblies, respectively. The axial distribution of uncertainty and calculated axial profiles¹⁰ provide a basis to determine the magnitude of the end effects.

This project was focused on movable in-core detector measurements where measurements can be obtained along the complete axial profile. A further study should be performed for plants utilizing fixed in-core detectors to determine the uncertainty associated with the burnup records generated in this manner.

6 References

- 1. DOE, "Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages," Rev. 1, DOE/RW-0472, May, 1997.
- McLeod, N. B., "The Accuracy of Fuel Burnup Measurements in Nuclear Reactors," INMM, 31st Annual Meeting, Los Angeles, CA, July 15-18, 1990.
- 3. Edenius, Malte and Forssen, Bengt-Herman, "CASMO-3 A Fuel Assembly Burnup Program User's Manual Version 4.4," STUDSVIK, NFA-89/3, 1991.
- 4. Ver Planck, David, "SIMULATE-3 User's Manual- Advanced Three-Dimensional Two-Group Reactor Analysis Code," Studsvik, 1995.
- 5. Harris, A. J. and Jones, K. A., "The INCORE-3 Program," Westinghouse Electric Corporation, WCAP-8492, 1975.
- 6. Smith, K. S. "Assembly Homogenization Techniques for Light Water Reactors Analysis," Progress in Nuclear Energy, Great Britain, Vol. 17, No. 3, 1970.
- 7. Crow, E. L., etc. al., "Statistics Manual," Dover Publications, Inc., New York, 1960.
- 8. Walpole, R. E. and Myers R. H., "Probability and Statistics for Engineering and Scientists," Macmillan Publishing Company, New York, 1985.
- 9. Brady, M. C., etc. al, "Finding of the OECD/NEA Study on Burnup Credit," PHYSOR 96, International Conference on the Physics of Reactors, September, 1996.
- 10. Cacciapouti, R. J. and Van Volkingburg, S., "Axial Burnup Profile Database for Pressurized Water Reactors," YAEC-1937, August 1996.

A measured data

The tables in this Appendix present the conditions at the time of the measurement. The first column provides the name of the flux map file with the CY indicating the cycle number. The second column provides the rated core power in%, where 100% is 3411 MWt. The third column provides the cycle average burnup in MWD/MTU. The fourth column provides the position of control bank D in steps, where 226 steps is fully withdrawn. The final column provides the boron concentration in ppm, where N/A indicates the value was not available.

TableA-1Cycle 1In-Core Measurements

Flux Map Data File	Rated Core Power (Percent)	Burnup (MWD/MTU)	Bank D Control Position	Soluble Boron Concentration (ppm)
CY1-FM01	78.00	470.0	191	N/A
CY1-FM02	90.00	626.0	200	N/A
CY1-FM03	100.00	913.0	212	N/A
CY1-FM04	100.00	1935.0	204	727
CY1-FM05	93.00	2953.0	203	727
CY1-FM06	100.00	3463.0	213	697
CY1-FM07	100.00	4369.0	221	642
CY1-FM08	100.00	4852.0	228	599
CY1-FM09	100.00	5998.0	220	519
CY1-FM10	100.00	7216.0	228	440
CY1-FM11	100.00	8234.0	228	359
CY1-FM12	100.00	9270.0	223	288
CY1-FM13	100.00	10566.0	223	189
CY1-FM14	100.00	11577.0	220	100
CY1-FM15	100.00	12714.0	226	14

Table A-2Cycle 2 In-Core Measurements

Flux Map Data File	Rated Core Power (Percent)	Burnup (MWD/MTU)	Bank D Control Position	Soluble Boron Concentration (ppm)
CY2-FM01	100.00	420.3	192	838
CY2-FM02	99.90	690.4	216	829
CY2-FM03	99.90	1720.0	228	807
CY2-FM04	99.90	2974.4	221	752
CY2-FM05	100.00	4000.0	228	683
CY2-FM06	100.00	5110.0	226	603
CY2-FM07	100.00	6175.0	228	523
CY2-FM08	100.00	7471.0	226	410
CY2-FM09	100.00	8543.6	228	314
CY2-FM10	100.00	9840.5	230	190
CY2-FM11	100.00	11059.7	226	77

Table A-3Cycle 3 In-Core Measurements

Flux Map Data File	Rated Core Power (Percent)	Burnup (MWD/MTU)	Bank D Control Position	Soluble Boron Concentration (ppm)
CY3-FM01	99.96	277.6	214	1020
CY3-FM02	99.98	1099.0	230	1047
CY3-FM03	100.00	2206.8	229	1070
CY3-FM04	100.00	3189.0	227	1055
CY3-FM05	100.00	4259.4	226	1022
CY3-FM06	100.00	5402.0	225	976
CY3-FM07	100.00	6577.5	225	894
CY3-FM08	100.00	7649.0	226	827
CY3-FM09	100.00	8909.9	227	727
CY3-FM10	100.00	9881.0	229	644
CY3-FM11	100.00	11211.2	231	N/A
CY3-FM12	100.00	13200.0	230	336

B

MEASURED AND SIMULATE-3 ASSEMBLY AVERAGE REACTION RATE VALUES FOR INSTRUMENTED LOCATIONS

The figures in this Appendix present the measured and calculated assembly average reaction rate values for the instrumented locations. The measured and calculated reaction rates have been normalized to the same value. The reaction rates in these figures were used to determine the reaction rate uncertainty in the instrumented locations. The header on each figure indicates the flux map number and burnup corresponding to the tables in Appendix A.

FLUX MAP: CY1-FM01 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 470.0 MWD/MTU

						6.635 0.654 2.688			0.619 0.622 0.563					
		D 524 0 525 0.097			1.177 1.183 0.518		1.157 1,145 -0.377							_
							0.932 0.952 2.182		1.110 1.112 0.174		0.752 0.765 1.602		0 528 0.525 -0.661]
	0 721 0.728 0.874	0 748 0 765 2.19 3					1.390 1.378 -1.559							
				1 349 1 345 -0.324				1.419 1.408 -0.774		1 366 1 345 -1.524		1.257 1.238 -2.298		
0.606 0.622 2.644		1110 1.112 0.118			1 435 1.437 -2.045		1.405 1.382 +1.743						1 183 1.183 0 030	
			1.007 1.019 1.181			1.340 1.343 0.200			1.026 1.025 0.875			1.318 1.296 -1.672		
0.621 0.637 2.609		0 929 0 952 2,468		1 032 1 044 1.193		0.930 0.947 1.848			1.413 1 362 -2.238		1.391 1.376 -0.981	0.934 0.952 2.015	1,147 1 145 -0.134	
	0.679 0.668 2.703							1.360 1.343 -1.212		I 419 I 408 ⊡0.831				0 639 0.654 2 214
				1 019 1.029 0.937		1 027 1.035 0.772					1 381 1.349 -2.299			
0.509 0.521 2.404				1.356 1.345 -0 796			1.024 1.044 1.973			1.374 1.345 -2.120				0.528 0.521 -1.350
					1.369 1.349 -1 393			1.001 1 019 1 760			1 058 1 045 -1.137			
		0.781 0.771 1.401		1.242 1.238 -0 320			0.340 0.352 1.333						0.524 0.525 0.161	
		0 525 0.525 -0 135				0.680 0.593 2.833			1 198 1,183 -1,204		0.728 0.728 D.244			_
				0.507 0.521 2.650			0 521 0.637 2 507				Measur Calcula % Differ	ed Fleaca loci React rence	on Rales Iron Aate	

FLUX MAP: CY1-FM02 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 626.0 MWD/MTU

											1			
						0.630			0.812					
						1.000			0.510					
				┼		1.008		<u> </u>	-0.505	<u> </u>	<u> </u>		1	
		0.514			170		1.156		I				I	
		0.514			1 100		1 848		I				I	
		-0032	<u> </u>	<u> </u>	54.177	<u> </u>	-1.648			—	+	┝───		1
		I					0.928		1.094	I	0.765		0.527	
		I					0.853		0.000		0.761		0.514	
		6				<u> </u>	2.0-2		0.300	—		├ ──		4
	0.718	0.758					1 395		I				I	
	0.711	0.701					0.204		I				I	
_···	-0.004	10014		- 543			10.190	4.407		4 860	┼	4 8 4 7	<u> </u>	<u> </u>
				1 305				1.433	I	1.368		1 297		
				0.409				0.0.889	I	1.303		1 231		
0.000	<u> </u>	11.107			1.190		1 400	1.0.000	—		<u> </u>	-1.2.50	1 1 71	
0.004		1 100			423		1 409	1	I				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 014		D 059			0.519		0.430	1	I				-1 262	
	<u> </u>		1.006		+	1 368	1		1.020			1 21 1		
			1.025			1.372	1		1.551			1 203		
			1 971			C. 192	I		2156			-1.392		
0.621		0.439	 -	1.035	<u> </u>	0.943	 		1.418		1,399	0.935	1 155	<u> </u>
C 625		0 953		056		0.972	I		1 403		384	D 953	135	
C.856		1.444		2 0 9 7		3,109	I		-1.071		-1.132	1.862	-1.834	
	0.663							1.366		1414				0.64!
	0.662						I	1.370		1.420				0.641
i i	1.337						I	0.259		0.431				-0.067
				019		1.031					1 373		t	·
				1.039		1.051	I				1.354			
				i 962		1.935					-1.581			
0.516				1.373			1.027			1.389				0.516
0.510				1.355	1		1.656			1.355				0.510
-1.106				-1 335	•		2 821			-1.061				-1.096
					1.365		1	1.000			1.054			
					1.354		ł	1 Q25			1 054			
					-0 833			2.426			-0.814			
		D 757		1.250			0.938						0.519]
		D 756		1 231			0 953						0.514	1
		-0.140		-1464			1.536						-1.127	ļ
		2.514		1		0 677			1.195		d.728			
		0.514		1		0.692			1.188		0.711			
		-0 109	<u>.</u>			2 21 1			-2.254		-2.389]	
				0.509			D 672				Measur	ed Reach	on Rains	i
				05:0			0.625				Calculation	Head Flead	ion Rale	5
				0.276	L		10451				- Sa Dillei	e noe		

FLUX MAP: CY1-FM03 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 913.0 MWD/MTU

						0.527 0.534			D 603 D 602]			
		0.507 0.507 -0.028			1.158 1.155 -0.278	1.089	1.143 1.126 -1.300		-0.070]	
							0.924 0.956 3,432		1 098 1 099 0.117		0 760 0.764 0.539		0 519 0.507 -2.258	
	0 701 0.701 -0.016	0 758 0.784 0.791					1 400 1 383 -1.249							
		I		1.349 1.359 0.730				1 434 1,423 -0.743		1 399 1.359 -2.155		1.258 1.228 -2 525		
0.596 D.602 1.052		1 101 1.099 -0 157			1 430 1.429 40 145		1 414 1 413 -0.079						1.149 1.155 0.513	
			1.014 1.030 1.630			1.386 1.386 0.016			1.048 1.054 1.725			1.307 1.268 -1 423		
D 615 0 619 0.639		0.935 0.956 2.185		1.647 1.065 1.743		0 969 0 995 2 718			1.415 1.413 -0.138		1.299 1.363 -1.195	0.938 0.958 1.917	1.154 1.128 -2.268	
	0 679 0.692 1.833							1.889 1.386 -0.875		1.412 1.420 0.803				0 832 0 634 0 256
				1 029 1.948 1.917		1 045 1.064 1.753					1,377 1,354 -1 674			
0.505 6.503 -0 312				1 372 1.359 -0.961			1.038 1.065 2.588			1.380 1.359 -1 527				0.510 0 <i>5</i> 03 -1.401
					1.386 1.354 -0.919			1.007 1.630 2.349			1.073 1.065 -0.658			
		0 747 0 748 0 206		1 242 1 225 -1.263			0.941 0.955 1.620						0.516 0.507 -1.637	
		0 504 D 507 0 603				0.692 0.697 1.510			1.176 1 155 -1.755		D 715 D 701 -2.002			
				0 501 0.503 0.502			0,611 0,619 1,291				Measur Calcula 3. Diffai	ed React led React lence	ion Flates liun Rate	5

				FO CY	AVER R INS CLE B		REACT ENTER JP: 19	TION F D ASS 35.0 M	ATES EMBL	IES ITU				
						0.623 0.638 7 407			0 598 0 603 0 841]			
		0.503 0.505 0.345			1 156 1.141 0.428		1 '37 1.128 -0.850							_
							0.945 0.971 2.726		1.089 1.099 0.955		0.700 0.782 0.222		0.512 0.505 1.307	
	0.699 0.699 -0.012	0 779 0 782 0.420					1.383 1.568 -1.042							
				1.349 1.348 -0.077				1.420 1.407 -0.94D		1 383 1,340 -1,582		1.226 1.215 -0.912		
0.595 0.603 1.402		1.097 1.099 0.164			1.427 1.412 -1 048		1.419 1.404 -1 072						1.1 35 1.141 0.391	
			: 031 : 041 0961			1 387 1 383 -0 277			1 065 1,07a 1,#91			1 294 1 276 -1.213		
0.616 0.625 1.549		0.959 0.971 1.207		1.067 1.077 D 355		1.003 1.020 1.657	i		1.428 1.404 1.705		1.384 1.368 -1.152	0.957 0.971 1.436	1.143 1.128 -1 355	
	0.701 0.710 1.271							1.350 1.363 -0.494		1.402 1.407 3.303		-		0.535 0.838 0.487
				1.053 1.053 0.902		1.068 1078 0148					1.368 1.341 -1 256			
0 496 0.502 0.722				1,392 1,348 -0.975			1 058 1 077 1.790			1.363 1.348 -1 113				0.506 0.502 -0.634
					7.351 1.341 -0.750			1.024 1.041 1.658			1.0/1 1.061 -0.917			
		0.746 0.750 0.516		1.228 1.215 -1.003			0 953 0 971 1 892						D 510 0.505 -0.963	
		0.501 0.505 0.777				0 694 0.710 2.427			1 159 1 141 -1.569		0.712 0.899 - 1.849			
				0.496 0.502 1.044			0.611 0.625 2.264				Moasur Galcula % Diffei	eo Aoacti loc Aoact locact	ian Aelos lior Aale	: 5

FLUX MAP: CY1-FM04 MEASURED AND CALCULATED ASSEMBLY.

Figure B-4 Flux Map: CY1-FM04, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM05 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 2953.0 MWD/MTU

											-			
						0.632	I	T	0.606		1			
						D 550			3.614					
		0.000		<u> </u>	4.407	2,882	- 404	<u> </u>	1.312	<u> </u>	<u> </u>		1	
		0.523			1.137		1,134							
		-0.882			0 379		0 190							
							0.962		1.090		0.890		0.518	1
	4						D 982		1.101		0.BD7		0.515	
							2 171		1.020		-9346		-0.500	
	0.712	0.798					1.357				ľ			
	0.712	0.807					1 344							
	1-0.043	1.151			 	 	-0.922	l	1		 	·		
	1			1.334				1.379	1	1.342		1.237		
	1			-0.070				0.398	1	-0.862		1.498		
0.602	<u> </u>	1.097			1,399	<u> </u>	1.397	1			<u> </u>	1	1.137	
0.614		1.01			1 360		1 372		1				1.142	
1 989		0.3/0			-1.352		-1.838						0.425	
	1		1.034		[1 339	1	1	1.067		[1 263		
		I	1.045			1.355			1.075	í		1.271		
<u> </u>	ļ		1.658			1.217	<u> </u>		0.747	<u> </u>		-0.937		
0.628		0.970		1.068		1.012			1.395		1.351	0.972	1.159	
2,131		1 250		0.577		1.030			-1 859		-3.480	1086	-2.002	
	0.720		<u> </u>		<u> </u>		<u> </u>	1,250		1.275				0.640
	0 730							1.555		1 375				0 850
	1.508		l	l				-0.406		-0.202				1.602
				1.056		1.068					1.346			
		1		1062		1 075	1				1 325			
		 	 	0.518		C.661		ļ			-1.578			
0.503				1.332			1.069			3 352				3.512
1.210				0.134		4	1.07*			-1.337				0.509
					1.935		1.200	1.027			1.078			
					1.325			1.045			1.072			
					·0.864			1.748			-0.676			
		D 766		1213			0.969						0.519	1
		0 769		1.218			0.982						0.515	
		0.429		0.404	L		1.34£						-0.859	
		0.517				0.713			7 154		0.712			
		-0.359				2.469			-1 098		0.009			
		0.0-30		0.400	l	2.164	0.622	<u> </u>	-1.040	<u> </u>	North		j Da Galer	
				0.509			0.629				Calcula	lad Read	ion Flates	5
				1.979			2777				N Dilfe	ence		-

FLUX MAP: CY1-FM06 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 3463.0 MWD/MTU

											•			
					1	0.636			0 697					
					1	0.653			DEIE					
					.	2.048			1413				•	
		0.520			1.130		1.142							
		0.519			1 140		1.158							
		-0.190			0.148		-0.323		<u> </u>	L				-
							0.963		1 089		D 615		0.623	1
					1		0.987		1098		0.823		0.519	
							2.507		0.834		0.922		-0.608	
	D714	D 816		1			1.351							1
	0714	0.823				1	1 333							
	0.072	6.839					-1.353							1
	t			1 5 3 5				6.351		1.347	1	1.234		
				1.330				362		1.330		1.221		
				-0 377				0.072		-1.255		1.066	1	
0.8%		1.000			1 301		1 384						1 1 24	
0.816		1 098			1 367		1.581						1.140	
1754		0.098			1 657		-1.672					4	0.540	
			1 039			1 9/13		 	1.087			1 297		
			1.045	1		1.345			1.007			1.200		
			0.669	!		0.395			2.671		1	.1 183		
	 	10.00		1.070		1 0 2 4	<u> </u>		4.004	<u> </u>	1 115	0.077	1.20	ŀ
0632		0.675		1.070		1.024			1.391		1.040	0.817	1.120	[]
		1.048		0.160	ŀ	0.748			0.167		0.884	4 764	0.000	
• 585		1.210		0.100	<u> </u>	10/10	<u> </u>		2.101	- 4 - 4	-0.004	1.001	0.8 2	
	0.72B	I		ł				1.362		1.366				D 644
	0 738	I]					1 349		1.362				0.853
	1.521	L		 	 			-1.2.0		·0.043		 		1.280
		I	1	1.057		1 Q7D					1 341			
		I		1.062		074					1.3*8			
				0.461		0.369			1		1.731			
0.501		I		1.329			1 051			1.352				0.514
0.511	1	I		1.330			1.072			1.330				0.511
1918	L			0.105	L		D971			-1 633				-0.730
					a 333			1.030			1.069			
	I	1			I 316			1.045	1		1,090			
					-1.103			1.471			-3.822			
		0.774	[7 217			0.072						0.524]
	1	0776		1 221			0.987						0.519	
		0316		0.307		I	1.618	ł					-1.029	
		0 515	·			0.722			1.158		0.718			•
		D 519				0.733			1 1 4 0		0714			
		0 707				2.304			-1.587		-0.339			
				0.503	1		0.827				Measur	ed Reart	on Bates	
				0.511			0.642				Calcular	ed Ream	lion Flate	8
				1 585	•		2.385				% Diffei	enca		-

Figure B-6 Flux Map: CY1-FM06, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM07 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 4369.0 MWD/MTU

						0.639 0.680 3.200			0.611 0.622 1.743					
		0 527 0.527 0.109			1 137 7,141 0.355		1.141 1.143 6.173							
							0.975 0.690 1.527		1.067 1.0 9 9 1.152		0.840 0.849 1.064		0 526 0 527 -0.213	
	0.724 0.723 -0 184	0.838 0.849 1 273					1.332 1.316 -1 179							
				1 331 1 322 -0 7 <i>3</i> 7				1.334 1.340 0.412		1,336 1 322 -1 107		1.246 1.225 -1.693		
0.811 0.627 1.727		1.09 0 1.099 0.100			1.371 1.345 -1.892		1.369 1.239 -2.202						1.134 1.141 0.588	
			1.041 1.044 0.314			1.323 1.339 0.538			1.066 1.066 0.155			1.273 1 259 -1.111		
0.638 0.849 1.856		0,982 0,983 1,128		1 065 1 065 -0.171		1.033 1.033 0.008			1 369 1 339 2.190		1 326 1.316 0.748	0 934 6.993 6.970	1 149 1.143 -0.461	
	0.741 0.754 1.875						:	1 344 1.320 -1 052		1.348 1.340 -0.647				0.650 0.650 1.500
				1.060 1.060 0.029		1.068 1.068 -0.052					1.329 1.307 -1.612			
0.502 0.545 2.755				1.319 1.322 6.219			1.058 1.065 0.634			1.343 1.322 -1.800				0 517 0.5•5 0.377
					1.221 1.307 - 1 041			1 030 1 044 1 052			1 421 1.110 1.005			
		0.789 0.790 0.198		1.216 1 225 0.677			0 979 0 993 1.519						0.532 0.527 -0.957	
		9.521 9.527 1.230				D 736 0.754 2 584			1,155 1,141 -1 243		0.724 0.723 -0 205			-
				0.505 0.515 2.054			0 832 0 649 2 751				Measur Galculai % Differ	ed Ploach Ied Reacl Ience	on Hates fon Rales	5

FLUX MAP: CY1-FM08 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 4852.0 MWD/MTU

						0.646 0.664 2.594			0 616 0 625 1 483	<u> </u>]			
		0.538 0.531 -0.917			1.143 1.141 -0 158		1.152 1.145 -0 5.90							
							0.976 0.997 2 169		1.097 1.099 1.105		0.654 0.861 0.667		0.539 0.531 -1.522	
	0.733 0.727 -0. 8 61	0.058 0.861 0.657					1.321 1.3 68 -0.993							
				1.219 1.317 -0.099				1.320 1.329 0.707		1.318 1.317 -0.065		1.247 1.227 -1.617		
D 618 0 625 9 210		1.104 1.099 -0.476			1.250 1.334 -1.237		9.350 1.328 -1.616						1.137 1.141 0.379	
			1.035 1.043 0.703			1 296 1 321 1 745			1.057 1.064 0.697			1 269 1.256 -0.97D		
0 645 D 654 I 295		0.993 0.997 0.41≄		1 059 1.062 0 296		1 025 1.003 0 781			1,347 1,328 -1 44D		1,322 1,308 -1 102	0 965 0.397 1 184	1 159 1.146 -1 110	
	0.755 0.761 0.841							1.330 1.321 -0.706		1.329 1.329 0.001				0.663 0.664 0.201
				1.056 1.059 0.252		1.058 1.064 0.599					1.322 1 302 -1.513			
0.506 0.518 2.379				1 314 1 317 0.245			1.051 1.062 1.065			1 326 1.317 -0.831				0 530 0.518 -2.264
		1			1 309 1.302 -0.548		Ĺ	1.032 1.043 1.683			1 133 1 119 -1.201			
		0 800 0.798 -0.250		1 224 1 227 0.254			0.982 0.997 1.507						0.541 0.531 -1 751]
		0 553 0 531 -0.283				0,744 0.761 2.300			1 158 3 148 -1.472		0 703 D.727 -0 869			
				C.513 C.518 C 936			0.638 0.654 2 360				Measur Calculat % Differ	od Reacti Ind Heard Ionce	ion Plates Iron Hates	

Figure B-8 Flux Map: CY1-FM08, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM09 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 5998.0 MWD/MTU

											•			
						0.653			0.621	[
						0.673			0.633	[
						3 073	<u> </u>	L	1 903		L			
		0.541			1,146		1.154		I				I	
		0.539			1.145		1.156		I				I	
		-0.272			-0.085		0 109							
							C.983		1.064		0.079		0.542	1
							1.005	1	1.100		D.886		0.589	
							1.691		1.427	l	0 791	l	-0.491	
	0.737	0.880					1.309	1						1
	0 735	0 855					1 291		I				L I	
	-0.250	0.852					-1.235	1	I					
				1315			1	1.302		1.330		1.250		
		ł		1.306				1.307	I	1 308		1 231		
		1		-0.665				0.376	I	-1.773		-1.548		
6 623		1 696			1 330		1.824						1 1 4 3	
0.533		1.100			1 310		1.304	1	I				1 145	
1 553		0.355			1.4/0		-1.495	1	I				0 234	
	<u> </u>		1 / 720			1 200	1	i —	1 140		<u> </u>	1.286	+ · ·-	
		i -	1043			1 299	1		1 057			253		
		[0.359			0.717	I		0.756			-1.046		
0.000	<u> </u>	0.008		1.053		1.028	<u> </u>	<u> </u>	1 711		1 9/00	0.005	1 187	<u> </u>
0.664		1 006		1055		1 020	I		1 304		1 291	1.005	1.155	
1.554		0.833		0.275		0 495	I		-2 018		-1 695	0.989	0.979	
1.00-	0.350	10000	<u> </u>		┥───	0.100	I	1 30.8			0.000		0.010	D. 655
	0.789						I	1.308		1 257				0.605
	1.168						I	-0.704		sue.				1 1 20
	1.400	<u> </u>	<u> </u>				—	-16.074	<u> </u>	-1.070		<u> </u>		1.123
				1.056		1.053	I				1 310			
	[0.007		1.057	I				1 291			
	├ ──	<u> </u>	<u> </u>	-0.007	l	0.37-			<u> </u>		11.424	<u> </u>	 	
0.510				1 307	í i		1 044			1 325		1		0.534
0.524				1.308			1.056			1.300				3.524
2.//6	Ļ			10.0597			1.147			1.400	I			1.1 901 0
					1.303			1 029			1.137			
					1.291			1.043			1.123]
	L	L	<u> </u>	 	-D 37B			1 367			-1 234			
		0812		1.224			0.963						0.546	
		0.813		1.231			1.005					!	0.539	
		D.128	<u> </u>	6.576			1270						-1 183)
		0.534				0.760			1.160		0.738			
		0.539				0 779			1 145		G.735			
		0.930				2 533			-1.309		-0 395			
				0.515			0.647				Measur	od React	ion Rates	•
				0.524			0.664				Calcular	ind Hear	tion Hate	5
				1.590			2 817				% Dille	9068		

Figure B-9 Flux Map: CY1-FM09, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM10 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 7216.0 MWD/MTU

						0.663 0.682 2.859			0.627 0.640 1.999]			
		0 553 0.547 -1 017			1 146 1.149 0 052		1 165 1.164 -0.145]	
							0 991 1.013 2 264		1.081 1.088 1.569		0.905 0.812 0.775		0.547 0.547 0.113]
	0.744 0.744 0.034	0.909 0.812 0.363					1,287 1,275 -0 931							
				1.304 1.256 -0.615				1.292 1.284 -0.630		1.3-9 1.296 -1 792		1.255 1.236 -1.488		_
6.629 6.640 1.665		1.093 1.098 0.462			1.303 1.287 -1.247		1.302 1.281 -1.655						1 142 1 149 0 820	
			1.935 1.041 0.506			1.285 1.278 -0.578			1.341 1.349 0.707			1 259 1 246 -0.645		
C 663 0.673 1.527		1 002 1 013 1.043		1 045 1 046 0 205		1.024 1.029 0.439			1 301 1 261 -1.584		1 284 1 275 -0.583	1.00\$ 1.013 0.971	1 175 1.164 -0.960	
	0.764 0.796 1.565							1 297 1.278 -1 515		1 287 1.284 -0.211				3.672 0.692 1.512
				1 049 1.052 0 293		1.044 1.043 0.489					1.295 1 280 -1.165			
0.510 0.529 3.003				1.298 1.296 -0.055			1.009 1.048 0.884			1.312 1 296 -1.238				0.597 0.529 -1.592
					1.290 1.280 -0.80			1 027 1 041 7 442			1.448 1.438 -0.822			
		0.828 0.828 0.070		1.246 1.235 -0 757			0.957 1.013 1.580						0.554 10.547 1-1 230	
		0.545 0.547 0.411				0 779 0 796 2.16 0			1 162 1.149 -1.105		0.747 0.744 -D 359			
				0.519 0.529 1.984			0 654 0 673 2.874				Measur Calculat % Differ	ed Reacti and React Since	ion Rates ton Rates	5

Figure B-10 Flux Map: CY1-FM10, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM11 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 8234.0 MWD/MTU

						D 569 0 669 2 895			0-632 0.646 2.242					
		0.552 0.554 0.201			1 162 1.153 -0.752		6 173 172 -0.074							_
							1.003 1.019 1.600		1.075 1.100 2.235		0.927 0.630 0.649		0.553 0.554 0.131	
	6.753 6.759 -0.415	0.927 0.900 0.633					1 274 1.263 -0 853							
				1.305 1.287 -1 448				1.274 1.258 -0.466		1.305 1.287 -1.462		1.254 1.239 -1 228		
0.634 0.646 1.800		1.095 1.800 0.449			1.282 1 269 -0 951		1.287 1 253 -1.693						1.156 1.153 -0.260	
			1.034 1.040 0.587			1 262 1 261 -0.080			1.032 1.041 0.681			1.257 1.245 -0.609		
0.659 0.680 1.631		1.008 1.019 1.039		1 038 1.042 0 362		1.020 1.025 0.451			1 283 1.263 -1 534		1 271 1 263 -0.653	1 (7) (2 1,019 10 845	1 185 1 172 -1, 49	
	0.799 0.811 1.445							1.278 1.261 -1 207		1 279 1 268 -0 671				0.680 0.689 1.244
				1 047 1.048 D 122		1.034 1.041 © 712					1.205 6.270 -1.100			
0.516 0.533 3.407				1.285 1.287 0.114			1.029 1 D42 1.338			1 302 1 287 -1.228				0.545 0.533 -2.112
					1.277 1 270 -0.552			1.623 1.640 1.665			1 17D 1 146 -2.040			
		0.838 0.840 0.236		1.245 1 239 -0.598			1.001 1.019 1.7 5 6						0.563 0.554 -1.677	
		D 550 0 554 0.626				0.791 0.811 2.557			1 166 1 163 •1.164		C 753 0.750 -0 394			
				0.521 0.533 2. 3 49			0.863 0.880 2.603				Measur Calcular % Dilfei	ad React lad Heact rence	ion Pietes Iron Hater	5

Flux Map: CY1-FM11, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM12 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 9270.0 MWD/MTU

						0.677 0.696 2 774			0 838 0.651 2 090					
		0.564 0.558 -1.062			1.150 1.157 0.578		1.176 1.179 0.067							_
							1.006 1.024 1.746		1.078 1 102 2 231		0.942 0.949 0.787		0.558 0.558 0.048]
	D 755 D 756 D 127	6.950 0.949 -0.050					1.281 1.254 -3.609							
				1.295 1.278 -1.311				1.259 1 254 -0.418		1.292 1.278 -1.098		1.258 1 241 -1 368		
0.642 0.651 1.353		1.097 1.102 0.459			1.272 1 255 -1.345		1.267 1.246 -1.497						1.1 56 1.157 0.077	
			1.034 1.038 0.333			1 256 1 247 -0.758			1 025 1.034 3.938			1.256 1.245 -0.902		
0.677 D 697 1 61 I		1.015 1.024 0.645		1.034 1.0 36 0.210	1	1 017 1.021 D 371			1.258 1.248 -1.604		1.265 1.254 -0.94B	1.017 1.024 0.665	1.169 1.179 -0.801	
	0.009 0.824 1.898							1.264 1.247 -1.363		1.261 1.254 -0.610				0.889 0.595 1.165
				1.633 1.044 1.041		1 027 1 034 0 746					1.281 1.263 -1.421			
0.522 0.536 3.025				1 291 1.278 -1.051			1 025 1 036 1.106			1.298 1.278 -1 375				0.55° 0.538 -2.850
					1 769 1 263 -0.454			1.022 1.030 1.555			1.166 1.148 -1.523			
		0.845 0.813 0.430		1 246 1 241 -0.582			1 007 1.024 1.663						0.589 0.558 -1.960	
		D 553 0 558 0.039				C 607 C.824 2.165			1 169 1.167 -1 054		0 759 0.755 -0 459			-
				0 525 0.538 2 397			0.665 0.687 3 331				Moasuri Calculat % D.Net	od Reacti Ind Reacti Ionce	ion Aatos Ilon Aatei	5 F

Figure B-12 Flux Map: CY1-FM12, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM13 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 10566.0 MWD/MTU

						0.692 0.708 2.362			0 650 0.662 1.705					
		0 566 0.586 -0 0.54			1 184 1.160 -1.364		1.200 1.194 -0.481							
							1.020 1.034 1.265		1 083 1.109 2 304		0 964 0.989 0 607		0 585 0.585 0.064]
	0.768 0.765 -0.201	0.970 D 969 -0.102					1.25 0 1.249 -0.500							
				1.289 1 274 -1.176				1.24ð 1.245 -0.259		0 000 D 000 D 000		1.286 1 249 -1.533		
0.664 0.662 1.228		1 101 1 106 0.689			1.255 1 245 -0.786		1.250 1.238 -1 174						1.172 1.168 -0.372	
			1 034 1 040 0.613			1.239 1.237 -0.045			1 014 1 031 1.682			1 262 1.249 -0.995		
0.691 0.700 1.319		n 026 1,034 D 782		1.029 1.004 0.460		1.011 1.020 0.905			1 253 1,238 -1,183		1 259 1.248 -0.760	1.025 1.034 0.674	1.217 1.494 -1.847	
	0.829 0.842 1.605							1 25 1 1 237 -1,135		1.248 1.245 -0 263				0.701 0.703 1.061
				1.036 1.043 6.705		1.020 1.631 1.155					1.275 1.260 -1.184			
0.532 0.545 2.415				1.2 4 7 1.274 -1.016			1.019 1.034 1.445			1.283 1.274 -1.190				0 55ð 0 545 -2.343
					1.269 1 260 -0 611			1.023 1.040 1.603			1.175 1.457 (1.521			
		0.860 0.681 0.175		1.261 1.249 -0.948			1 018 2 034 2 625						0.576 0.565 -1 872	
		0.561 0.568 0.892				0.826 0.842 1.725			1,184 1,169 -1 382		0.768 D.765 -0 168		:	
				0 535 0.545 2.007			0.688 0.700 1.713				Measur Calculat % Offler	ed Roacti ted Reacti erce	on Rates Ion Rates	5

Figure B-13 Flux Map: CY1-FM13, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM14 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 11577.0 MWD/MTU

						0 698 0.714 2.219			0.657 0.687 1.497					
		3.587 0.568 0.144			1,162 1,172 -0,830		1 209 1.202 -0.578]	
							1.018 1.038 1.930		1.077 1.139 2.924		0.974 0.977 0.300		0.568 0.568 0.045]
	D 761 D 768 0.895	0.984 0.977 -0.682					1.251 1.248 -0.631							
				1.274 1 265 -0 727				1.241 1.235 -0.439		1.278 1.295 -0.850		0.000 0.000 0.000		
D 66D 0 667 1 117		1.104 1.109 0.427			1.250 1.235 -1 218		1.235 1.225 -0.537						1.171 1.172 0.062	
			1.035 1.035 0.2 9 9			1 239 1 227 -0.695			1.012 1.025 1.364			1.264 1.249 -1.187		-
0 698 0.708 159		1.029 1.038 0.861		1 023 1.029 0.556		* 008 * 016 D / SD			1.245 1.228 -1 429		1.256 1.243 -1 024	1.631 1.638 0.623	1.229 1.202 -2.240	
	0.641 0.853 1 373							1.243 1.227 -1 246		1.235 1.235 0.035				0.708 0.714 0.882
				1.022 1.058 1.861		1.015 1 026 1.078					1.272 1.253 -1.443			
D 536 0 549 2 446				1.281 1.265 -1.250			1 D17 1.029 1.220			1 284 1.265 -1.458				0.554 0.549 -2.525
					1 251 1 253 -0.594			1 022 1.038 1.548			* 161 5.152 -0.782			
		0.861 0.865 0.485		1 260 1 246 -1.011			1.023 1.038 1.454						0.581 0.568 -2.161	
		0.563 0.566 0. 8 87				0.639 0.853 1.535			1 189 5.172 -1.458		0 766 0.768 -0.052			
				0 539 0.549 1.537			0.669 0.705 2.476				Measur Calculat % Differ	ed Resoli loci Rooci ence	ion Astes lion Aates	5

Figure B-14 Flux Map: CY1-FM14, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY1-FM15 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 12714.0 MWD/MTU

						0.699 0.717 2.483			0.859 0.670 1.573]			
		0.573 0.570 -0.576			1.185 1.171 -1.164		1.200 1.203 -0.421]	
							1.028 1.035 1.645		1.065 1.105 3 799		0.975 0.982 0.685		0.570 0.570 0.000	
	0.764 0.764 0.005	0.900 D 982 -0.579					1.238 1.231 -0 596							
				1 280 1 253 -2.104				1.226 1 221 -0.390		1.250 1.253 -0.410		1.252 1.244 -0.650		
0.667 0.670 1.093		1 098 1.106 0.542			1.238 1.219 -1.106		1.227 1.213 -1.113						1 182 1 171 -0.669	
			1 024 1,030 0 531			1.215 1.214 -0.112			0 999 1.935 1.671			1 256 1.243 -1.027		
0.698 0.709 1.570		1.025 1.035 0.949		1.007 1.019 1.185		1.001 1.009 0.763			1.231 1 213 -1.471		1 243 1 233 -0.982	1.027 1 035 0.779	1.223 1.203 -1.669	
	0.845 10.858 1.341							1. <u>22</u> 1 1 214 -3.619		1.238 t 221 -1.370				0.711 0.717 0.858
				1.015 1.029 0.902		1.001 1.015 1.409					1 262 1.242 -1.598			
0.529 0.552 4.264				1 267 1.253 -1.134			0 896 1.019 2.355			1 271 1.253 (1.420				0.587 0.652 -2 664
					1 248 1.242 -0 504			1 014 1.030 1 600			1.470 1.455 -1 295			
		0.862 0.887 0.550		1 255 1.244 -0 892			1 016 1.025 1 623						0.580 0.570 -1,775	
		0 582 0.570 1 272				0.842 0.858 1.812			1.187 1.171 -1.297		0.769 0.768 0.015			-
			0.541 0.552 2.059			D 700 D 709 1 294				Measured Asaction Pates Calculated Reaction Rates % Difference				

Figure B-15 Flux Map: CY1-FM15, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY2-FM01 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 420.3 MWD/MTU

						0 790 0.006 1 904			0.608 0.623 1.915					
		0.396 0.399 0.747			1.020 1.038 1.707		1 122 1.126 0 419							_
							1,317 1,320 0,234		1.155 1.189 3.012		0.938 0.952 1.500		0.398 0.399 0.803	
	D 64D 0 851 1.735	6.953 6 952 -0.066					1.182 1 142 -1.732							
				1.094 1.078 -1 446				1.154 1 157 0 280		1.091 1.078 -0 300		1.029 1.042 1.313		
0 <i>8</i> 16 0.823 0.958		1.185 1.189 0.326			1.153 1.138 -1.284		1.160 1 136 -1.62						1.014 1.035 2.344	
			1 244 1.218 -2.977			1 155 1.106 -2.547			1.229 1.215 -1.114			1.112 1.120 0.741		
0.902 0.897 -0.542		1.365 1.320 -3.293		1.262 1.260 -0 106		1 139 1.133 -0.5 90			1 148 1.138 -0.830		1.151 1.142 -0.829	1.329 1.329 -0.718	1.140 1.126 -1.21D	
	1.089 1.083 -0.527							1 126 1.106 -1 704		1.151 1.157 0.513				0.795 0.805 1 250
				1.182 1,178 -0.318		1.231 1.215 -1.308					1.126 1.113 -1.179			
0.523 0.523 40.061				1.101 1.078 -2.120			1 249 1 260 0 898			1.074 1.078 0.262				0.522 0.523 0.107
					1,114 1,113 -0069			1,207 1,218 0,923			1.000 1.019 1.818			
		0.778 0.787 0.925		1.029 1.042 1.313			1 309 1.320 0 300						0.394 0 399 1 345	
		0 392 0.399 1.795				0.000 0.000 0.000			1.035 1.039 0.310		0.634 0.651 2.779			-
				0.507 0.523 3.057			0.691 6.897 6.631				Measuri Calculat % Offer	ed Reacti Iod Roacti Ance	ion Rates lion Hates	5

Figure B-16 Flux Map: CY2-FM01, Measured and Calculated Assembly Average Reaction Rates

			_	FO CY	AVER A INS CLE E	AGE F TRUM SURNU	PEACT ENTEI JP: 6	TION F D ASS 90.4 M	ATES EMBL WD/M	IES TU	-			
						0 772 0.792 2 503			0 800 0.815 1.925					
		0.412 0.412 -D 025			1 023 1 039 1 584		1.097 1.104 0.647]	_
							1.297 1.296 -0.046		1.169 1.1 90 1.7 9 5		0.977 D.382 0.546		0.410 0.412 0.570	
	0.659 0.667 1.292	0.987 0.982 -0.477					1.138 1.127 -0.961							<u> </u>
				1.100 1 084 -1.457				1.159 1.154 -0.417		1.096 1.084 -1.097		1.032 1.058 2.481		
0.808 0.615 0.778		1.185 1 190 0.361			1.146 1.135 -0.981		1.#65 1.#35 -1.748						1.020 1.039 1.935	
			1 227 1,209 -1,493			1 144 1.113 -2.687			1 225 1.212 -1.050			1 099 1 106 0.680		
0.643 0.875 3 728		1.337 1.296 -3.036		1 261 1 251 -0.726		1, 149 1, 145 -0 351			1 141 1.135 -9 559		f 136 1.127 -0.736	1 302 1.298 -0,444	1.117 1.104 -1.163	
	1.071 1 063 -0.299							1.124 1.113 -1.007		■ 153 1.154 0 130				0.780 0.792 1.481
				1.180 1.178 -0.168		1.227 1.212 -1.201					1.130 1.117 -1.139			
0.530 0.525 -0. 845				1.114 1.034 -2.629			1.243 1 251 0.848			1 085 1 084 0.175				0 528 0.525 -0.472
					1.123 1.117 -0.258			1 197 1 209 0.997			1 074 1.088 1.332			
		0.805 0.814 1.078		1.048 1.058 6.602			1 290 1.296 0.507						0.411 0.412 0.324	
		0.468 0.412 1.025				0 000 0000 0.000			1 032 1.039 0 701		0.654 0.567 2.016			
				0.510 0.525 3.004		:	0.887 0.875 0.882				Moasure Galculat % Dilfer	od Roach Xed Reac) ence	on Palos Ion Rais	5

FLUX MAP: CY2-FM02 MEASURED AND CALCULATED ASSEMBLY.

Figure B-17 Flux Map: CY2-FM02, Measured and Calculated Assembly Average Reaction Rates
FLUX MAP: CY2-FM03 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 1720.0 MWD/MTU

					r – – – – – – – – – – – – – – – – – – –	0.757			2 799	1	1			
						0.775			3.614					
			1	[2.338			1.896			r —	1	
		0.438			1.054		052					ŀ		
		-0113			1 016		1 211					1		
		<u> </u>	1	ľ		1	1255	t	1.175		1.022		0.496	1
			1	•			1.258		1.198		1.027		0.439	
		1 444	<u> </u>			<u> </u>	0.095	<u> </u>	1.9644	<u> </u>	Q.4629		0.623	4
	0.691	1.034					1 102				!			
	1.609	-0.015	ļ	l	l		-0.699				l	l		ł
	1		[1.054				1.161		1.083		1.967		
	1		[1.079				1.155		1.679		1.081		
0.917	<u> </u>	1 1 003		-1.004	1 1 1 1		1 1 2 0	10.460	·	-0.367	<u> </u>	1.201	1 /44	
0814		1.199			1 125		1 121			f			1065	
0.778		0.840			-0.668		-1.598						1.556	
			1.217			1 145			1.218			1076		
			1.199			-2.811			1.202			0 772		
0.641		1.267		1245		1 147		1	1 125		102	1 256	1 065	+ •
0.835		1.258		1.238		1.143	1	!	1.121		1.102	1 256	1.065	
-0.706		-2419		0.510		0.364			0.358	ļ	0.D10	-0. 66	-0.007	
	1.048							1.135		1.181				0.760
	0.162	!						-1 747		-0.470				1.952
				1.179		1.219					1.142		1	
				1 176		1 202					1 128			
		 		-0.211		·1 250			ļ		-1.238			
Ç.541				1 101			1.235			1079				0.541 0.541
0.098				-2.019			0.251			0.007				0.030
					1 1.35			1 187			1 118			
					1.128			1.199			1.131			
	<u> </u>	8.050	<u> </u>	4 0000	0.500		4 850	10.32	<u> </u>		1 118		0.405	
		0.859		1.081			1.250						0.435	
		5.611		1.247			0.455						0.811	
		0 4 3 4				0.000	[ľ	1.062		0.687			
		0.430				0.000			1.065		0.703			
		4.515	I	0.528		5.00	0.829		u.z/n		Magazire	نسودي اس نسرو مي اس) Int Pater	
				0.541			0.635				Galculat	od Acad	ton Raise	5
				2.593			D 642				% Diffe	ence		

Figure B-18 Flux Map: CY2-FM03, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY2-FM04 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 2974.4 MWD/MTU

						0 745 0.755 2 826			0.601 0.616 1.611]]			
		0.466 0.463 -0 966			1.079 1. 089 0.973		1 027 1 039 1 181							_
							1.224 6 229 0 414		1.187 1.209 1.651		1.065 1.062 -0.266		0.465 0.463 -0.281	
	0.727 0 735 1.271	1.072 1.06 2 -0.987					1.085 1.083 -0.129							
				1.082 1 (73 -0.884				1.161 1 153 -0.659		0.000 0.000 0.000		1.085 1.100 1.436		
0 819 0 816 0 847		1.206 1.209 0.263		:	1.121 1.116 -0.401		L 121 1 108 -1.225						1 077 1.089 1.158	
			1.205 1.192 (1.028			1 141 1.115 (2.614			1.208 1.192 (§ 329	:		1.056 1.070 1.368		
0.808 D 807 0.129		1.254 1.229 -2.015		1.231 1.227 -3 376		1 141 1.138 -0.414			1.111 1.108 -0.316		1.092 1.083 -0.763	1.223 1.229 0.513	1.031 1.039 0.833	
	1.036 1.037 0.131							1.136 1,111 -2 136		1.180 1.153 -0.631				D 751 0.786 1.937
				1.175 1 174 -0.011		1.208 1.192 -1.264					1 153 1 136 -1.502			
0 560 0.569 -0 182				1 093 1 073 -1.871			1 222 1.227 0.344			1 073 1.073 -0.004				0.560 0.550 -0 191
					1 140 1.136 -0.256			1 185 1.192 0.577			1 139 1.148 0 781			
		0 906 0 908 0.245		1 052 1,100 0,764			1.223 1.229 0.481						0.464 0.453 -0.141	
		D 458 O 463 1.185				0.000 0.000 9.000			1.090 1.089 -0.055		0.724 0.735 1.612			-
				0.548 6.569 1.996			0.799 0 807 1 024				Measur Celcular % Dillior	ed React Hed React Tence	ion Aates ion Rates	5

Figure B-19 Flux Map: CY2-FM04, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY2-FM05 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 4000.0 MWD/MTU

						0.200			0799 D 811 1 536]			
		6.492 0.478 -0.640			1.094 1.100 0.509		1.009 1.022 1.289]	
							1.200 1.212 0.389		0.000 0.000 0.000		1.084 1.090 -0.354		0.479 0.478 -0.114	
	D.745 D.755 T.399	1.088 1.080 -0.795					1.072 1.069 -0.231							
				1.073 1.067 -0.505				1.140 1.146 -0.273		1.073 1.037 -0.557		1.090 1.408 1.742		
0.803 0.911 0.954		1 206 1.212 0.504			1.113 1.109 -0.359		1.108 1.097 -1.030						1.084 1.100 1.428	
			1.497 1.498 -0.392			1 132 1.106 -2.341			1.200 1.182 -1.500			1.047 1.060 1.224		
0.779 D 797 1 051		1.234 1.212 -1.714		1.221 1.216 -0.413		● 134 ■ 132 -0,199			1.098 1.097 -0.072		1.073 1.069 -0.340	1.208 1.212 0.371	1.913 1.922 0.871	:
	1.025 1.028 0.351							1.421 1.405 -1.374		1.152 1.145 -0.551				0.745 0.759 1.889
				1.169 1.171 0.100		∎ 196 ■ 182 -1.368					1.151 1 134 -1.498			
0 555 0 587 0 454				1.081 1.067 -1.308			1 206 1 216 0. 9 41			1 068 1.067 -0.109				0 570 0 587 -0.546
					1 139 7 134 -0.414			1.179 1.166 0.554			1 160 1.186 0.523			
		0.932 0.832 0.005		1 100 1,109 D 752			1.207 1.212 0.410						0.478 D 478 D 482	
		0 474 0 478 0.948				0.000 0.000 0.000			1 106 1.100 - 3.606		0.746 0.755 1 212			-
				0 556 0.567 1 750			0.778 0.787 1 158				Measur Calcular % Differ	od React Ind Heart Ionce	ion Aates Iron Hater	6 Fi

Figure B-20 Flux Map: CY2-FM05, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY2-FM06 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 5110.0 MWD/MTU

						0.760			0 799		1			
						D.755			0.807					
						2 076			0,979					
		0.497			1.125		6.999							
		0 491 -1 17D			0 127		1 273			E				
	·	174			V 12.		1 205		1.905	. 	1.045		0.499	1
							1 205		1 216		1 391		0 491	ſ
		!					-0.264		0.648		-0.512		-1.413	
	0.764	1.058					1.050	1]
	0 771	1 091					1.062						1	
	0.640	1-0.713		1.050	<u> </u>		4.203				<u> </u>			<u> </u>
				1045			1	1.143		1.965		1.116		
		ļ.		-0.396			1	-0.190		-0.608		1.086		
0.602		1 209			111D		1.099						1095	
6.607		1.216			109		1.093	1					1 106	
0.653	I	0.583			19.181		0.581	I			 		0 991	
			1.192			1.122	1		1.197			1039		
		F	-0.659			1.721			1.524			1 537		
0.765		1.225		3 217		1.133			1.360		1.085	1.204	1.091	· · · ·
0.774		1,206		1212		1.133			1.093		1 062	1 205	1.012	
1.140		-1.697		-0.454		0.011	L	<u> </u>	0 245	.	-0.215	0.056	1.100	
	1.024							1.110		1.149				0.744
	-0.013							-0.623		-0.680				1.458
				1.165	1	1.191					1 152			
				1.171		1.779	1				1.134			
				0.178		-0.989					+1.567			
0 568			20	1 078			1210			1 054				0.580
0.575				1.065			0.111			1.065				0.575
	<u> </u>				1 137			1 179			1 173		i—	
					1.134			184			1.175			
					-0.286			0.404			0.242			ļ
	[3 944		1.108		i	1 206				3 7		0.497	1
		0.949		1.116			1.205						0.491	
	L	0.488		a.,a/	<u> </u>	0.000	~~~~	<u> </u>	1.107		0.764		1 231	1
		0.491				0.000			1.105		0.771			
		0.538				0.000			-0.080		0.952			
				0.567			0765				Measur	ed Anach	on Pales	
				0.575			0774				Gelculat	ed Reac	tion Rales	5
				1.367			: 055				i 🥆 Diller	ence		

Figure B-21 Flux Map: CY2-FM06, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY2-FM07 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 6175.0 MWD/MTU

						0 741 0 755 1 905			0.797 0.603 0.722					
		0.509 0.502 -1 447			1 110 1.110 0 045		1 001 1.009 0 820							
							1.205 1.204 -0.079		1.210 1.221 0.943		1.108 1.097 -0.875		0.508 0.502 -1 198]
	0.778 0.784 0.755	1.109 1.097 -0.972					1.058 1.061 0.181							
				1.06 8 1.066 -0.193				1.141 1.133 -0.186		1.070 1.066 -0.405		1.103 1.121 1.538		
0.603 0.678		1.214 1.221 0.584			1.110 1.112 0.207		1.098 1.094 -0.214						1.104 1.110 0.513	
			1.192 1.186 -0.523			1.123 1.104 -1.712			1.186 1.161 -0.485			1 040 1 054 1.394		
0.758 0.766 1 319		1 224 1.204 -1 631		1 209 1 212 D 243		0.000 6.000 6.000			1 065 1.094 0 848		1 062 1 061 -0.105	1 205 1.204 -0.101	0 989 1.009 0 998	
	1.021 1.024 0.500							1.117 1.104 -1 189		1 145 1 139 -0 549				0.746 0.755 1.228
				189 174 0484		1.190 1.131 -0. 754					1.153 1 133 -1.753			
0.580 0.581 0.281				1 079 1 056 -1.238			1.208 1.212 0.329			1 065 1.086 0.091				0.590 0.581 1.535
					1.138 1.133 -0.258			1 180 1.186 0 517			1 184 1.184 © 010			
		D 956 0 960 0.439		1 117 1.121 0.432			1 208 1.204 -0.157						0.508 0.502 -1 235	
		0.502 0.502 -0.091				0 000 0.000 0.600			1.116 1.11D -0.540		0.7 90 0.784 0.570			-
				0.577 0.581 0.775			0.759 D 756 Q 881				Moasun Gelculai % Dille	ed Anach ted Fleac ence	on Rales on Rales	5

Figure B-22 Flux Map: CY2-FM07, Measured and Calculated Assembly Average Reaction Rates

				FO CY	R INS	TRUM	ENTE	D ASS 71.3 M	EMBL 1WD/M	IES ITU				
						0 745 0.757 1.615			0.795 0.801 0.561]			
		0 525 0.513 -2 439			1 114 1 113 -0.242		1.000 1.010 0.985			:				_
							1 211 1.209 0.211		1.219 1.227 0.870		1,111 1,369 1,032		0.521 0.513 1.530	
	0.793 0.799 0.519	1.109 1.099 -D.885					1.051 1.063 0.195							
				1.067 1 069 0 171				1.137 1.1 36 -0.106		1.972 1.969 -0 328		1,118 1 127 0 <i>5</i> 80		
0.790 0.601 0.634		1.221 1.227 0.527			1.115 1.119 0.363		1.095 1.099 0.393						1 109 1 111 0.742	
			1.192 1 190 -0.178			1.122 1.104 -1.547			1.195 1.168 -0.832			1 045 1 057 1 172		
0.752 0.762 1.900		1 227 1.209 -1 509		1209 1215 0407		0.000 0.000 0.000			1 067 1.009 1.121		1 063 1,063 D 024	1 206 1 209 D 045	1 002 1.010 D 355	
	1.022 1.027 0,447							1.115 1.104 -1.069		1 136 1 135 -0 125				0.749 0.757 1.057
				⊅ 172 ∎ 18D D 70S		1.190 1.186 -0.370					1.152 1 131 -1.755			
0.586 0.588 0.462				1 090 1 059 -1.1 00			0.000 0.000 0.000			1.065 1.069 0.258				0.593 3.588 -0.758
					1.133 1.131 -0.123			1 184 1 190 0.522			1 191 1.193 0.138			
		D 963 0 969 0.558		l 121 1 127 0.618			1 212 1.209 -0.233						0.521 0.513 -1.641	}
		D 520 0 513 -1.510				0.000 0.000 0.000			122 1.111 -0.907		0.798 0.798 -0.062			•
				0 584 0.588 0.585			0.756 0.782 0.831	·			Measur Galcular % Diffei	ed Acad Ind Read 19408	ion Rates tion Rate	5

FLUX MAP: CY2-FM08 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 7471.3 MWD/MTU

Figure B-23 Flux Map: CY2-FM08, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY2-FM09 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 8543.6 MWD/MTU

						D 744 0 755 1 454			0.790 0.793 0.315]			
		0 527 0.617 -1 817			1 115 1.106 -0.789		0.977 3.007 0.971							_
							1,217 1,207 -0.805		1.213 1.224 0.857		1.109 1.0 9 3 -1 350		0.525 0.517 -1 504	
	0.602 0.602 0.001	1.105 1.093 -1.025					1.058 1.059 0.151							
				1.069 1.065 -0.419				1.428 1.423 -0.072		1.068 1.065 -D 109		1.113 1.124 0.979		
0.790 0.793 0.378		1.216 1.224 0.641			⊐ 115 1 118 0 336		1.095 1 D97 0.1 8 5						1.105 1.106 0.022	
			1.189 1.187 -0.146			1.115 1.100 -1.307			1.184 1.163 -0.094			1.046 1.055 0.829		
6,746 6,755 1,230		1 225 1.207 -1 553		0.000 0.000 0.000		1.142 1.150 6.682			1 062 1.397 1.347		1 057 1 059 D 234	1 213 1,207 -0,464	1 000 1.007 D 659	
	1.018 1.024 0.734							1.095 1.100 0.432		1 134 3 129 -0 492				0.748 D 755 1.012
				3 172 1 177 0 440		1.185 1.183 -0.176					1.132 1.124 -0.693			
0.589 0.590 0.169				1 078 1 055 -1.239			1.205 1.211 0.467			1 06S 1 06S 0.173				0.594 3.590 -0.806
					1.121 1.124 0.300			1 181 1 187 0.519			1 195 1.191 -0.430			
		0.963 0.967 0.348		1.118 1.124 0.470			1 200 1.207 0.595						0.525 0.517 -1.542	
		0.519 0.517 -0.440				0.000 0.000 0.000			1 120 1.108 +1.254		0.605 0.802 -D 352			-
				0.585 0.590 0.775			0 753 0.755 0 244				Measur Galculai % Differ	ed React od Roaci ance	on Rales ton Rales	E

Figure B-24 Flux Map: CY2-FM09, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY2-FM10 MEASURED AND CALCULATED ASSEMBLY AVERAGE REACTION RATES FOR INSTRUMENTED ASSEMBLIES CYCLE BURNUP: 9840.5 MWD/MTU

						0.747 0.755 1.287			0.769 0.768 0.362]			
		.0.533 0.523 -1 780			1 107 1.100 -0.532		6.999 1.008 0.640							
							1.219 1.211 -0.546		0.000 0.000 0.000		0.000 0.000 0.000		0.521 D 523 0 542]
	0.809 0 803 -0 087	0.000 0.000 0.000					1.061 1.050 -0 157							
		1		1 065 1 064 -0.044				0.000 0.000 0.000		1.086 1.064 -0.205		1115 122 0829		
0 785 0.788 0.452		1.247 1.222 0.448			1.12D 1.121 0.022		1.092 1.095 0.410						1.095 1 100 0.314	
			1 193 1.187 45.521			1 109 1.097 -1.350			1 162 1.163 0.102			1 050 1.055 D 453		
8.743 6.752 1.174		1.235 1.211 -1.914		1201 1209 0669		C.000 C.000 C.000			1.090 1.095 0.511		1 061 1 060 -0,141	1.222 1.211 -0.898	1.001 1.008 0.645	
	1.019 1.023 0.342							1.102 1.097 -0.513		1.124 1.122 -0.122				0.749 0.756 0.017
				0.171 1 175 0.613		1. 184 1. 1 83 -0.066					1.125 1.118 -0.617			
0.592 0.593 0.108				0.000 0.000 0.000			1.205 1 209 0.251			1 067 1 064 -0.254				0.597 0.593 -0.793
					1.129 1.118 -0.124			1 181 1 187 D 51 1			1 195 1.190 -0.461			
		D 965 0 965 0 410		0.000 0.000 0.000			1.207 1.211 0.362				-		0.532 0.523 -1.524	
		0.000 0.000 0.000				0.000 0.000 0.000			1.108 1.100 -0.711		0.000 0.000 0.000			_
				0.588 0.593 0.735			0.746 0.752 0.727				Measur Calcula % Diffe	ed Reach Red Reac Ance	on Rates Ion Rate	; \$

Figure B-25 Flux Map: CY2-FM10, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY2-FM11

			M	NEASL	JRED AVER	AND (AGE I	CALCU REACT	ILATEI FION F	D ASS VATES	EMBL	Y				
				CY	CLE B	URNU	IP: 110	159.7 N							
						0.749 0.760 1.243			0.784 0.785 0.235				_		
		0.548 0.530 -3.352			1.000 1.095 (0.361		1.003 1.011 0.856								
							1.229 1.217 -0.959		0.000 0.000 0.000		1.084 1.084 -0.022		0 598 0.590 -1 527		
	0 815 0.815 -0.030	1.082 1.084 0.147					1.061 1.061 0.038								
				1.066 1.0 6 5 -0.09 0				1.116 1.117 0.077		0.000 0.000 0.000		1.116 1.121 0.406			
0.783 D 786 D 315		1.220 1.222 3.143			1.122 1.124 0.125		1.689 1.697 (1.720						1.091 1.095 0.427		
			0.000 0.000 0.000			1.097 1.094 D 247			1.178 1.184 0.500			1.05D 1.057 0.74D			
0 745 0 752 0 663		1 238 1 217 -1 731		1.197 1.208 0.921		0.1100 0.1100 0.1100			1 084 1 097 1 219		1 058 1 061 0 298	1 229 1 217 -0.978	1 006 1 011 1 029		
	1.023 1.025 6.460							1 093 1 094 0.160		1 117 1.117 0.038				0.754 0.769 0.699	
				1.170 1.179 3.764		1.183 1.184 0.024					1.127 1 113 -1.259				
0 591 0 597 1 639				1.066 1.065 -0 115			1 205 1 208 0 246			1 070 1 085 -0,443				0. 6 05 0.597 -1.412	
					1 113 1 113 -0.008			1 184 1 188 0 318			- 198 - 191 -0.461				,
		0 000 0 000 0 000		0 000 0.000 0 000			1 215 1 217 0 159						0.541 0.530 -1.988		
		0.000 0.000 0.000				0.000 0.000 0.000			1.113 1.096 -1.573		0.818 0.815 -0.324			-	
				0.590 0.597 0.652			0.748 0.752 0.546				Measuri Calculat % Drifer	od Moacil Iod Moaci enco	on Halos Ion Hales	5	

Figure B-26 Flux Map: CY2-FM11, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY3-FMD1
MEASURED AND CALCULATED ASSEMBLY
AVERAGE REACTION RATES
FOR INSTRUMENTED ASSEMBLIES
CYCLE BURNUP: 277.6 MWD/MTU

						0 419 0 816			D.693 D.677]			
		0 533 0 533 0 005			0.976 D 971 0.546	-1.607	1.042 1.033 -0.94D		-2.366]	
							* 153 (. 163 D 401		0.000 0.000 0.000		1 075 1.055 -1 774		0 543 0 533 -1 856	
	D 340 D 841 D 206	1.044 1.055 1.035					1 132 1.139 D 625							
				L 095 6 104 0 718				1 095 1 095 -0 256		0 000 0 000 0 000		1 238 1,224 -1,184		
0 695 0 677 1 843		1 258 1 261 0.200			1 088 1 108 1.663		1 228 1,230 0,138						0.093 0.071 -2.185	
			1.200 1.219 1.546			1.205 1.224 1.508			1.202 1.209 0.525			1.068 1.052 -1.520		
0794 0810 1980		1.130 1.163 2.918		1.121 1.158 3.094		1.144 1.148 0.363			1.226 1.230 0.117		0.000 0.000 0.000	1.136 1.160 2.234	1 057 1.033 -2.304	
	1,077 1,089 1,113							1.22 1.224 0.254		1.093 1.095 0.223				0.824 0.816 2 49
				1.143 1.151 0.690		1.183 1.20 0 1.293					1.121 1.128 D 596			
0.483 0.491 1.545				1.095 1.104 0.832			1.127 1.155 2.538			1 102 1 104 D 123				0 492 0 491 -0 364
					1.132 1.128 43.568			1 244 1 219 -2 016			* 194 * 195 0.058			
		0.375 0.348 8.164		1.228 1.224 -3.310			1 158 1 183 0 638						0.545 0.533 -2.178	
		0 542 0 533 -1.589				0 000 0 000 0 000			1.015 6.971 -4.372		0.866 0.841 -2.967			-
				0 490 0 491 0.157			0.822 0.810 -1.442				Measuri Calculat % Cittler	ad Hoacil ac Raaci Ahte	an Bates Ian Bates	

Figure B-27 Flux Map: CY3-FM01, Measured and Calculated Assembly Average Reaction Rates

					FI	LOX M	AP: C'	Y3-FM	02						
			1	MEASU	JRED	AND C	CALCU	ILATE	D ASS	EMBL	Y				
					AVER	IAGE F	REACT	FIÓN F	IATES						
				FÇ	A INS	TRUM	ENTE	D ASS	EMBL	IEŞ					
				CY	'CLE B	URNU	JP: 10	99.0 N	IWD/N	ITU					
				· · · · ·	 	0 ang			D 675]				
				I	ŀ	0774			0.661						
		0.592	r	!	0.958	-13 277	1.009	<u> </u>	-37 11.2	├ ──		<u> </u>	1		
		0.534	ŧ	I	0.984	•	1 002								
		0 252	<u> </u>		-0.462		-0.603							-	
			ŧ	I	l.	l	1 138		1 257		1.083		0.543		
			[I		[0.044		-0.011		-1.059		-1.828		
	0.833	1 052			!		1 104					<u> </u>		1	
	0.835	1.063					1 122								
	0.211 1.097 1.644 1.135 1.222 1.112 1.123 1.123 1.212 1.125 D.450 1.101 -0.820														
	1 111 1.100 1.135 1.222 1 123 1.105 1.223 1.212 1 125 0.450 .1011 .0830														
<u> </u>				1 125				0.450		-1011		-0.820	<u> </u>		
0 853		1235			1 118		199						0.937		
1.154		1 025			0.359		: 230						-2437		
			1 188			1 185			1,592			1.062		1	
1		F	1213			1.217			1.203			1.047			
0.460		1.114	E Ere	1.090	<u> </u>	1.141	 	<u> </u>	1.201		0.000	1.120	1.013		
0.773		145		1.149		1.151			1.214		0.000	1.145	1.002		
1 695		2786	L	4.559	 	D.655		 	1.061	L	0.000	2.196	·I 093	<u> </u>	
	1 055							1.197		1.1058				0 765	
	0 950							1.744		0.575				-1 389	
			[1 152		1.177	1	1	1	1	1 150	1			
				1 167		1.203				1	1 140	í i			
0 488		<u> </u>	<u> </u>	1 111	<u> </u>	E12	1.115	<u> </u>	<u> </u>	1.146	1	<u> </u>	╈━╍	0.488	
0495				1.123			1.146			1.123		!	1	0.485	
-0.557				1.113			2.929			·2.024	l			-0.625	
					1.141			1.228			1.207			1	
					-0.079			292			9.032				
		0.974		1.209			1.154	1	1				0 545	1	
		0.948		1.212			1 145				1		-2.677		
		0.539				0 000			1 001		0.858	<u> </u>	1.017	1	
		0.534				0.000			0 964		0.835				
		-1 057				0.000	0.744		-9,775		-2.527]		
				0.480			0.762				Calculat	ad Heact led Read	on Hates (on Rate	5	
				1 612			-1.173	[% Differ	07C0		-	

Figure B-28 Flux Map: CY3-FM02, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY3-FM03
MEASURED AND CALCULATED ASSEMBLY
AVERAGE REACTION RATES
FOR INSTRUMENTED ASSEMBLIES
CYCLE BURNUP: 2206.8 MWD/MTU

						0 748 0 744 -0 300			0.655 0.652 -0.452]			
		0 523 0 535 2 458			0 981 0 970 -1.124		* 003 0 998 -1.706	_						_
							1 140 1 138 -0.196		1,2/4 1,248 -2,060		1 105 1 077 -2.458		0.535 0.535 -1.831	
	0.836 0.831 49.611	1.078 1.077 -0.055					1.091 1.110 1.695							
				1 148 1 151 0 209				1, 125 1, 122 0,268		1.169 1.151 -1.490		1.219 1.205 -1.097		
0 635 0 652 2.725		1 240 1 248 0 884			1 129 1 145 1 481		195 195 0882						0.999 0.970 -2.801	
			1 201 1.216 1.272			182 1.207 2.079			1.175 1.197 1.666			1.073 1.067 -1.513		
0.735 0.745 1.336		1 106 1 138 2 850		1.108 1 144 3 193		F. 145 F. 151 D. 481			1.191 1.195 0.495		0.000 0.000 0.000	1.125 1.138 1.121	1.004 0.986 -1.741	
	1 (144 1 (154 0 945							1.187 1 207 1.637		1 1 '9 1 122 0.242				0 751 0.744 -0 697
				■ 186 ■ 192 0 470		1 178 1.197 1.603					1.160 1.183 -1.400			
0.495 0.493 -0.549				0.153 7.151 -0.172			1.111 1.144 2.989			1.153 1.151 -D 184				0.460 0.483 0.469
					1.576 1.563 -1.084			1.222 1.216 -0.478			1.215 1.208 -0.553			
		0.990 0.958 -2.262		1.212 1.205 0.491			1.127 1.138 0.956						0 549 0.535 -2.395	
		0.532 0.535 0.710				0.000 0.000 0.000			0 896 0 870 -2 642		0.857 0.831 -3.032			-
				0.478 0.463 0.838			0.757 0.745 -1.847				Measur Calculat % Differ	od Heast Ied Hoast Ence	ion Hates tion Hate	5

Figure B-29 Flux Map: CY3-FM03, Measured and Calculated Assembly Average Reaction Rates FLUX MAP: CY3-FM04

			h	MEASU FO CY	JRED AVER R INS CLE B	AND C AGE F TRUM IURNU	CALCU REACT ENTER JP: 31	ILATEI FION F D ASS 69.0 M	D ASS ATES EMBL IWD/N	EMBL IES ITU	Y			
						9.731 9.728 -0.443			0.653 0.649 -0.641]			
		0.530 0.536 1.207			0.957 0.976 •1.041		0.675 0.978 0.295							
							1.135 1.135 0.006		1.274 1.248 -2 0 2 9		1.106 1.685 -2 139		0.540 0.536 -0.629	
	0 638 0.629 -0.876	1.087 1.085 -0.252					1.0 0 9 1,102 1.207							
				1,168 1,168 3,002				1.134 1.132 -0.160		1.165 1.168 -1.457		1.210 1.200 -0.819		
D 638 D 648 1.782		1.239 1.248 3.701			1.449 1.460 2.865		1.169 1.182 1.075						1.003 0.976 -2.654	
			1.214 1.219 6.409			1.158 1.197 2.427			1.178 1.191 1.141			1.079 1.065 -1.503		
6.724 6.730 6.814		1.123 1.135 1.960		1.106 1.141 2.951		1 132 1 145 1.189			1 170 1 182 1 059		0.000 0.000 0.000	1 119 1 135 1 374	0 99; 0 976 -1.300	
	1.049 1.060 3.140							1 176 1.197 1.758		> 132 ■ 132 0 021				0.731 0 728 -9.530
				1.204 1.20 8 0.292		1.173 1.191 1.549					1.178 1.177 D 093			
C 465 C 462 -Q 471				1.166 1.168 Q 173			1 108 1 141 2 969			1 181 1 168 -1,139				0 478 0 482 0 620
					1.186 1 177 -0.742			■ 225 ■ 219 -0.475			1.213 1 208 -0.409			
		0.987 0.964 -2.336		1 204 1,200 -0.322			1,130 5,135 0,421						0.549 0.535 •2.202	
·		0 537 0.538 -3.074				0.000 0.000 0.000			1.005 0.976 2.999		0.851 0.829 2.657			-
	·			D.475 D.482 1.267			0.741 0.730 1.490				Measura Galculai % Drifer	ac Reedi od Road wice	an Rales Ian Raie:	5

Figure B-30 Flux Map: CY3-FM04, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY3-FM05
MEASURED AND CALCULATED ASSEMBLY
AVERAGE REACTION RATES
FOR INSTRUMENTED ASSEMBLIES
CYCLE BURNUP: 4259.4 MWD/MTU

								T	1	r – – – – – – – – – – – – – – – – – – –	1			
						0711			0.653					
					[0 /15			0.649					
				<u> </u>	0.000	0409	0.070		1-0-01-1	+-		1	1	
		0.504	ŀ		0.998		0.979							
		0 338	F		-1.633		-0.624							
	—	10 200	ŧ	<u> </u>	1	<u> </u>		····-	1 784	<u> </u>	1.120		15 4 313	1
			!		1		1.1.30		1.209		1.10		0.539	
			[l		-0.123		-0.934		-1.982		-0.323	
	0.839	1.096	[<u> </u>	<u> </u>	<u> </u>	Linan	<u> </u>		<u> </u>		<u> </u>		1
	0.826	1058	[1		1.097							
	-11 R61	-0.658	í		i		1.568							
				1 182				1.542		1.190		1.199		
			t	1 179	l			1.140		1.179		1.193		
				-0.267	[0.146		0.920		0.510		
0.840	r—	1 248			1 165		1 157						1.004	
0.849		1 247	I		1 1 7 9		1 162						0.982	
1.284		0 133			0.428		1.064						-2 242	
			1218			7 182			1:74			1.060		
		I	1.221		I	1,187			1.186			1.069		
			0.197			2.169			0.687			-0.931		
0.715		1 119		1 106		1.124			1.155		0.000	1.117	0.98Z	
0.721		1 1 3 5	I	1 140	I	1.139			1.169		0.000	1.135	0.972	
0.822	L	1 389		3 0 5 5		1.294			1.177		0.000	1.572	-0.970	
	1 050	I	I		I			1.173		1.139				0.7'4
	1 050		[[1.167		1 140				07'5
	0.028					 		1 2 1	I	0.099	l	ł .	<u> </u>	0.021
				1 220		1 171					1.169			
				1 220		1 100					1.166			
	<u> </u>	<u> </u>	<u> </u>	0000	<u> </u>	1 2/5		<u> </u>	<u> </u>	4 - 4 4	-0.23	<u> </u>	l	
0.488				1 181			1.105			1.166		4		0.479
0.483 1-2 ABA				1.0116			11.140			1.179		1		0.963 J 807
0.504	I	<u> </u>	<u> </u>	0.110	1.802	<u> </u>		1.855	<u> </u>	1.004	1.000	<u> </u>		0.001
					1.199			1.226			1.206		1	
					1.368			0473			0 113		1	
		n 498	<u> </u>	1 200		<u> </u>	1.157		<u> </u>	I		<u> </u>	0.549	1
		0.955		1.193			1.135						0 534	
		-2.201		0.572			0.261						-0.981	
		0.539				2.000			1.005		0 847	<u> </u>	<u> </u>	•
		0.539				3.000			0 982		0 826			
		-0.244				8.000			-2 269		-2.459			
				0.477			0.750				Meeeur	ed React	on Rase	,
				0.463			0.721				Calcular	wa Reec	tion Rate	s
				1 364		L	-1 297				% Dife	ence		

Figure B-31 Flux Map: CY3-FM05, Measured and Calculated Assembly Average Reaction Rates FLUX MAP: CY3-FM06

			N	IEASU	JRED AVER	AND C AGE F	REACT	ILATEI IION F	D ASS IATES	EMBL	Y			
				FO	RINS	TRUM	ENTE	D A55	EMBL	IES				
				CY	CLE B	URNU	JP: 54	02.0 N	WD/M	UTU				
						0.694 0.693 -0.108			0 645 0.639 -0.857				_	
		0.000 0.000 0.000			0.384 0.969 +1 215		0.948 0.351 0.280							
							1.119 1.115 -0.339		1 24E 1 224 -1.719		1,085 1,070 -1,383		0.525 0.529 0 R46	
	0.620 0.009 -\1391	1.078 1.070 -0.692					1 060 1 074 1 351							
				1.169 1.164 -0.406				1 123 1 123 0 056		1 176 1 184 -1.068		1 187 1 187 0 046		
3.000 3.000 3.000		1.222 1.224 0.209			1.155 1.153 -0.183		1.123 1.137 1.187						0.987 0.989 -1.839	
			1.204 1.200 0.394			1.134 1.158 2.993			1 155 1 159 D 393			1.055 1.055 0.142		
3.700 3.702 3.215		1.096 1.115 1.596		1 095 1 116 2.293		1 106 1 111 0 397			125 137 018		D 0003 D 0007 0 000 0	1 098 1 115 1 501	0 955 0 951 -0.496	
	1.633 1.633 0.628							• 139 • 158 • 703		1,121 1,123 0,198				0.688 0.693 0.666
				1.209 1.207 6.229		1.145 1.159 1.289					1.178 1.170 0. 690			
C 465 C 477 -1 621 :				1.164 1.164 0.012			1 093 1 118 2 709			0.000 6.000 6.000				0.473 0.477 0.792
					1 181 1 170 -0.932			1 200 1 200 -0.618			1 180 1 183 0 243			
		0.970 0.949 -2.223		1 171 1 167 -0.38 5			0.000 0.000 0.000						0.536 0.529 -1.256	
		0.000 0.000 0.000				0.000 0.000 0.000			0.967 0.969 -1.835		0.825 0.809 -1 982			
				D.467 D.477 2.119			5.709 5.702 -1 025				Moasun Calculai SuDrior	od Moach od Aeach onco	on Malos ion Aales	5

Figure B-32 Flux Map: CY3-FM06, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY3-FM07
MEASURED AND CALCULATED ASSEMBLY
AVERAGE REACTION RATES
FOR INSTRUMENTED ASSEMBLIES
CYCLE BURNUP: 6577.5 MWD/MTU

						0 693 0.703 0.568			0.661 0.658 -0.493					
		0 541 0 543 0 339			1 005 0 995 -0.859		0.967 0.971 0.358						-	
					-		' 145 ' 144 -0.183		1.277 1.252 -2/007		1 103 1.092 -1.052		0.536 0.543 1.222	
	0 836 0 825 -1.227	■ 102 ■ 092 -0.892					1 085 1 097 1 122							
			•	0 000 0 000 0.000				1.151 1.149 -0.141		1,201 1,190 -0.930		1 185 1,189 0.285		
0.65E 0.65B 0.263		1.254 1.252 3.204			1.182 1.179 -0.280		140 1.153 1.163						1 009 0.996 -1.334	
			1 233 1 228 -0.877			1.162 1.177 1.354			1, 67 1, 61 1, 40			1.061 1.061 -0.017		
0 714 0.716 0.2•1		4 130 4 144 3 265		1 124 1 143 1 749		1 125 1 127 0 138			1.142 1.153 0.645		8 000 8 000 8 000	1.125 1,144 1,646	0.973 0.971 -0.224	
	1 063 1 061 43.207							1.267 1.177 8.925		1.145 1.140 0.389				0.696 0.703 0.588
				1.243 1.233 0.372		1,169 1,181 1,023					1.191 1.156 0.386			
0 507 0 491 -3 122				1 193 1 190 -0 265			1.145 1.143 2.546			1.209 1.150 -1 565				0.465 0.491 1.308
					1,212 1 196 -1 290			1.226 1.226 0.320			1.189 1.206 0.626			
		C 988 0,968 -1 849		1,190 1,169 -0.149			1.139 1.144 0.466						0.550 0.543 -1.312	
		0 542 0.543 0.060				0.000 0.000 0.000			1.010 0.995 -1.359		0.839 0.825 -1.658			-
				0.483 0.451 1.758			0.720 0.716 0.470				Moasur Calculat % Differ	od Hoact Iod Hoac Iarce	on Hates Iton Rate	5

Figure B-33 Flux Map: CY3-FM07, Measured and Calculated Assembly Average Reaction Rates

			,	MEASL FO	FI Jred Aver Aver	LUX M AND C AGE F TRUM	IAP: C' XALCU REACT	Y8-FM ILATEI FION F D ASS	08 DIASS IATES EMBLI	EMBL IES	Y			
				CY		0.697 0.697	JP: 76	49.0 M	0.665 0.669]			
		0 541 0 541 -0.012			1 005 0 993 -1 164	01250	0.963 0.964 0.670		-0.000]	
							1,148 1,141 -0 574		1.261 1.243 •1.433		1.090 1.082 -0.742		0.535 0.541 1.311	
	0 830 0 820 -1.558	1.090 1.082 -0.685					1.077 1.089 1.142							
				1, 197 1, 190 0,507				1.137 1.140 0.255		1.185 1.180 -0.415		1.158 1.177 0.753		
D 658 0 653 0 127		1.246 1.243 -0.252			1.174 1.169 -0.411		1.127 1.138 1.990						1.006 0.993 -1.305	
			1 230 1 220 -0 838			1 146 1 164 1 637			1,152 1,166 1,360			1.074 1.076 0.249	8	
0.715 0.713 -0.259		1.127 1.141 1.247		1.117 1.125 1.610		1.110 1.113 0.217			1.128 1.138 1.124		0.000 0.000 0.000	1 121 1 141 1 740	0.975 0.964 .4.124	
	1.064 1.060 0.237							1.148 1 164 1 424		1.136 1.140 D.295				0.891 0.897 0.894
				1.229 1.232 -0.608		1.155 1 158 1 056					' 177 : 187 0 775			
0 5 1a 0 492 -5 024				1 182 1 180 -0 151			1 111 1 135 2 155			0.000 0.000 0.000				0.000 0.000 0.000
i					1 195 1 107 -0.730			1.233 1.220 (1.085			1, 189 1, 195 3 561			
		0 975 0 959 -1.838		1 178 1 177 -KU,1223			D.000 D.000 D.000						0.544 0.541 -0.496	
		0 542 0.541 -0.202				D.000 5.000 B.000			1 005 0.993 -1 222		0.632 0.820 -7.474			-
				D.484 D.492 1.622			C 7:8 C 7:3 -0 748				Measure Calcuter % Offer	ad Ploact Iad Ploact ence	ion Hades Iion Aate:	5

Figure B-34 Flux Map: CY3-FM08, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY3-FM09
MEASURED AND CALCULATED ASSEMBLY
AVERAGE REACTION RATES
FOR INSTRUMENTED ASSEMBLIES
CYCLE BURNUP: 8909.9 MWD/MTU

							-	-			-			
						0 692 0 730		[0.672]			
					L	1 141			-0.466					
		0.566 0.546 -3.639			1 015 1 001 -1.438		0 975 0 973 -0.579							_
							1 158 1 150 -0.510		1250 1247 -0.08		+ 000 + 003 -0.446		0 542 0 548 0 762	}
	0.938 0.822 -1.603	1 099 1 983 -1.464					1 0 90 1 092 1 1 133							
				1 185 1.179 40.517				1.136 1.140 0.375		1.1 55 1.179 1.145		1.159 5 177 1.663		
0.667 0.869 0.358		1 256 1 247 -0 728			1 179 1 158 -0 520		1 129 1 135 0 627						! 003 ! 001 -0.806	
			1 207 1.224 -1.095			1 144 1 184 1.703			1,150 1,168 1,391			1 078 1.082 0.516		
0.714 0.719 0.697		1 138 1.150 0 992		1.114 1.139 12.232		1 109 1.109 0.037			1.121 1.135 1.237		0.000 0.000 0.000	1.131 1.150 1.685	0.967 0.970 0.240	
	1 076 1 072 -0 323							1.151 1.164 1.141		1,138 1,540 0,560				0 692 0.700 1.092
				1 245 1 235 -0 786		157 168 0734					1.209 1.166 -1.854			
0.504 0.500 -0.833				1 179 3 179 -0.014			1.112 1.1 3 9 2.449			1.161 1.179 -0183				0.501 0.500 -0 353
					1.191 1.1 96 -0.403			1.221 1.224 0.211			1.190 1.197 0.515			
		D 974 D 953 1.502		1.179 1.177 -0.146			1.148 1.150 0-150						0.549 0.546 -0.558	
		D.572 D 545 -4.547				0,000 0,000 0,000			1.009 1.001 -0.859		0.834 0.823 -1.392			-
				0 493 0.500 1.351			0.724 0.719 -0.697				Measur Calcular 74 Ovffer	ed Roact lod Roac ence	ion Rates tion Rate	5

Figure B-35 Flux Map: CY3-FM09, Measured and Calculated Assembly Average Reaction Rates

					FI	LUX M	AP: C	Y3-FM	10					
			1	MEASU	JRED	AND (CALCU	LATE	D ASS	EMBL	Y			
					AVER	IAGE (REACT	FION F	ATES	i				
				F P	A INS	TAUM	IENTE	D ASS	EMBL	IES				
				CY	CLE E	URNU	JP: 98	81.0 N	iWD/N	ITU				
						0 695			0.630		1			
						0.701			D 675					
		0.554		 	4.048	0.808	0.077	<u> </u>	-0.611	<u> </u>		. <u> </u>	1	
		0.549			1 018		0971							
		-0.372		L	-1.181		-0.190						ŀ	_
							1 160		1.262		1 083		0540	1
							1.154		1.247		1.081		0.549	
	0.835	1 (188	<u> </u>	<u> </u>		├ ──	1 [193	<u> </u>	-1.666	<u> </u>	10.200	 	1.614	-
	0.825	1 081					1 092							
	-1 4 13	-0.642		[]			0829							
				1 180				1.133		1.161		1.155		
		•		-0 571				0.223		1.174		1.716		
0.075		1 255			1 170		125					<u> </u>	1.010	
0.676		1247	!		1 182		: 130						1 004	
0.217		-0.649			-0.647		0,325		4 . 45			1.075	-0 595	
		ŀ	1238		!	1 147			1 149			1 076		
1		l	-1.247	l	[1.172			1.302			0.614		
0.720		1.153		1.118		1.105			1.120	1	0.000	1.:36	0.969	
0 724		1 154		1 139		1.102			1.130		0.000	1.154	0.971	
0.326	1.088	10 333	├ ──	1.7.30		-0.245		1 15/3	10.691	1.155	10.000	1.6.4	0.213	2.605
	1078							1 160		1136				0.701
	-0.055							3,713		0.064				0.612
f	ł			h 248	[1,155]		I		1,191			
				-0.883		1.161				1	0.722			
0.509	<u> </u>	<u> </u>	<u> </u>	1.174			1.145		<u> </u>	1.179	<u> </u>	 	1	0.508
0.505				1.174			1.138			1.174				0.505
C.782			 	-0.328		 	2.001		L	·D.421	L		 	0.349
					1.185			1.241			1.189			
					-0.238			-1 470			0.673			1
		0.970		1.178			1.157			· · ·	1		0.544	1
		0.958		1 178			1,154		J				0.549	
		1 2413 1 1 2413		1-0170		0.000	-0.519		1.012	<u> </u>	0.895	 	0.854	
		0.549				0.000			1.004		0.635		1	
		-0.835				0.000			-3.769		-1.284			
				0.499			0.730				Measur	ed React	on Rates	ŀ
				1.320			0.724				Calculat S Differ	жа Неас Тапсе	tion Habe	5

Figure B-36 Flux Map: CY3-FM10, Measured and Calculated Assembly Average Reaction Rates FLUX MAP: CY3-FM11

			h	MEASU FO	JRED AVER IR INS	AND C IAGE F TRUM	CALCU REACT ENTE	ILATEI FION F D ASS	D ASS IATES EMBL	EMBL IES	Ŷ			
				CY:	CLE B	UANU 0.699 0.707	IP: 112	211.2 Å	0.699 0.699 0.687	17U]			
		0 559 0 555 -0.717		-	1.018 1.018 •0.845	1.042	0.973 0.977 0.363		-0.213					_
							1.173 1.163 -0.857		1.264 1.249 •1.148		1.078 1.079 0.087		0.544 0.555 2.073	
	0 839 0 829 -1 278	1 081 1 079 -0.164					1.091 1.095 0.424							
				\ 174 \ 188 -0.554				1 131 1 133 0 178		1.155 1.163 1.175		1 167 1 178 0 764		
0.685 0.687 0.494		1 255 1 249 -0.441			1 1 0 7 1 157 -0.801		* 129 *.128 -0.072						1.011 1.010 -0.162	
			1.246 1.225 1.626			0.000 0.000 0.000			1.149 1.159 0.868			1.074 1.085 0.590		
0729 0734 0.696		1 158 1 163 0 444		1 124 141 511		1.097 1.099 0,144			1.126 1.128 0.195		0.000 0.000 0.000	1.147 1.163 1.448	0.962 0.977 -0.555	
	1 095 1.092 -0.311							1.161 1.161 0.020		1.132 1.133 0.150				0.664 0.707 1.782
				1.250 1.233 -1.325		1.459 1.459 0.020					1.189 1.178 -0.925			
0.551 0.514 6.726				1, 163 1, 168 0,365			1.125 1.141 1.426			1.174 1 168 -0 455				0.507 0.514 1.274
					1.578 1.178 3.040			1.223 1 225 0.229			1 190 1.197 0.650			ļ
		0.962 0.958 -0.452		1.177 1.178 -0.073			1,164 1,163 -0,013						0.551 0 555 0 718	
		0.567 0.565 -0.401				0.000 0.000 0.000			1.014 1.016 -0.397		0.928 D 829 D 096			
				0.500 0.514 2.766			0.737 0.734 -0.475				Measuri Calculat % Differ	ad Reach Ied Reach ance	on Retes I on Reter	5

Figure B-37 Flux Map: CY3-FM11, Measured and Calculated Assembly Average Reaction Rates

FLUX MAP: CY3-FM12
MEASURED AND CALCULATED ASSEMBLY
AVERAGE REACTION RATES
FOR INSTRUMENTED ASSEMBLIES
CYCLE BURNUP: 13200.0 MWD/MTU

				— ••••		6 25 6		L	A 700	L	1 I			
					I	0.719	I	í	0 /06					
					I	-0.550		i	-1.129					
		0.554			1.019		0.964	t —					1	
		0.563			1.01		0.977		I	i			I	
		1.549			-0-B54		1.381	í	I	•			I	
		1 "	1				1 185		1 265		1 06E		0.547	1
					ì	1	1 16E	!	1 2 4 4		1 073		0.563	
							-1.626		-1.670		0.812		2,800	1
	0.644	0.000	T	1	· ·		1 (389-							1
	0.632	0.000			I	1	1 (992		I				I	
	1 406	0.000			1	i	0 271							1
				1.159				1 1 1 8		1148		1 180		
				1.154	I		I	1 1 2 2	I	1 154		1 172	I	
				-0.432				0435		0 40 9		1 007		
0.706		1.243			1.150		1.126						1010	
3.700		1.244			1.144		1.122		1			1	1.01	
-0751		0.136			-0.524		-0.299						0.070	
	1	1	1.242		I	0.000	I		1.151		ļ į	1.055	I	
			1.219		I	0.000	I		1 152			1 079	I	
L	↓	L	1.799	L		0.0000			0.054			1 312		
0.753	i i	1 160		1 1 38	I	1 Q85	I		7 111		D 000	1 155	0.981	
0.744	1	11 166		1 140	I	1 (642	I		! 122		0.000	1 168	0977	
296		0.52*		10.146	—	0.658	. .		1 412		10,000	0.891	-0,451	
	1.107				I		I	100		1 122			I	0 701
	1.101			-	I		I	a 158		1.122			I	0719
	40.570			<u> </u>	L		F	-0.564		0.007			 	13/2
				1.248	I	1.155	ł				1.164		ł	
				1.226	I	1.152					0.010			
		—		1.780	I	0.021			<u> </u>		Liona	<u> </u>	├ ──	
0.000				0.000	I		1 127			1 150				0.520
0.000				0.000	I		1 140			1 15% .0.41R				0.524
0.000	—	—	—	4400	1 1 5 8			1 017	<u> </u>	-2-410	1.100	<u> </u>	<u> </u>	0.070
				í	1 150			1 217			1 109			
		1		1	0.520			0.202			0.477			
	⊢	0.059	—	0.002			- 169					<u> </u>	0.658	1
		0.955		0.000			1 165						0.000	
		0 140		0 000			-0.134						0.740	
		0.588	<u> </u>		† ·	0.000			1.011		0.837	<u> </u>		
		0 583				0.000			1.011		0.632			
		-0.811				0.000			-0.054		-0.548			
				0.507			0.64				Moasur	od Acarl	ion Gales	
				0.524			6.744				Calcula	lod Aoac	lion Ralo	s
				3.409			·1.439				% Drffor	0000		

Figure B-38 Flux Map: CY3-FM12, Measured and Calculated Assembly Average Reaction Rates

C MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER

The figures in this Appendix present the measured and calculated relative assembly power values for the instrumented and un-instrumented locations. The power distributions in these figures were used to determine the relative assembly power uncertainty and were used to determine the end-of-cycle assembly average burnup values. The header on each figure indicates the flux map number and burnup corresponding to the tables in Appendix A.

FLUX MAP: CY1-FM01 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 470.0 MWD/MTU

				0.664	.0.787 0.798	0.824 0.837	0.011	0.640 0.837	0.796 0.798	D.664 D.665				
		0.670 0.670 -0.134	0.945 0.943 -0.138	0.241 1.081 1.084 0.259	0.882 0.888 0.657	0.591 0.956 0.963 0.753	0.661 0.661 0.860 -0.115	0.357 0.962 0.963 0.094	D.897 D.899 D.699 D.147	1.078 1.084 0.603	D 923 D 943 1.594	0 667 0 670 0 330		
	0.665 0.670 0.737	1.039 1.049 6.808	0.600 0.637 0.916	D.933 D.942 D.288	1.207 1.211 0.257	0.990 0.990 -0.071	1.123 1.129 0.543	D.991 D.990 -0.101	1.211 1.211 -0.008	0.935 0.942 6.727	D 625 D 637 1 479	1 044 1 048 0 318	0 878 0 570 -0.868	
	0.935 0.943 0.612	C.823 C.637 1.713	1.117 1.131 1.262	1.094 1.039 -0.457	1.043 1.037 -0 556	1.215 1.211 -0.313	1.072 1.061 -0.989	i 21a 1 211 -0 452	1.048 1.037 -0.822	1 092 1.089 -0 320	1.540 1.531 -0.616	0 845 0.837 -0.888	0.959 0.943 -1.575	
0.668 0.668 1.525	1,072 1.064 1.082	0.934 0.942 0.803	1 065 1.069 0.341	1 643 1.035 -0.834	1 241 1.223 -1 427	1,107 1.085 -2.041	1.262 1.241 -1.617	1.099 1.005 -1.292	1.240 1.223 -1.378	1.063 1.035 -1.719	1.012 1.089 02.113	0.962 0.942 -2.100	1.099 1.084 (1.365	D.668 D.665 -0.24D
0.760 0.798 2.372	0.873 0.089 1.139	1.209 1.211 0.116	1.035 1.037 0.164	1.233 1.220 -0.019	1.103 1.084 -1.695	1.248 1.230 -1.435	1.000 1.064 -1.527	1.241 1.230 -0.942	1.090 1.084 -0.653	1.232 1.223 D 755	1.059 1.087 -2.059	1.230 1.211 -1.553	0.895 0.869 -0.848	0.600 0.798 -0.250
0.818 0.037 2.311	0.947 0.963 1.689	0.580 0.590 1.021	1.189 1.261 0.967	1.684 1.685 0.665	1.231 1.250 -0.130	1.636 1.633 -0.251	1.106 1.105 -0.298	1.044 1.033 -1.054	1.281 1.230 -0.097	1.394 1.385 -0.641	1.220 1 21 1 -0 754	0.999 0.990 -0.951	0.967 0.963 -0.993	0.640 0.637 -0357
9.758 9.816 2 256	0.841 0.860 2 264	1.106 1.129 2.034	1.047 1.061 1.356	1.230 1.241 0.943	1.053 1.064 0.997	1.091 1 105 1 265	a 951 a 952 a.095	1 119 1 105 -1.278	1 (381 1 (364 -1.619	1 256 1 241 -1.478	1.070 1.061 -6.613	1.125 1.129 0.293	0.859 0.860 0.035	0.8:0 0.816 0.715
0.816 0.837 2 324	0 841 0 863 2 370	0.967 0.990 2.316	1 196 1.211 1 271	1.076 1.005 0.818	1.216 1.230 0.905	1.02) 1.000 1.128	1.104 1.105 0.045	1.050 1.033 -1.810	1 250 1.230 -1.853	1.101 1.085 -1.489	1.223 1.211 -1.005	0.994 0.990 -0.433	0.954 0.963 0.985	0.825 0.837 1.467
078 0786 2.24	0 866 0 888 2 292	1 182 1 211 12 450	1.037	1 210 1.223 0.312	1.002 1.084 0.194	1.220 1.230 0.754	1.058 1.064 0.444	1 231 1 230 -3.138	1 102 1 084 1.015	1.248 1 223 -1.980	1.051 1 037 -2.780	1.242 1.211 -7.528	0.887 0.888 0.079	0798 0798 0088
0.852 0.668 2.005	1 062 1 094 2 062	0.923 0.942 2.015	1.092 1.009 -5.256	1.042 1.035 -0.739	1.229 1.223 -0.513	1 081 1 095 D 338	1222 1241 1521	1068 1035 1623	1.232 1.223 -0.753	1 058 1.035 -2 193	1 111 1 039 -2.916	0980 0942 -1.896	1 102 1 0 84 -1.633	0.677 0.668 -1.854
	0.928 0.943 1.681	D 827 D 837 1 245	1 133 1 131 -7 '59	1 100 1 089 -1 045	1 051 1 037 -1,369	> 219 ! 211 0 124	1 046 1 051 1 444	1 193 1.211 1.467	1 038 1 037 -0.118	1,108 1,089 -1,759	1,144 1,131 -1,145	0.64 0.637 -0.782	0.950 0.943 -0.716	
	0655 0670 0818	1038 1048 0898	0 838 0 837 0 191	0 949 0 942 -0.727	1213 (211 -0.208	0.982 0.990 0.805	114 1.129 1.329	0.984 0.990 0.549	1.214 1.211 -0.254	0.652 0.942 (1.103	C.844 C.637 -0 794	1.063 1.043 -0.551	0.670 0.670 -0.075	
		0.669 0.670 0.000	0.939 0.943 0.554	1.075 1.084 0.855	0.675 0.638 1.495	0.943 0.963 2.331	0.844 0.660 1.848	0.960 0.963 0.323	0.902 0.868 -1 458	1.095 1.064 -1.004	0 943 0 943 -0 454	0.672 0.670 -0.298		
				0.651 0.665 2.352	6.780 6.798 2.372	0.81a 0.837 2.236	6.799 0.816 2.166	0.852 0.857 0.601	0.810 0,798 -1 457	0.673 0.666 -0.998	Méasura Calculat % Differ	ad Malalii ad Malalii ance	ie Power ve Power	

Figure C-	I					
Flux Map:	CY1-FM01	Measured an	d Calculated	I Relative	Assembly	Power

FLUX MAP: CY1-FM02 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 626.0 MWD/MTU

				0.653	0.777 0.762	0 815 0.821 0 717	0.803	0.829	0.765 0.762	0.654 0.651]			
		0.855 0.654 -0.1 8 3	0.925 0.924 -0.173	-0.291 1.066 1.065 -0.281	0.636 0.879 0.880 0.857	0.952 0.955 0.203	0.860 0.855 -0.562	0.955 0.955 0.001	-0.878 0.800 0.228	-0.386 1.066 1.065 -0.019	0.928 0.924 -0.485	0.884 0.654 -1.590		
	0.654 0.654 -0.061	1.026 1.026 0.005	0.831 0.832 0.193	0.342 0.34D -0.265	1.209 1.208 -6.291	0.391 0.392 0.381	1.11B 1.130 0.992	0.988 0.992 0.374	1.198 1.208 0.838	0.938 0.946 0.166	0.837 0.832 -0.502	1.043 1.026 -1.582	0.672 0.654 -2 664	
	0.925 0.924 0.164	0.83D 0.832 0.35D	1.129 1.136 0.502	1.091 1.095 0.436	1.041 1.046 0.394	1.212 1.215 0.53E	1.074 1.072 -0.195	1.217 1.219 0.164	1 048 1.046 -0.258	1 099 1 095 -6.846	1.148 1 135 -41.993	0.845 0.832 -1.491	0.94\$ 0.924 -7 099	
0 649 0 651 0 354	1 064 1 055 0 150	0 939 0 940 0 943	1.002 1.035 0.293	1.044 1.047 0.239	1.237 1.235 -3.069	1.108 1.101 -0.632	1 257 1 257 41.766	1 110 1 101 -0.873	1 248 1 235 -1.001	1 058 1 047 -1.051	1 109 1 095 -1.191	0 951 0 940 -1.139	1 (174 1 (165 -(1629)	0 654 0 851 -0 367
0775 0782 0942	0.876 0.883 0.388	1 203 1 206 0 216	1 038 1 046 0 732	1 231 1 236 0 422	1 126 1 133 -3.316	1 254 1 251 -0.303	1 071 1 085 -0.458	1 250 1 251 0 008	1 100 1 103 0 245	1 233 1 238 0 235	1 059 1 048 -1.275	1 218 1 206 -1.042	0.886 0.880 -0.666	0 785 0.782 -0.357
0.814 0.821 0.823	0 948 0.955 0 717	0 982 0 992 7.029	1 200 1 219 1.558	1.087 1.101 1.2/9	1 239 1 251 0 912	1 054 1.059 0.465	1 127 1 134 0.648	1 065 1.059 0.379	1.234 1.251 1.312	1.099 1.101 0.155	1.225 1.219 0.529	1.001 D.992 0.879	0.962 0.955 -0.656	D 830 D 821 -1.168
0795 0802 0818	D.845 D 855 ' 117	1 114 1.133 1 408	1 053 1 072 1 747	1232 1257 1996	1.055 1.085 1.835	1 109 1 134 2 327	D 977 D 983 ' 270	1.132 1.134 0.203	1.089 1.085 -0 211	1.259 1.257 -0.135	1 077 1 072 -0 520	1 128 1 130 0 142	0.854 0.855 -1.030	0 810 0 802 -1.062
0813 0821 0997	0 944 0 955 : 200	0.979 0.992 1.307	> 198 > 219 • 753	: 080 : 101 1.954	1 224 1 251 2 215	1 033 1.059 2.459	1 117 1,134 1 531	1 059 1.059 -0.019	1.253 1.251 -0.176	1,104 1,101 -0,290	1.222 1.219 -0.295	0.697 0.992 -0.512	0.959 0.955 -0.334	0 825 D.621 0.497
0784 0782 -0.191	0878 0.880 0228	1,190 1,206 1,277	1 041 1 046 0 190	1,223 1,236 1,098	1.092 1.103 0.998	1.226 1.251 2.040	1.067 1.086 1.762	1.235 1.251 1.260	1.505 1.503 -0.1 90	1.245 1.236 -0.763	1.058 1.045 -1.152	1.224 1.205 •1.478	0.6895 0.689	0.769 0.762 -0.685
0.659 0.651 -1.228	1.079 1.065 -1.224	0.901 0.040 -1.219	1.095	1.064 1.047 -0.693	1.235 1.236 6.081	1.085	1.220 1.257 2.502	1.073 1.101 2.553	1.233 1.235 0.258	1.060 1.047 -1.217	1.110 1.095 1.271	0.952 0.940 -1 333	1.078 1.065 -1.215	0.659 0.651 -1.213
	5.900 5.924 -0.725	0.834 0.832 -0.228	1.549 1.536 -1.097	1.010 1.095 -1.295	1.067 1.045 1.037	1.209 1.219 0.827	1.049 1.072 2.184	1.192 1.219 2.265	1.067 1.046 0.849	1.109 1.095 -\.173	1.148 1.136 -1 028	0.843 0.832 -1.210	0.995 0.924 -1.230	
	0.655 0.654 -0.223	1.029 1.026 -0.234	5.838 6.832 -0.692	0.553 0.940 -1.395	1.210 1.206 -0.355	0.992 1.060	1.130	0.892 0.731	1.206	0.959	0.846 0.832 -1.605	1.043 1.326 -1.592	0.662 0.854 -1.253	
		0.655 0.854 -0.229	0.928 0.624 -0.431	1.075	0.876 0.000 0.468	0.839 0.855 1.758	0.844 0.855 1.282	0.960 0.955 -0.479	0.901 0.880 -2.353	1.092 1.065 -2.418	0.947 0.924 -2.461	0.667 0.654 -1.964		
				0.650 0.154 j	0.782 0.994	0.82: 1.22:	0.802 0.640	0.927 0.821 40.810	0.807 0.782 -2.547	0.651 -2.412	Calcula; % Differ	ed Relativ 9009	va Powar va Powar	

Figure C-2		
Flux Map: CY1-FM0	2, Measured and Calculated Relative Assembly	Power

FLUX MAP: CY1+FMD3 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 913.0 MWD/MTU

				0.642 0.633	D.767 D.769 D.248	0.805 0.608 0.260	0.793 0.790 .0.255	0.814 0.808	0.771 0.769 -0.150	0.640 0.639				
		0.64.3 0.642 -0 156	0.909 0.908 -0.154	1.054 1.053 -0 389	C.675 C.674 -0 171	0.947 0.961 0.380	0.854 0.653 -0.140	0.949 0.951 0.242	0.875 0.674 -0.091	1.049 1.050 0.095	0 904 0 903 0 454	0 649 0 642 -1 033		
	0,641 0,642 0,094	1,010 1,012 3.15a	0.632 0.635 0.264	0 944 0 941 -0 382	1,205 1,200 -0 398	0 990 0,993 0,313	1,13 1,130 1,492	0.990 0.993 0.364	1.200 1.200 -0.008	0.939 0.941 0.213	0.631 0.635 0.445	1.023 1.012 -1.036	0.658 0.642 -2.476	
	7.909 7.903 7.066	0.830 0.835 0.506	1 141 1 150 0 718	1 097 1,104 0.658	1,045 1 052 0 641	1,215 1,222 0,568	1.061 1.077 -0 342	1.221 1.222 0.011	1.062 1.062 -0.914	1.113 1.104 -0.818	1.164 1.150 -1.283	0.649 0.635 -1.605	0.632 0.908 -2.512	
0.636 0.639 0.509	1.047 1.060 0.267	0.939 0.941 0.117	1,100 1,104 0,382	1.061 1.067 0.485	1,240 1,243 3,210	1.117 1.110 -0.570	1.274 1.264 -0.769	1.119 1.110 -0.795	1.262 1.243 -1.529	1.061 1.067 -2.239	1.131 1.104 •2.413	0.960 0.941 -2.051	1.062 1.060 -1.111	0.637 0.839 0.393
0.762 0.769 0.945	0.871 0.874 0.221	1.199 1.200 9.642	1.045 1.662 0.622	1.236 1.243 0.558	1.115 1.114 D 072	1.264 1.263 0 134	1.104 1.101 0.235	1.262 1.263 0.671	1.117 1.114 -0.251	1.251 1.243 -0.655	1.075 1.052 -2 122	1.215 1.200 -1.251	0.877 0.874 -0 375	0.766 0.769 0.391
0.802 11.808 11.755	0.543 0.951 0.806	0.983 0.993 1.059	1.205 1.222 1.386	1.098 1.130 1.162	1.252 1.263 0.806	1.674 1.678 0.362	1.152 1.159 0.508	1.672 1.076 0.569	1.247 1 263 1 202	1 106 1,110 0,226	1.229 1.222 -0 570	1.002 0.993 -0.878	0.957 0.951 -0.617	0.676 0.606 -0.992
0.765 0.760 0.726	0.84≢ 0.853 1.427	1.106 1.130 1.940	1.059 1.077 1.757	1.244 1.264 1.824	1.084 1.104 1.559	1.136 1.159 2.007	1.920 1.027 0.738	1.159 1.159 0.990	1.100 1.101 0.138	1.263 1.264 0.193	1.983 1.977 -0.526	1.125 1.130 0.089	0.854 0.853 -1.227	0.800 0.750 - 153
0.769 0.868 1.115	0.836 0.951 1.592	0.97 5 0.953 1.897	1.200 1.222 1.917	1.092 1.110 1.676	1.239 1.263 1.921	1.655 1.678 2.17D	1.149 1.155 0.862	1.087 1.078 -0.609	1.264 1.263 -0.142	1.110 1.110 0.000	1.225 1.222 -0.234	1,000 0 893 -0 690	0.955 0.951 -C 388	0.811 0 806 -0.358
0.766 0.769 0.418	0.867 0.874 0.784	1.175 1.200 1.721	1.046 1.052 0.554	1.230 1.243 1.357	1.104 1.114 0.961	1 24D 1 263 1 923	1.087 1 101 1 250	1 257 1 293 0 482	1 121 1 114 -0 624	1 254 1 243 -0.893	1 066 1 052 -1.369	1 221 1 200 -1.768	0.881 0.874 -0.761	0 775 0 769 -0.761
0.542 0.639 -0.483	1 (155 1 (150) -0 (193)	0 945 0 941 -0 497	1 103 1 104 0 082	1 062 1 057 -0.499	1 242 1 243 0 089	1 097 1 110 1 248	1 235 1 294 2 331	1084 1110 2370	1243 1243 -0.032	1 073 1 057 -1.462	• 119 ■ 104 -1.332	0.952 0.941 -1.187	1.067 1.050 -1.575	0.649 0.639 1.571
	0910 0908 -0.165	0 833 0 835 0 1 4 4	1 150 1.150 -0.785	1 117 1.104 -1.137	1 060 1 052 -1.072	1 213 1 222 0 742	1 055 1 077 2 005	1 198 1 222 2 183	048 1.052 0.612	0.116 0.104 -1.115	↓ 159 1. 150 -0.809	D.845 D.935 -1.184	0.925 0.9 08 -1.796	
	0640 0642 0201	1 010 1.012 0.228	0.837 0.835 -6.322	0.953 0.941 -1.280	1 206 1 206 	0.908 0.933 0.791	1 112 1 133 1 613	0.985 D 993 D.863	1.202 1.200 -0.191	0.955 0.941 -1.539	6.845 0.635 -1.359	1.029 1.012 -1.614	0.642 -1.970	
		0 639 D.642 D.407	0.939 0.938 0.065	1.056 1.050 0.521	0.872 D 874 D 252	0.9 38 0.951 1.375	0 842 0 853 1 355	0.961 0.961 -0.011	D.691 0.674 -1.886	1 072 1 050 -1 997	0.928 0.908 -2.113	0.665 0.642 -2.045		
				0.637 0.639 0.330	0769 0769 0760	0 795 0 808 1 278	0 781 0 790 • 203	0 609 0.608 -0.124	0.784 0.769 -1.075	0.652 0.639 -1.992	Measur Ca/culat % Dillor	ed Relaih ad Ralair anca	ve Power ve Power	

Figure C-		
Flux Map:	CY1-FM03, Measured and Calculated Relative Assembly P	ower

Measured and Calculated Relative Assembly Power

FLUX MAP: CY1-FM04 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 1935.0 MWD/MTU

				0.625	0750	0.790	0.782	0.801	0.754	0.622				
				0 272	1214	1 380	0.550	-0.025	0620	0.691				
		0.628	0 831	1034	0.858	0 953	0.881	0 955	0 395	1 031	0.890	0 633	1	
		0.628	0.892	1 0 3 7	0.873	0.962	0.992	0.992	0 873	037	0 992	0 620		
		0.207	0.505	0,281	Q-811	0 871	0 183	0.598	0750	0 582	0.247	-0.631		
	0.629	0.998	0.848	0942	1 186	0.998	1 121	0.994	n, 180	0.939	0.847	1.007	0.639	
	0 629	1 000	0848	0944	1 189	666.01	134	0.999	1,189	0.944	0.849	1.000	0.629	
	0.127	0 190	0.319	0201	02/8	0.362	1 100	0513	0.805	0.511	0.224	-0.886	-1.602	
	0.892	0.646	139	1 114	1 058	1 217	1096	1.221	1.060	1.115	1.148	0.650	0.904	
	0.000	0.295	0.272	-1.113	-0.189	0.337	-0.451	0.009	-0.349	0.215	0.661	0.818	-1.283	
0.672	1.033	0.943	1,112	1.068	1,250	1.128	1,200	1.127	1.258	1.077	1,125	0.952	1.041	0.625
0.627	1.037	0.944	1.113	1.054	1.244	1.11	1.265	1.114	1.244	1.054	1.113	0.944	1.037	0 627
0.675	D.339	0.117	0.063	-0.365	-0.71B	-1.222	-1.188	-1.145	·1.138	·1.207	·1.12D	-0.778	0.384	D 224
D.743	D. 95 8	1.189	1.054	1.249	1.130	1.279	1.123	1.274	1.122	1.247	1.069	1.198	D.875	D 757
D.753	0.673	1.183	1 056	1.244	1.113	1.265	0.111	1.265	1.119	1.244	1.055	I.189	D 873	D 75A
1254	0.622	D. 143	D 237	-0.329	-0.947	-0.946	-1.077	-0.589	-0.241	-0.257	-1.1E9	-0.710	-0.206	0238
0 793	0.953	E.993	1213	1.112	1 266	1.095	1 181	1.093	1 262	1 20	1 230	1 007	0.968	0.808
1 219	0.962	0.994	: 222 0 700	0.225	0.004	1 1293	1 179	1 (893	1 268	1,114	1.222	0.999	0.962	0.001
0.770	0.000	1.000	1.000	1 460	1.100	-0 E37	2 020		0.007	-0.510	10 0008	-0.763	-0,470	-0.043
0.770	0.852	1.334	1.072	1.255	1.102	1.100	1.039	1.129	1.122	1.273	1.089	1.134	0.869	0.792
1.340	1.197	1.052	C.877	6.749	0.769	1.164	0.375	0.632	-D 945	-0.623	-D 680	DOIB	-0.782	0.544
6.791	2.961	0.968	1.211	1.106	1.254	1.079	1.173	1.102	1.276	1.120	1.227	1.005	0.563	0.802
D.601	0.962	0.599	1.222	1.814	1.766	1.093	1.179	1.099	1.766	1.114	1.222	0.999	0.962	0.601
1 226	1,*36	1.103	0.864	0-769	1 013	1.260	3,466	-0.817	-0 778	-0.536	-0.454	-0.587	-0 135	-0.087
0.753	3 866	1.177	1.056	1.240	1.116	1 254	1 103	1 262	1.125	1.255	1.069	1.207	0.676	0.782
0.759	3.673	1 169	1 056	1.244	1119	1.266	1.111	1.266	1.1+9	1.244	1.358	1.189	0.873	0.759
0764	0.867	1.068	3.00%	0.055	0.005	0 9/3	0.753	0.333	-0.560	-0.637	-1,160	-1.4.34	-0.398	-0.361
0.623	1.031	0.839	1.1.6	1.071	1.247	1.107	1.246	1.987	1.245	1.378	1.125	0.954	1.047	0.633
0.627	0.563	0.644	0.238	0.621	-0.285	0.850	1.205	1.111	1.299	-1.161	-1 076	-1 (117	-0.984	-0.921 -0.995
	0.887	0.8.14	1.148	1 1 24	1.067	1 214	1.064	1 293	1.053	1 1 2 3	1.150	0.855	0.902	
	0.892	0.619	1.142	1.113	1.056	1.222	1.081	1.222	1.058	1.113	1.142	0.849	0.892	
	0.552	0.521	-0.549	1.002	-0.993	0.601	1.654	1.555	0.332	D.908	-0.637	-0.818	-1.053	
	0.826	0.894	0.849	0.954	1.182	0.907	1.114	0.992	1.195	0.358	0.860	1012	0 697	
	0.829	1.000	0.849	0.344	1.189	0.399	1.134	0.939	1 189	0 944	0.849	1 0 0 0	0.628	
	0.5 0	0.553	-0.024	·1.048	·C. 185	1.226	1.805	0726	-0.427	-1.430	-1.268	-1,215	-1.100	
		0.626	0.990	1.038	0.806	0 341	0.845	0.958	0.868	1 058	0.910	0.640		
	1	0.625	0.892 0.781	1 (197	0 873 0 842	0 962	0.882	0.962	0.873	5.037	0.092	0.628		
		d an	0.281	-0.50H	0.043	2 100	0.770	0.397	-1.734	-1.846	-1.656	-1.595	I	
				0.621	0.768	0.704	0770	0.797	0772	0.638	Moasure	ed Helain ad Dalas	o Power	
				0.886	1457	2 109	2 133	0477	-1.722	-1.84B	> Differ	OFCO		

Figure C-	l de la constante de	
Flux Map:	CY1-FM04, Measured and Calculated Relative Assemble	ly Power

FLUX MAP: CY1-FMD5 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 2953.0 MWD/MTU

				0627 0629	0.752 0.754	0.791 0.800	0.783 0.795	0.802 10.800	0.754	0.821				
				D 303	1.509	2.097	1.508	0.811	1 326	1 306				
		0.641 0.636	0.905 0.899	1.038 1.042	0.873 0.000 0.779	0.967 0.980 1.152	0.667 0.875 0.934	0.970	0.87D 0.88D	1.069 1.042 2.535	0.989 0.858 -9.162	0.669 0.636		
	0.635 0.636	10.873 1.012 1.013	0.874 0.878	0.950	1.179 1.163	0.896	1.122	0.993	1.171	0.897 0.950	0.964 0.876	1.067	0.639 0.638	
	0.128 0.699 0.698	0.140 0.897 0.875	0217	0 326 1.123 1.122	0.305	0.523 1.207 1.210	1.132	0.705	0.982	-4.364 1.156 1.122	1.204 1.147	0.909 0.876	-0.503 0.907 0.698	
0.622 0.629 1.156	0.313 1.033 1.042 0.823	0.948 0.953 0.601	1.117 1.122 0.465	-0.063 1.064 1.060 -0.329	1.240 1.230 -0.774	0.257 1.113 1.097 -1.484	1 258 1.245 -0 892	0 +15 1 100 1 097 -0.264	1 235 1 230 -0.203	1.068 1.060 -0.712	1.125 1.122 -1.128	0.565 0.553 -1.182	1.048 1.042 -0.582	0.62/ 0.629 0.335
0.749 0.754 2.003	0.870 0.880 1.461	1.177 1.183 0.459	1048 1051 0478	1 294 1 290 -0.316	1 111 1 101 -0 645	1.256 1.246 -0 7 33	1.105 1.093 -1.104	1 251 1 246 8.416	1.099 1.101 0.182	1.234 1.230 -0.097	1.063 1.053 -1.063	1.101 1.163 -0722	0.601 0.660 -0.146	0.761 0.764 0.341
0.762 0.008 2.033	0.966 0.960 1.407	0.991 1.000 0.657	1 199 1 210 0 901	1 095 1 097 0 201	1 242 1.246 0.274	1.074 1.078 0.436	1.171 1.171 0.317	1.087 1.078 -3.764	1.244 1.240 0.145	1.103 1.097 -0.390	1.214 1.210 -0.321	1.006 1.000 -0.618	0.905 0.980 -0.548	0 815 0 808 -0.863
0.780 0.795 1.962	0.661 0.875 1.602	1 121 1 135 1 240	1060 1070 0943	1 236 1 245 0 653	1.063 1.953 0.942	1.156 1.171 1.140	1.026 1.033 0.653	1.178 1.171 -3.603	1 104 1 093 -0.960	1.252 1.245 -0.567	1.973 1.970 -0.328	1.135 1.135 -0.082	0 883 0 675 -0.951	0 798 0 795 -0.268
0.794 0.608 1,776	0.965 0.960 1.544	0.935 1.000 1.259	1 201 1 213 0 755	1 031 1 037 0 522	1.287 1.246 0.711	1.269 1.276 0.889	1.167 1.171 0.343	1 005 1 078 -0.663	1 256 1 246 -0.620	1 106 1.097 -0 724	1.216 1.210 -0.493	1.007 1.000 -0.688	0.978 0.980 0.961	0 ១៧ 0 ១៧ 0 ១៧ 0 ១៣
0.754 0.764 1.286	0.669 0.890 1.843	1.165 1.183 1.493	1 049 1 051 0.324	1,225 1,230 0,392	1.397 1.104 0.438	1.238 1.246 0.777	1.008 1.093 0.628	1 242 1 248 0 322	■ 109 ■ 101 -0.712	1 244 1 230 -1 117	1 ()66 1 ()51 -11 405	1.202 1.183 -1.653	0.675 D 680 0.468	D 763 D 764 D 473
0.522 0.529 1.126	1.030 1.042 1.146	0.943 0.953 1.746	1.119 1.122 0.277	1.050 1.050 0.028	1.230 1.230 -0.01 0	1.092 1.097 0.486	1 228 1 245 1 335	1 080 1 097 1 555	∎ 231 ∎ 230 -0.105	1.073 1.060 1.211	1.134 1.122 1.023	0.962 0.953 -0.853	1.048 1.042 -0.582	D.632 D.629 -3.501
	0.891 0.068 0.053	0.871 0.876 0.563	1,143 1,147 0,368	1,124 1,122 -0,142	1 056 1 051 -0 577	1 205 1 210 0 398	1 054 1,079 1,479	1 191 1 213 1 604	1 047 1 051 D 401	1.13D 1.122 -D.715	1.151 1.147 •0.330	0.879 0.876 -0.341	0.904 0.094 -0.620	
	0.635 0.636 0.173	1,010 1,013 3,367	0 673 0 676 0.286	0.952 0.953 0.168	5 177 1 193 0 433	0 389 1,300 1,133	1.117 1.135 1.557	0.992 1.003 0.796	4 183 4 183 0 000	0.957 0.953 -0.428	0.078 0.078 -0. 04 8	1.0±6 1.0±3 -0.305	0.640 0.638 -0.856	
		0.637 0.636 -0.141	0.693 0.693 0.537	1.033 1.042 1.155	0.865 0.886 1.587	0.958 0.900 2.329	0.858 0.875 2.172	0973 0903 0878	0 890 0 860 -1.179	1 046 1 042 -0.620	0.889 0.896 -0.045	0.638 0 636 -0 298		
				0.617 0.629 1.896	0.748 0.764 2.109	0.708 0.868 2.590	0.775 0 795 2 673	0.800 0.808 1.063	0 773 0 764 -1,177	0 ff33 0 f629 -f1.632	Messuri Gelouiar 'S Differ	ed Reiato Ieri Relați Ierice	ie Pomer Ne Pome	

Figure C-	5					
Flux Map:	CY1-FM05	Measured and	d Calculated	Relative	Assembly	Power

Measured and Calculated Relative Assembly Power

FLUX MAP: CY1-FM06 MEASURED AND CALCULATED HELATIVE ASSEMBLY POWER CYCLE BURNUP: 3463.0 MWD/MTU

				0 628 0 628	0754	0 795 0 808	0 789 0 798	0 803	0 754 0.763	0.620 0.628				
		0 639 0.637 -0.313	0 900 0 898 -0.311	1 043 1 043 1 043 -0.0:0	0 877 0 881 0 433	0 977 0 987 0 993	0.874 0.879 0.526	0.979 0.987 0.987 0.638	1.287 0.873 0.881 0.997	1.291 1.030 1.040 1.000	0.898 D.698 1.024	0.637 0.637 0.031	ļ	
	0.636 0.637 0.173	1.015 1.017 8.207	0 889 0.891 0.304	0.950 0.959 0.000	1.177 3.177 -0.008	0.996 0.999 0.271	1. 121 1. 133 1. 070	0.994 0.999 0.453	1.169 1.177 0.710	0.950 0.958 0.852	0.682 0.691 1.008	017 017 0028	0 643 D 637 -(1. 93 3	
	0.895 0.898 0.212	0.895 0.891 0.700	1.158 1.162 0.371	1.137 1.131 0.528	1.055 1.049 0.55D	1.203 1.204 5.033	1.071 1.064 -0.598	1.202 1.204 0.116	1.051 1.049 -0.190	1.332 1.831 -0.115	1 167 1 162 -0 420	0 698 0 691 -0 491	0 907 0 898 -1.025	
0.522 0.528 0.949	1.035 1.040 6.512	0.956 0.958 0.241	1.131 1.131 -0.018	1.069 1.060 -0.795	1.239 1.224 •1.243	1.109 1.089 1.754	1.250 1.235 1.215	1.097 1.069 -0.548	1.234 1.224 -0.802	1.076 1.060 -1450	1.545 1.531 -1 326	0.967 0.958 -0.910	1 044 1 040 -0 412	0 628 0.628 0.368
0.751 0.763 1.624	0.875 0.881 0.697	1.178 1.177 -0.095	1.060 1.049 -0.025	1.234 1.224 -0.77B	1.110 1.094 -1.388	1.253 1.238 -1.235	1.502 1.068 -1.298	1.246 1.238 -0.628	1.097 1,094 -0.248	1.232 1.224 -0.625	1 064 1.049 -1 326	1,168 1,177 -0.725	0.652 0.681 -0.138	0.761 0.763 0.368
0.796 0.80a 1,546	0.577 0.967 0.962	0.994 0.999 0.473	1.198 1 204 0 442	1 093 1 069 -0 329	1 243 1,238 -0 382	1 079 1,076 -0 232	1,161 1,176 -0 432	1.068 1.076 ∴ 048	1.240 1.238 -0 169	1.068 1.089 -0.819	1.212 1.204 -0.658	1.005 0.999 -0.657	9.9 69 8.987 -D.132	0.807 0.808 0.824
0.705 0.766 1.439	0.868 0.879 1.226	1.121 1.133 1.079	1.05 8 1.064 0.539	1.234 1.235 0.073	1.064 1.669 0.323	1.189 1.170 0.816	1.947 1.947 0.910	1.190 1.176 -1.125	1.104 1.088 -1.494	1.248 1.235 -1.002	1.072 1.064 -0.718	1.133 1.138 0.371	0.879 0.879 0.057	0.792 0.796 0.492
0.756 0.806 1 444	0.973 0 987 1 977	0.925 9.959 1 267	1.198 1.204 0.484	1.687 1.689 0.175	1.234 1.236 0.324	1.671 1.676 0.465	1.178 1 176 -0.204	1.992 1.076 -1.392	1 255 1.238 -1.388	1 101 1 089 -1.063	1 213 1.204 -0.763	1.003 0.989 -0.419	0.961 0.987 0.522	0.801 0.808 0.312
0 754 0 763 1 651	0 867 0 881 1 591	1 161 1 177 1 413	1.047 1.049 0.191	1 22) 1.224 0.270	1 092 1.094 0 211	1 234 1.238 0 332	1.087 1.000 0.055	1243 1.238 -0.370	1 107 1 094 -1.183	1.2-2 1.224 -1.425	1.067 1.049 -1.677	1.200 1.177 1.884	0.880 0.881 0.148	0.762 0.763 0.157
0.817 0.626 1 833	1 021 1 040 1 891	0941 0950 1820	1.130 1.131 0.115	1.062 1.060 -0.160	1.227 1.224 -0.277	1.009 1.009 0.020	1.225 1.235 0.743	1.078 1.089 1.067	1 234 1 224 -0.520	1.078 5.053 +1.555	146 131 1.361	D 959 0 958 -1.125	1 049 1 040 -0.811	0,833 0,526 -0,608
	0 898 0 898 1 001	0.809 0.891 0.015	1.181 1.162 0.155	1.135 1.131 -3.388	1 058 1 049 -0.879	1.202 1.204 0.133	1 051 1.054 1 209	1.188 1.204 1.287	1.043 1.043 0.010	1.143 1 131 -1.095	1.170 1 162 -0 841	D6644 D6641 -0713	0 907 0 898 -1,004	
	0.605 0.607 0.441	1010 1017 0305	0.363	0.959 D 958 -0.060	9 1/5 9 177 D 179	0.989 D.993 1.011	115 133 605	D.993 D.999 D.574	r. 1a3 1 177 -0 482	0.967 0.958 -0.859	0.695 0.691 -0.391	1 024 1.017 -0.713	0.645 0.637 -1.148	
		0.634 D 637 D 521	0.892 D 2348 D 6399	0.032 040 0834	0 869 0 881 1 392	0.9 66 0.987 2.111	0.662 0.679 1.996	0.963 0.967 0.366	0.697 0.681 -1.758	1.052 1.040 -1.093	0.901 0.899 -0.422	0.642 0.537 0.732		
				0.619 0.628 1.487	0.750 0.763 1.787	0.790 0.608 2.240	0.779 0.796 2.260	0.803 0.809 0.560	0.777 0.763 -1 750	0.635 0.628 -1.087	Measu v Calculat % Office	ad Relativ ad Relativ ance	na Pomer Na Pomer	

Figure C-	6					
Flux Map:	CY1-FM06	Measured and	d Calculated	Relative	Assembly	Power

FLUX MAP: CY1-FM07 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 4369.0 MWD/MTU

				0.629 0.631	0.755 0.758	0.765	0.790 0.803	0.005 0.810	0.758	0.621 0.631]			
				0.232	1.642	2.162	1.523	0.357	1.642	1.644			_	
		0.644 0.644	0.964 0.966	1.042 1.044	0.879 0.886	0.389 1.302	0.880 0.887	0.992 1.992	0.874 0.886	1.032 1.044	0.894 0.903	0.642 0.644]	
		-0.062	-D 066	0.230	0.726	1.235	0.807	1 006	1.304	1 202	0.873	0.260	L.	
	0.643	1 026	0.911	0.963	1.169	0.895	1.123	Q 883	1 160	0 856 o 845	0.906	1.026	0.646]
	0 187	0.332	0.549	0.229	0 222	Q 912	0 837	0 524	0 991	0 964	0.970	0.282	0.044	
	0.903	e Sub	1 170	1 1 4 9	1 ()54	1 104	1.059	1 190	1043	1.138	1.170	0.922	0.912	
	0.033	0 816 0 825	1 173 0 308	1 139 -0 688	1 ()44 -C 692	1 193	1 054	1 193	1044	1 1 39	1.173	0.916 -0.597	0.903 -0.997	
0.826	1 039	0.982	1 1 39	1 069	1 230	1 096	1 233	1079	1218	1070	1 157	0.979	1.052	0.62B
0 831 0 815	1 ()44 0 520	0 965 0 322	1 139	1.057 -1.#14	1 212 -1.498	1 075 -1.913	1218	1075	1 212 -0.533	1.057	1.138	0.965 -1.420	1.044 -0.694	0.531 0.448
0 755	0.879	1 172	1046	1 225	1 096	1238	1 0 9 0	1 2 3 1	1.000	· 221	1068	1.182	0.887	0.764
0.788	0.808	-0.017	-0.162	1.212	1.078 -1.542	1.221	1.073	1.221 -3.804	1.079	1.212 -0.727	1.044	4.897	0.885	0.768 0.458
0.799	0.991	0.934	1.191	1.081	1 228	1063	1 179	1 053	1 224	1 085	1 200	1004	1 004	0.813
0.813	1.032	D.958	1 193	1 075	1 221	1065	1 170	1.065	: 221	1 075	1 193	0.998	1 002	0.810
1 683	1080	0.382	0.193	4.610	-0.004	0.374	-0.772	-1.389	-0.554	-0.6401	-0.800	-0.657	-0.2369	-0.066
0 803	D 874 D 887	1.122	1054	1 218	1073	1 170	1048	1,185	1.091	1.232	1.061	1.133	0.889	0.000 0.003
1737	± 499	0.990	0.285	-0.246	-0.256	0.034	-0.277	-1.324	-1.614	-1.112	-0.651	-0.026	-0.202	D.363
0799	0.985	0.984	1,191	1.077	1.223	1.066	1.1/6	1.060	1.239	1.065	1.203	1.003	D.997	0.604
0.810	1.6644	0.998	r. 193 0. 168	1.075 -0.241	1.221 -0.108	1.065	1.170 -0.57B	1.055	1.221	1.075	1.193 -0.790	0.9995	1.002	D 813 1 019
0.751	6.867	1.151	1.045	1.213	1.091	1.222	1.D76	1.227	1.093	1.250	1.061	1.193	0.682	0.764
D.768	C.836 2 522	1.972	1.D44 0.457	1.212	1.D79	1.221	1.073	1.221	1.079	1252	1,044	1.172	0.688	0.769
D 615	1.D1a	n.940	1.139	1.069	1 217	1.077	1.2.2	1.066	1.218	1.074	1.158	0.979	1.050	0.440
D 631	1.044	0.965	1.139	1.067	1.212	1.075	1.218	1.075	1.212	1.057	1.138	0.968	1.044	0.631
2.620	2.624	2.627	-0.026	·O 170	·Q 403	-0.553	0.478	0.844	-0.533	-1.638	-1.469	1.349	-0.505	0.535
	0.891	0.915	1 171	1,141	1.052	1.193	1.643	1.180	1.945	1.154	1.188	0.326	0.011	
	1 347	0.067	0 231	-0 202	-0.741	0.042	1.028	1.136	-0.029	1.361	-1.039	-1.025	-0.657	
1	0.641	1,026	3,9:2	0.963	1.167	0.967	1.116	0.982	1.175	0.374	0.922	1.038	0.651	
	0.644	1.029	0.916	0.965	1.172	0.968	1.133	0.998 0.595	1.172 -0.305	0.365 -0.863	0.91E -0.640	1029 JA 839	0.644	
	, . . .	0.639	0.885	1.032	0.071	0.979	0.865	0.995	0.89B	1.054	0.90E	0.648		
		0.844	0.903	1.044	0.805	1.3322	0.887	1.002	0 85 E	1 044	0 903	0.644		
		0.814	0.916	1.23!	1.734	2.319	2.153	0.592	-1.381	-0.864	-0.542	-0.679		
				0.619 0.531	0.752 0.758	0.793	0.782	0.205	0,778 0,788	0.638	Measure Celouise	ed Relativ Ed Relativ	e Puwer ve Power	
				1.923	2 15E	2 535	2 582	0.918	-1.375	-0.865	% Differ	ence		

Figure C-7	
Flux Map: CY1-FM07, Measured and Calculated Relative Assembly	Power

Measured and Calculated Relative Assembly Power

FLUX MAP: CY1-FM08 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 4852.0 MWD/MTU

				0.634 0.632	0.761 0.779	0.802 0.815	0.798 0.606	0.811 0.615	0.759 0.770	0.624 0.632				
				-0.206	3, 169	1.658	0.977	D.567	1.403	1.411			1	
		D.654	0.915	1 043	0.685	1.000	D.638	1.000	D.677	1.035	0.699	0650		
		10.647	10906	1.047	0.839	1004	0.003	D 620	1 208	1 090	D 908	10 647		
		4.000		-0.eTO	4 474	0.000	4 4000	0.000	1.202)	1.000	0.000		0.010	1
	0.601	1 034	0.000	0.068	1 1/1	0.995	1 122	0.992	1.15/	0.959	0.921	1.034	0.650	
	-0.523	0.454	-0.183	-0.206	-0.245	0.221	0.945	0.534	1 011	0.000	0.626	-0.295	-1 NHS	
	0.011	0.008	1 174	1 144	1.049	1 196	1.001	1.000	1.036	1.920	1.000	0.033	0.001	{
	0.906	0.928	1.178	1.143	1.011	1.124	1.049	1.762	1.041	1.43	1.178	0.528	0.906	
	-0.625	0.238	0.307	-0.140	-0.144	0.228	-0.196	0.508	3.570	0.501	-0.1BE	-0.31B	1.619	
8.631	1.047	0.971	1.143	1.058	1.215	1.D8Z	1.219	1.667	1.203	1.056	1.153	0.981	1.054	0.630
0.632	1.047	0.508	1.143	1.055	1.205	1.DG8	1.2\0	1.66a	1.206	1.065	1.143	0.968	1.047	0.632
0.239	-0.057	-0.247	-0.944	-0.35D	-0.738	+1.349	-0.705	0.028	0.283	-0.104	·D 885	-1 305	-0.674	0.333
8.761	3.885	1.373	1.042	1.211	1.079	1.218	1.675	1.216	1.067	1.204	1.661	1.178	0.869	0.767
B.770	3.884	1.469	1.041	1.205	1.D72	1.213	1.066	1.213	1.672	1.206	1.041	1.169	0.869	\$ 770
1.143	J.882	-0.358	·0 029	·0 363	-0 658	-0451	0.837	0.233	0.422	0.159	-D 932	-0790	-0180	0326
0.805	1.003	0.996	1.1B4	1.668	1.209	1.661	1.165	1.066	1.212	1.674	1.194	1,003	1.052	0.619
0.816	1.009	0.997	1.1BB	1.068	1.213	1.059	1.167	1.059	1213	1.068	1.188	0.997	1.009	0.816
1.179	0.528	a.r.o	4.365	.0.027	0.269	0.694	0.155	-6704	0116	-0540	-0.527	-0.578	-0.287	-0403
0,797	O BRS	1 127	1.045	1.207	1.056	1 156	1.037	1.175	1 075	1.216	1.055	1.132	0.895	0.810
0.806	0.891	1.132	1.049	1.210	1.066	1.167	1.943	1.187	1.066	1.210	1.048	1.132	0.891	0.806
1.142	0.764	0.035	0.363	0.202	0.700	0.917	0.540	-0.001	-6.805	-0.616	-0.016	12027	42.563	-0518
0.8CB	1.364	0.952	1.185	1.066	1.268	1.352	1.166	1.068	1.222	1,074	1.135	1.002	1010	Q.R17
0.816	1.36.57	0.534	1.188	0.178	0.385	1.059	1.167	1 059	1213	1 URH J. 566	1 168	U 997	1 009	0.010
0.375	0.738	0.334	4.015	4.004	4.050	4 000	4.085	40.004	- 07R	-0.330	-0.044	4 4 9 7	-0.099	4 1 1 4
0.757	0.998	1 160	1040	1204	1.069	1 200	1.082	1 214	1078	1218	054	1187	0 498	0.779
1.554	1 4 3 5	0750	0 173	0174	0.339	0.606	0.348	-0.019	-0.557	-0.614	1.214	-1 1 1	-1.114	-1.117
0.816	1.029	0.246	1.145	1054	1 204	1.084	1 100	1.057	1 207	1 068	1 14.9	t and	1.071	D.647
0.832	1047	0.988	1 143	1055	1206	1.068	1 210	1.060	.206	1.055	1.143	0.962	1.047	D 632
2.330	2 337	2 348	0 184	0 076	0.041	0.395	0.917	0.974	-0.108	-1.941	-1.238	-1.415	2.296	-2.302
	0.897	0 9 3 2	1 178	1 140	1045	1,100	1037	1.176	1.039	1.135	1.193	0.543	D 924	
	0.906	0.928	1 178	1 143	1041	188	1.049	1.189	1.041	1.143	1.178	0.928	D 906	
	0991	-0.354	0.025	-0.062	-0.335	0.457	■ 129	1.046	D. 192	1.091	1.224	-1.527	-2.623	
	0.650	1 038	0.930	0.968	1,160	0.985	4,116	D.6932	1.174	0.561	0.939	1.049	0.669	
	0.647	1.034	0 920	0.968	1 .169	0.997	J. 132	6.997	1.469	0.968	0.928	1.034	0.647	
	-0.354	-0.356	-0.151	0.072	0.439	1.167	1.470	G.464	-0.454	-1.274	-11502	-1439	-1 820	
		0.650	0.902	1.041	D.877	0.938	D.874	1.004	0.901	1.060	0.915	0.650		-
		6.647	0.906	1.047	D.639	1.009	D.891	1.509	0.663	1.047	3 906	0.647		
		-0.354	0.022	0.557	1.231	2.095	1.979	0.438	1520	-1 284	-1 006	-1358		
				D627	0.759	0.793	0.768	0.6+0	0.762	0.641	Меавыл	ed Pielativ	re Powar	
				0 607	0.770	0.619	0.606	0.816	0.770	0.832	Calculat	ad Malair	ve Power	
				0.043	1430	6.207	2.204	0.018	-4-522	. (20)	28 Ower	anca		

Figure C-8	3					
Flux Map:	CY1-FM08	Measured and	d Calculated	Relative	Assembly	Power

FLUX MAP: CY1-FM09 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 5998.0 MWD/MTU

				0.638 0.537	3.767 3.777	0.808 0.824	0.804 0.8\6	0.813 0.824	0.763 0.777	0.625 0.637				
		0.656 0.656 -0.390	0.916 0.912 -0.371	1.055 1.053 -0 199	0.891 0.695 0.359	1.018 1.029 1.061	0.896 0.903 0.770	1.018 1.029 1.090	0.881 0.896 1.576	1.059 1.053 1.329	0.905 0.912 0.616	0.655 0.655 0.107		
	0.656 0.655 -0.048	1.047 1.047 0.029	0.956 0.957 0.146	0.977 0.975 -0 194	1.165 1.162 -0.197	0.996 0.997 0.141	1.125 1.133 0.720	0.992 0.997 0.545	1.146 1.162 1.290	0.965 0.975 1.057	0.849 0.857 0.011	1.046 1.047 0.105	0.659 0.655 -0.591	
	0.913 0.812 -01009	0.953 0.857 0.441	1.180 1.180 0.068	1.158 1.149 -0.795	1.043 1.035 -0.605	1.179 1.176 -0.178	1.043 1.037 -0.585	1.174 1.175 0.222	1.835 1.935 0.990	1.153 1.149 -0.200	1.189 1.180 -0.748	0.963 0.957 -0.633	0.922 0.912 1.031	
0.632 0.527 0.743	1.048 1.053 0.449	0.973 0.976 0.235	1.149 1.149 -0.073	1.056 1.048 -0.954	1.206 1.194 -9.235	1.068 1.051 -1.583	1.202 1.191 -0.990	1.355 1.351 -0.350	1.202 1.191 -0.890	1.369 1.348 -1.918	1.17D 1.149 -1.795	0.989 0.875 -1.345	1.061 1.053 -0.773	0.637 0.657 0.110
0.768 0.777 1.541	0.887 0.895 0.880	1.160 1.162 0.241	1.035 1.035 -0.029	1.201 1.151 -0.641	1.067 1.654 -1/200	1.204 1.152 0.935	1.960 1.948 1.035	1.197 1.192 0.401	1.057 1.054 0.255	1.202 1.191 -0.866	1.051 1.035 -1.579	1.173 1.162 -0.904	0.896 0.895 -0.355	0.776 0.777 0.129
0.811 0.824 1.541	1.019 1.029 1.031	0.393 0 897 0 443	1.172 1.176 0.315	1.054 1.051 -0.285	1.195 1.192 -0.218	1.048 1.040 -0.058	1.15D 1 156 -0 3 3 8	1 052 1 043 -0 903	1 193 1 192 -3.042	1 058 1 051 -0.662	1 183 1 176 -0.524	1 003 0 997 -0.658	1 033 1.029 -0.397	0.826 0.824 -0.459
0.801 0.816 1.492	0 892 0.903 1.233	1 123 1.133 0.828	1.003 1.007 0.416	1.189 1.19) 0.177	1 044 1.046 0.354	1 15) 1.156 0.443	1 029 1.029 0.058	1,187 1,158 -0,985	1 060 1 046 -1.355	1 201 1.191 -U.865	1.040 1.007 -3.55 5	1.133 1.133 -0.025	0.997 0.963 0.463	0.817 0.818 -D.024
0.812 0.824 1.415	1.016 1.025 1.269	0.986 0 997 1 075	1.173 1.175 0.238	1.051 1.051 0.029	1.190 1.192 0.185	1.039 1.043 0.346	1.158 1 156 -0.164	1 055 1 043 -1.156	3 207 1 192 -1.226	1051 1051 -(1.952	1 184 1 176 -0.642	1 002 0 997 -0,519	1 027 1 029 0 214	0.819 0.824 0.647
0761 0777 2142	0 878 0 835 1 831	1 147 1 152 1 299	1.037 1 0.35 -5.164	1 133 1 191 -(1.143	1 054 1 054 -0 009	1 187 1 192 0 413	1045 1048 0249	1 193 1 192 -0 092	1 085 1 054 -0.995	1 208 1.191 -1.235	1 050 1.035 -1.429	1 181 1 162 -1.592	0.899 0.895 -0.476	0 781 0.777 -0.474
0 620 0 637 2.724	1 025 1 050 2 700	0 948 0.975 2.728	1 151 1 149 -0.161	1 052 1.048 -0.342	1 198 ■ 191 -0.368	7:049 3:051 0:191	3 179 1,191 0,950	1.039 1.051 1.126	1,196 1,191 -0,418	1.064 1.048 -1.465	1.165 1.449 -1.391	0.988 0.975 1.305	1 073 1.053 -1.038	D.650 D.637 -1.939
	0 900 0.912 1.423	0.956 0.957 0.145	4,179 4,180 0,113	1,152 1,149 -0,255	1.040 1.035 0.748	1.174 1.175 0.179	1.025 1.037 1.141	1.563 1.576 1.178	1.034 1.035 0.048	1.164 1.049 -1.281	1.194 1.650 -1.131	0.958 3.957 -1 136	D 927 D 912 -1.554	
	0.653 0.655 0.429	1.044 1.047 6.307	0.953 0.957 0.441	0.974 0.975 0.185	6.158 1.162 0.397	0.987 0.997 1.034	1.133 1.268	C.992 C.997 C.494	1.165 1.162 -0.334	0.965 1.975 -0.965	1.964 0.957 -0.747	1.057 1.047 -0.965	0.664 0.655 -1.280	
		8.651 8.655 8.660	0.905 6.912 0.751	1.042 1.063 1.008	0.631 0.695 1.601	1.005 1.029 2.796	0.864 0.903 2.092	1.024 1.029 0.498	9.508 0.695 -: 421	1,063 1,063 -0,950	0.917 0.912 -0469	0.661 0.655 -0.817		
				C.628 C.637 1 546	0.762 0.777 1.941	0.603 0.624 2.539	0.796 0.6\6 2.576	0.6≢7 0.624 0.694	0.769 0.777 -1 423	0.643 0.637 -0.940	Meason Calculat % Differ	ed Relativ Iedi Relativ Ience	e Power ve Power	,

Figure C-9	9		
Flux Map:	CY1-FM09, Measured and Calculate	d Relative Assembly	Power

Measured and Calculated Relative Assembly Power

FLUX MAP: CY1-FM10 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 7216.0 MWD/MTU

				D.643	0.774	D.B17	D 616	D.823	0.770	0.631]			
				-0.062	1 317	1.624	1 226	0.999	1.910	1,903				
		0.672 0.664 →1 151	0.930 0.919 -1.161	1 068 1 069 -0 057	0.695 0.990 0.445	1 037 1 049 1 061	0.907 0.913 0.651	1.038 1.048 1.168	0.669 0.900 1.662	1.045 1.059 1.311	0,914 0,919 0,613	0 662 0 664 0.297		
	0.666 0.664 -0.045	1.064 1.060 -0 095	0.990 0.985 -0.405	0.963 0.962 -0.051	1,157 1,158 -0.052	0.992 0.996 0.363	1.520 1.532 1.064	0.968 0.968 0.769	1.140 1.158 1.4 3 9	0.972 0.962 1.010	0.979 0.965 0.613	1.057 1.060 0. 294	0.554 0.554 -0.645	
	0.620 0.619 -0.054	0.664 0.985 0.122	1.390 1.168 0.175	1.162 1.154 -0.537	1.035 1.028 0.685	1.161 1.164 0.258	1.030 1.025 -0 369	1.182 1.164 8.215	1.030 1.028 -0 175	1.155 1.154 -0 193	1.197 1.188 -0.768	0.990 0.965 -0.485	0.925 0.919 -0.681	
0.637 0.642 0.843	1.054 1.059 0.427	0.980 0.962 0.163	1.156 1.154 -0 130	1.050 1.042 -0.809	1.169 1.176 -1013	1.049 1.035 -1.354	1.185 1.172 -1 155	1.044 1.035 -0.910	1.192 1.176 -1.292	1.062 1.042 -1.874	1.174 1.154 -1 720	¢.994 0.962 -1 197	1.064 1.059 -0.538	0.639 0.642 0.516
0.772 0.784 1.567	0.892 0.900 0.553	1.152 1.156 0.338	1.627 1.028 6.078	1.184 1.176 -0.659	1.049 1.037 -1 125	1.187 1.172 -1233	1.046 1.031 -1 405	1.181 1.172 -0.753	1.043 1.237 -0.537	1.187 1.176 -0.67 8	1.043 1.026 -1 458	1.164 1.156 -0.679	0.900 0,900 -0 033	0.760 0.764 0.513
0.820 0.852 1.477	1.037 1.046 1.051	0.990 0.996 0.535	1.160 1.164 0.397	1.057 1.056 -0 183	1.178 1.172 -0.501	1.036 1.026 -0.715	1.154 1.145 -0.814	1 336 1 326 -0 772	1 172 1 172 0 034	1,340 1 035 -0 490	1.169 1.164 -0.428	1.001 0.996 -0.510	1.050 1.046 -0.248	0.634 0.632 -0.269
0.814 0.826 1.400	0.904 0.913 1.234	1 122 1.132 0.901	1.024 1.026 0.450	1.170 1.172 0.137	1.032 1.034 -0.049	1.144 1.145 0.052	1.027 1.021 -0.565	1 157 1.145 -1.063	1.043 1.031 -1.093	1.178 1.172 -0.628	1.001 1.028 0.465	1.132 1.132 49.027	0.915 0.913 40.415	0.825 0.826 0.146
0.82D 0.832 1.39D	1.934 1.048 1.335	0.984 0.996 1.158	1.16D 1.164 0.379	1.004 1.025 0.116	1.17D 1.172 0.714	1.025 1.028 0.303	1.151 1.145 -0.487	1.045 1.028 -1.608	1 180 1 172 -1,160	1 042 1 035 -0.662	1.170 1 164 -0.479	1 000 0 996 -0.450	1.044 1.046 0.326	0.824 0.832 0.922
0.767 0.784 2.339	0.882 0.900 2.051	1 14D 1 156 1 400	1 028 1 028 0 038	1 176 1 176 0 085	1 096 1 097 0 1 • 5	1 167 1 172 0 420	1 032 1.031 -0.029	1 180 1 172 -0.627	1 049 1 037 -1.088	1 188 1.178 -0.980	1040 1028 -1.125	1.171 1.158 -1.272	0 902 0.900 -0.144	0 786 D.784 -0.153
0.824 0.642 2.965	1 026 1 058 2 967	0.954 0.902 2.987	1.154 1.154 -6.017	.1044 1.042 -0.162	1 179 1 178 -0.204	1.000 1.005 0.174	1 163 1 172 0.783	1.024 1.035 1.035	1.173 1.175 -0.245	1.055 1.042 (1.251	1 168 6.154 (1.182	0 903 0 992 -1.1 16	1 076 1 059 -1.626	0653 0642 -1.673
	0.906 0.913 3.423	0 998 0 995 -8.071	1.192 1.188 -5.344	1.151 1.154 -J.620	1.036 1.028 0.762	1.151 1.154 D.275	1 014 1 025 1 163	1.150 1.164 1.235	1.025 1.028 D.195	1.167 1.154 -1.131	1 200 1.468 -1 016	D 995 0 935 -1,124	0.933 0.918 -1.479	
	0.664 0.664 0.063	1.068 1.068 0.009	0 908 0.985 -0.263	0.990 0.982 -0.848	0.158 0.156 -0.112	0.996 0.996 1.035	1.115 1.132 1.516	D.989 D.995 D.668	1.158 1.158 -0.181	3.991 3.962 -0.908	0.993 0.965 -0.756	1 071 1 060 -1 016	0.673 0.684 -1.361	
		0.663 D.654 D.181	0.915 0.919 0.316	1.053 1 D63 0.532	0.893 0.903 1.157	1.027 1.048 2.065	0.694 0.913 2.069	1.040 1.048 0.711	0.911 0.900 -1 207	1.068 1.059 -0.890	0.924 0.819 -0.563	0.670 0.664 -0.910		
				0.630 0.642 1.962	0.769 0.784 1.989	0 632 2.378	0.626 0.626 2.610	0 623 0.632 1.657	0.794 0.764 -1.209	0.646 0.642 -0.895	Maââun Calcutat % Differ	ed Pieteriw ed Pieteriu ernos	is Power ve Power	

Figure	C-10					
Flux Ma	ap: CY1-FM10	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP. CY1-FM11 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 8234.0 MWD/MTU

				0.663 0.648	0 784 0.791 0 905	0.625 0.639 1.701	C 624 C.635	0.629	0.774 0.791	0.634 0.648				
		0.670 0.671 0.534	0.624 0.625 0.141	1.073 1.064 -0.840	0.909 0.906 -0.220	1.721 1.067 1.064 0.719	0.816 0.822 0.557	1.061 1.064 1.246	0.887 0.906 2.164	1.047 1.054 1.814	0.620 0.625 0.532	0.669 0.871 0.299]	
	0.672 0.671 -0.045	1.069 1.070 0.064	1.003 1.007 0.319	0.595 0.987 -0.844	1.161 1.352 -0.844	0.995 0.995 0.010	1.123 1.131 0.694	0.588 0.956 0.810	1.128 1.152 2.137	0.974 0.987 1.324	1.001 1.007 0.529	1.065 1.070 0.300	0.671 0.671 0.060	
	0.528 0.925 -0.312	1.604 1.607 0.249	1.19 5 1.191 -0.352	1.174 1.156 -1.559	1.038 1.022 -1.553	1.454 1.154 0.043	1.022 1.016 -0411	1.151 1.154 0 295	1.020 1.022 0.235	1.154 1.156 0.130	1,196 1.191 -0.609	1,010 1,007 -0 388	0.930 0.925 -0 495	
0.643 0.646 0.809	1 059 1.064 0 425	0 965 0 967 0 162	1,160 1,156 -0.405	1 051 1.036 -1 455	1,179 1,164 -1,272	1 036 1.022 -1 303	1 170 1.156 -1 1 8 3	1,031 1,02 2 -0 834	1 176 1.164 -1 037	1.052 1.038 -1.512	1.172 1.156 -1.399	0.998 0.987 -1 112	1.073 1.064 -0.811	0.650 0.640 -0.330
0,777 0,791 1.827	0,897 0,906 1,082	1 147 1.152 0.375	1.023 1.022 -0 108	1,173 1,164 -0.810	1.034 1.024 -0.957	1 166 1.156 -1045	1.033 1.016 -1 472	1.164 1.156 -0.747	1 027 1.024 (-0.311	1 171 1.164 -0.581	1.035 1.022 -1.265	1.162 1.152 -0.669	0.8*2 0.906 -0.581	0.794 0.791 -0.340
0.825 0.839 1.897	1.052 1.065 1.159	0.990 0.996 0.596	1.149 1.154 0.506	1.022 1.022 0.020	1.158 1.156 -0.216	1.619 1.615 -0.392	1.142 1.134 -0.709	1.023 1.015 -0.772	1.154 1.158 0.185	1.027 1.022 -0. 409	1.160 1.154 -0.457	1.002 0.995 -0.549	1.971 1.965 -0.561	0.846 0.829 0.792
0.822 0.835 1.508	0.31D 0.322 1 254	1.121 1.131 0.319	1.012 1.018 0.563	1.153 1.155 0.312	1.316 1.018 0.187	1.132 1.134 0.212	1.012 1.011 -6.285	1.144 1.134 -41.900	1 029 1 018 -1.109	1 165 1 156 -0.772	1 023 1 018 -0.547	1 132 1 131 -0.108	0 827 0 922 -6.563	0 835 0 835 -0.064
0 827 0.839 1 438	1 (15) 1 (165) 1 (294)	0 995 0 996 1 117	1 15D 1 154 0 391	1 021 1 022 0 147	1 152 1 156 0 295	1 011 1 015 0 455	1 137 1 134 -0.264	1 029 1 015 -1.332	1 171 ■ 158 -1.307	1 033) 022 -1.064	1 162 1 154 -0.863	1 001 0 998 -0.510	1.063 1.065 0.132	0.83 4 0.839 0.572
0.773 0.791 2.403	0 800 0 906 2 110	1 107 1 152 1.011	1 022 1 022 0 000	1.164 1.164 0.009	1 022 1 024 0 215	1 140 1.156 0.697	1014 1.019 0.335	1, 150 1, 156 -0,242	1.036 1.024 -1.187	1.178 1.164 -1.172	1.035 1.022 (1.208	1.165 1.152 -1.226	0 912 D 906 -0.603	0736 0781 -0.603
0.527 0.548 3.258	1.003 1.064 3.261	0.958 D.987 3.265	1.156 1.156 0.003	1.037 1.036 0.087	1.164 3.154 -0.052	1.017 1.022 0.511	4, 143 1, 155 1, 199	1.008 1.022 1.419	1.165 1.164 -0.137	1.051 1.035 -1.437	1.174 1. 155 -1.575	1.004 0.967 -1.684	1 058 1 054 -2.251	0.683 0.648 -2.248
	0.910 0.925 1.659	1 005 1 007 0 098	1 193 1 191 -0 164	1 161 1 156 -0 431	1 0278 1 022 -0 535	1 148 1 154 0.584	1 003 1 018 1 496	1 137 1, 54 1,539	1.019 1.022 0.344	1.178 1.158 -1.743	1 215 1.491 -2.000	1.027 1.007 -1.987	0.944 0.925 -1.950	
	0.669 0.671 0.299	1 067 1,070 0:215	1 007 1 007 -0.060	0 993 0 987 -0 644	1,150 1,152 0,148	0.983 0.996 1.323	1,112 1,131 1,754	0.967 0.996 0.851	1.453 1.452 -0.095	1.000 0.887 -1.320	1.620 1.607 -1.352	1.096 1.070 -1.519	0.68-3 0.671 -1.742	
		0 668 0 671 0.449	0920 0925 0543	1 068 1 064 0.748	0 694 0.908 1.432	1.041 1.064 2.307	0.602 0.622 2.173	1.058 1.064 0.662	0.910 0.905 -1 253	1.074 1.064 -0.913 .	0.930 0.925 -0.549	0.678 0.671 -1.047		
				0.634 0.648 2.209	0.774 0.791 2.268	0.019 0.639 2. 454	0.814 0.035 2.466	0.832 0.839 0.850	0.802 0.791 -1.250	0.854 0.648 -0.903	Moosun Colculat % Differ	od Relatik koo Rolati ence	ra Powar va Powar	

Figure	C-11					
Flux Ma	ap: CY1-FM11	Measured and	Calculated	Relative	Assembly	Power

Measured and Calculated Relative Assembly Power

FLUX MAP: CY1-FM12 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER GYCLE BURNUP: 9270.0 MWD/MTU

				D 651 D 654	D 787 D 799	0.831 0.848	0 833 0 845	D 2338 0 2648	0 783 0 799	0.641				
		D.685 D.678 -1 123	D 941 0 931 -1,115	0 507 1 054 1 059 0 508	1 615 D 935 0 913 0 906	1 053 1 053 1 092 1 198	1 368 0 925 0 931 0 735	1 182 1 058 1 082 1.311	2 043 0 695 0 913 2 046	2 044 1 052 1 069 1.635	0 923 0 931 0.823	0 875 0 678 0 415		
	0 690 0 678 -0.309	1 082 1.078 -0.407	1 033 1 027 -0.561	0 986 0 991 0 497	1 141 1 147 0.499	0 992 0 996 0.464	1 121 1,131 0,683	0.987 0.998 0.911	1,124 1,147 2,046	0.977 0.691 1.423	1.018 1.02) 0.815	1.073 1.078 0.413	0.678 0.678 0.015	
	0.930 0.931 0.043	1.027 1.027 6.000	1, 197 1, 189 -0, 535	1,173 1,155 -1,484	1.002 1.017 1.492	1,142 1,144 D.213	1.013 1.010 0.285	1.440 1.444 0.342	1.014 1.017 0.247	1.152 1.355 0.295	1, 195 1, 183 -0,494	1 031 1.027 -0.378	D 937 D 931 -0.619	
D.649 D.654 D.801	1.065 1.069 0.375	U.990 D.991 D.111	1.162 1.155 0.542	1.045 1.023 -1.498	1.168 1.151 -1.507	1.025 1.011 -1.357	1.153 1.541 -1.057	1.D19 1.D11 -0.844	1.162 1.151 -0.954	1.043 1.029 -1.285	1.171 1.155 -1 383	1.003 0.991 -1.216	1 077 1 089 -0,743	0.654 0.654 0.000
0.769 0.799 1.305	0.905 0.913 0.795	1.144 1.147 0.262	1.D19 1.D17 -0.22E	1.163 1.151 -1.065	1.025 1.012 -1.432	1.355 1.839 -1.419	1.020 1.005 -1.451	1.647 1,t39 -0.680	1.014 1.012 -0.255	1.156 1.151 -0.441	1.030 1.017 -1.282	1,157 1,147 -0,856	0.91 0 0.913 -0.383	0.799 0.799 0.000
0.836 0.843 1.412	1.071 1.062 3.961	0.992 0.996 0.423	1.141 1.144 5.263	1.D14 1.D11 -0.316	1,147 1,139 -0.580	1.013 1.003 -0.938	1 133 1,123 -0944	1,011 1,003 -0,742	1.138 1.139 0.141	1.017 1.011 -0.580	1.152 1.144 -0.669	1.003 0.965 -0.678	1.086 1.082 -0,414	0.861 6.848 -0.445
0.631 0.645 1.575	0.919 0.931 1.393	1,121 1.131 0.865	1.007 1.010 0.038	1.140 1.141 0.070	1.007 1.005 -0 159	1.123 1.123 -0.045	1.006 0.999 -0.666	1.135 1.123 -1.084	1.046 1.905 -1.238	1.151 1.141 -0.895	1.078 1.010 -0.795	1.123 1.121 4.177	0.935 0.901 -0.385	0.844 0.845 0.130
0.834 0.846 1.651	1.064 1.082 1.654	0.983 0.956 1.322	1.136 1.144 0.589	1.006 1.011 0.477	1.134 1.139 0.450	0.959 1.003 0.420	1.127 1.125 -0 425	1.32D 1.303 -1.647	1.155 1.139 -1 429	1.622 1 311 -1.525 .	1.154 1.144 -0.688	1.003 0.996 -0.638	1.079 1.062 0.260	0.841 0.846 0.773
0.780 0.799 2.501	0.892 0 913 2 332	1.126 1 147 1 874	1.016 1.017 0.010	1.146 1.151 0.410	1.309 1.312 0.226	1.192 1.139 0.845	1 004 1,005 0,129	1 146 1 139 -0.559	1 025 1.012 -1.336	1 186 1.151 -1.346	1.032 1.017 -1.511	1.166 1.147 -1. 545	0.919 0.913 0.554	0.805 0.799 -0.671
0.835 0.654 2.959	1.039 1.068 2.958	0 962 0 991 2 951	1.159 1.155 -0.345	1.037 1.029 -6.723	1.153 1.151 -8.251	1.907 1.911 0.977	1.130 1.141 0.965	0.998 1.011 1.191	1.154 1.151 -0.229	1 046 1.029 •1.559	1.173 1 155 -1.551	1 007 0 991 -1.560	1 096 1 069 -2 41a	0 970 0 854 -2.447
	0 915 0 901 1 692	1.022 1.027 0.44D	1.195 1.188 -0.502	1.165 1.155 0.867	1.024 1.017 0.761	1.139 1.144 0.455	0 997 1 0 1 0 1 324	1 129 1 144 1 391	1 015 ■ 017 © 168	1 173 1 155 -1 509	1 207 1 189 -1.463	1044 1027 -1.696	0 951 0 931 -2.176	
	0 674 0 578 0 593	1.972 1.978 0.522	1,026 1,027 0,107	0.998 0.991 -0.692	1 146 1 147 0 044	D 994 D 995 1.209	1 112 1 131 1 673	0999 0999 0820	148 147 -9.376	1 001 0 991 -1 048	1 037 1.027 -0 993	1 093 1.070 -1.409	0.692 0.678 -1.985	
		0.673 0.678 0.713	0.924 0.931 0.714	1.061 1.069 0.792	0 901 0 913 1 355	0.058 2.032 2.231	0.910 0.931 2.329	1.072 1.082 0.914	0.923 0.913 -1.126	1 078 1.069 -0 825	0.936 0.931 -0.524	0.686 0.678 -1.137		
				D 639 D 654 2 315	0782 0799 2 252	0.626 0.649 2.689	0 620 0 645 3.038	0.638 0.648 1.363	6.808 0.799 -1.128	0.860 0.854 -0.819	Calculat % Differ	nd Pielein ad Aolair ance	ie Pawer ve Pawer	

Figure	C-12					
Flux Ma	ap: CY1-FM12	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY1-FM13 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 10566.0 MWD/MTU

				0.672 0.662	0.835	0.847 0.858	0.849 0.856	0.852 D.858	0.738 D 809	0.651 0.662	Ī			
		0 695	0 937	1.091	0447 0927 0928	1.346	0319	1 058	1636 D903	1 705	D 930	0.683		
		-0.067	-3.075	-1.45a	-9.776	0347	0 255	1 002	1939	1 5 3 0	Q 791	0.385		_
	0 688 0 608 -0.102	1 085 1 084 -0.083	1 045 1 045 -8.038	1 009 0.994 -1.457	1 158 1 141 -1.459	0 999 0 997 -0.210	1 123 1 129 0 561	0.990 0.997 0.740	1 117 1 141 2 184	0.980 0.994 449	1 037 1 045 0.713	1 080 1.004 0.388	0.865 0.888 0.058	
	0938 0937 -0.128	1045 1045 -0.035	1.194 1.187 -0.553	1.168 1.152 -1.327	1.024 1.011 -1.328	1 132 1 133 0.124	1.005 1.003 -0.269	1.129 1.100 0.372	1.000 1.011 1.070	0.136 0.152 0.453	1.189 1.187 -0.202	1.048 1.045 -0.381	0.942 0.937 -0.563	
0.658 0.662 0.638	1.071 1.075 D.345	D.993 D.9934 D.161	1.157 1 152 41.389	1.035 1.022 -1.266	1.150 1.136 -1.140	1.013 \$ 000 -0.950	1.135 1 125 40.828	1.005 1.003 -0.526	1.142 1.136 -0.464	1.037 1.022 +1.427	1.163 1.152 -1.429	1 007 D 994 -1.261	1 085 1 075 -0.958	0 665 0 662 -0.466
0 800 0 809 1 213	D 912 D 920 D 888	1.135 1.141 D 555	1 010 1 011 D 040	1.145 1.136 -0.716	1.009 1.000 -0.892	1.132 1.123 -0.829	1.004 0.993 -1.036	1.125 1.123 -0.267	0.993 1.000 0.715	J. 119 J. 135 J. 564	1.024 1.011 -1.280	1 153 141 -1.015	0 927 0 920 -0,723	0 813 0 9 09 -0 467
0 847 0 858 1 263	1033 1033 0948	D 991 0 997 D 595	1 128 1 133 0 505	0 993 1 000 0 040	1 124 1 123 -0.356	D 995 D 997 -0 261	1 114 1 113 -0 359	D 994 D 9992 -Q 161	1.113 1 123 0 662	1.000 1.000 -0.050	1 140 1 133 -0 570	1 008 0 997 -0.825	1 108 1 099 -0.764	0.968 0.858 -1.166
0.845 0.656 1.361	0 930 0.942 1.247	1,120 1,129 0.600	0 998 1 003 0.501	: 122 1 125 0.309	0 989 0.993 0.374	1,1 04 1,110 0.607	0 991 0 990 -0.091	1,017 1,010 -0.502	1,000 6,993 -0,736	1.131 1.125 -0.460	1.009 1.003 -0.624	1,132 1,429 -0,230	0.951 0.942 -0.957	0.660 0.655 0.419
0.845 0.858 1.502	1.083 1.099 1.485	0.985 0.997 1.197	1, 128 1, 133 6,532	0.996 1.000 0.432	1.115 1.123 6.700	0.963 0.962 0.967	1.110 1.110 6.009	1.005 0.992 (1.313	1.935 1.923 -1 043	1.008 1.000 -0.764	1.140 1.133 -0.596	1.004 0.997 -0.707	1.100 1.099 -0.110	0.853 0.653 0.551
0.793 0.609 2.061	6.902 6.920 1 973	1.323 1.341 1.664	1.012 1.011 -0.158	1.135 1.135 D 141	0.997 1.000 0.281	1.110 1.123 1.099	0.568 0.593 0.506	1.125 1.123 -0.240	1.010 1,000 -1 039	1.148 1.136 -1.045	1.023 1.011 - 193	1 157 1.141 -1 331	0.927 0.920 -0.691	0.615 0.609 -0.607
0.647 0.662 2.365	1.050 1.075 2.352	0.971 0.994 2.357	1,158 1,152 -0.458	1 030 1.022 -0.787	1,139 1,138 -0:237	0.993 1.000 0.665	1.151 1.125 1.296	0.966 1.000 1.430	1.138 1.136 -0.158	1.036 1.022 - 1.351	1.168 1.152 -1.361	1.00 0 0.964 -1. 36 9	1.101 1.075 -2.406	0.678 0.662 2.402
	0.625 0.937 1.365	1.043 1.045 0.982	1.195 1.167 -0.685	1.454 1.452 -0.998	1.019 1.011 -0.963	1.428 1.433 0.514	8.988 1.003 1.467	1.117 1.133 1.523	1.007 1.071 (0.326 (1.158 1.152 -1 378	1.204 1.187 -1 404	1.062 1.045 -1.610	0.957 0.937 -2 091	
	(1.683 (1.686 (1.469	1.081 1.084 8.352	1.046 1.045 -0.085	1.004 0.994 -0.936	1.144 1.141 -D 201	0.587 0.997 1.033	1.112 1.129 1.601	0.990 0.887 0.797	1.144 1 141 -0 238	1.305 0.994 -1.015	1.053 1,045 -0 788	1.098 1.064 -1.239	0 599 0.666 -1.675	
		0.681 0.686 0.720	0.532 0.937 0.526	1.070 1.075 3.430	0.911 0.920 0.959	1.680 1.659 1.768	0.926 0.942 1.695	1.096 1.099 0 329	0 834 0 820 -1.478	1 084 1 075 -0 821	0 936 0 937 -0,149	0.692 0.666 -0.682		-
				0.65D 0.652 1.855	0.754 0 809 1 904	0.843 0.858 1 767	0.842 0.856 1.710	Q 855 Q 858 Q 351	0 821 0 809 -1.473	0 688 0 688 0 689 0 699	Measure Calculat % Diffe	ed Relativ ed Relativ énce	ie Powar ve Powar	

Figure	C-13					
Flux Ma	ap: CY1-FM13	Measured and	Calculated	Relative	Assembly	Power
FLUX MAP: CY1-FM14 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 11577.0 MWD/MTU

				D.675 D.663	D.813 D.817	D.655 D.855	D.860 D.665	D.862 D.865	0.805 0.817	0.660				
				-0.933	0.603	1.250	D.733	D.545	1.439	1.440				
		0.691 0.691 0.029	0.940 0.940 0.021	1.039 1.078 -0.928	0.929 0.926 -0.387	1.107 1.112 0.497	0.948 0.961 0.232	1.099 1.112 1.145	0.907 0.926 2.095	1.052 1.078 1.535	0.9435 0.940 0.405	0.690 0.691 0.159		
	0.690 0.691 0.203	1 087 1 087 0 037	1 067 1 054 -0 284	1 005 0 995 -0 835	1 148 1 138 -0 832	0.990 0.999 0.000	1 119 1 129 0 649	0.969 0.999 1.021	1.107 1,139 2.792	0.990 0.995 1.561	1 049 1.054 5.400	1 085 1 087 0.168	0 692 0 691 -0.072	
	0.935 0.940 0.567	1.068 1.064 -0.207	1,189 1,180 -0.690	1,258 1,448 -0.004	1.015 1.007 -0.008	1.123 1.128 0.276	1.002 0.699 -0.270	1.321 1.326 0.509	1.000 1.007 3.630	1.142 1.148 4.490	1.163 1.160 -0.202	1.052 1.054 0.171	0.941 0.940 -0.074	
0.853 0.869 0.995	1.073 1.078 0.437	0.995 0.995 0.921	1.453 1.448 -0.466	1.027 1.016 -0.334	1.140 1.125 •1.175	1.003 0.993 -0.937	1.124 1.115 -0.739	1.000 0.593 -0.630	1.136 1.126 -0.830	1.027 1.016 -1.013	1.159 1.148 -1.018	0.997 0.995 -0.070	1.079 1.078 -0.065	0.670 0.669 -0.060
0.809 0.817 1.061	0.520 0.525 0.663	1.135 1.138 0.273	1.007 1.007 -0.050	1.135 1.626 -0.819	1.005 0.992 1.313	1.124 1.112 -1.103	0.594 0.586 0.785	1.114 1.112 0.198	0.992 0.992 0.020	1.127 1.126 -0.0 9 0	1.018 1.007 -1 159	1.146 1.133 -0.638	0.929 0.926 -0.301	0.81a 0.617 -0.073
0.857 0.866 1.697	1.1D3 1.1°2 0.8°6	0.995 0.999 0.422	1.123 1.126 0.312	0.995 0.593 -D 171	1.117 1.112 -D 528	0.993 0.985 -0.306	1.107 1.102 -0 506	0.987 0.985 -0.203	1.105 1.112 0.552	0.997 0.993 -0.351	1.135 1.126 -D 793	1.009 0.959 -† 001	1,122 1,112 -0.909	0.677 0.666 -1220
0.856 0.866 1.160	0 940 0 950 1,106	1 120 1 129 0.795	(1.954 () 999 (),473	1.112 1.115 0.360	0.965 0.966 0.112	1.059 1.102 0.273	0.987 0 982 -0.468	1 11E 1 102 -0.628	0 896 0 886 -C.944	1 122 1 115 -0.597	1.007 0 999 -0.785	1.134 1.129 -0.511	0.963 0.950 -1.319	0.873 0.866 -0.779
0.855 0.065 1.274	1.096 1.112 1.275	0.968 0.959 1.053	1.116 1.126 0.905	0.964 0.953 0.945	1.102 1.112 0.899	0.977 0.985 0.829	1.103 1.102 -6.418	1.000 0.905 -1.460	1.124 1.112 -1.103	1.000 0.993 40.710	1.135 1.125 -0.714	1.009 . 0.399 -1.011	1.117 1.112 46.430	0.884 0.866 0 255
0.802 0.817 1.971	0.31D 0.326 1.803	1.122 1 138 1 390	1.004 1.007 0.279	1.117 1.126 0.806	0.387 0.992 0.597	1.101 1 112 0 981	0.982 0.995 0.358	1 116 1 112 -0,412	1 003 0 992 -1.067	1 139 1 128 -1,150	1 021 1 007 -1.401	1 156 1 138 -1.817	0,834 0.826 -0.910	0 825 0.817 -0.6 09
0 854 0.869 2.386	1 053 1 078 2 374	0 973 0 986 2 975	1 150 1 148 -0.217	1 024 1 016 -0.742	1 128 1,128 -0,133	0 988 0 993 0 547	1 103 1 115 1 124	0 980 0 993 1,285	• 130 • 128 •0.354	1 031 1.018 -1.454	■ 162 1.148 -1.239	1 007 0.998 -1.023	1.107 1.078 -2.553	0.687 0.569 -2.591
	0927 0943 .7.448 .	1,048 1054 ,0.144 ,	1.108 1.100 	1.160 1.140 -1.095.	1 018 1.007 50.505.	1 122 1.128 .0.401	0 996 0 999 .1.329 .	1.111 1.126 .5.414 .	1.005 1.007 .0.167 .	1.160 1.149 3 <u>.04</u> 2.	1.169 1.160 20.715 .	1.057 1.054 - 2349 -	0953 0940 2409	
	0.687 0.691 0.626	1 001 1 097 0 592	1 054 1,0 54 0 000	1 008 0.998 -1.024	1.141 1.138 -0.254	0.990 0.993 0.919	1.113 1 123 1.495	0.993 0.999 0.645	1.141 1.139 (0.315	1.003 0.995 -0.698	1.0 55 1.054 -0.256	1.099 1.087 -1.092	6 707 0.691 -9 977	
		0.696 0.691 0.699	0 905 0.949 0.524	1.074 1.078 0.382	0.919 D.925 D.905	1.093 1.112 1.748	0.933 0.961 1.843	1.107 1.112 0.452	0.941 0.925 -1.573	1.087 1.078 -0.800	0.940 0.940 -0.032	0.698 0.691 -0.974		
				D.657 D.663 \ 672	0.803 0.817 1.793	0.849 0.665 2.061	0.846 0.865 2.304	0.860 0.865 0.744	0.831 0.817 -1.585	0.675 0.669 -0.800	Measure Celculai % Differ	ad Relativ ed Relati ence	e Power ve Power	

Figure	C-14					
Flux Ma	p: CY1-FM14	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY1-FM15 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 12714.0 MWD/MTU

				-	_										
				0.669	0.621	0.662	0.666	0.668	0.6+3	0.667	1				
				0.677	0.625	0.673	0.674	0.673	0.625	0.677					
				-1 255	0.512	1.346	0.669	0.834	1.168	1.469			1		
		0.702	0.950	1.095	0.937	1.118	0.656	1.109	0.807	1.061	0.639	0.696			
		-0.627	-0.632	1.001	-0.630	0.232	0.064	1.120	2.590	1.004	0.545	0.259			
	(a 7 00	1.095	1.054	1.010	1 144	1.003	1.155	0.950	1.050	0 977	1.055	1.087	0 899	1	
	0.097	1.089	1.061	0.599	1.134	0.999	1.126	0.959	1.134	0.658	1.061	1.084	3.597		
	-D 429	0511	0.665	-1 257	1.253	·D 403	0.080	0.939	3.714	2.108	0.559	0.258	-0.043		
	0.946	1.067	1.196	1.169	1.026	1.121	0.959	1.113	0.891	1.132	1,182	1.063	0.948		
	0.944	1.061	1.1BO	1.143	1.003	1.159	0.995	1.119	1.003	1.143	1.160	1.061	0,944		
	-0.243	-0.567	1338	.2215	-2213	-0 187	-0423	0.512	1.190	1 007	-0 181	-0 178	-0 389		1
0.673	1.079	0 899	1,155	1.063	1.136	0.897	1.114	0.883	1 125	1.018	1.151	1.006	1.091	0.663	
0.077	0.157	0.090	0.0977	2.033	- 707	-1 023	0.790	0.807	-0.499	-0.521	-0.650	-0.895	1.061	0.077	
0.817	0.024	1.128	1.006	1 1 1 1 0	A 868	1 11 1	0.040	1.104	0.041	1 112	1.000	1.145	0.040	0.013	
0.825	0.831	1.134	1.003	1.117	0.886	1.102	0.960	1.102	0.986	1.117	1.903	1.134	0.931	0.825	
1.016	0.779	0.532	-0 238	- 150 ;	-1 193	-0.855	-0.930	-0.217	0.338	0.341	-0.611	-0.952	-0.958	-0.972	
0.063	1.110	0.963	1.112	0.905	1.102	0.983	1.080	0.982	1.083	0.308	1.128	1.008	1.182	0.886	
0.073	1.12	0.969	1.119	0.907	1.102	0.980	1.095	0.980	1.102	0.387	1.115	0.399	1.121	0.873	
1.217	0.955	0.554	0.575	0.223	-0.054	-0.285	-0.328	-0.183	0.814	-0.14Z	0.040	40.893	-0.928	1.389	
0.852	0.946	1.117	0.387	1.095	0.375	1.090	0.381	1.099	0.980	1115	1 003	1.130	0. 96 5	0.879	
0.874	0.356	1.126	0.395	1.106	0.380	1.095	0.581	1.035	0.080	1 106	D 995	1 126	0.956	0.874	ĺ
1.392	1 153	uala A ana	0.760	0.831	u ars	0.450	4420		-0.090	-0.016	-0.0027	-0.310	-0.863	-17.340	ĺ
Q.862 0.872	1 106	0 989 0 000	1 109	0.087	1 (081	0.970	1 092	0.086	1 115	1 002	133	1 008	1.124	0.871	
1.311	1 173	1 001	0 911	0.961	0 942	0 200	0 293	-0.820	-1.228	-1.448	-1.018	-0.998	-0.231	0.276	
0.832	0 8:34	1 1 2 0	1.003	1 113	0.981	1086	0.973	1 0 9 8	0.998	1,135	1.020	1,153	0.941	0.834	ĺ
0.025	0 901	1 1 3 4	1.003	1.117	0.908	1.102	0.900	1.102	0.985	3.117	1.003	1.134	0 931	0.825	
2.908	2409	1198	-6.030	0.059	0,459	1,464	1.114	0.520	-1.222	-1.551	1.61B	-1.674	-1.031	-1.032	
0.65D	1038	0.958	1.148	1.020	1118	0 976	1 0 9 4	D 969	1.123	1 028	1 191	1 013	n 112	946.0	İ
0.577	1091	D 938	1.143	1012	1 1 1 7	D 987	1 106	D 987	1.117	1 012	1 143	0.998	† 081	0.677	
4.171	4 172	4 156	46.383	-41.7396	-0.689	1 1 37	1954	1 857	0.295	-1 537	-1 550	-1.559	-2.752	-2.744	ļ
	D 923	1057	1 187	1 154	1011	1 109	0.978	1 101	1 001	1 161	1,197	1 078	0.965		
	2 253	0416	-5.623	-1.953	-0.752	0.838	1728	1.599	0.200	-1 402	1.100	1.061 -1.666	17.944 17.216		
	0.637	1089	1.040	1.007	194	0.000	1 109	0.692	1.200	1.004	1.009	1.902	5 710		
	0 697	1 089	1061	0.990	1.134	0.009	1,126	0.992 D.999	1.134	3.993	1.061	1.089	D 697		
	0751	0.610	0.085	-0.853	-0.187	0.990	1.515	0.716	-0.202	-0.973	-0.767	-1.197	-1.81E		
		0.690	0.938	1 076	0.922	1.104	0.943	1.119	C.644	1.089	0.945	0.703			
		0.697	0.944	1.081	0.801	1.121	0.956	1.121	0.931	1.081	0.544	0.697			
		1.029	0.683	0.446	0.943	1.559	1.44Z	3.184	•1.377	-0734	-D 0125	-0.811			
				0.664	D.B10	0.861	0.863	0.873	0.837	0.682	Maasun	ad Relativ	e Power	_	
				0.677	0.825	0.873 1.405	0.874	0.873	0.825	0.677	Calculat	ec Fielal)	ve Power	,	
				1.373	1.635	1.403	1.251	3.060	-1 ava	0.023	A De éu	ér Kaé			

Figure C-	15	
Flux Map:	CY1-FM15, Measured and Calculated Relative Assembly	Power

FLUX MAP: CY2-FM01 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 420.3 MWD/MTU

				0.525 0.533 1.540	0.879 0.893 1.650	0.618 0.828 1.471	0.965 0.975 1.005	0.618 0.628 1.246	0.677 0.694 1.950	0.524 0.634 1.929				
		6.407 6.410 6.663	0.549 0.552 0.656	1.020 1.036 1.538	1.169 1.187 1.574	1,134 1,145 0,943	1.179 1.1 84 0.433	1.433 1.46 1.465	1.161 1.1 8 9 2.4 04	1.016 1.039 2.175	0.543 0.563 1.730	0.405 0.410 1.210		
	5.405 5.410 5.911	0.889 0.695 0.732	1.092 1.097 0.3 95	1.058 1.074 1.541	0.9/8 0.993 1.534	1.179 1.179 -0.342	D.896 D.894 -0.323	1.474 1.180 0.468	0.967 0.995 2.905	1.052 1.077 2.309	1.090 1.095 1.565	0.894 0.895 1.192	D.407 D.410 D.713	
	0.545 0.563 1 338	1.093 1.098 0.467	0.881 0.676 -0.51 \	0.974 0.958 -1.551	1.307 1.237 -1 553	1.051 1.039 -1.141	1.233 1.21a -1 257	1.041 1.041 0.053	1.280 1.294 1.102	0.964 0.965 1,174	0.869 0.876 0.960	1 094 1 097 1 162	0 548 0 552 0 640	
0 527 0.534 1.310	1.030 1.038 3.826	1,071 1.077 0.532	0.971 0.965 -0.507	1 159 1,141 -1.581	1 023 1.007 -1.5#4	1,368 1,343 -1,884	1 102 1.068 -1 315	1,350 1,343 -0,511	1.014 1.012 -0.1#8	1.146 1.741 -0.438	0.958 0.658 0.304	1.061 1.074 1.225	1.020 1.036 1. 50 8	0.522 0.533 2.166
0.865 0.894 0.694	1,1 62 1,469 3,592	0.998 0.996 -0.241	1.309 1.294 -1 192	1.030 1.012 -1.738	1.005 6.958 -1.731	1. 22 1.098 -2.095	1.216 1.164 -1.950	1.107 1.096 -1.039	0.694 0.988 -0.590	1.015 1.007 -0.759	1.263 1.267 0.338	0.962 0.993 1.172	1.167 1.167 1.722	D.874 D.893 2.385
0.827 0.828 0.181	1.155 1.146 -0771	1.202 1.680 -1.690	1.061 1.041 -1.857	1.352 1.343 -1.368	1.112 1.096 -1.438	1.307 1.280 -2.081	9.599 9.580 -1 932	1.26 0 1.280 -1.394	1.171 1.090 -1.134	1.357 1.343 -1.083	1.644 1.639 -0.453	1.178 1.179 0.004	1.144 1.145 0.122	0.825 0.829 0.876
0.981 0.975 -0.642	1.204 1.184 -1 653	0.920 0.894 -2.901	1.243 1.218 -21043	1.095 1.683 -0.657	1.207 1.194 -1 053	0.591 0.580 -1 160	0.758 0.745 -1.518	0.953 0.980 -1.339	1.206 1.194 -0.971	1.065 1.088 -0.676	1.226 1.218 -0.653	0.901 0.894 -0.810	1.193 1.184 -0.748	0.976 0.975 -0 143
0.8\$4 0.828 -0.672	1.158 1.145 ⊶∎ 148	1.204 1.179 -2 128	1.056 1.039 -1.609	1.351 1,343 -0.629	1.106 1.096 -0.875	1.254 1.260 - \ 120	0.994 0.980 -1.399	1.30E 1 280 -1.637	1 105 1 096 -0.624	1 346 1 343 -0.201	1.049 1.041 -0.715	1 194 1.160 -1.149	1.150 1.146 -0.357	0.823 0.828 0.644
0.897 0.063 -0.473 -	1.104 1.187 -0.545	1.000 0.963 -0.710	1.306 1.287 -1.493	1.020 1.007 -1.255	1.003 0.908 -1.495	1.108 1.098 -1.137	1.203 1.194 42.799	1.107 1.098 -0.7 95	0.992 0.988 -0.363	1.014 1.012 0.207	1.304 1.294 -0.762	1.009 0.096 -1.303	1.181 1.189 0.501	0.889 0.894 9.585
0.536 0.533 -D 299	1.04D 1.036 -6.327	1.077 1.074 -C 297	0.975 0.358 -1.713	1.161 1.145 -1 672	1.025 1.012 -1 210	1.348 1.343 -0:364	1.084 1.088 0.341	1 334 1 343 0 614	1 003 1 007 0 429	1 197 1 141 0 378	0.961 0.965 -0.479	1 070 1 077 0 598	1 097 1 036 0 125	0 533 0.534 0.131
	0 550 0 552 0 345	1 085 1 097 1 060	0.876 0.876 0.034	0 869 0 865 -0 382	1 297 1 294 -0 254	1 038 1 041 0 308	1 210 1 218 0.620	1 033 1 039 0 590	1 282 1 287 0 408	0 945 0 958 1.375	0.960 0.878 1.898	1.077 1.098 1.950	0.548 0.553 0.821	
	0405 0410 1 335	0 684 0 695 1 210	1,084 1 096 1 320	1 086 1.077 1 042	0 990 0 994 0 586	1 177 1 100 0 272	0888 089 057	1 174 1 179 0.426	0 991 0 993 0.252	1.058 1.074 1.734	1,068 1,097 2,525	0.677 D.675 2.005	0.405 0.410 1.310	
		0404 0410 1588	0 543 0 553 1 788	1,018 1 038 2 185	1 180 1 109 2 192	1 140 1,148 0 550	1 178 1 184 0 550	1.141 5.145 0.359	1,1 96 1,187 0,127	1.022 1.036 1.360	0.538 0.552 2.601	0.402 0.410 2.067		
				0.518 0.534 3.091	0.860 0.894 3.066	0.824 0.828 0.546	0 969 0.975 0.547	0.825 0.828 0.364	0.892 0.893 0.157	0.525 0.533 1.350	Measur Calculat % Other	xd Relath Yed Helati Anca	va Powar va Powar	r

Figure	C-16					
Flux Ma	ap: CY2-FM01	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FM02 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 690.4 MWD/MTU

				0.525 0.535	0.669 0.539 1.208	0.795 0.614 1.227	0.933 0.964	0.800 0.814 1.690	0.669 0.690 2.476	0.523 0.539				
		0.423 0.422 -0.047	0 564 0 564 -0 035	1 031 1,049 1,697	1.169 1.191 1.682	1.110 1.124 1.270	1.148 1.159 0.732	1.114 1.125 1.024	1.169 1.293 2.019	1.034 1.051 1.645	0.559 0.565 0.929	0 4 19 0.423 0.763		
	0.420 0.423 0.500	0.924 0.927 0.292	1,135 1,134 -0,071	1.067 1.085 1.696	0.972 0.958 1.587	1.457 1.458 0.412	0.678 0.675 -0.364	1.157 1.759 0.225	0.975 0.991 1.599	1.075 1.068 1.256	1.125 1.135 0.625	0.920 0.927 0.750	0.420 0.422 0.572	
	0.559 0.565 0.565	1.133 1.135 0.221	6.940 6.933 -0.75E	0.987 0.971 -1.561	1.313 1.291 -1.568	1.035 1.025 -0.870	1.207 1.196 -0 844	1.020 1.027 -0.272	1.295 1.298 0.108	0.975 0.977 0.206	0.527 0.533 0.526	1.119 1.134 1.250	D.567 D.564 1.275	
0 529 0 536 1 305	1.043 1.051 (1.729	1.064 1.068 (1.369	0.564 0.977 -0.671	1.861 1.842 -1.627	1.016 1.000 -1.584	1.860 1.368 -1 675	1.687 1.673 -1.297	1.350 1.359 -0.893	1.014 1.005 -0.897	1.157 1.142 -1 252	0.966 0.971 0.486	1.062 1.065 2.242	1.027 1.049 2.142	6.524 6.535 2.040
0 873 0.690 1.321	1.164 1.193 3.760	0.993 0.991 -0 151	1.311 1 799 -1 037	1.022 1.005 -1.644	3.995 3.978 -1.738	1.112 1.068 -2.184	1.206 1.162 -2.031	1.101 1.086 -1 345	0.989 0.976 -1 072	1.013 1,000 -1 283	1.285 1.291 0.467	0.973 0.968 1.563	1.169 1.191 1.630	0.671 0.669 2.067
0,793 0,814 2,726	1,120 1,125 0,500	1,179 1 159 -1 679	1 045 1,027 -1 686	1,358 1,339 -1 458	1 104 1.066 -1 657	1,355 1,266 -2,243	1.005 0.964 -2.090	1 306 1 266 -1 464	1.102 1.066 -1 243	1.353 1.336 -1.123	1.030 1.026 -0.398	1.157 1.158 0.086	1.122 1.124 0.167	0.810 0.814 0.407
0.823 0.954 3.3\4	1.156 1.155 0.035	0.069 0.875 2.703	1.224 1.195 -2.095	1.606 1.673 -\206	1.169 1.182 -1.435	0.867 0.984 -1.234	0.789 0.787 -1.478	0.986 0.984 -1.165	1.183 1.182 -6.947	1.002 1.073 0.777	1.263 1.195 6.640	0.881 0.875 40.692	1.163 1.158 43.542	0.952 0.354 0.291
0.759 0.814 1.840	1.127 1.124 -D 195	1.18* 1.156 -1.914	1.045 1.026 -1 838	1.352 1.326 -1 053	1.100 1.088 -1 118	1.364 1.286 -1 176	0.396 0.384 -1.205	1.301 1.285 -1.163	1.394 1.086 1.731	1.344 1 339 -0.417	1.035 1 027 -0.754	1.171 1.159 -1 018	1.126 1 125 -0 039	0.805 0.814 1.158
0.894 0.869 -0.548	1 197 1 191 -0:501	0 992 0 986 -0 393	1.914 1.291 -1 738	1 615 1,000 -1 458	0 995 0 976 -1 738	1 100 1 086 -1 300	1 191 1 182 -0.622	1 095 1 086 -0.594	0 982 0 978 -0.438	1 010 1 005 -0.426	1 309 1 298 -0.633	1 003 0.991 -1.206	1.164 1.183 0.726	0.883 0.990 0.713
0.539 0.535 -0.650	1.358 1.349 -6.663	1.093 1.005 -0.859	0.992 0.971 -2.087	1.167 1.1•2 -2.116	1.020 1.005 -1.490	1 346 1.338 -0.567	1.073 1.073 0.047	1.333 1.330 0.435	0.990 1.000 0.190	1.141 1.142 0.114	0.975 0.977 0.287	1.093 1.068 0.452	1.053 1.051 40.216	0.537 0.536 -6.223
	0.562 0.564 0.392	1.117 1.134 1.495	0.934 0.933 -0.171	0.985 0.977 -0.772	1.304 1.298 40.521	1.027 1.027 -0.019	1.192 1.196 0 327	1.021 1.026 0.441	1 287 1 291 0 287	0.951 0.971 1.082	D 917 D 933 1 690	1 120 1 135 1 386	D 564 D 565 0.142	
	0417 0477 1795	0 3 4 0 977 1 417	1.122 1 135 1 185	1091 1088 0703	0 988 0 991 0 904	1 150 1 159 -0.062	0,373 0,375 0,206	1 153 1 158 0 442	0.982 0.988 0.662	1.058 1.085 1.601	1112 1.134 1.979	0.915 0.927 1.312	0.421 0.423 0.380	
		0.418 0.423 1.173	0.556 0.555 1.638	1029 1051 2038	1 1 68 1 193 2 099	1 117 1 125 0 71 0	1 148 1 158 0 723	: 118 1,124 0,744	1.181 1.191 0.604	1.035 1.049 1.333	0.554	0.417 0.422 1.247		
				0518 0536 3277	0 892 0 890 3 249	0 804 0 814 1 307	0.942 0.954 1.308	0.605 0.614 1.093	0.681 0.689 0.628	0.528 0.535 1.345	Measure Calculat % Differ	ed Rolain ed Rolali ence	va Power va Power	r

Figure	C-17					
Flux Ma	p: CY2-FM02	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FMD3 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 1720.0 MWD/MTU

				0.541	0.872	0.774	0.695	0.777 0.783	0.870 0.890	0.537 0.545]			
				0.013	1.549	1.697	1.732	1.532	1.804	1.807				
		0.447	0.590	1.077	1.205	1.079	1.092	1.D79	1.197	1.D72	D.565	D.443	1	
		U.445	0.587	1.085	1.218	1.091	L.104	1.092	1.219	1.087	0 588	D 445		
		-0.35B	-0.373	0.817	1.087	1.159	1.099	1.233	1.890	1.400	0444	0.408		1
	G.444	0.979	1.189	1.093	0.931	1.123	D.644	1.120	0.972	1.088	1.179	0.975	0443	ł
	0.445	0.979	1.183	0.625	0.989	1.127 13.204	0.645	D 661	1 965	1.101	1 184	0.978	0.341	
	P 503	4 405	0.063	0.023	1.008	1.014	1 160	1 011	1.507	0.070	0.000	4 175	0.604	
	0.583	1.154	0.963	D 975	1 30.9	1 010	1 161	1 012	1.314	0.970	0.850	1 83	0.597	
	1 014	-0 143	-0 9466	-1 386	-1,387	-0.404	-0.540	0.019	9.520	0.523	0.369	0.681	0.058	
0.541	1.080	1.098	0 988	1 145	1.005	1.359	1.065	1.354	1.002	1.735	0.672	1.066	1.072	0.538
0.546	1.067	1.101	0.961	1.130	0.993	1.344	1.065	1.345	0.698	1.130	0.675	1.098	1.065	D.54G
1.036	3.667	0.447	-0 538	-1.292	-1.135	-1.002	-0.958	-0 709	-0.459	-0.423	0.319	1.423	1.212	1.355
0.080	1.210	0.867	1.322	1.010	3.978	1.090	1.179	1.082	9.873	1.000	1.302	0.979	1.203	0.873
0.886	1.219	0.991	1.354	0.999	3.906	1.072	1.161	1.670	0.566	0.559	1.308	0.989	1.218	0.865
0.693	4.744	4.375	-0.536	123/	1217	1200	-1603	1.082	107360	-0.710	0.422	1.011	1.205	1.3243
0.789	1.097	1.140	1.025	1.358	1.06-3	1.218	0.993	1.307	1.082	1.352	1.009	1,122	1.068	0.763
0.039	D 447	1 0 8 9	1 230	1 000	1.070	1.204	1.652	1.234	-D 943	-D 592	0.159	0.426	0.479	0.760
0.016	1.115	0.862	1179	1.063	1 173	-1 0AS	/1 700	0.987	1 169	1.960	1 182	0.845	1 101	0.000
0.910	1.104	0.845	1.16	1.055	1.161	0.976	0.788	0 876	1 16	1 055	1 181	0.845	1.104	0.810
-0.600	-1.059	: 949	41.525	-0.734	4 023	-0 893	-1 414	-1 064	-0 702	-0.462	-0.043	-0.035	0.245	0.820
Q.791	1 096	1.14Q	1 323	1 352	1,080	1 304	0.986	1 313	1078	1 352	1.017	1.132	1.005	0.775
0.766	1 394	1.127	1.010	1.344	1.072	1.284	0.976	1.294	1.070	1.345	1.012	1.128	1.092	0.789
-0.364	-0.458	-1,210	-1 232	-0.614	-0.732	-0.636	-1.194	-1.463	-0.871	-0.540	-0.641	-0.399	0.627	1.558
0.886	1 216	0.986	1.324	1.963	0.978	1.001	1.171	1.082	0.973	1.004	1.327	1.004	1.208	0.877
0.005	1.218	0.909	1.3038	0.993	0.968	1.070	1.161	1,072	0.968	D 938	1.314	0.0100	1.219	0.886
12.043	-2.010	0.461	-1.2.3	1.337	1.207	-1.027	10.004	10.515	0.750	-0.010	40.999	-1.319	0 963	0.968
0.546	1/087	1.100	0.975	1.146	0.398	1 352	1.055	1937	0.000	1 131	0.962	1.102	1.005	0.548
-0.110	-1.120	-1.118	-1.485	-1.576	-1.208	-0.564	0.085	0.501	0313	-0.062	-0.092	-0.127	0.037	0.040
	0.586	1 176	0.954	0.986	1.322	1 013	1 1 5 8	1004	1.302	0.970	0.945	1 1/4		
	0.587	1 189	0.958	0 381	1 314	1012	1 161	1.010	1,300	0.975	0.953	1.184	D 558	•
	0.538	0.570	-0.094	-3.497	-0.590	-3.089	0495	0.658	D.453	0.526	D.878	D.895	D 399	
	0442	0.978	1.174	1 090	0908	5,120	0.641	1.121	0.985	1.087	1.165	0.967	D.442	
	0445	0.978	1 184	1 101	0.991	1.128	0.645	1.127	C.993	1.098	1.183	D 979	0 445	
	0.656	0.617	0 877	0928	0.294	-0.01B	0.499	0.482	D.376	1.085	1.589	1.199	0.659	
		0442	0.581	1058	1.196	1.096	1.098	1.088	1.217	1.074	0.575	0.43 <u>9</u>		
		0.445	1240	1.097	1.219	1.092 D 525	0.104 D.529	1.091	1.218 D.De2	1.085	0.587	0.445 1.480		
	I	4 101		0.502		1. 784	0.000	0.040	D. DOA	0.540	Many -		a Day	
				0.003	0.003	6,700	0.505	0.165	0.004	0.540	Macales()*(n: metalin a dina tan	e rower	
				10.3440 1	ID.830 I	10.192	10.910	ij.red i	6.665	11.546	LANCINA	ac Halan	we Ponter	

Figure	C-18					
Flux Ma	ap: CY2-FM03	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FM04 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 2974.4 MWD/MTU

				0.556	D.878	0.758	0.869	0.763	0.877	0.551]			
				0.917	1.857	2.255	1.856	1.611	1.972	1.979				
		0.471	0.614	1.115	1.235	1.054	1.053	1.056	1.229	1.163	0.612	0.469	1	
		3.46 8	0.610	1.125	1.251	1.069	1.066	1.069	1.252	1.126	0.611	0468		
		-0 637	-0.635	0.524	1.263	1.366	1.196	1.269	1.872	1.177	-0 180	-0.213		
	(),468	1.034	1.237	1,097	0.979	1.094	0.620	1 092	0.973	1.100	1.231	1.034	0.469	1
	0.468	1.032	1.227	1.107	0.568	1.100	0.623	1.101	0.990	1.109	1.229	1.032	0.468	
	0.065	-0.222	-0788	0.930	0.930	0.521	0.376	0.796	1.758	0.762	-0.187	-0 203	-0.258	
	0.606	1.233	0.969	0.081	1.332	0.993	1.131	0.893	1.345	0.869	0.856	1.223	0.008	
	0.011	1.226	0.960	0.971	1.319	0.890	1.129	0.996	1.324	0.876	0.960	1.227	0.610	
	0.092	-0.397	-0.989	-0.999	40.998	4.620	44.177	9.141	0.700	U.784	0.867	9.266	0.862	
0.555	1.121	1.108	0.983	1.122	0.988	1.362	1.041	1.353	0.962	1.099	0.860	1.094	1.112	0.555
1 1 25	0.473	0.072	-0.631	0.919	-0.769	0.717	0.778	-0.761	-0.765	1.112	1 209	1.107	1.125	1114
0.004	1 246		1 172	0.052	O DET	1 200	1.140	1.750	0.050	0.009	1.200	0.076	1 707	7 004
0.854	1.252	0.350	1.354	0.984	0.946	1.049	1.131	1.04B	0.94B	0.980	1.919	0.080	1.251	0.004
1.005	0.595	-0.030	0.593	0.855	D.941	1.533	1.491	-1.123	-1.075	-1.269	1.197	1 167	1.140	1.120
0.771	1.071	1112	1.005	1.353	1.050	1.915	0.875	1 304	1 (061	1 355	0.881	1.092	1.059	0.768
0.776	1 069	1.105	0.995	1.343	1 046	1 290	0 855	1 290	1 049	1 343	0.993	1.100	1.069	0.775
0.610	-0 187	-1.007 -	-0.975	-0.710	-1 161	-1.679	-1 651	-1.081	-1.093	-0.915	0.232	0.786	0.908	0.950
0.884	1,072	0.837	1.143	1 0 3 6	1.143	0.969	0.791	0.972	1 141	1041	1.133	0.820	1.056	0.874
0.886	1.066	0.823	1.129	1 0 3 2	1.131	0 959	0 778	0.958	1 131	1 0 3 2	1.128	0 823	1.966	0.885
0.215	-0.615	-1.625	-1.225	-0.578	-1.093	-1.073	-1.644	-1.337	-0.866	-0.788	-0.353	0,442	0.918	1.378
0.774	1 071	1.112	1.004	1.349	1 057	1 303	0.974	1.315	1.058	1.354	1.003	1.104	1.057	D 762
0.775	1.069	1,100	0.990	1,343	1.049	1.290	0.959	1.290	1.048	1.343	D 9 35	1 101	1 069	0776
0.142	-0.261	-1.035	-1.046	-0.504	-0.747	-0.583	-1.500	1.254	+1.183	-0.812	-0.758	-0.236	1 125	1758
0.895	1 252	0.987	1.334	0.989	0.960	1.053	1 143	1 062	D.958	0.992	1 340	1 005	1240	0.999
0.894	1251	D 988	1 319	0.990	1 250	2048	1 131	1 1 1 1 1	0.948	0,984	1 324	0.990	1 252	0.894
0.123	-0.204	D USI	-1.124	41.650	-1.2:30	-1.114	-1.624	-1.196	-1003	-0.160	-1 201	-1.352	0.900	09/1
0.552	1 128	: 108	0.021	1 129	0.085	1 353	10.32	1 339	0.979	1,114	0.979	1.112	1.127	0.562
-11 249	-0.239	-0.216	-1.391	-1 479	1 115	-0.503	0.010	0.299	0.900	0.182	10.Bro	-0.26	-0.120 -0.46B	-1 DIR
-V.2.14	0.000	1 000	0.069	0.080	1.004	0.006	1 106	0.000	1.002	1.1987	0213	1.000	0.070	-0.016
	0.610	1 227	0960	0.902	1.324	0.895	1.125	0.990	1.319	4.907	0.992	1.222	0.611	
	0.092	0.394	-0.212	-0.570	-0.48	0.000	0.320	D.333	C. 144	0.466	0.798	0.548	-0.065	
	0.465	1.028	1219	1.100	0.940	1 100	0.820	1.097	3 597	1.099	1212	1 02-5	0.460	
	C.469	1.032	1.229	1.103	6.990	1.101	D.823	1.100	0.563	1.107	1.227	1.032	0.468	
	6.710	0.585	0.730	0.535	6.152	0.045	0.578	0.237	6.071	0,811	1.246	0.693	-0.085	
		D.464	D.604	1.110	1.234	1.061	1.058	1.064	1.252	1,117	0.601	0.464	<u> </u>	
		0.468	D.611	1.126	1.292	1.069	1.066	1.069	1.251	1 125	0.610	0.468		
		1.014	1.126	1.441	1.442	0.763	0.766	Q.404	-0 104	0.669	1.497	0.818		
				0.550	3.876	9.767	0.876	0.771	0.895	0.557	Measure	ni Relatv	e Power	
				0.562	0.894	0.776	0.866	0.775	0.864	0.581	Calculat	ed Retain	va Powar	
				2.166	2.147	1.154	1.142	0.673	-0 101	0.662	1% O#Her	o na		

Figure	C-19					
Flux Ma	p: CY2-FM04	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FM05 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 4000.0 MWD/MTU

				0.567	0.899	D 761 0 767	0.858 0.859	D 757 0 767	D.890	0.561 0.569				
				0.358	D 394	D 832	1 212	1.351	1477	1.450				
		D.487	0630	1138	1 259	: 048	1034	1 045	1.247	1.139	D 627	0 4 9 5	1	
		D 493	0.625	1 143	1 264	1 056	1045	3 056	1 265	1 144	D 625	0 493		
		-0.801	-0.794	0.395	D 327	D 715	1 0 3 5	1 072	1 476	D.545	-0.367	-4.330		
	0 493	1.063	1 250	1 107	0 985	1 082	0810	[1 032	0.996	.1 117	1 256	1 053	0 484	ļ
	D 483	1 063	1 250	1 111	D 988	1 087	0814	1.037	0.000	1 113	1 251	1 050	0 483	
	D 083	-0.245	-0.R01	0.398	0 33A	0.452	0.462	D 471	D 444	-0 376	-0.366	-0.320	-0.268	
	0.650	1 255	0.977	0978	1 329	0 985	1 113	0.988	1.333	0.983	0.969	1 245	0.622	
	0.625	1.251	0.970	0.973	1 322	0.988	1 112	0.987	1.327	0.978	0 970	1 250	0.625	[
	0.855	-0.303	-0.696	-0.532	-0.534	0.051	-0.108	-0.371	-0.428	-0.488	0.113	0.434	0.466	
0.563	1.138	1.110	0.981	1.113	0.990	1.346	1.026	1.344	C.664	1.111	0.668	0.095	1.127	0.561
0.569	1.144	1.113	0.978	1.105	0.975	1.339	1.021	1.239	6.979	1.105	0.973	1.111	1.143	0.563
1.101	0.554	0.225	-0.326	-0.504	-0.449	-0.550	-0.526	0.387	-0,427	-0.585	0.465	1.493	1.420	1.300
0.635	1.257	G.938	1.332	0.985	D.948	1.052	1.130	1.D45	0.549	0.564	1.513	D.975	1.248	D 891
D 693	1.265	0.900	1.327	0.973	0.941	1.039	1.117	1.035	0.941	0.975	1.527	0,9698	1 294	0 893
0.904	0.684	6.182	0.355	0.555	-0.696	-1265	+1.142	-0.832	0796	-0.864	0.690	1.544	1 362	1 317
0.760	1.064	1.096	0 905	1.347	1.046	1.303	0.967	1.299	1.049	1,348	0.962	1.077	1.048	0.759
0767	1.066	1.087	0.987	1.339	1.035	1.284	0.954	1,269	1.039	1.339	0.9665	1.087	1.056	0.767
12.961	6.171	-U 74H	-U H44	-0.546	10,931	-15/5	-1 314	-0.9/8	· U U 38	-06/5	0.407	0.654	0.666	1.054
0.661	1.047	0.624	1.124	1.027	1.127	0.961	0.789	0.862	1.123	1.026	1.113	0.810	1.036	0.850
0.069	1.045	0.614	1,112	1,021	0.870	0.954	0.760	0.854	1.117	1.021	1.112	0.814	1.045	0.669
0.000	40 153		-1050	-0.303	-08/8	-0718	-1 131	-0.09	-0.00	-0.520	-0.054	0.961	0.850	1.283
0.762	1.065	1.095	3.994	1.314	1.044	1.297	0.963	1.303	1.644	1.347	0.983	1.089	1.045	0.766
0.767	1.056	1.087	0.666	1.339	1.0395	1.266	0.854	1.208	1.036	1.339	0.987	1.087	1.065	0.767
0.030	4.057	-0722	-0845	-0.3407	-0.546	.0.096	10.986	1.167	-mean	-0.594	10.964		1.062	1.603
0.890	1.261	0.985	1.322	0.981	0.650	1.045	1.122	1.343	0.94B	0.387	1.342	1.005	1.258	0.888
0.893	0.374	0.355	1.222 JD 735	1.375	0.944	0.033	0.625	T. 400	0.941	D 379	1.327	1 402	1.265	0 663
U.232	0.216	0.220	0730	-0.351	-0.505	0632	0.525	10.484	47.0040	-0.740	-1.840	-1 482	0.300	0.300
0.567	1.139	1.167	0.982	1.116	0.986	1.342	1,017	1 331	0 875	1 138	0.982	1.110	1.151	0.573
0,369 J 960	0.960	0.961	0.873	0.005	0.000	1.339	0 4 2 2	0.584	0.0810	1 100	0.978	1.113	1.144	0.509
0.333	0.000	4.001	~~~~~		-2000	-0.200	0.20	0.040	0.002	-0.202	-0.397	-0.0-30	-2.055	-0.554
	0.624	1 251	0.973	0.885	1.332	0.985	1.108	0.941	1.320	09/1	0.967	1.240	0.625	
	0.020	-0.040	0.970	0.876	1.327	ישפיט רייצים	0.551	0.900	1.322	0.974	0.973	1.251	0.025	
	0.100	- 0.040	-0.200	4.007	0.000	0.200	0.331	0,435	0.001					
	0.401	1.050	1.245	1.167	0.305	1.980	0.812	1095	0.991	1 108	240	1054	0492	
	0.403	T.060/	0.430	0.013	0.350	0.101	0.450	0.120	J 262	D 280	0.798	0.607	0.969	
, I	0.316		0JD	0.075	3.761	0.141		0.28	-0.202		D ALD	0.170	V 303	
		0.490	0.620	1.131	1,250	1.048	1.037	1054	273	1 141	0.605	0.478		
		0.624	0.835	1 195	1 100	D 202	n 791	0.171	0.715	D 202	1 150	0.914		
	I	0.0004		0.000	0.030	0.350	0.055	0.701	4.419	0.000	1.100			
				0.565	0.878	0.758	0 350	0.764	0.603	0 568 D 660	Coloulot	eo nelaib ad Raiad	NE PUNIEr	
				1 697	17:38	1 121	1 117	0353	-0.723	D 194	% Differ	eo neisu Anca		

Figure	C-20					
Flux Ma	ap: CY2-FM05	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FMD5 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 5110.0 MWD/MTU

				0.576 0.576	D.884 D.893	0.750 0.762	0.844 0.859	0.754 0.762	0.895 0.893	0.571 0.577				
		0.502 0.495 -1.195	0.544 0.637 -1.180	1.135 1.155 0.053	1.053 1.258 1.274 0.425	1.040 1.037 1.045 0.907	1.019 1.030 1.119	1.039 1.045 0.829	1.262 1.274 0.959	0.963 1.152 1.157 0.451	0.640 0.637 -0.562	D.501 D.498 -0.897		
	0.497 0.495 -0.271	1.095 1.091 -0.479	1.277 1 265 -0 979	1.111 1.112 0.072	0.938 0.939 0.071	1.073 1.077 0.345	0.607 0.609 0.760	1.071 1.078 0.579	0.990 0.990 0.969	1.811 1,813 0,169	1 272 1.265 -0 556	1 092 1 081 -0 996	0 503 0 498 -1.430	
	0 633 0.637 0.521	1 270 1.265 -0 382	0.980 0.974 -0.592	0 978 0 973 -0 346	1,328 1,324 -0,346	0.979 0.980 0.123	1.099 1.100 0.109	0.979 0.961 0.294	1.326 1.328 3.166	0.978 0.977 -0.123	0.976 0.974 -0.154	1.268 1.265 -0.245	0.640 0.637 -0.485	
0.572 0.577 0.769	1.153 1.157 3.399	1.011 1.013 4.060	6.979 6.977 -0.194	1.002 1.095 -0.308	0.974 0.972 -0.246	1.337 1.335 -0.172	1.015 1.013 -0.197	1.337 1.335 -0.194	0.679 0.575 -0.398	1.104 1.098 -0.570	0.\$71 0.873 0.134	1.002 1.012 0.871	1.145 1.155 3.890	0.571 0.576 0.923
0.886 0.893 0.653	1.266 1.274 0.524	0.996 0.990 0.365	1.329 1.328 -0112	0.979 0.975 -0.358	0.941 0.937 -0.415	1.039 1.030 -0.918	1.134 1.106 -0.709	1.035 1.058 -0.657	0.844 0.937 D 734	0.861 0.072 0.697	1.316 1.324 0.578	0.978 0.989 1.084	1.251 1.274 0.999	0.895 0.693 0.938
0.755 0.762 0.940	1.044 1.046 3.201	1.064 1.078 -0 572	0.587 0.581 -0.598	1.841 1.335 -0.448	1.035 1.023 -0.647	1.301 1.267 -1 084	0.959 0.951 -0.955	1.296 1.287 -0.679	1.041 1.630 -0.990	1.342 1.335 -0.559	0.975 0.960 0.462	1.067 1.077 0.956	1.036 1.046 0.965	0.755 0.762 1.007
0.850 0,859 1.000	1 032 1.030 -0 174	0 819 0 809 -1 245	1,110 1,160 -0,918	1,018 1.019 -0.511	1,1:3 1 106 -0 629	0.856 0.851 -0.419	0.769 0.764 -0.697	0.956 0.95) -0.513	1.109 1.106 -0.289	1.017 1.013 -0.442	1.100 1.100 0.000	0.806 0.809 0.422	1.020 1.030 1.020	0.848 0.859 1.258
0.758 0.762 0.587	1.046 1.046 -0.124	1.026 1.077 -0.865	0.987 0.980 -0.749	1.329 1.335 -0.299	1.634 1.630 -0. 39 8	1.263 1.287 -0.503	0.958 0.351 -0.554	1.293 1.287 -0.480	1.032 1.028 -0.368	1.343 1.335 -0.625	0.988 0.981 40.649	1.079 1.078 40.130	1.026 1.046 0 RR4	0.752 0.762 1.437
0.808 0.893 0.585	1.269 1.274 0.385	0.389 0.389 -0.001	1.334 1.324 -0.578	0.376 0.972 0.379	0.944 0.937 0.731	1.038 1.028 -0.791	1.111 1.10E 40.495	1.034 1.030 -1.329	0 941 0 997 -9.404	D 982 D 975 -0,739	1.344 1.328 -1,191	1 006 0 990 -1.581	1 274 1 274 0 047	0.893 0.883 0.045
0.57D 0.576 1.452	1.144 1 156 1 (157	1.100 1.112 1.053	0.9RD 0.973 -1:765	1.108 1.098 -0.667	0.982 0 975 -0 682	1 340 1 335 -0 410	1 013 1 013 -0.049	1 332 1 335 0 188	0970 0972 0186	1 099 1 098 -0.127	0 981 0 977 -0.418	1.121 1 113 -0.870	1 170 1.157 -1.381	0.585 0.577 -1.385
	0 0 32 0 637 0 792	1 258 1 265 0 501	0 975 0.974 -6.061	0 980 0 977 -0.316	1 332 1 328 -3.308	0982 09401 ⊰4.1≢Z	1.098 1.100 0.118	0 978 0.980 0.205	1.321 1.324 0.225	0.971 0.973 0.175	D.972 D 974 D.226	1.270 1.265 -0.870	D.645 D.637 -1.287	
	0 493 0.496 0.547	1 078 1.091 0.530	1.250 1.265 0.556	1.108 1.112 0.415	0.909 D 9930 0 131	1.079 1.078 -0.139	0.903 D 903 D 025	1.076 1.077 D.065	0.938 0.939 0.940	1.108 1.112 0.325	1.258 1.265 0.567	1 0.93 5 081 -0.165	0 502 0 496 -1.214	
		0.493 0.496 0.588	0,632 0,637 0,744	1.146 1 157 D 977	1 252 1 274 D 975	5 041 1 046 0.557	1 025 1 030 0 555	1 043 1 048 0 268	1 275 1 274 -0 141	1.152 1.758 0.365	0.631 9.637 0.672	0.496 0.496 -0.020		
				0.559 0.577 1.371	0881 0893 1334	0.754 0.762 1.154	0 649 0 659 1 455	C 758 C.762 C.607	0.695 0.693 -0 134	0.574 0.576 0.348	Measuri Calculat % Differ	nd Relativ ad Relativ ance	re Pawer ve Pawer	r

Figure C-2 ²	1					
Flux Map: (CY2-FM06,	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FM07 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 6175.0 MWD/MTU

				0 582 0 582 0 017	D.884 D.893 1.041	D 749 D 760 L 670	0 841 0 853 1.453	D 754 D 761 D 603	D 396 D 393 D 797	0.578 0.592 0.778				
		0.514 0.507 -1.459	0.655 0.645 -1.466	1 164 (164 D 003	1.273 1.278 D 377	1.032 1.040 0.785	1.D13 1.022 D 649	1.034 1.041 0.668	1.267 1 278 0 678	1 161 1 194 0 278	D 651 D 648 -0.890	0 512 0 507 -1.055		
	D 503 D 507 -0.393	1.102 1.094 -0.699	1 287 1 271 -1.236	L 111 I 111 D 008	D 9-98 0 9-98 D 0 10	1 058 1 071 0 253	0 807 0 809 0 198	1 065 1 071 0 507	0 980 0 989 0 989 0 990	1.112 1.112 0.038	1 283 1 271 -0.897	■ 106 ■ 094 -1.058	0 513 0 507 -1.209	
	0.643 0.646 0.389	1.278 1 271 -0.571	0 943 0 976 -0.651	0 974 0 972 -0.175	1 324 1 322 -0.166	0.976 0.977 0.123	1 091 1 092 0.119	0.978 0.978 0.215	1.323 1.326 0.242	0.978 0.976 -0.133	0.977 0.976 -0.931	1.271 1.271 0.008	0.648 0.645 -0.077	
0.578 0.582 0.709	1.160 1.164 6.310	1.311 1.312 8.072	0.978 0.976 -0.184	1.094 1.093 -0.382	0.970 0.970 0.052	1.329 1.331 0.135	1.0 08 1.008 -0.020	1.3 32 1.331 -0.113	0.976 0.973 -D 287	1. 09 7 1.0 93 -0.374	0.967 0.972 0.579	1.095 1.111 1.269	1.152 1.164 1.018	0.590 0.587 0.463
0.887 0.893 0.631	1.270 1.278 3.630	0.565 0.569 0.436	1.326 1.326 0.023	0.974 0.573 -0.382	0.535 0.535 -0.085	1.031 1.026 -0.425	1.104 1.100 -0 353	1.026 1.024 -0 185	0.538 0.536 -0.277	0.973 0.970 -0 329	1.811 1.322 0.862	0.977 0.963 1,156	1.269 1.278 0.769	0.669 0.693 0.464
0.753 0.761 0.996	1.038 1.041 (1.260	1.076 1.071 -0.455	0.981 0.978 -0 346	1.330 1.331 0.023	1.029 1.024 -0.428	1.301 1.267 -1 114	0.960 0.951 -0.885	1 265 1.267 0.132	1.026 1.026 0.010	1.329 1.334 0.158	0.972 0.977 0.494	1.062 1.071 0.085	1.032 1.040 0.785	0.765 0.760 0.755
0.843 0.853 1.174	1.021 1.022 0.049	0.818 0.809 -1078	1.098 1.092 -0.555	1.006 1.008 0.179	1.105 1.100 -0.507	0.967 0.951 -1.633	0.800 0.769 -1.374	0.953 0.951 -0.136	1.097 1.100 0.283	1.907 1.968 0.940	1.097 1.092 0.082	0.805 0.809 0.372	1.012 1.022 0.939	0.849 0.859 1.210
0.754 0.760 0.062	1.038 1.040 0.212	1.077 1.075 -0. 594	0.96 0.977 -0.367	1.327 1.331 0.224	1.027 1.028 -0.078	1.296 1.207 -0.679	0.960 0.951 -0.927	1.298 1.287 -0.741	1.027 1.024 -0.244	1.300 1.331 -0.441	0.984 0.978 0.630	1,073 1,071 -0,169	1.081 1.041 0.882	0.75D 0.761 1 346
0.091 0.893 0.221	1.274 1.278 0.34K	0.905 0.988 0.365	1.328 1.322 -6.422	0.972 0.97D -0.175	0.94D 0.936 -0.521	1.029 1.024 -0.466	1.104 1.100 -6.399	1.031 1.026 -0.465	D 940 0 935 -0.521	D 990 0 973 -0.724	1.343 1.328 -1.273	1.007 0.989 -1.728	1 279 1 278 -0.137	0.894 0.893 -0.1∎2
0.583 0.582 0.224	1.161 1 164 0 215	1 109 1 111 0 216	0.975 0.972 -0.654	1.102 1.093 -0.799	0 978 0 973 -9.532	1 333 1 331 -0.166	1 005 1 008 0 249	1 325 1 331 0 445	0.967 0.970 0.269	1 095 1.093 -0.174	0 981 0 978 -0.520	1.122 1.112 -0.838	1.183 1.154 -1.589	0.592 0.582 +1.588
	0 843 0 845 0 309	1284 1271 0548	0 977 0.976 -0.082	0.979 0.978 -0.337	1 300 1 328 -0.276	0.978 0.978 -4.1910	1 009 1 092 0 265	0.973 0.977 0.383	1.318 1.322 0.325	0.971 0.972 0.093	0.975 0.976 0.082	1.277 1 271 -0.462	D 655 D 646 -1 360	
	0.505 0.507 0.297	1.090 1.094 0.404	1.267 1.271 0.347	1.109 1.112 0.316	0.998 D 999 D.101	\.073 1.071 -0.149	0.809 0.800 0.012	1.071 1.071 0.3 0 9	0.990 0.988 -0.131	1.111 1.811 0.027	1 267 1.271 0.324	1 097 1 094 -0 310	0.513 0.507 -1.209	
		0.50 6 0.507 0.079	0.643 D.646 D.373	1,197 1,164 5,579	1.279 6.278 0.5a2	1.0 36 1.041 0.405	1.013 1.022 0.413	1.040 1.640 8.600	1.285 1.278 -0.578	1,164 1,164 0,000	0.642 0.645 0.592	0.507 0.507 -0 177		
				0.578 0.582 0.725	0.637 0.693 0.722	0.753 0.761 0.929	0 845 0.653 0.923	0 758 0 760 0,290	0.690 0.690 -0.568	0.562 0.562 0.000	Measure Calculat % Differ	ad Pelativ ed Pelat: ence	ю Ромен ve Ромен	

Figure	C-22					
Flux Ma	ap: CY2-FM07	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FM08 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 7471.3 MWD/MTU

				0.53D 0.589 -41.220	0 88E 0 893	0 751 0 761 1 278	0.840	0 755 0 761 0 795	0 887 0 893 0 679	0 585 0 589 0 515				
		0 533 0 517 -2.378	0 679 0 654 -2.373	1 170 1 167 -0.222	1 276 1 277 0 110	1 030 1 038 0 631	1 008 1 017 0 893	1 035 1 035 0 602	1 299 1 278 0 670	1 1 88 1 1 8 7 0 103	0 651 0 655 -1.0 3	0 524 0 517 -1.241		
	0 521 0 517 -0.729	\ 115 1 103 -1.068	1 293 1 272 -1.624	1 111 1 108 -0.216	0 990 0 988 -0.222	n 085 1 087 0 188	0 811 0 812 0.148	1 063 1 067 0 423	0 982 0.989 0.723	1.111 1.109 -0.153	■ 285 ■ 272 -1.019	1 117 1.103 -1.245	0.525 0.517 -1.467	
	0.653 0.655 0.214	1 279 1,272 -0,529	0 982 0 978 -41410	0 976 0 972 0.206	1.315 1.318 0.205	0.975 0.975 0.062	1 096 1.087 0.111	0.974 0.976 0.174	1.319 1.321 0.197	0.978 0.976 -0.215	0. 990 0.978 0.255	1.277 1.272 -0.384	D.658 D.654 -0.517	
0.585 0.583 0.632	1.164 1.167 5.265	1,109 1,109 0,035	0.976 0.976 0.010	1.096 1.033 D.259	0.966 0.963 0.331	1.320 1.325 0.375	1,002 1 004 D 210	1.324 1.325 0.076	D.973 C.972 -0.164	1.092 1.092 -0.293	0.970 0.972 0.278	1.093 1 198 D 648	1 158 1 187 D 812	0.585 0.589 0.770
D 687 D 893 D 688	1.269 1.278 0.638	0.984 0.989 0.457	5.318 1 321 D 235	0.973 0.972 0.217	0.935 0.936 0.107	1.025 1.024 -0 214	1.094 1.095 0.064	1.022 1.022 0.000	0.939 0.935 -0.351	0.973 11.969 -0.421	1.511 1.318 0.572	0.973 0.988 0.929	1 287 1 277 0.637	0 895 0 893 0.768
0 753 0.761 1.022	1 034 1,038 6,281	1 071 1,067 -0 327	0.977 0.978 -0.113	1 321 1 325 0.265	1 025 1.022 -0 273	1 298 1 288 -0 924	0.960 0.964 -0.552	1 263 1.266 0.226	1.028 1.024 -0 185	1.323 1.325 0.113	0.971 0.975 0.474	1.058 1.067 0.003	1.028 1.036 3.766	0.755 0.761 0.848
0.641 0.651 1.188	1.016 1.017 3.109	0.620 0.812 -0.951	1.091 1.067 -0 358	1.000 1.004 8.380	1.099 1.095 -0.364	0.669 0.664 +1.527	0.609 0.769 -1.285	0.856 0.854 -0.115	1.090 1.095 0.422	1.002 1.004 0.200	1.085 1.087 0.184	0.809 0.812 0.356	1.009 1.017 0.823	0.843 0.851 1.006
0.754 0.761 0.915	1.003 1.036 0.300	1.072 1.067 -0 934	8.577 8.575 -0 164	1.318 1.325 8.493	1.021 1.024 0.216	1.290 1.266 0.318	0.962 0.954 0.749	1.255 1.286 -0.649	1.022 1.022 0.020	1.326 1.325 -0.113	0.980 0.976 -D 459	1.069 1.067 -0 159	1.029 1.035 0.768	0.758 0.761 1.076
0.88a 0.893 0.464	1.271 1.277 3.460	0.984 0.966 0.466	1.220 1.216 -D 159	0.96a 0.969 0.124	0.538 0.556 -D 224	1.025 1.022 -0.322	1.152 1.095 -0.629	1.034 1.024 -1.044	0.839 0 836 -0 277	0 977 0.972 -0.522	1 337 1.321 -1.204	1.007 0.969 -1.778	1.275 1.278 0.196	0.891 0.853 0.181
0 566 0.569 0.495	1.161 1.167 0.499	1.103 1.106 0.499	0,976 0,972 -0 420	1,096 1.089 -0.621	0 975 0.972 -0 318	1 326 1.325 -0.249	1.903 1.004 0.090	1,316 1,325 0,501	0.965 0.968 0 303	1 090 1.089 -0.046	0.900 0.978 -6.449	1.118 1.109 -0.814	1.175 1.187 -0.699	0.593 0.589 -0.691
	0.85 0.854 0.522	1.265 1.272 0.561	0.977 0.978 0.044	0.976 0.975 -D.194	1.024 1.024 -0.165	0.978 0.976 D.174	1.000 1.087 0.129	0.972 0.975 0.35D	1.313 1.318 0.411	0.970 0.972 0.227	0.978 D.978 0 195	1.279 1.272 -0.563	0.663 0.655 -1.208	
	0.519 0.517 -0.269	1.102 1.103 0.092	1.277 1.272 0/355	1.164 1.169 0.507	0.387 0.385 0.253	1.369 1.367 -2.196	0.813 0.812 -6.093	1.058 1.057 -(1.140	D 931 D 988 -0 313	1 111 1 108 -0.252	1 271 1 272 0 071	1 109 1 103 -0.613	0.525 0.517 -1. 65 0	
		0 522 0 517 -0.976	0.555 0.555 -6.031	1.159 1 167 0 6 81	1 269 1 278 0 686	1 039 1 036 0 319	1 013 1 017 0 328	1 038 1 038 -0.163	289 277 -0.865	1 172 1.167 -0.461	0.655 0.654 -0.048	0.521 0.517 -0.691		
				0.585 0.599 0.718	0 896 0 893 0 722	0754 0781 0875	0844 0851 0877	0 780 0.761 0 145	0.901 0.693 -0.688	0.592 0.589 -0.458	Measur Calculat % Differ	ed Asisin ed Asisil ence	va Pawar va Pawar	

Figure	C-23				
Flux Ma	ap: CY2-FM08, M	easured and	Calculated Re	lative Assen	nbly Power

FLUX MAP: CY2-FM09 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 8543.6 MWD/MTU

				0.598 0.594	0.808 0.092	0.754 0.763	0.841 0.852 1.272	0.758	0.688 0.892	0.592				
		0 505 0.526 -1.794	0 670 0.661 -1.764	1 177 1.167 -0.824	1.200 1.275 -0.398	1 001 1.004 0 310	1.008 1.015 0./24	0.0 <u>0</u> 1.030 0.447	1.267 1.275 D.647	0.388 0.168 0.167 -0.034	0.670 0.661 -1.259	0.533 0.528 -1.425		
	0.530 0.526 -0.830	U 118 U 106 -1.029	1.288 1.270 -1.405	1.114 1.105 -0.817	0.938 0.988 -0.823	. 1.067 1.065 -0.150	0.919 0.817 -0.232	1 052 1 055 0 301	D.990 D.993 D.913	1.108 1.106 -0.225	1 298 1 273 -1.367	1 122 1 106 -1.417	0 534 0 526 -1.461	
	0.652 D.651 -0.211	1.280 1.270 -0.781	0 985 0 978 -0.751	0.976 D 972 -0.359	1 319 1 314 -0.356	D 977 D 975 -Q.194	1 095 1 084 -0.026	0.975 0.976 0.032	1 313 1 317 0 343	D.977 D.975 -0.154	D 9491 D 9778 -0 296	1 275 1 270 -0.431	0 684 0 681 -0.452	
0 592 0 594 0 287	1.167 1 197 0 034	1 107 1 108 -0.117	0 978 0 975 -0.245	1 049 1 037 -0.220	0 959 0 959 0 031	1 918 1 320 0 268	: 002 1 003 0 110	1 319 1 320 0.008	0.973 0.972 -0.062	1 037 1.087 -0.046	0 987 0.972 0.475	1.096 1.105 0.812	1 101 1 167 0.491	0.594 0.594 0.000
0 688 0 892 0,439	1 268 1.275 0.576	0.983 0.989 0.559	1 315 1.317 0 129	0.972 0.972 -0.010	0 937 0.938 0.032	1 025 1.022 -0.244	1 093 1.092 -0.101	1 020 1.021 0.069	0.938 0.938 0.011	0.969 0.969 0.021	1.306 1.314 0.597	0.982 0.988 0.611	1.272 1.275 D.275	D.892 D.992 D.000
0.756 0.763 0.886	1.002 1.034 0.233	1.069 1.065 -0.305	0.978 0.976 -0.194	1.318 1.320 0.105	1.022 1.021 -0.127	1.292 1.285 -0.534	0.959 0.967 -0.219	1.279 1.265 0.465	1.018 1.022 8.403	1.313 1.820 8.533	0.972 0.975 0.309	1.060 1.065 6.472	1 031 1.034 0 399	0 760 0 763 0 342
D.841 D.852 1.212	1.013 1.015 0.183	0.625 0.817 -0.945	1.093 1.084 -0.835	1.004 1.003 -0.100	1.093 1.092 -0.101	0.965 0.967 0.272	0.807 0.808 0.062	0.951 0 957 0 694	1.064 1.092 0.775	0.599 1.003 0.330	1.063 1,064 0.139	0,619 0,817 0,066	1.009 1.015 0.565	0.844 0.852 0.889
0.755 0.763 1,033	1.029 1.034 0.496	1.069 1.065 -0.374	0.961 0.975 -0.642	1.317 1,320 0,235	1.D19 1.022 0.294	1.261 1.265 0.320	0.953 0.957 0.376	1.276 1.265 0.616	1.0 16 1.021 0.433	1.322 1.320 -0.174	0.979 0.976 -0.317	1.066 1.065 -0.068	1.029 1.034 0.564	0.755 0.753 1.020
n.raa 0.692 0.450	1.268 1.275 0.536	0.960 0.966 0.765	1.319 1.314 -0.356	0,970 0,969 -0 103	0,940 0,938 -0,288	1.021 1.021 0.010	1.069 1.062 0.285	1.017 1.022 0.504	0.937 0.938 0.964	0.975 0.972 -0.318	1.324 1.317 -0.514	0.895 0.989 -0.683	1.273 1.275 0.157	0.891 0.892 0.157
0.593 0.594 0.219	1.165 1.167 0.215	1.103 1.165 0.209	0.978 0.972 -0.593	1.094 1.687 -0.686	0.974 0.972 -0.235	1.315 1.320 0.243	0.958 1.003 0.461	1.313 1.320 0.549	0.966 0.969 0.352	1.087 1.087 0.000	0.978 0.975 -0.269	1.112 1.106 -0.522	1.176 1.167 -0.765	0 599 0 594 -0 752
	0.659 0.6E1 0.304	1.2E5 1 27D 0 379	0.979 0.978 -0.092	0.976 0.975 -0 113	1.316 1.317 0.122	0.971 0.976 0.494	1 078 1 084 0 575	0975 0975 0547	1 339 1 314 0 435	0 973 0 972 -0.062	0 980 0 978 -0.255	1281 1270 -0.843	0.869 0.881 -1.1 55	
i	0 525 0 526 0 338	1 104 1,106 0 190	1.267 1 270 0 229	1 100 1 196 0 500	0 964 0.989 0 437	1 060 1.065 0 598	0.812 0.817 0.628	1064 1065 0094	0993 0.998 -0.544	1.112 1.105 -0.656	1.274 1.270 -0.230	1.115 1.106 -0.825	0.534 0.526 •1.518	
		0 597 0 526 -0.228	0 859 0 681 0 258	1 159 1 187 0 681	1 267 1.275 0 679	1 029 1 034 0 498	1 010 1.015 0.495	1 007 1.034 -0.257	1.292 1.275 -1.285	1.178 1.167 -0.789	D.653 D.651 Q.317	0 530 0 526 -0.811		
				0.509 0.594 0.931	0.905 0.992 0.913	0.760 0.753 0.329	0.848 0.852 0.330	D.765 D.763 -0.353	0.904 0.892 -1.283	0.599 0.594 -0.501	Measure Calcidat % Oittar	ad Relativ ad Relati anca	ve Power ve Power	,

Figure	C-24					
Flux Ma	ap: CY2-FM09	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FM10 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 9840.5 MWD/MTU

				0.504 0.501 -0.629	0.850 0.893 0.997	0.759	0.846	0.782 0.765	0.889 0.893	0.598 0.600				
		0.545 0 535 1.817	0.580 0.568 -1.809	1.17\$ 1.155 -0.631	1 274 1 270 -0 263	1.030 1.033 0.291	1.008 1.015 0.605	1.030 1.033 0.282	1.265 1.27D D.419	1 160 1 165 0 422	0 8 85 0 8 88 0 421	0 532 0.535 0.537]	
	D 539 D 535 -0.797	1 120 1 108 -1.589	1 288 1 285 -1.8∎7	1 106 1 101 -0.632	0.994 0.900 -0.634	1.068 1.054 -0.178	0.826 0.824 -0.230	1 055 1.054 -0.047	0 934 0 938 -0.553	■ 103 ■ 101 -0.1 <i>9</i> 9	1 259 7.265 0 508	1.103 1.108 0.508	0.532 0.535 0 507	
	D 668 D 668 -0 060	1 268 1 265 -0.055	0 978 0 978 -0.04:	0.973 0.973 -0.931	1.308 1.308 -0.038	0.979 0.975 -0 327	r das 1.082 -0 256	0 979 0 978 -0 327	1 313 1 311 -0.190	0.978 0.976 -0.194	0.976 0.978 0.784	1.258 6.265 0.533	D 664 D.6688 D 527	
0.599 0.600 0.267	1.162 1.165 0.250	1.099 1.001 0.226	0.974 0.976 0.164	1.065 1.064 -0.018	0.970 0.970 -0.010	1.\$12 1.\$13 3.099	1.000 1.001 0.140	1.311 1.313 0.145	0.975 0.973 -0.195	1.087 1.084 -0.193	0.971 0.973 0.185	1.095 1.101 0.511	1 160 1.165 0.440	0.599 0. 601 0.317
0.669 0.663 0.516	1.264 1.270 0.475	0.985 0.988 0.274	1.341 1.341 D 023	0.574 0.979 -D 123	0.542 0.940 -0 159	1.029 1.021 -0.215	1.087 1.089 0.188	1.015 1.020 0.094	0.839 0.94D 0.106	0.97D 0.97D 0.01D	1.304 1.306 0.266	0.984 0.968 0.437	1.265 1.270 0.371	0.891 0.893 0.203
0.760 0.766 0.882	1.032 1.025 0.078	1.071 1.054 -0.626	0 980 0 976 -0.378	1.312 1.313 0.081	1.022 1.020 -0.215	1.28 2 1.203 -0.704	0.964 0.960 -0.342	1.277 1.283 0.454	1 017 1 021 0 383	1 309 1 313 0 275	0.978 0.975 -0.10 2	1.062 1.054 0.188	1.031 1.038 0.218	0.768 0.756 0.459
0.845 0.855 1.098	1 015 1 015 -0.079	0 835 0 824 -1.264	1 088 1 082 -0.542	0.997 1.001 0.492	1.090 1.089 -0.264	0 971 0.953 -1.122	D 824 D 817 -0 825	0959 0960 0115	1 086 1 089 0.341	1.000 1.001 0.140	1.095 1.092 -0.194	D 625 D.624 -0.278	1 011 1 015 0 378	0 848 0 855 0 778
0763 0768 0603	7 031 1.033 0.155	1.072 1.064 -0.737	0.978 0.975 -0.266	1.306 1.313 0.528	1.018 1.021 0.324	1.234 1.283 -0.078	D 964 0.960 -0 353	1.287 1.283 -0.328	1.020 1.020 -0.023	1.314 1.313 D 122	3.990 3.976 -0.498	1.067 1.064 -0.300	1 029 1.033 0.360	0.759 0.766 0.895
0 691 0.693 0.236	1.286 1.270 0.276	0.984 0.588 0.366	1.303 1.308 3.361	0.567 0.570 1.352	0939 0940 0,149	1.620 1.020 -0.010	1.090 1.089 -0.064	1.023 1.021 -0.195	0.943 0.940 -0.318	0.976 0.973 -0 348	1,317 1,311 -0.509	0.994 0.880 -0.633	1.2 69 1.270 0.379	0.892 0.893 0.076
0.600 0.601 0.107	1.163 1.165 0.155	1.059 1.101 0.155	0.969 0.973 0.96∎	1.083 1.084 0.157	0.872 0.873 0.334	1.3(2 1.313 0.938	0.999 1.001 0.250	1.308 1.313 0.357	0 870 0 970 0 031	1 066 1 064 -0.331	0.980 0.978 -0.439	1.107 1.107 -0.524	1.174 1.165 -0.789	0 805 0 800 -0.777
	0 fife 0 488 0 270	1 280 1 285 0 373	0.974 0.978 0.370	0.977 0.976 -0.143	1.313 1.311 -0.737	0.975 0 975 0 154	1 078 1 082 0 399	0971 0975 0432	1 306 • 308 0.161	0.976 0.973 -0.328	D 992 D 978 -0.387	1 275 1 285 -0.893	0 876 0 888 -1.242	
	0 533 0.505 0 375	1 104 1.100 0.390	1.260 1.255 0.373	1.103 1.101 -0.145	0 999 0 999 -0.141	1 052 1 084 0 207	0 820 0 624 0.451	1.063 1.064 6.151	D.990 D.988 -0.232	1.107 1.101 -0.580	1 270 1.265 -0.417	1,120 1,109 -1, 090	0.544 0.535 -1.554	
		0.533 0.535 6.375	0.669 0.669 0.587	1 157 1 165 8.744	1 260 1 270 0.746	1.026 1.033 0.624	1.008 1.015 6.635	1.032 1.633 0.076	1.279 1.270 -0.711	1,174 1.165 -071 0	0.671 0.669 -0.418	0.544 0.535 -1.564		
				0.596 0.600 0.738	0.667 0.693 0.756	0.760 0.765 0.803	0.848 0.855 0.862	0.7E5 0.7E6 0.17D	0.900 0.893 -0.722	0.605 0.604 -0.711	Maasure Calcutet % Offen	od Raibity od Reiala MCB	s Power s Power	

Figure	C-25					
Flux Ma	ap: CY2-FM10	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY2-FM11 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 11059.7 MWD/MTU

				0.604 0.609 0.663	0.889 0.855 0.604	0.766 0.771 0.526	0.854 0.860 0.620	0.774 0.771 -0.323	0.910 0.895 -1.637	0.618 0.638 -0.945	Meesure Galculat % Differ	ad Relata Iad Relata Iantos	e Power ve Power	
		0.541 0.545 0.565	3.870 3.875 9.856	1.155 1.163 3.659	1.256 1.805 3.551	1.025 1.032 9.409	1.612 1.616 0.415	1.637 1.622 -0.434	1.285 1.265 -1.633	1.174 1.163 0.964	0.677 0.675 -0.281	0.550 0.545 -1.000		
	0.539 0.545 1.039	1.097 1.309 1.039	1.261 1.259 -0 111	1.097 1.097 -0.038	0.968 5.868 -0.040	1.062 1.064 0.104	0.629 0.831 0.217	1.066 1.063 -0.272	0.896 0.887 -0.954	1.105 1.056 -0.787	1.264 1.259 -0.355	1.120 1.109 (1.035	0.555 0.545 -1.590	
	0.663 0.675 1.033	1 246 1 259 1.043	0.979 0.978 -0.112	B 976 D 975 -0 002	1 304 1 303 -0.054	0.975 0.976 0.113	1 079 1,061 0,241	0.973 0.976 0.247	1,301 1,301 -0.038	0.977 0.973 -0. 430	0.962 0.978 -0.430	1.273 1.259 -4.078	0.687 0.675 -1.747	
D 601 D 608 1 049	1.151 1.163 1.042	1.035 1.095 1.041	0.971 0.973 0.134	1.032 1.082 0.018	0.972 0.973 0.062	1.304 1.305 0.092	0.998 1.000 0.210	1.802 1.805 0.253	0.972 0.570 -D 154	1.063 1.062 -0.570	0.583 0.975 -0 723	1.109 1.097 -0.850	1.179 1.163 -1.407	0.619 0.609 -1.395
0.669 0.695 0.663	1.258 1.265 0.51/	0.985 0.987 0.152	1,298 1,301 0,231	0.967 0.970 0.341	0.940 0.942 0.160	1.018 1.018 6.059	1.084 1.086 0.138	1.018 1.020 0.206	9.043 9.042 -0.085	0.978 0.973 -0.572	1.316 1.303 -0.950	1.600 0.669 -1.259	1.269 1.265 -0.331	0.895 0.895 -0.334
0.787 0.771 0.547	1.033 1.032 -0.210	1.072 1.063 -0.774	0.977 0.97 0 -0.102	1 298 1.305 0.710	: 015 1.020 0.473	1 279 1,279 0.016	0.962 0.963 0.104	1 275 1,279 0.361	1 014 1.018 6.464	1,305 1,305 0,038	0 961 0.976 -0.439	1 067 1.064 -0.281	1 028 1.032 0.399	0 785 0.771 0.610
0 853 0 863 0 797	1 018 1 018 -0 206	0 842 0 831 -1 353	1 085 1 031 -0 367	0.997 1.000 9.928	1 081 1 088 0 435	0 955 0 953 -0 238	0 627 D 526 -0 046	D 967 D 963 0 679	1 077 1.085 0 628	0.994 1.000 0.533	1 090 1 091 0 111	D 632 D 631 -0 156	t 010 1 016 0 584	0 852 0 860 0 880
0 766 0 771 0 652	1.033 1.032 -0.077	5.072 5.054 -0.753	0 978 D 976 -41.225	1.297 1 305 0 609	1.016 1.018 D.207	5.283 5.273 -0.039	0 961 0.963 0 230	1.253 1.273 D.635	1.012 1.020 0.781	1.296 1.305 0.718	0.974 0.976 0.144	1 059 1.053 0.408	1.028 1.032 0.378	D 766 0 771 0 678
0.892 0.835 0.359	1 252 1 255 0 238	0.987 0.9 58 0.111	1,303 1,333 0,031	09/2 0.973 0.041	0.941 0.942 0.064	1 018 1.023 0.208	• 081 1.098 0.483	> 01# 1.018 0.454	0.938 0.942 0.405	0.964 0.970 0.643	1 294 1.301 0.549	0 982 0 987 0.499	1.260 1.265 0.421	0,892 0,895 0,370
0.606 0.608 0.214	1 181 1.160 0.138	1 098 1.097 0.100	0 975 0 975 0.001	1 083 1 082 -0.037	0.970 0.970 0.041	1 301 1 305 0 315	0 997 1 000 0 271	1 303 1 305 0 151	0.972 0.973 0.041	1 078 1 082 0.371	0959 0973 0371	1 092 1 096 0 366	1 159 1 163 0.371	0 0 05 0 0 08 0 300
	0.674 0.675 0.030	1 258 1 259 0 100	0.977 0.978 0.041	0.973 0.973 -0.072	1 302 1 301 -0 077	0 979 0 976 -0 347	1083 1081 -0130	0.978 0.976 -().204	1 303 1 303 0 048	D 976 D 975 -0.041	D 976 D 978 Q 133	1.263 1.259 -0,309	0.680 0.675 -0.750	
	0 550 0 545 40.564	1 122 1 109 -1.212	1.290 1.259 -1.640	1.10) 1.095 40.418	0.991 0.987 -9.414	1.060 1.063 -0.197	0.934 0.931 -0.409	1.065 1.064 -0.131	0.997 0 988 -0.923	1.097 1.097 -0.036	1.260 1.259 -0.032	1.118 1.109 -0.767	0.553 0.545 (1.519	
		0.553 0.545 -3.354	0.598 0.675 -3.352	1.168 1.163 -0.411	1.265 1.265 -0.095	1,028 1,032 0,301	1.011 1.018 10.534	1 031 1.032 0.128	1 261 1 265 0 <i>21</i> 8	1 161 1.163 0.121	0.675 0.675 -U.D44	0.549 0.545 -0.783		
				0.610 0.538 -0.410	0.091 0.895 0.403	0.764 0.771 1.035	0.850 0.850 1.105	0.767 0.771 0.495	0,893 0,835 0,268	0.608 0.638 0.281				

Figure	C-26					
Flux Ma	ap: CY2-FM11	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM01 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 277.6 MWD/MTU

				D.455 D.452	0.575 0.573	D.865 D.863	0.755 0.752	D.878 D.863	0.567 0.574	0.464 0.453				
				-0.572	-0.331	-0.2EE	-0,424	-1.61B	-2.216	-2.243				
		0.494	D 781	1.152	1.135	0.655	1.240	Q.871	1.159	1.163	0.799	0.503		
		0.495	0.733	1.145	1.130	0.663	1.235	0.863	1.132	1.149	0.765	0.498		
		0.263	D243	-0.590	-0.493	-0.289	-0.403	-0,816	-2.228	-1.804	-1 357	-1471		
	0.492	1 097	1 214	I 148	1 071	1 232	0.928	1 232	1.062	1,163	1.248	1,122	0.503	
	0.498	1,109	1 225	1 142	1 065	1.233	0.930	1.234	1.067	1.47	1.231	1.108	0.495	
	0.752	0.605	08/9	-0.583	-0.579	0.016	0.302	0.195	0.509	-1.350	-1.346	-1.470	-1.580	
	0.779	1.215	0.956	1.121	1.212	1.018	1.067	1.023	1.227	1.450	0.601	1.242	0.794	
	C.785	1.231	0.969	1,130	1.222	1.024	1.073	1.026	1.224	1.134	0.669	1.225	0.783	
	6.783	1.300	1.200	0.639	0.625	0.619	6.534	0.313	0.212	1,348	1.294	+1.392	·1.478	
0.447	1.537	1.139	1.124	1.163	6.929	1.176	0.910	1.187	0.544	1.210	1.145	1.159	1.165	D.463
0.453	1.144	1.147	0.034	1.194	6.941	1.185	0.912	1.187	0.942	1.694	1.130	1.142	1.145	0.452
1.004	1.029	U.D17	6.672	0.301	1.237	0.679	6.242	10 008	-0 233	1 303	1 2 64	1 444 37	-1.750	-22000
0.563	1.120	1.DG1	1.213	0.929	1.177	1.114	1.166	1.124	1.191	0.924	1.229	1.06.3	1.153	0,569
1.072	1.1224	1.067	1.224	0.942	1.195	1.127	1.171	1.127	1.196	0,941	1.222	1.065	1 130	0.573
1.87.3	1.1.24	0.550		1.324	1.3440	1.212	4.23**		4.364	9.171		-1080	-1.810	-2 CCV
0.846	3.648	1.214	1.008	1.162	1.107	0.962	1.245	0.890	1.120	1.160	1.024	1.246	0.873	0.862
0.663	0.663 4 amo	1.234	1.020	1.167	1.52/	0.995	1.256	0.885	1.127	1.186	1.024	1.235	9.863	0.863
2.007	1.0/0	1.6.38	1.000	2.100	1.710	1.200	0.030	0.441	0.034	0.334	0.020	11.044	1.180	-2.155
0.737	1.209	0.807	1.046	4.867	1.151	1.246	10.917	1.251	1.187	0.909	1.967	0.824	1.250	0.757
1.087	1.235	2.830	2.673	10.812 11.807	1.171	0.250	0.924	0.459	0.335	0.812	0.669	0.930	1.285	0.752
1.807	2.100	2.324	2.311	2.007	1.100	0.140	4.765	0.466	0.320	0.314	0.556	0.002	-1.244	
0.849	0.046	1.208	1.002	1.165	1.112	0.980	1.247	0.992	1.123	1.183	1.016	1.228	0.871	0.880
1 649	1.555	2.070	2 225		1.776	0.335	1.295	0.345	0.257	0.391	0.065	0.505	U.NCA _N 691	1 875
0.555	1.300			0.004	1.010			0.310		0.000		4.050		0.570
0.509	1.115	1.498	1.213	0.934	1.184	1.109	1.153	1.113	1 102	0.042	1217	1.059	1.144	0.578
1 98.1	1 300	1 1 20	0.726	0.541	1.130	1.596	1 526	1.040	0 977	0.904	0.587	0.717	1.132	0.574 -1.001
7.446	1.000	4.475	4 4 9 0	4 4 9 6	0.000	4 4 7 1	0.007	4 4 6 4	0.044	. 100	4 4 9 7		-11.051	-1.001
0,445 Л 450	1 1 4 5	1 1 4 2	1 130	1 105	0 836	1 187	0.087	1 104	0.940	1 105	1.127	1.1.00	1.150	0.454
1.549	1 543	1 547	0.784	0.700	0 546	1 356	1.650	0.152	-0.759	0428	0.639	TI ALC	-0.174	-B175
	0 200	1.280	0.014	1 1 1 1	1 334	1 (11)	1.064	1.035	1 776		D GEL	1 034	0.714	
	0.766	1.200	0.974	1.134	1.224	1.025	1.003	1.035	1.2.30	1.124	0.361	1 2 34	0785	
	-0.547	-2.739	-0.595	0.24B	-0.033	0.840	0.346	-1.005	-1.173	0.605	0739	-0.227	1 1 23	
	0.655	1 1 7 7	1 249	1 1 4 7	1.058	1 330	0.978	1 754	1 1/12	1 157	4 097	4 4 9 4	0.405	
	0.305	1.156	1 231	1 147	1/067	1 2 94	0 020	1 2 3 9	1 095	1 140	1 0 9 5	1 109	0.000	
	-2.135	2,400	0.554	4.D17	6.112	0 317	0.215	-1.722	3.46	2142	-0.986	1.320	-1 902	
		0.534	0.733	1.1/5	1 1 305	0.355	1 2 3 8	0.891	1 182	1 189	0.805	0.507		
		0496	0.785	1 148	1 1 92	0.383	1 2 3 5	0.863	1 130	1.145	0.000	0.496		
		-1.547	-0 971	0,201	0212	-0.254	-0.275	-2.022	-4.407	-3.618	-2.818	-2.385		
				0.451	0.571	0.874	0.761	0.636	0.599	0.469	Measu o	es Balath	e Power	
				0 453	0.574	0 863	0752	0.663	0.573	0.452	Calculat	ad Asisii	va Pawo	r
				0 377	0.403	-1.258	-1.28	-2.587	-4.407	-3.632	% Diffor	anca		

Figure C	-27					
Flux Map	: CY3-FM01	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM02 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 1099.0 MWD/MTU

				0448	0.604	0.914	0774	0.837	0.572	0.450]			
				-0.490	-7.300	-9.696	-7.268	-1.385	-2.009	-2.010				
		0.494	0 775	1 145	1 168	0.880	1238	0.850	1,149	■ 159	0.794	0.504	1	
		0495	0.777	1.138	1.132	0.845	1,200	0845	1.134	1,142	0.780	0,498		
		0223	0.202	-0.507	-3.075	-4.068	-2.305	-0.588	-1.314	-1.465	-1.776	-1.705		
	0.493	1.109	1.238	1.137	1.063	1.23/	0.911	1.249	1.066	1.150	1.273	1.135	0.503	
	0.496	0.545	1265	1.131	1.058	0.404	0.918	1.243	1.060	1.136	1.251	1.110	0,495	
	6 796	1 200	0.04	1.310	1.000	1.000	1.742	1.012	1.040	-1.102	0.000	1.110	0.700	
	0.775	1.230	0.933	1,130	1.252	1.003	1.045	1.017	1.256	1.140	0936	245	0 777	
	D 523	D 995	1 225	1 281	1 286	1 338	1 397	D718	-0.91B	-1.356	-1.296	-1 441	-1 395	
0 445	1122	1.125	1 120	7 219	0.948	1.199	0898	1.203	0.959	1.243	1 141	1 148	1 160	0 458
0.448	: 142	1 135	1 134	1 239	0.957	1 213	0.909	1 214	0.967	1.233	1 130	1.131	1 139	0 447
0.865	0919	0.942	1 205	! 157	0918	1 235	1248	0.906	-0 136	-0.853	-0.946	-1.300	-1.751	-2.443
0.554	1 120	1 045	1234	0.945	1 219	1 109	1 142	1 112	1.228	0.957	1 268	1.075	1.158	0.574
0.561	1,134	1.050	1 255	0.957	231	1,124	1,159	1.123	1.231	0.957	1.252	1.058	1.132	D.56XJ
1.245	1.107	1.300	1 637	1.291	1009	1.610	1.487	1.000	6.385	-0.031	-1.5807	-1.660	-2.008	-2.450
0.613	0.631	1.217	0.698	1.182	1.099	0.871	1.202	0.879	1.111	1.199	1.021	1.252	0.862	0.640
1.324	1.779	2,127	2.375	2.724	2,104	2.090	1.801	1.236	1.152	1.176	0.165	0.701	0.857	1.715
0.705	1.163	0.895	1.025	D.B72	1.127	1.257	0.521	1.257	1.145	a.900	1.052	0.909	1,214	0.726
0.718	1.208	0.918	1.Deg	0.909	1.159	1.275	3.538	1.275	1.159	0.009	1.060	0.918	1.208	0.716
1.667	1.850	2.514	3.315	4.279	2.866	1.496	1.846	1.448	1.231	1.011	0.761	0.957	-0.468	-1 102
D.B14	3.833	1.219	0.593	1. 1 78	1.098	0.975	1.253	0.974	1.109	1.207	1.016	1.259	0.647	0.636
Q.825	3.845	1.242	1.523	1.213	1.124	0.992	1.275	0.892	1.123	1.214	1.024	1.243	0.645	0.826
1.363	1.405	1.929	2.949	2.979	2.541	1.703	1.765	1.776	1.261	0.560	0.549	0.420	-0238	·1.198
0.560	1.128	1.047	1.236	0.944	1.7'1	1.096	1,131	1.397	1.226	0.963	1.263	1.367	1.143	0.565
0.560	0.264	1.056	1.252	0.057	1.231	5 483	1.158	2 987	0.235	0.957	1.255	1.060	1.134	0.561
0.000	1.147	1.000	1.20	1.002	0.045	1.102	6.902	2.001	0.220	-0.003	-2.081	1.131	14.631	0.031
0.450	1.197	1.138	11130	1.2:9	0.840	1.161	0.889	1.263	0.373	1.250	1.148	1.139	1.147	0.450 0.448
0.666 !	0.690	-0.685	1.290	1.107	1.14	1.999	2.273	0.84B	1.625	1.384	-0.822	-0.281	-0.410	-0.400
<u> </u>	0.790	1.277	0.97B	1.127	1.251	1.017	1.058	1.028	1 272	1 140	0.977	1 280	0.790	
	0.777	1.245	0.975	1.134	1.255	1,024	1.060	1 0 2 3	1 252	1 1 30	0.975	1 251	0780	
	-1.608	-2.514	-0.307	0.577	0,3134	0.698	0 331	-0.564	-1.526	-0.868	-0.215	-0.754	-1.341	
	0.504	1.14D	1.264	1.132	1 (057	1 248	0 925	1284	1 088	1 158	• 201	1.134	0.508	
	0,495	1 116	1 251	1 1 36	1060	1 243	0.918	1242	1 050	0.131	1.245	1.118	0,490	
I	-1 683	·> 164	-1069	0.353	0 236	-0.365	-0.611	-1.756	-2.776	-2.154	-1.290	-1.589	·1.595	
		0.505	0.784	1 1 93	1 125	0.853	1218	0.863	9,177	1.1/8	0.799	0.507		
		-1 353	-3.538	0.821	0.818	-1.879	-0.078	-2109	-3.824	-3.261	-7.704	2 495		
				0440	0.554	0.815	6.010 6.725	DB4A	0.004	D.462	Manager	ad Balaik	n Bauer	
				0.448	0.561	0.828	0.718	D.BZ5	0.560	D.447	Calculo	ed Asiali	ve Prwei	r
				1 242	1 227	-1.054	-1.û4B	·2.227	-3.830	-3.245	% Olifiar	AUNA		-

Figure C	-28	
Flux Map	: CY3-FM02, Measured and Calculated Relative Assembly	Power

FLUX MAP: CY3-FM03 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 2206.8 MWD/MTU

				0.448 0.443 -1.114	0 554 0 550 -0 632	0.802 0.797 -0.524	0.695 0.689 -0.640	0.805 0.796 -0.645	0 553 0 551 21 160	0 445 0,444 -0 182				
		0 482 0 494 2 488	0 752 0.771 2.485	1 153 1.140 -1.328	1.155 1.144 -0.952	0 837 0 830 -0.765	1 203 1.190 -1.031	0.839 0.831 -1.025	1 159 1 146 -1.147	1 180 1,142 -1.551	0 792 0.773 -2.349	0 505 0.495 -1.991		
	0,492 0,495 0,568	1.121 1.13D 0.921	1.252 1.267 1.254	1.100 1.117 -1. 124	1.063 1.051 -1.119	1.262 1.260 -0.206	0.905 0.905 0.022	1.267 1.261 -0.521	1.074 1.053 -1.8•5	1.148 1.121 -2.138	1.303 1.273 -2.348	1.153 1.130 -1.970	0.502 0.494 -1.613	
	0.778 0.773 -4.297	1.273 1.273 40.056	0.967 0.969 0196	1.120 1.125 0.393	1.201 1.285 0 338	1,009 1 019 1,051	1.030 1.042 1.185	• 1.020 1.021 D 098	1.304 1.288 -1.189	- 1. 148 1. 128 -1.754	D.987 D.969 -1.753	1.289 1.267 -1.722	0.788 0.771 -1.507	
0438 0444 1440	1 135 1 142 0 696	; 119 171 0214	1.123 1 128 0 427	1.264 1.272 0.625	0.959 0.969 1.032	1 222 1 241 1 533	0.290 0.293 0.255	1237)247 0417	D 976 D 970 -0,676	1.283 1 272 -1 303	1 140 1 125 -1.333	1 136 1 117 -1.620	1 164 1 140 -2.068	0 456 0 443 -2.767
0.536 0.551 2.817	1 126 1 148 1 812	1 043 1 053 0 939	1 276 1 288 0 940	0959 0970 1137	1 246 1 296 1 558	1 092 1 113 1 648	1 124 1 138 1 077	1 100 1 110 0 928	1.260 1.268 0.452	D.968 0.999 0.093	1 304 1 298 -1.342	1 071 1 051 -1.848	1 172 1 144 -2.384	0.566 0.550 -2.760
0.781 0.790 2.190	0814 0.801 2.009	1,239 1,261 1,751	1 002 1.021 1.816	1 215 1 242 2 223	1088 1.110 1.976	0.959 0.975 1.721	1.284 1.282 1.384	0.962 0.975 1.382	1.091 1.110 1.778	1.222 1.241 1.522	1.022 1.019 -0.283	1.274 1.260 -1.123	0.841 0.830 -1.319	0 415 0 797 -2.184
0.679 D 693 1 472	1,168 1,190 1,665	D.884 D.905 2.455	1.015 1.042 2.610	D.872 D.693 3.062	1.112 1.135 2.085	1.268 1.282 1.041	D.917 D.530 1.439	1.253 1.282 1.449	1.124 1.135 1.041	0.890 0.899 0.977	1.039 1.042 0.241	0.504 0.505 0.210	1.202 1.190 -0.940	0.697 0.669 -1 133
0.787 0.797 1.295	0.619 0.630 1.417	1.235 1.260 2.009	0.997 1 019 7.298	1.217 1.241 1.964	1.093 1.110 1.601	D.963 D.975 1.246	1.263 1.262 1.457	0.961 0.975 1.551	1.099 1.010 0.955	1.239 1.242 0.226	1.020 1,021 0.029	1.265 1.261 -0.318	0.631 -0.503	0.605 0.798 -0.845
0.550 0.550 0.065	1.140 1.544 3.524	1.041 1.051 1.03a	1.262 1.269 0.320	0.965 0.969 0.415	1.255 1.268 0.661	1.087	1.136	1.045	1.257 1.266 0.732	0.972 0.970 -0.297	1.299 1.268 -0.808	1.067 1.063 -1.258	1.148 1.748 -0.028	6.551 6.561 -0.018
0.446 0.443 -0.650	1.147 1.140 -0.654	1.125 1.117 -0.649	1.022 1.725 6.232	1.272 1.272 -0.018	0.968 0.970 0.217	1.222 1.242 1.579	0.877 0.069 2.427	1.224 1.241 1.365	0.871 0.969 -0.185	1.275 1.272 -0.259	1.134 1.128 -0. 364	1.121 1.121 -0.859	1.135 1.142 0.552	0.441 0.444 0.635
	0.782 0.771 -1406	1.295 1.267 -2 154	0.878 0.569 -0.849	1.123 1.123 -0.441	1.298 1.288 -0.703	1.012 1.021 0.860	1.029 1.042 1.273	1.316 1.319 0.335	1.289 1.285 -D.258	1.127 1.125 -0.222	0.978 0.969 -0.360	1.268 1 273 -1 188	0.781 0.773 - 049	
	0.499 (1.494 -0.972	1.146 1.130 -1448	1.982 1.973 -0.718	1.127 1.121 -D.497	1.060	1.258 1.261 0.246	0.898	1 265 1 260 -0.468	1.070 1.051 -1.738	1 141 1 117 -2.088	1.201 1.267 -1.813	1.153 1.130 -1.978	0.506 0.465 -2.232	
		0.494 0.495 0.162	0.776 0.776 -0.065	1.108 1.142 0.351	1,142 1,146 0 350	0.602 0.601 -0.168	1.192 1.190 -0.#68	0.840	1.175 1.144 -2.639	1.170 1.140 -2.897	0.796 0.771 -3.152	0.508 0.494 -2.774		
			i	0.409 0.444 1.093	0.551 1.101	0 809 0 788 -1.409	0.689 0.688 -1.416	0.813 0.797 -1.831	0.565 0.550 -2. 635	0.443 0.443 -2.893	Calculat > Differ	ed Hotolik ad Relati arce	ve Power ve Power	,

Figure C	-29				
Flux Map	: CY3-FM03,	Measured and	Calculated Relat	ive Assembly	Power

FLUX MAP: CY3-FM04 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 3189.0 MWD/MTU

				3.446 3.442	4.550 -0.546	0.786 0.782	0.673	0.784 0.783	0.550	0.445]			
				-1.031	-0.673	-0 293	6.689	·D.115	D 545	-0 532			_	
		0.4BB	0.758	1.152	1.166	0.825	1.177	0.827	1.171	1.150	0.785	0.5Q1	1	
		0.454	0.767	1.140	1.155	0.823	1.1B1	0.824	1.157	1.142	0.769	0.495		
		1.250	1.240	+1.033	10901	0.206	0.306	0.375	-1 221	-1.492	-2 038	-1 317		
	0.454	1.135	1.274	1.118	1.056	1.270	0.895	1.276	1.069	1 133	1 913	1.152	0.497]
	0.455	1.137	1.281	1.107	1.047	1.273	0.899	1.274	1 049	1 110	1.266	1.137	0.494	
	0.040	0.212	0.542	-1.029	-1030	0.236	0.436	-0 133	1629	-1960	-2 028	-1 319	-0584	
	0.774	1 290	0.9E5	1.117	1.306	1.006	1.021	1 017	1 326	1.14	0.976	1.297	0.779	
	0 769	1 286	0.065	1,119	1 309	1.317	1.031	1.016	1.311	1.122	0.965	1.283	0.767	
	-0.569	-0 271	-0.010	0.170	0.168	0.873	0.950	0.039	-1.161	-1.692	-1.531	-1.211	-0.789	
0.439	1.138	1.110	1.119	1.283	0.870	1.243	0.884	1.254	0.983	1.315	1.132	1.12 Z	1.161	0.454
0.442	1.142	1.110	1.122	1.298	0.976	1.259	0.892	1.260	0.970	1 298	1.119	1.107	1.14D	Q.442
0.797	0.351	0.072	0.268	0.340	O.55D	1.271	0.894	0.423	-0.631	-1.293	-1.175	-1.337	-16990	-2645
0.537	1.141	1.041	1.363	0.970	1.273	1.981	1.103	1.089	1.286	D 978	1.325	1.065	1 1BC	0.551
0.547	1.157	1.045	1.311	0.376	1.288	1.099	1.117	1.098	1288	0.976	1308	1 ()47	1 155	0.546
1.881	1.35B	0.788	0.552	0.529	1210	1.547	1 242	0.835	0 187	-0.194	-1.268	-1,718	-2.228	-2.637
0.772	0.812	1 259	1 027	1 239	1.077	0943	1 258	0.950	1084	1 242	1 018	1,286	0.832	0.797
0.783	0.824	1 274	1.018	1 26D	1 098	0.965	1 281	0.992	1099	∎ 25B	י 017 r	1273	0.823	0.782
1.425	1441	1 151	1 1 2 3	1638	2 0 1 6	2 004	1758	1 295	1 347	1.320	-0.245	-1.050	-1.129	-1.881
0.668	1 158	Q 885	1 Q11	0.359	1 092	1260	0.905	1 262	1,104	0.684	1.028	0.895	1.188	D.673
0,674	1 181	D 899	1 0 3 1	0.895	1 117	: 281	0.9655	1 201	1.117	0.692	1.091	0.693	1.181	0.674
0,938	1078	1 563	1908	2647	2 327	1 659	1878	1.508	1.205	0.694	0.243	D.425	-0.558	0.785
0778	0.818	1.528	868.0	: 237	1 081	0.947	1 259	0.945	1.096	1.255	1.012	1.253	D.825	D.787
0 782	0.820	1.273	1017	► 259	1.099	0.962	1.281	0.662	1.098	1.250	1.D18	1.274	D. 8 24	D 783
0.591	0.599	1.128	1843	1738	1.637	1.552	1.692	1.767	1.105	0.375	0.573	0.952	-0.158	-0.483
0.547	1,156	1.045	1,304	0.972	1.277	1.077	1.092	1.D73	1.283	0.978	1.309	1.048	1.154	0548
0.546	1.155	1.047	5.309	0.975	1.289	1.098	1.117	1.094	1.263	0.976	1,311	1.049	1,157	0.547
-0.183	-0.387	0.182	0.358	0.391	D.BS4	1.968	2.290	2.404	3.558	-0 184	0.064	6.267	0.217	0.201
0.444	1.145	1.112	1.115	1.295	0.973	1.239	0.872	1 242	0.963	1.306	1.125	1.110	1.133	0.439
D.442	1.140	1.107	1.119	1.228	0.976	1.260	C.692	1.259	0.976	1.298	1.122	1.1>0	1.142	0.44Z
-0.451	-0.463	-0.459	0.559	D.216	6.370	1.622	2.352	1.342	-0 753	-0.681	-0 338	-0.009	0.764	0.797
	3 778	1,310	0.971	1.123	1.315	1.009	1.020	1.015	1.347	1.125	0.969	1.300	0.776	
	3 767	1.261	0.965	1,122	1.311	1.018	1.031	1.017	1.309	1.119	0.965	1.285	0.769	
	-1 337	-2 191	-0-690	-0 134	-0.357	0.632	1.649	0.227	-0.676	-0.639	·D.423	-1 031	-0.679	
	0.500	1.156	1.298	1.113	1.063	1.273	0.885	1.283	1.968	1.129	1.300	1.157	0,505	
	0.491	1.137	1.266	1.110	1.049	1.274	Q.899	1.273	1.047	1 107	1.281	1.137	0.496	
	- 240	-1.660	-0.855	-0.252	-0.370	0.085	0.369	-0.772	-1.948	-1.993	-1 492	-1 711	-2 021	
		0.467	3.771	1.135	1.150	0.857	1.186	0.536	1.191	1 173	0788	0.506		
		0.495	0.769	1.14Z	1.157	0.824	1.18	0.923	1 155	1 140	0 787	0.494		
		·D.443	-0.195	9.617	0.61B	-0.390	-0.395	-1.484	-2 990	-2 822	-2.652	-2.372		
				0.436	0.539	0.793	0.583	0789	0.583	0.454	Measure	ed Relativ	e Power	
				0.442	0.547	0 783	0 974	0782	0.546	0442	Calculat	ed Relati	ve Power	
				1.444	1.428	-1.324	-1.332	-2 029	-2.963	-2.616	% Differ	erce		

Figure	C-30					
Flux Ma	ap: CY3-FM04,	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM05 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 4259.4 MWD/MTU

				0,448 0,442	0.54B 0.545	0.771 0.77 2	0.563 0.664	0.77B 0.773	0 549 0 546	0 445 0 443				
				-1.383	-0.365	0.195	0 191	40.425	-0.510	-0.495				
		0.490	0.758	1.155	1.17B	0.822	1.177	0 824	1 175	1 154	D 780	0.500		
		0 4 3 4	0.764	1.139	1.166	0.820	1.176	0.820	1 168	1 141	0765	0.495		
		0734	0.725	1.877	-1.010	-0.292	-0.119		-0.630	-1.048	-1.6/2	-1.041		
	0436	1 142	1298	1.111	1058	1 285	0.833	1285	1953	114	1 318	1.153	0.495	
	JI 222	21.14	0.078	1.863	1.371	1 205	0.201	0.030	0.760	-1 310	1 866	-1 (2)4	P4∎0 L0 169	
	0.772	1 010	0.059	1 114	1 297	11000	1.011	1.019	1 224	1.010	0.071	1.001	A 101	1
	0 765	294	0.950	1 112	1 325	1015	1022	1 018	327	115	0.9/1	1.289	0.767	
	-0.823	-0.576	-0.384	-0.128	-0.121	0 935	1078	0.306	-0.532	-1.091	-1.215	-0.889	-0.391	
0440	141	1,102	1,118	: 318	0 979	1 258	0.679	1.268	0.985	1.327	1.121	1,107	1,150	D 452
0.443	1.141	1.100	1.115	C317	0.981	1.273	0.687	1.274	D.982	1.317	1.112	1 098	1.130	D 442
0.568	0.061	-0.254	-0.125	0.015	0.255	1.168	0.967	D.465	(0.375	·0.776	-0.741	-0.976	-1.453	-2.19
0.538	1.157	1.041	1.324	0.979	1.295	1.074	1.087	1.060	1.301	0.581	1.336	1.057	1 187	0.558
0.546	1.168	1.045	1.327	D.982	1.305	1.093	1.100	1.065	1.305	0.981	1.325	1 043	1 168	0.545
1.433	D.873	6.325	0.219	0.285	0.790	1.397	1.205	0.767	6.277	0.D41	-0.794	-1 268	-1,769	-2.170
D.764	D.612	1.277	1.007	1.255	1.063	0.933	1.2\$6	0.939	1.075	1.257	1.014	1.293	0.826	0.784
0.773	0.620	1.295	1.016	1.274	1.039	0.951	1.277	0.961	1.069	1.273	1.015	1.265	0.620	0.772
1.792	1.034	N.705	0.674	1482	1.544	16,32	1.698	1,248	1.246	1.273	0.139	-0.627	-0.783	-1.530
0.669	1,168	0.685	1.005	0.664	1.075	1.256	0.699	1.260	1.067	0.879	1.007	0.889	1.179	0.555
0.654	1,576	1.629	1.022	0.667	1.100	1.277	0.815	1.277	1.100	0.887	1.022	0.865	1.176	0.664
0.020	0.019	1.010	0.000	4.000	1.004	1.012	1.101	1.000	1.160	1.310	0.46%	1.052	0.251	
0.700	0.616	1.275	0.689	1.252	1.072	0.837	1.259	0.936	1.677	1.209	1.001	1.281	0.819	0.773
0.580	0.466	0.762	1.571	1.637	1.539	1.441	1.422	1.376	1.002	0.385	0.485	0.383	0.163	0.013
0.547	1 155	1.642	1.024	31 414/0	1 256	1.059	1.078	1.058	1 30.2	0.385	1 320	1.046	1 161	0.543
0.545	1.166	1.443	1.225	0.981	1.205	1.688	1.100	1.389	1.305	0 982	1 327	1.045	1.166	0.546
-0.Z92	-0.171	0.154	0.568	0.682	0.563	1.74B	2.087	2.16B	0.130	-0.355	-0.203	-0.088	0.566	0.589
0.445	1.146 .	1.103	1.112	1.316	0.981	1.255	0.866	1 255	0,990	1.326	1.120	1.100	1.131	0.438
0.442	1.139	1.056	1.112	1.917	0.982	1.274	9.887	1273	0 981	1 317	1.115	1.100	1.141	0.443
-D 652	-0.637	-0.635	0.0E3	0.0001	0.051	1,474	2.412	1 4 1 6	-0.699	-0.881	-0.447	-0.045	0.964	D 948 I
	0 774	1 917	0.868	1.120	1.336	1.009	1.012	1.012	1.335	1.119	D.962	1.299	0.768	
	0 764	1 289	0.960	1.115	1.327	1.018	1.022	1.015	1.325	1.112	D 950	1.294	0.765	
	-1.362	-2.118	-0.658	-6.438	-0.669	0.554	1.048	0.257	0.749	-0.625	-0.239	-0.523	-0.052	
	0 500	1.180	1.367	1.135	1.052	1.298	0.893	1.293	1.050	F 114	1 306	1 153	0.496	
	0 494	1.141	1.294	-1.130	1.045	1 296	0895	1235	1 464	10008	1 2399	1 141	0.495	
	1.209	0.000	0.200	1,325	10.073	0.194		-0.859	-1.464	-1 39 m	-1 200	-1.075	-v.roz	
		0.037	0.767	1.136	1 162	0.824	1 181	0830	192	1,197	0.783	0.503		
		0.523	0.287	D 494	D 492	-0.425	-0.423	-1 168	-2.206	-2.374	-2.527	1.789		
				0.436	0.539	D 782	0.672	0.785	0.66.9	0.469	Magazi	n Gentere	a Domera	
				0.443	0 546	0.773	D 664	0.772	0.545	0.442	Calculat	ad Aalati	ve Pawer	
				1444	1430	-1 164	-1.16	-1 593	-2 205	-2.365	% Diller	anca		

Figure	C-31					
Flux Ma	ap: CY3-FM05	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM06 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 5402.0 MWD/MTU

				D 443 D 444	0.550 0.547	D 767 D 767	0.658 0.658	D 760 D 767	0.557 0.548	0 448 0 445				
				-1.157	-0.491	0.000	0.305	-0 250	-0.761	-0.759			1	
		D.498	0.770	1.152	1 127	D 621 D 619	1 173	0.623	1 192	1.155	0.773	0.497		
		0.542	1 1 4 2	-1 145	-0.810	-0.183	0.299	-0.425	-1.183	-1228	-1.345	-0.20		
	0.500	1 153	1 304	1 100	1.052	1 293	0.691	1.297	1.058	1.407	1.317	1. 45	0.491	1
	0.498	1 143	1 295	1068	1.040	1.295	0.694	1.298	1.041	1.090	1.300	1.143	D.495	
	-0.838	-0.850	40 844	-1 145	-1 150	0.147	0.292	-0 100	-1587	-1.464	-1.330	-0.200	0.958	{
	0.771	1.310	0.960	1.108	1.339	1.005	1.006	1.012	1.349	1.622	0.963	1.297	0.757	
	-1.025	-0.763	-0.465	0.258	10.239	0.836	1.024	0.158	·D 838	1.222	-0.831	-0 139	0.541	
0.450	1.:47	1.095	1.110	1.331	3.565	1.270	0.875	1.275	0.988	1.341	1.111	1.092	1.150	0,452
0.445	1.141	1.090	1.108	1.829	3.564	1.262	0.884	1.283	0.985	1.329	1.106	1.068	1.139	0.444
1134	·D 567	-0.423	-0 182	-0 180	-D 122	0.953	1.052	0.628	-0294	-D 673	-0 488	-0378	-0.922	-1789
Ю.545 Л 549	1.174	1.639	1.358	0.986	1.312	1.067	1.072	1.671	1.315	0.987	1.340	1.047	1,191	0.557
0.477	0.341	0.241	-0 077	-0 152	0 282	1.172	1,306	0.747	0.064	-0 274	-0.338	-0.640	-1.251	-1 759
0,763	0.813	1 266	1,009	1.273	1.065	0.827	1,253	0.932	1,071	1.272	1.006	1.286	0.822	0.775
0.767	0.820	1 296	1.014	1.263	1.079	0. 9 11	1.272	0.941	1.078	1.202	1.013	1.295	0.819	0.7E7
0.465	0.874	0.82	0.446	0.786	1.267	1.543	1.486	0.986	0.769	0.828	0.668	-0.008	-0.255	-1.D4S
0.855	1.164	0.623	1.003	0.087	1.066	1.280	0.895	1.258	1,075	0.877	1.008	0.885	1.170	0 655
0.858	1.173 0 (NR	0,4194	1.018	1 345	1.085	1.272	1 4 3 5	1.272	1 086	D.884	1.016	0.934	1.178	0,558
0.766	0.738 D.918	1,200	1.000	1.345	1.058	0.363	1 366	0.936	1.055	1 (278	1.010	1.200	0.814	0.759
0.767	0.819	1.295	1.013	1.282	1.079	0.941	1.272	0.941	1 07R	1 283	014	1296	0.820	0 787
0.301	0,429	0 959	1.351	1.12B	1.058	0.938	1 347	1730	1 144	D 389	D 388	0.434	0 688	0.735
0.552	1 183	1 0 3 9	1.336	0 995	1 309	1 051	1054	1055	1 301	0 985	1 342	1047	1,168	0.542
0 547	1 17E	1040	1 336	0.984	1 315	1078	1088	1079	1.315	0.985	1.337	2.041	1.178	0.548
16.5.34	4.566	0.123	-1.007	40.071	0.526	16/8	2 1546	2 2695	1 130	-0.061	-0.360	-0.544	1.012	1.014
0.444	1 157	1 105	1 105	1.328	0.984	1 288	0.884	1 284	0.983	1.330	1.109	1.092	1.129	D.440
-1.529	-1.523	-1.530	0.054	-0.045	0.091	1.351	2,209	1.449	0.071	-0.145	-0.108	-0.101	1.054	1.045
	0 775	1.322	0 962	1.111	1,345	1.007	1.002	1.007	1.335	1.102	0.952	1.303	0.764	
	0.762	1.295	0.955	1.108	1.337	1.014	F.016	1.D13	1.335	1.106	3.965	1,300	0.763	
	-1./93	-Z.U57	-9.707	-0.279	·0.55B	D.695	1.443	0.566	0.067	Q.345	0.347	-0 215	-0.157	
	0.505	1.167	1.315	1.094	1.D47	1.305	D.893	1.304	1.061	1,100	1.306	1.153	0.501	
	-2.057	-2.357	-1.156	-0.338	-0.51E	-0.735	0.067	1.295	-1.009	1.095	1.260	1.143 -0.893	0.496	
		0.505	D.763	1.129	1.165	J.B 26	1 162	0.831	1,196	1.161	0,777	0.503		
		0.495	D.763	1.141	1. 1 7a	0.620	1,173	0.619	1.176	1.139	0.782	0.465		
		-2 075	-0.013	1.054	1.066	-0.751	-0 753	-1360	-1 762	-1.661	-1.657	-1.570		
				0 434	5,536	0.773	0.663	0.776	0.557	0.453	Measure	od Reibirv	e Powar	
				0 445 9 906	0.548 9.403	0.767	0.656	0.787	0.547	0.444	Calculation Calculation	ed Reizh	ve Power	
				1 1 1 1 1 1	0.000	0.00	10.104	1.100	1.109	-1.077	Lue Chingl			

Figure	C-32					
Flux Ma	ap: CY3-FM06	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM07 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 6577.5 MWD/MTU

				D 452 D 448	0.551 0.551	D 763 D 766	D.653 D.657	D.767 D 765	0.554 0.552	0.450 0.442				
				-0.841	-0.036	D 485	D 643	-0.013	-0.397	-0.37B				
		D.495 D.497 D.303	D 758 D 763 D 303	1 148 1 130 -0.836	1. 193 1 186 -0.545	D 821 D 822 D 110	1.169 1 174 0 436	D.825 D.622 -0.376	1.201 1.1a7 -1.141	1.153 1.140 -1.093	0.769 0.761 -0.976	D 497 D 497 D 121		
	0 501 0 497 -0 639	1 149 1 142 -0 523	1 301 1 297 -0 306	1 098 5 080 -0 836	1 047 1 038 -0.822	1 301 1 303 0 185	0 892 0 695 0 291	1 307 1 304 -0 222	1.059 1.039 -1.888	1 098 1 082 -1.430	1 314 1 301 -0.974	1 141 1,142 0 114	0 491 0 497 1 222	
	0 770 0 761 -1.079	1,314 1,301 -0.967	0.960 0.951 -0.917	1 109 1 098 -0.920	1 352 1 341 -0.838	1.005 1.012 0.697	1 004 1 012 0.607	1.013 1.013 -0.349	1,358 1,342 -1,011	1.113 1.100 -1.159	0.957 0.951 -0.606	1,298 1,297 0,100	0.755 0.760 0.755	
0.450 D.449 -0.245	1.146 1.140 -0.506	1.090 1.082 -0.651	1,106 1,100 -0,497	1.336 1. 334 -0.120	0.996 0.995 -0.122	1.277 1.289 D.822	0.674 0.862 0.858	1.283 1.288 0.405	0.989 0.985 -0.384	1.344 1.234 -0.758	1.102 1.099 -0.345	1.042 1.090 -0.157	f. 146 1. 139 -0.594	D. 454 D.448 -1.278
0.543 0.562 0.364	1.185 1.187 5.143	1.041 1.039 -0 202	1.347 1.342 -0.408	0.983 0.985 -0.374	1.318 1.320 5.167	1.061 1.071 0.905	1.062 1.075 1.467	1.061 1.070 0.84a	1.316 1.520 3.527	0.584 0.965 0.091	1.344 1.541 -0.201	1.042 1.039 -0.365	1.197 1 138 -0 861	0.559 0.551 -1 272
0 763 0.768 0.393	0.618 0.622 0.514	1,301 1,304 0,584	1 013 1.013 -0.030	1 283 1,288 0,390	1.061 1.070 0.648	0.924 0.933 1.050	1.252 1.258 1.110	0.922 0.933 1.260	1.067 1.071 1.286	1.272 1.268 1.250	1.004 1.032 0.777	1.301 1.303 0.777	0.622 0.622 -0.012	0.771 0.766 -0.674
0.655 0.657 0.336	1.167 1.174 3.574	0.668 0.695 0.034	1.004 1.012 6.847	0.670 0.662 1.414	1.062 1.075 1.196	1.259 1.268 0.556	6.696 9.903 9.840	1.252 1.266 1.151	1.063 1.075 1.082	0.873 0.862 0.862	1.003 1.0 12 0.887	0.885 0.895 1.084	1.169 1.174 0.429	0.683 0.667 0.566
0.765 0.766 0.170	3.820 3.822 3.219	1.295 1.303 0.549	1.002 1.012 3.599	1.277 1.288 0.805	1.0 63 1.071 0.762	0.827 0.903 0.701	1.255 1.255 0.835	0.924 0.933 1.001	1.061 1.070 0.905	1.280 1.288 0.617	1. 004 1.013 0.847	1.263 1.304 0.851	0.815 0.822 0.871	0.759 0.766 0.975
0.561 0.551 +1 792	1.202 1.186 -1 299	1.839 1.836 -0.057	1.344 1.841 -0.231	0.587 0.986 -D 223	1.316 1.220 0.289	1.055 1.070 1.412	1.057 1.075 1.584	1.953 1.974 1.739	1.32D 1.32D 0.053	0.987 0.985 -0.522	1.339 1 342 0 224	1.034 1.039 0.532	1 171 1.167 1.349	0 544 0.552 1.341
0.462 0.448 -2.987	1.174 1.139 -2.985	1 113 1,060 -2 985	1,100 1.098 -0 173	1,358 1,334 -0,284	0.967 0.965 -0.192	1.274 1.266 1.063	0.864 0.882 2.048	1 270 1.288 1.306	0.993 0.985 -0.776	1.3-5 1.334 -0.781	1.10¤ 1.100 -0.045	1.076 1.082 0.632	1.124 1.140 1.485	0.442 0.449 1.494
	0.779 0./60 -2.339	1.3:9 1.297 -1.729	0.857 0.954 -0.627	1.105 1.100 -0.434	1.353 1.342 -0.828	1.008 1.013 0.468	1.001 1.012 1.115	1.008 1.012 0.566	1.348 1.341 40.527	1.102 1.098 -0.845	0.948 0.951 0.348	1.302 1.331 -0.108	0.782 0.751 -0 144	
	0.502 0.457 -0.957	1.157 1.142 -1.289	1.309 1.301 -0.625	1.085 1.082 -C.249	1.345 1.339 -0.593	1.366 1.304 -0.145	0.891 0.895 0.494	1.304 1.303 -0.100	1.048 1.038 -0.727	1 088 1 080 -0.790	1 304 1 297 -0.514	1 151 1 142 -0.6=6	0 504 0.487 -1.251	
		0.459 0.497 -0.321	0.761 0 761 0 059	1.13D 1.14D 0.93B	1.176 1.187 0 835	0.821 0.822 0.146	1 172 1 174 0 154	0 825 0 822 -0.460	1 202 + 186 -1.322	1 157 1 139 -1.530	0 774 0 760 -1.732	0 504 0.497 -1.526		-
				0 440 0 449 1 955	Q 541 Q 552 1 941	0 769 0 786 -3.266	0 859 0 857 -0.288	0 772 0 768 -0.725	0 559 0 551 -1.325	0.455 0.448 -1.538	Measure Caculat % Diller	ed Galath ad Ralati anco	ve Puwer ve Power	r

Figure	C-33					
Flux Ma	ap: CY3-FM07	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM08 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 7649.0 MWD/MTU

				0.458 0.453	0.559 0.557	0.768 0.769	0.856 0.860	0.770 0.789	0.581 0.557	0.458 0.453]			
		0 499 0 500 0 060	0.760	-1 092 1.152 1.140 -1 102	-0.447 1.206 1.195 -0.671	0.104 0.827 0.826 -0.109	0.518 1.171 1.176 0.478	-0.104 0.829 0.826 -0.314	-0.749 1 206 1.195 -1 005	-0.745 1.151 1.145 -0.603	0.787 0.782 -0.552	0.489 0.500 0.204		
	0.500 0.500 -0.735	1.148 1.144 -D.558	1.301 1.297 -0.277	1.086 1.074 -1.105	1.048 1.038 -1.097	1.309 1.309 0.304	0.898 0.897 0.134	1.311 1.309 -0.084	1.051 1.037 -1.313	1.087 1.078 -0.984	1.309 1.301 -0.649	1.138 1.141 0.204	0.494 0.500 1.174	
	0.771 0.752 -1 1.94	1.311 1.301 -0 778	0.953 0.948 -0.535	1,097 1,092 -0:465	1.348 1.342 -0 475	1.005 1.01D 0.567	1.002 1.01D 0.839	1 0 I D 1 0 1 I 0 1 1 9	1 349 1 342 -0 549	1 101 1 094 -0 690	0 949 0 949 -0 137	1 291 1 297 0 441	Q 753 Q 761 Q 962	
0 455 0,453 -0,440	1 147 1 141 -3.549	1 083 1 076 -0.628	1 098 1 094 -C.401	1 340 1 334 -0.433	0 888 0 984 -0.364	1 279 1 286 0 711	0.872 0.880 0.928	1 281 1 289 0 640	0.984 0.984 0.051	1 338 1 334 -0.277	1 088 1 082 0 220	1 070 1 074 0 355	1 143 1.140 -0.263	0.458 0.453 -1.221
0 555 0,557 0.252	1 195 1 195 0 059	1 040 1 037 -0.231	1 348 1,342 -0,138	0 989 0 984 -0.465	1 320 1 320 0 023	1 054 1 063 0 892	1 053 1 085 1 120	1 053 1 063 0 979	1 311 1,320 0,694	0 978 0 984 0.511	1 338 1,342 0,254	1 037 1 038 -0.058	1.203 1.195 -0.695	0.584 0.557 -1.224
0.768 0.769 0.104	0.823 0.828 0.364	1.007 1.309 0.176	1.011 1.011 -3.030	1.205 1.209 0.311	1.053 1.063 0.892	0.918 0.928 1.222	1,245 1,260 1,197	0.915 0.928 1.377	1.047 1.053 1.538	1.270 1.288 1.473	1.001 1.010 0.989	1 306 1 309 0.245	D.827 D.826 40.157	D 778 D 760 -1.106
0 650 0 650 -0.061	1.172 1.176 D 384	D.890 D.897 D 831	1.002 1.010 D 909	0.859 0.880 1312	1.052 1.055 1.274	1.251 1.253 0.728	0.399 0.900 1.170	1.241 1.260 1.490	1.052 1.065 1.264	D.871 D.890 1.045	1.000 1.010 1.000	D.638 D.897 1 095	1 177 1.178 -0 059	0 659 0.690 0 048
0770 0769 -0117	D 825 0 828 0 073	1 301 1 309 0 592	1 007 1 010 0 689	1 281 1 288 0 617	1 056 1 083 0 730	0.928 0.928 0.637	1 245 1,260 1 158	0.914 0.928 1.554	1.061 1.063 1.103	1,201 1,289 0.632	1.001 1.011 0.999	1 300 1.309 0.754	0.622 0.626 0.623	0.784 0.769 6.707
0 574 0 557 -2.907	: 222 1 195 -2.209	1 038 1.038 -0.193	: 348 • 342 -0.306	0.988 0.984 -0.385	1 918 1.320 0.281	1 048 1.063 1.461	1.047 1.065 1.748	1.043 1.063 1.907	1.307 1.320 1.018	0.978 0.964 0.875	1.331 1.342 0.841	1.028 1.037 0.944	1.183 1.195 1.062	0.551 0.557 1.089
0.476 0.453 -4.853	5.190 1.140 -4.830	1.129 1.074 -4.836	1.094 1.092 -0.219	1.337 1.334 -0.195	D.994 D.994 -0.020	1.274 1.2 0 9 1.162	6.806 6.880 1.640	1.280 1.288 0.633	0.694 0.664 -0.935	1.823 1.834 0.824	1.085 1.094 0.880	1.067 1.078 0.824	1.145 1.141 -0.349	0.448 0.453 1,094
	0.785 0.761 -3.231	1.317 1.297 -1.533	0.963 0.948 -0.483	1.095 1.094 -0.154	1.347 1.542 -0 385	1.005 1.011 0.617	1.003 1.010 0.636	1.015 1.010 -0.414	1.355 1.342 -0.998	1.084 1.092 0.710	0.946 0.712	1,297 1,301 0.270	0.764 0.762 -0.353	
	0.500 -0.912	1,855 1,841 -1 180	1,301 1,301 -0,540	1,077 1,078 -0:037	1.040 1.037 -0.240	1.357 1.309 -0.569	0.906 0.097 -0.993	1.323 1.309 -1.059	1.046 1.036 -1.078	1.081 1.074 -0.055	1.303 1.297 -0.422	1.146 1.141 -0.384	0.502 0.500 -0.333	
		0.502 0.500 -0.398	0.761 0.762 0.079	1.130 1.141 0.963	1.165 0.800	0.831	1.163 1.176 -0.524	0.034 0.925 -0.889	1.209 1.195 -1.442	1.155 1.14D -1.333	0.772 0.761 •1.529	0.505 0.500 -1.050	Baurr	
				0.445 0.453 1.089	0.547 0.557 1.903	0.789 -0.530	0.680 -0.529	0.758 -0.769 -0.767	0.563 0.557 -1.137	0,458 -1.229	Calculat X Differ	o Haushy ad Raish ance	ve Power ve Power	•

Figure	C-34					
Flux Ma	ap: CY3-FM08	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM09 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 8909.9 MWD/MTU

1.1272 0.1680 0.1581 0.774 0.6863 0.2484 0.2484 0.2484 0.2484 0.2484 0.2484 0.2484 0.2584 0.2586 0.564 0.513 0.7282 1.157 1.215 1.214 1.144 0.2381 1.211 1.149 0.7885 0.564 0.516 1.168 1.331 1.035 1.316 0.902 7.317 1.043 1.0784 1.304 1.136 0.466 0.516 1.168 1.331 1.035 1.316 0.902 7.317 1.043 1.054 1.360 0.469 0.516 1.149 1.526 1.089 1.025 0.114 0.901 1.037 1.048 0.538 0.227 0.716 0.228 0.724 0.286 0.283 0.227 0.541 0.753 1.299 0.441 0.991 1.391 0.441 0.431 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.					0.46E	0.565	0 770	0.652	D 778	D 5487	D 461]			
0 0					0.460	0.554	0.774	0 655	0774	0,564	21 966				
0.554 0.752 1.137 1.294 0.232 1.141 0.233 1.142 0.763 0.504 0.554 0.755 1.137 4.395 0.252 4.242 4.354 4.355 4.397 0.219 0.564 1.451 1.226 1.048 1.049 1.016 0.902 7.077 7.043 0.379 0.219 0.564 1.431 1.226 1.048 1.049 1.017 1.014 1.035 1.070 1.238 0.247 0.248 0.374 0.238 0.248 0.374 0.248 0.774 0.248 0.774 0.248 0.774 0.248 0.774 0.248 0.774 0.248 0.774 1.237 0.774 0.248 0.774 1.237 0.774 1.237 0.774 1.237 0.774 0.248 0.567 1.337 0.741 1.237 0.774 0.522 0.575 0.148 0.781 1.238 0.762 0.782 1.230 0.221 0.237 0.237			0.823	0.732	1 157	1 215	0.934	1 194	0.938	1 911	1 148	0.748	0.503	1	
3.745 3.751 1.374 4.395 2.025 2.245 0.514 -0.553 2.047 2.0379 0.218 0.518 1.468 1.331 1089 1048 1.316 0.902 7317 7043 1077 1.204 1148 0.549 1.305 0.207 1.208 0.227 0.861 0.775 1.238 0.955 1089 1.357 1.044 -0.147 -0.766 0.527 0.365 0.227 0.861 0.775 1.238 0.955 1089 1.337 0.040 1.000 1.007 1.337 0.046 0.952 1.228 0.574 1.228 0.574 1.228 0.574 1.228 0.574 1.228 0.574 1.228 0.562 1.231 1.044 1.048 1.044 1.044 1.044 1.044 1.044 1.044 1.044 1.044 1.044 1.044 1.044 0.044 1.041 1.045 1.020 1.046 1.045 1.045 1.045			0.534	0752	1 141	1 234	0.832	1 181	0832	1 204	1 142	0 783	0.504		
0 518 1 659 1 333 1 0 9301 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 <th0< th=""> 0 0</th0<>			-3.745	-3.751	-1.374	-0.905	-0 252	-0.245	-0.514	-0 553	-0,497	-0.379	0219		
0.504 1143 1296 1085 1314 0.901 1314 1035 1000 1299 1140 0.534 0.237 0.881 0.775 1.319 0.855 1.086 1.359 1.000 1.007 1.037 1.086 0.593 0.284 0.754 0.285 0.754		0.518	: 158	1 3 3 3	1.083	1049	: 318	0.902	1 317	7 04 3	1 078	1 304	1 1 3 4	0.498	
-2.23 -2.355 -2.601 -1.367 -1.372 -0.266 -0.144 -0.147 -0.746 -0.547 -0.363 0.237 0.861 0.775 1.318 0.945 1.029 1.504 1.000 1.007 1.337 1.084 0.935 0.287 0.754 1.128 0.462 1.142 1.093 1.094 1.337 0.046 0.074 0.177 0.144 0.157 0.144 0.518 0.754 1.132 0.462 1.142 1.003 1.034 1.033 0.984 1.287 0.573 1.284 0.661 1.164 1.066 1.141 0.463 1.044 1.043 1.044 1.043 1.064 1.662 1.651 1.516 0.662 1.330 0.826 0.511 1.643 1.044 1.033 0.826 0.511 1.643 1.644 1.633 0.825 0.734 0.564 1.204 1.035 0.572 0.630 0.822 1.114 1.342 1.036		0.504	1 140	1228	1.058	1 0 3 5	1 314	0.901	1.314	7 035	1.070	¥ 299	1 140	0.594	
0.775 1.319 0.945 1.009 1.004 1.007 1.337 1.044 0.939 1.284 0.754 1.139 -1.479 -1.637 -0.477 -0.476 0.528 0.177 0.285 0.157 0.144 0.818 0.754 1.128 0.462 1.142 1.003 1.094 1.337 0.988 1.282 0.872 1.280 0.674 1.335 1.070 1.066 1.141 0.461 0.989 -0.734 0.441 0.885 1.010 1.026 0.428 0.673 1.287 0.566 1.560 0.564 1.834 1.036 1.744 0.564 1.204 1.032 1.233 0.982 1.211 1.045 1.557 0.556 1.566 0.562 1.516 0.564 1.626 0.635 1.141 0.435 1.264 0.664 1.681 1.035 0.622 0.776 0.562 1.510 1.655 1.510 1.651 1.616 1.625 0.612		-2.23	-2.355	-2.601	-1.367	-1.372	-0.266	-0,144	-0.187	-0.748	-0.587	-0.383	0237	0.881	
0.763 1.299 0.964 1.039 1.006 1.007 1.009 1.399 1.396 1.296 0.762 1.199 -1.147 -1.037 -0.77 0.070 0.220 0.771 0.175 0.148 0.518 0.742 1.138 0.462 1.142 1.003 1.034 1.034 0.052 0.672 1.287 0.562 1.031 1.064 1.056 1.141 0.463 0.412 0.485 1.010 0.725 0.562 0.488 0.648 0.672 0.566 0.561 1.331 1.044 0.464 0.464 0.464 0.474 0.466 0.681 1.241 0.464 1.524 1.030 1.206 0.569 0.562 1.314 1.002 1.264 1.045 1.241 0.412 1.040 1.241 0.412 1.040 1.241 0.422 1.540 1.045 0.492 0.776 0.775 0.429 0.182 0.247 0.227 0.652		0 775	1.318	0.955	1 089	1 345	1 003	1.000	1.007	1.397	1.084	0.939	1.260	0.754	
-1.59 -1.679 -1.679 -1.679 -1.679 0.777 0.223 0.170 0.143 0.143 0.744 1.128 0.462 1.142 1.093 1.094 1.331 0.998 1.220 0.673 1.231 1.070 1.066 1.137 0.4651 0.462 1.142 1.070 1.046 1.033 0.998 1.227 0.673 1.282 0.662 1.315 1.074 1.328 0.554 1.204 1.033 0.592 1.316 0.566 1.324 1.035 1.026 1.264 1.036 1.026 1.204 1.035 1.204 0.566 1.244 1.035 1.204 0.566 1.244 1.035 1.235 0.623 1.316 0.626 1.344 0.666 1.247 0.055 1.244 1.045 0.066 0.626 0.637 0.516 0.674 0.655 0.674 0.655 0.674 0.655 0.674 0.655 0.674 0.676 0.674 0.676<		0.763	1.299	0945	1084	1.339	1.008	1.007	1.009	1.339	7.086	0.945	1.290	0.762	
D.462 1.132 1.083 1.084 1.337 D.938 1.232 0.873 1.230 D.594 1.315 1.070 1.056 1.137 D.443 0.461 1.421 1.070 1.036 1.030 0.532 1.231 D.594 1.237 D.595 1.237 D.595 1.237 D.595 1.231 1.064 1.065 1.141 D.469 D.635 D.516 1.566 1.324 1.033 1.024 D.535 D.516 0.566 1.324 1.035 1.025 1.024 D.535 D.536 D.572 D.551 1.516 0.582 1.035 D.635 D.572 D.551 1.516 0.582 1.035 D.635 D.672 D.551 1.516 0.582 1.035 D.625 D.776 D.535 D.572 D.530 D.635 D.677 D.530 D.655 1.237 D.651 1.237 D.654 1.237 D.654 D.666 D.666 D.666 D.666 D.666 D.666 D.6		-1.599	-1.479	-1.637	-0.477	-0.476	0.528	0.770	0.228	L 157	0.149	0.618	0.754	1.128	
Differ 1.142 1.070 1.031 1.030 1.031 1.030 0.032 1.231 1.040 1.040 1.031 1.034 0.051 1.233 1.051 1.233 1.051 1.233 1.031 1.036 0.030 <t< td=""><td>D.462</td><td>1.152</td><td>1.083</td><td>1.094</td><td>1.337</td><td>0.988</td><td>1.282</td><td>0.872</td><td>1.290</td><td>D.874</td><td>1.315</td><td>1.070</td><td>1.066</td><td>1.137</td><td>D 483</td></t<>	D.462	1.152	1.083	1.094	1.337	0.988	1.282	0.872	1.290	D.874	1.315	1.070	1.066	1.137	D 483
1110 11101 11101 1110 <	JU 46-1	0.885	1.0/0	1.086	1.558	0.648	0.367	0.679	0.595	D.562	1.330	1.064	1.058	1 141	0 490
Loss Loss <thlos< th=""> Loss <thloss< th=""> Lo</thloss<></thlos<>	0.563	1.505	1.043	1.340	0.000	1 221	1.049	1.040	1.046	4.503	A DC0	4 0034	1 0 22	1 000	0.640
0.481 0.386 0.378 0.376 0.376 0.572 0.630 0.822 1.114 1.342 1.036 0.407 0.134 0.769 0.528 1.316 1.012 1.284 1.046 0.913 1.241 0.912 1.040 1.285 0.898 1.306 0.829 0.776 0.774 0.632 1.314 1.009 1.287 1.055 0.423 1.281 0.942 1.040 1.286 0.898 1.306 0.829 0.776 0.774 0.632 0.182 0.247 D.257 D.612 1.062 0.975 1.253 0.864 1.044 0.877 0.469 0.800 1.374 0.218 0.665 1.761 0.901 1.007 0.679 1.057 1.253 0.864 1.267 0.464 0.877 0.480 0.874 0.878 1.007 0.894 0.773 0.774 0.831 1.008 1.287 1.035 1.283 1.045 1.286	0.564	1.203	1.035	1.349	0.983	1.315	1.045	1.048	1.045	1.516	0.987	1.339	1 035	1 200	0.564
0.788 0.528 1.314 1.012 1.284 1.046 0.913 1.241 0.912 1.040 1.285 0.938 1.306 0.629 0.774 0.774 0.632 1.314 1.009 1.287 1.055 0.923 1.253 0.923 1.265 1.287 1.008 1.314 0.852 0.774 0.755 0.489 0.182 0.277 0.612 1.062 0.975 1.223 1.510 1.459 1.072 0.560 0.374 0.216 0.665 1.741 0.896 0.999 0.864 1.042 1.246 0.885 1.236 1.657 0.870 0.870 0.866 0.890 1.173 0.565 0.665 1.761 0.901 1.007 0.677 1.057 1.253 0.854 1.284 0.870 0.892 1.247 0.708 0.774 0.833 1.331 1.000 1.277 1.048 0.918 1.284 0.938 0.128 0.822	0481	-0 (166	-0.681	-0719	-0 736	-0.356	0.572	0.630	0.822	1.114	1.342	1 095	0.437	-0.189	-0.739
0.774 0.652 1.314 1.009 1.287 1.025 0.923 1.025 1.026 1.034 0.652 0.714 0.652 1.026 1.027 0.560 0.374 -0.218 0.665 1.714 0.866 0.899 0.864 1.047 1.283 1.067 0.890 1.007 0.890 1.773 0.680 0.771 0.831 1.308 1.000 1.277 1.048 0.818 1.243 0.811 1.645 1.287 1.006 1.314 0.822 0.774 0.833 1.304 1.000 1.277 1.048 0.818 1.243 0.811 1.645 1.287 1.006 1.314 0.822 1.774 0.833 1.810 1.826 0.420 0.829 1.283	0.769	0.828	1.318	1 012	1.284	1 048	0.913	1.241	0.912	1.040	1 265	0.699	1.306	0.629	07/6
0715 0 459 -0 182 -0 247 0 257 0 612 1.062 0 975 1.223 1.510 1.459 1.072 0.560 0.374 -0 218 0.660 1.174 0.896 0 999 0.864 1.042 1.246 0.865 1.236 1.044 0.870 0.896 0.890 1.173 0.586 0.655 1.761 0.804 1.007 0.879 1.057 1.283 0.886 1.285 1.047 0.896 1.247 0.708 0.773 0.771 0.031 1.009 1.277 1.049 0.483 0.891 1.045 1.286 1.410 1.210 0.822 1.247 0.708 0.774 0.773 0.833 0.155 0.420 0.897 1.055 0.623 1.253 0.923 1.055 1.287 1.006 1.314 0.822 0.774 0.533 0.450 0.420 0.897 1.216 1.043 1.340 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 </td <td>0774</td> <td>0.632</td> <td>1 314</td> <td>1 009</td> <td>1 287</td> <td>1 055</td> <td>0.923</td> <td>1.253</td> <td>0.023</td> <td>1.065</td> <td>1.267</td> <td>1.009</td> <td>1.314</td> <td>0.632</td> <td>0.774</td>	0774	0.632	1 314	1 009	1 287	1 055	0.923	1.253	0.023	1.065	1.267	1.009	1.314	0.632	0.774
0.660 1.174 0.896 0.999 0.864 1.042 1.246 0.865 1.236 1.044 0.870 0.866 0.866 1.171 0.866 0.665 1.761 0.901 1.007 0.879 1.057 1.253 0.836 1.253 1.067 0.879 1.007 0.879 1.73 0.986 1.253 1.067 0.879 0.992 1.247 0.708 0.773 0.771 0.031 1.304 1.000 1.277 1.048 0.918 1.243 0.917 1.296 1.314 0.822 0.774 0.771 0.031 1.304 1.000 1.287 1.006 1.314 0.822 0.774 0.774 0.420 0.850 0.554 0.553 0.423 0.255 0.423 0.987 0.356 1.064 1.816 0.824 0.774 0.554 1.210 1.627 1.667 1.355 1.316 0.487 0.336 0.120 0.335 1.064 <	0715	0 469	-0 182	-0 247	0.257	0.612	1.062	0 975	1.228	1.510	1.459	1.072	0.590	0.374	-0.218
0.665 1.761 0.901 1.007 0.879 1.057 1.253 0.636 1.253 1.657 0.679 1.007 0.901 1.181 0.003 0.727 0.596 0.547 0.709 1.713 1.391 0.584 0.890 1.217 0.462 1.247 0.462 1.247 0.462 1.247 0.773 0.771 0.031 1.309 1.277 1.048 0.913 1.243 0.911 1.245 1.286 1.287 1.314 0.822 0.774 0.353 0.155 0.420 0.899 0.829 0.829 1.284 0.938 0.120 0.882 1.284 0.554 1.204 1.057 1.315 1.642 1.340 1.336 1.310 0.882 1.339 0.325 1.355 1.365 1.375 1.375 1.365 1.377 1.352 0.962 1.377 1.355 1.316 0.887 1.355 1.305 0.324 0.654 0.627 0.662	0.660	1,174	0.896	0.999	0.864	1.042	1.248	0.668	1.236	1.044	0.870	0.860	0.890	1.173	0.660
0.727 0.596 0.547 0.780 1.713 1.391 0.554 0.960 1.207 1.207 0.962 1.247 0.708 0.773 0.771 0.031 1.308 1.000 1.277 1.048 0.918 1.243 0.811 1.045 1.285 1.005 1.287 1.006 1.314 0.822 0.774 0.353 0.156 0.420 0.890 1.287 1.055 1.287 1.005 1.314 0.822 0.774 0.558 0.150 0.420 0.890 1.297 0.826 1.300 1.087 1.344 0.897 1.315 1.041 0.382 1.316 0.489 1.316 0.487 1.365 1.316 0.982 1.399 1.055 1.316 0.982 1.399 1.035 1.090 1.562 0.562 0.554 1.204 1.025 1.397 0.517 0.662 1.677 1.344 0.982 1.314 1.090 1.676 1.140 0.427 0.464 1151 1.677 1.687 1.592 0.862 1.287	0.665	1.161	0.901	1.007	0.679	1.057	1.253	0.696	1.253	1.057	0.879	1.007	0.801	1.381	0.665
0.771 0.031 1.308 1.000 1.277 1.048 0.918 1.243 0.911 1.645 1.285 1.010 1.310 0.824 0.784 0.774 0.832 1.314 1.008 1.287 1.055 0.823 1.253 0.923 1.085 1.287 1.006 1.314 0.832 0.774 0.353 0.155 0.420 0.890 0.799 0.868 0.501 0.829 1.284 0.938 0.078 0.120 0.282 1.062 1.070 0.554 1.204 1.037 1.315 1.043 1.040 1.036 1.310 0.087 1.356 1.055 1.515 1.516 0.642 1.339 1.0355 1.204 0.562 0.558 0.472 0.212 0.337 0.517 0.068 1.170 1.665 1.814 0.450 -0.577 1.224 1.765 0.421 0.558 0.464 1.561 1.667 1.677 1.284 0.598 0.020 -0.270 -0.413 -0.548 0.396 0.6283 0.464	0.727	3.596	0.547	6.760	1.713	1.391	0.554	0.860	1.367	1.216	0.877	0.862	1.247	0.708	0.773
0.774 0.832 1.314 1.009 1.287 1.055 0.420 0.890 0.799 0.863 0.501 0.829 1.284 0.938 0.078 0.120 0.282 1.062 1.070 0.558 1.210 1.037 1.344 0.987 1.315 1.042 1.040 1.036 1.310 0.987 1.355 1.287 1.069 1.399 1.035 1.204 0.588 0.558 1.204 1.026 1.339 0.987 1.315 1.040 1.040 1.036 1.310 0.987 1.355 1.287 0.987 1.355 1.204 0.562 0.559 0.472 0.212 0.387 0.517 0.668 1.170 1.606 1814 0.450 -0.577 -1.224 -1.765 0.404 0.427 0.421 0.460 1.141 1.066 1.084 1.309 0.982 1.287 0.981 1.304 1.090 1.076 1.142 0.460 0.460 1.411 1.066 1.084 1.309 0.982 1.287 0.981 1.304 1.090	0.771	0.831	1.308	1.000	1.277	1.048	0.918	1.243	0.811	1.045	1.285	1.000	1.310	0.824	0.765
0.185 1.085 1.085 <td< td=""><td>D.774</td><td>3.832</td><td>1.314</td><td>1.008</td><td>1.287</td><td>1.065</td><td>0.623</td><td>1.253</td><td>0.923</td><td>1.055</td><td>1.287</td><td>1.000</td><td>1.314</td><td>0.832</td><td>0.774</td></td<>	D.774	3.832	1.314	1.008	1.287	1.065	0.623	1.253	0.923	1.055	1.287	1.000	1.314	0.832	0.774
0.568 1.210 1.037 1.244 0.987 1.315 1.043 1.040 1.036 1.310 0.087 1.356 1.054 1.199 0.562 0.554 1.204 1.025 1.339 0.982 1.216 1.055 1.057 1.055 1.316 0.982 1.339 1.035 1.204 0.564 0.539 .0.473 .0.212 .0.387 0.517 0.066 1.170 1.606 1.814 0.450 -0.577 -1.224 -1.765 0.434 0.427 0.464 1.151 1.077 1.067 1.332 0.992 1.272 0.862 1.269 0.981 1.334 1.090 1.076 1.148 0.427 0.460 1.141 1.066 1.084 1.300 0.992 1.287 0.892 1.339 1.006 1.070 1.142 0.460 0.464 1.041 1.062 1.997 1.033 1.337 1.081 0.945 1.296 0.765 0.777 1.314 0.950 1.007 1.038 1.314 1.039 1.294	0.363	9.150	0.420	3.890	40.7979	0.008	0.501	0.859	1.284	0.938	0.078	-0.120	0.282	1.082	1.0/0
0.364 1.236 1.236 0.362 1.316 1.265 1.316 0.902 1.319 1.035 1.204 0.304 0.538 0.0473 0.0212 0.037 0.0517 0.066 1.170 1.606 1814 0.450 -0.577 -1.224 -1.765 0.404 0.427 0.464 1.151 1.077 1.667 1.352 0.962 1.272 0.862 1.269 0.981 1.334 1.096 1.076 1.146 0.401 0.460 1.141 1.066 1.684 1.300 0.982 1.287 0.982 1.330 1.008 1.070 1.142 0.460 0.460 1.141 1.066 1.684 1.300 0.982 1.287 0.982 1.330 1.008 1.003 1.337 1.081 0.345 -0.584 -0.585 -0.585 -0.585 -0.585 -0.585 -0.585 -0.585 -0.585 -0.585 -0.595 -0.595 -0.595 -0.595 -0.595 -0.595 -0.595 -0.595 -0.595 -0.595 -0.595 -0.595 -	0.568	1.210	1.037	1.244	0.987	1.315	1.043	1.34D	1.036	1.3ID	0.987	1.356	1 (054	1.199	0.562
0.513 0.513 0.513 0.513 0.513 0.513 0.613 0.614 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 <th< td=""><td>10.364 .D 530</td><td>1.204 .0.473</td><td>0.0212</td><td>0.397</td><td>0.962</td><td>1.216 // Dee</td><td>1.125</td><td>1.506</td><td>1 814</td><td>0.450</td><td>JN 577</td><td>1.339</td><td>1.035</td><td>1.201</td><td>0.364</td></th<>	10.364 .D 530	1.204 .0.473	0.0212	0.397	0.962	1.216 // Dee	1.125	1.506	1 814	0.450	JN 577	1.339	1.035	1.201	0.364
0.460 1.141 1.064 1.300 0.302 1.212 0.872 1.203 0.981 1.306 1.306 1.416 0.461 0.460 1.141 1.066 1.084 1.300 0.982 1.287 0.879 1.287 0.981 1.306 1.008 1.070 1.142 0.465 0.841 -0.660 -0.654 0.267 0.165 -0.051 1.171 1.981 1.403 0.020 -0.413 -0.543 -0.564 -0.555 -0.556 -0.556 -0.556 -0.598 -0.598 1.081 1.337 1.081 0.340 1.296 0.756 -0.558 -0.598 -0.598 1.099 1.033 1.337 1.081 0.945 1.299 0.758 -0.756 1.027 1.038 1.339 1.084 0.945 1.299 0.758 0.756 -1.129 -0.495 -0.129 -0.271 1.531 0.678 1.012 0.598 0.299 0.299 -0.392 -0.564 0.564	B dea	1 151	1 0 77	1 047	1 950	0.042	1 222	0.862	1 260	0.081	1 994	1.000	1.078	1.144	0.481
-0.841 -0.660 -0.654 -0.267 -0.165 -0.051 1.171 1.981 1.403 0.020 -0.270 -0.413 -0.549 -0.549 -0.564 -0.565 -0.564	N 460	1 14	1 066	1 084	1 330	0 982	1 287	0.879	1 287	0.982	1.330	1.000	1.070	1 1 4 2	0.461
0.777 1.014 0.950 1.027 1.042 1.062 0.997 1.003 1.337 1.081 0.940 1.296 0.766 0.762 1.266 0.945 1.006 1.309 1.067 1.008 1.339 1.084 0.945 1.299 0.768 1.129 1.400 0.495 1.012 0.495 1.027 0.598 0.990 0.277 0.543 0.239 1.0290 0.518 1.105 1.022 1.071 1.037 1.314 0.898 1.314 1.039 1.074 1.300 1.145 0.506 0.554 1.140 1.295 1.07D 1.035 1.314 0.901 1.314 1.035 1.098 1.296 1.145 0.504 1.629 1.732 0.131 0.202 0.000 0.222 4.050 -0.356 -0.503 0.364 0.364 -0.435 0.524 0.775 1.135 1.197 0.833 1.183 0.835 1.214 1.075 0.508 0.504 -0.364 -0.435 0.524 0.775 1.135 1.197 0.833 1.181 0.839 1.204 1.107 1.306 0.504 -0.435 0.524 0.755 1.142 1.204 0.832 1.181 0.839 1.214 1.154 0.773 0.509 0.524 0.755 1.142 1.204 0.832 1.181 0.839 1.204 1.107 -1.307 -1.002 0.524 0.755 1.465 0.617 0.627 -0.120 -0.116 -0.395 -0.794 1.107 -1.307 -1.002	-0.841	-0.660	-0.854	-0.287	-0 165	-0.051	1.171	1.961	1.403	0.020	-0.270	-0.413	-0.549	0.395	6.369
0.762 1.268 0.945 1.008 1.329 1.027 1.008 1.339 1.084 D.945 1.299 0.762 1.129 -1.403 -0.495 -0.129 -0.231 0.678 1.012 0.598 D.990 D.277 D.543 0.239 -0.992 0.518 1.105 1.322 1.071 1.037 1.314 0.898 1.314 1.039 1.074 1.300 1.145 0.506 0.514 1.140 1.295 1.070 1.035 1.314 0.935 1.098 1.298 1.440 0.504 0.524 1.140 1.295 1.070 1.035 1.314 0.935 1.988 1.984 1.998 1.440 0.503 0.524 0.775 1.135 1.197 0.833 1.181 0.835 1.214 1.154 0.773 0.509 0.524 0.763 1.142 1.204 0.832 1.81 0.837 1.204 1.410 0.762 0.504 .3725 .1.465 0.617 0.627 -0.120 -0.1116 0.395		0.771	1.314	0.950	1.007	1.342	1.002	0.997	1.003	1.337	1.091	0.940	1.206	0.766	
1.129 -(1.403 -0.495 -0.129 -0.521 0.678 1.012 0.598 0.990 0.277 0.543 0.239 -0.392 0.518 1.165 1.322 1.071 1.037 1.314 0.898 1.314 1.039 1.074 1.300 1.145 0.566 0.514 1.140 1.295 1.070 1.035 1.314 0.901 1.314 1.039 1.074 1.300 1.145 0.566 0.554 1.140 1.295 1.070 1.035 1.314 0.901 1.314 1.039 1.088 1.268 1.268 1.460 0.504 0.554 0.773 1.732 0.31 0.202 0.000 0.222 4.050 4.056 -0.364 -0.435 0.524 0.775 1.135 1.197 0.833 1.181 0.835 1.214 1.141 0.762 0.504 0.524 0.753 1.142 1.204 0.832 1.181 0.835 1.204 1.411 0.762 0.504 0.524 0.753 1.465 0.617<		0.762	1.266	0.945	1.006	1.338	1.309	1.097	1.038	1.339	1 0 9 4	D 945	1 299	0.7 <u>5</u> 8	
0.518 1.185 1.322 1.071 1.037 1.314 0.898 1.314 1.032 1.074 1.300 1.145 0.506 0.504 1.140 1.295 1.070 1.035 1.314 0.301 1.314 1.035 1.036 1.298 1.140 0.504 2.685 2.120 1.732 0.311 0.202 0.000 0.222 40.050 -0.356 -0.503 -0.361 -0.364 -0.435 0.524 0.775 1.135 1.197 0.833 1.181 0.835 1.214 1.154 0.773 0.509 0.524 0.753 1.142 1.204 0.832 1.181 0.835 1.204 1.141 0.762 0.504 0.524 0.753 1.142 1.204 0.832 1.181 0.835 1.204 1.141 0.762 0.504 3.725 1.465 0.617 0.627 -0.116 -0.395 -0.791 1.107 -1.397 -1.002		-1.129	-1.403	-0.495	42,129	-0.231	0.67B	1.012	0.598	D 090	D 277	D 543	0 239	-0.392	
0.504 1.140 1.295 1.070 1.035 1.314 0.901 1.314 1.035 1.068 1.296 1.140 0.504 •2.685 •2.120 •1.732 •0.31 0.202 0.000 0.222 -1.050 -0.356 -0.503 -0.361 -0.364 -0.435 0.524 0.775 1.135 1.197 0.833 1.183 0.835 1.214 1.154 0.773 0.509 0.524 0.763 1.142 1.204 0.832 1.181 0.835 1.204 1.141 0.762 0.504 0.524 0.753 1.142 1.204 0.832 1.181 0.837 1.204 1.141 0.762 0.504 -3.725 -1.465 0.617 0.627 -0.120 -0.116 -0.395 -0.701 -1.107 -1.397 -1.002 0.455 0.564 0.577 0.778 0.668 0.778 0.569 0.465 Medsured Palative Power 0.455 0.564 0.774 0.665 0.774 0.564 0.460 Caculated Relative Power		0.51B ÷	1.165	1.322	1.971	1.037	1.314	0.898	1.314	1 0 3 9	1 074	1 300	1 145	0.506	
-2.685 -2.120 -1.732 -0.131 0.202 0.000 0.222 -1.050 -0.356 -0.503 -0.364 -0.364 -0.435 0.524 0.775 1.135 1.197 0.833 1.183 0.835 1.214 1.154 0.773 0.509 0.524 0.753 1.142 1.204 0.832 1.181 0.837 1.204 1.411 0.762 0.504 0.524 0.753 1.142 1.204 0.832 1.181 0.837 1.204 1.411 0.762 0.504 -3.725 -1.465 0.617 0.627 -0.120 -0.116 -0.395 -0.791 -1.107 -1.397 -1.002 0.454 0.557 0.778 0.668 0.779 0.569 0.465 Medsured Palathe Power 0.455 0.564 0.774 0.665 0.774 0.564 0.460 Caculated Relative Power 1.345 1.378 -0.463 -0.464 -0.803 -0.704 -1.097 % Dialated Relative Power		0.564	1.14D	1.295	1.07D	1.035	1.314	0.901	1 314	1 035	1.068	1 298	1 140	0.504	
0.524 0.775 1.135 1.197 0.833 1.183 0.835 1.214 1.154 0.773 0.509 0.534 0.753 1.142 1.234 0.832 1.181 0.237 1.204 1.141 0.752 0.504 1.3.725 1.465 0.617 0.627 -0.120 -0.116 -0.395 -0.791 -1.107 -1.397 -1.002 0.454 0.557 0.778 0.668 0.779 0.569 0.465 Messured Relative Power 0.450 0.564 0.774 0.665 0.774 0.564 0.460 Casculated Relative Power 1.345 1.378 -0.463 -0.464 -0.803 -0.701 -1.097 % Difference		-2.685	-2.120	-1.732	-8. 131	6.202	0.0000	0.222	-1.050	-9.356	-0.503	-0.364	-0.364	-0.435	
0.524 F0.763 1 142 1 204 0 832 1 181 0 232 1 204 1 141 0 762 0.504 -3.725 -1.465 0 617 0 627 -0.120 -0.116 -0.395 -0.791 -1.107 -1.397 -1.002 0 454 0 557 0 778 0 668 0 779 0 569 0.465 Messured Relative Power 0 450 0 564 0 774 0 665 0 774 0 564 0.460 Calculated Relative Power 1 345 1 378 -0 463 -0 464 -0 803 -0.781 -1.097 % Difference			0.524	0.775	1.135	1.197	0.839	1 183	0 835	1 214	1 154	0 773	0.509		
0454 0557 0778 0668 0779 0569 0.465 Messured Relative Power 0450 0554 0774 0665 0774 0564 0.460 Caculated Relative Power 1.345 1.378 -0.463 -0.464 -0.803 -0.78 -1.097 % Difference			0.554	0.763	1 142	1.204	0.832	1 181	0 837	1 204	141	0 762	0.504		
0.454 0.557 0.778 0.668 0.778 0.569 0.465 Meessured Polative Power 0.450 0.564 0.774 0.665 0.774 0.564 0.460 Carculated Relative Power 1.345 1.378 -0.463 -0.464 -0.803 -0.783 -1.097 % Difference		1	-3.725	-1.465	o ann	0.621	-0.120	-0.178	-0.395	-0.064	-1107	-1.397	-1.002	_	
1.345 1.328 -0.463 -0.464 -0.803 -0.78 -1.097 -9. Difference					0454	0.557	0778	0698	0770	0569	0.465	Measure	90 Páláih ad Dalai	e Power	
					1345	1 329	-0.463	-0 464	-0.803	-0.791	-1.097	% Differ	ance	NO POME	r.

Figure	C-35					
Flux Ma	ap: CY3-FM09	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM10 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 9881.0 MWD/MTU

				0.471 0.465	0.572 0.571	0.776 0.760	0.668 0.570	0.783 0.780	0.574 0.571	0.468 0.455				
		0.509 0.508 -0.235	0.755 0.755 -0.222	-1.213 1.157 1.143 -1.193	-0.122 1.220 1.21D -0.611	0.464 0.838 0.837 -0.250	0.375 1.188 1.185 -0.135	-0.434 0.842 0.837 -0.605	-0.375 1.221 1.210 0.876	-0.676 1.151 1.148 -0.690	0.757 0.758 40.222	0.505 0.508 0.554]	
	0.512 0.558 -6 761	1.149 1.141 -0.662	1.301 1.255 -0.446	1.078 1.065 -1.197	1.646 1.634 -1 195	1.32D 1.316 -D 341	0.908 0.904 -0.287	1.321 1.316 -0.401	1.046 1.034 -1.165	1.074 1.065 -0.693	1.301 1.298 -0.223	1.135 1.141 0.555	0.501 0.508 1.357	
	0 774 0 766 -1 124	1 309 1 296 -0 795	0 949 0 943 -0 590	1,084 1 (079 -0 529	1 342 1 335 -0 514	1 005 1 007 0 219	1,001 1,006 0,460	1 006 1 007 -0.069	1 336 1 335 -0.075	1 078 1 080 0 065	0.937 0.943 0.726	1.282 1.285 0.990	0.754 0.765 1.459	
0.466 0.486 -0.385	1 151 1 1 1 1 -0.643	1 075 1 066 -0.000	1,087 1,080 -6,589	1,302 1,025 -0.540	0 96-1 0.979 -6.569	1 280 1.283 0.211	0.870 0.870 0.515	1279 1203 0.368	0 972 0 978 0.700	1 310 1.325 1.160	1.064 1.078 1.381	1.05 2 1.065 1.207	1.137 1.143 0.482	0.458 0.455 -0.519
0.570 0.571 0.246	1 210 1.210 -3.161	1 042 1 034 -8.720	1.348 1.335 -4.810	0.906 0.979 -0.740	1.015 1.311 -8.335	1,046 1,048 0,335	1,044 1,050 0,527	1.042 1.048 0.614	1 298 1.311 0.978	0.968 0.970 1.252	1,320 1,335 1,121	1.028 1.034 0.515	1.211 1.210 -0.099	0.575 0.571 -0.609
0.778 0.780 0.438	0 836 0 837 0 168	1.322 1.316 8.476	1.013 1.007 -4.533	1,283 1,283 (0.031	1.043 1.048 0.438	D 913 D 919 D 635	1.240 1.246 D.557	D913 D910 D988	1.036 1.049 1.294	1 268 1 283 1 223	D 998 3 007 1 044	1 308 1 318 0 573	0 834 0 837 0 380	0 782 0 786 -0.205
0.668 0.670 0.359	1.184 1.185 0.068	0 904 0 904 -0 033	1003 1005 0308	0.857 0.878 1.234	1041 1050 0894	245 1 246 0 129	0 890 0 893 0 495	1 234 1 249 1.021	1 040 1 050 0.923	0.671 0.678 0.758	0.997 1.008 0.683	0.693 0.904 1.187	1 178 T 185 D.600	0.668 0.670 0.595
0731 0780 -0.090	0 840 0.837 -0.416	1 319 1.318 -0.205	1 003 1.007 0.389	1278 1283 0383	1048 1049 0.268	0.918 0.919 0.153	1241 7.246 0.411	0.912 0.919 0.812	1.042 1.048 6.614	1.282 1.283 0.001	1.005 1.007 3.209	1.309 1.316 0.542	0.630 0.837 0.860	0.773 0.780 0.840
0575 0571 -0.878	1.219 1.210 -0./22	1.042 1.034 -0.818	1.342 1.335 -0.551	0 988 0.979 -0.730	1.313 1.311 -0.16D	1.040 1.049 0.769	1.038 1.050 1.145	1.036 1.049 1.304	1.309 1.311 3.360	0.862 0.979 -0.328	1.342 1.335 -0.536	1.041 1.034 -0.701	1.201 1.210 0.758	0.567 0.571 0.759
0.468 0.465 -0.598	1.150 1.143 -0.532	1.071 1.065 -0.538	1.093 1.079 -0.388	1.328 1.325 -0.211	0.930 0.979 -0.143	1.272 1.283 0.863	0.867 0.878 1.258	1.260 1.263 1.242	0.967 0.979 -0.831	1.329 1.325 -0.263	1.062 1.060 -0 129	1.067 1.068 -0.019	1 137 1.143 0.536	0.463 0.466 0.540
	0.771 0.765 -0.860	1.310 1.295 -1.145	0947 0943 -0.412	1 061 1.660 -0.092	1.337 1.335 -0.142	1,003 1.007 0.449	1.005 1.006 8.100	1.015 1.007 -0.759	1.348 1.335 -6.023	1.077 1.079 0.149	0.839 0.943 0.450	1.287 1.288 0.878	0.759 0.755 0.856	
	0.513 0.508 -0.936	1.953 1.941 -1.024	1.306 1.298 -0.635	1.068 1.066 -0.122	1.036 1.034 -0.145	1.319 1.345 -0.197	0.908 0.904 •0.441	1.327 1.316 -0.644	1.045 1.034 -1.091	1.07D 1.065 -0.495	1.299 1.295 -0.337	1.138 1.141 0.272	0.502 0.508 1.154	
		0.512 0.508 -0.761	0.767 9.765 -0.157	1.136 1.143 0.555	1.202 1.210 0.590	0.841 0.837 -0.428	1.190 1.185 ·0.437	0.842 0.837 -0.554	1.22D 1.21D 46.803	1.155 1.143 -1.065	0.775 0.765 -1.315	0.510 0.508 -0.314		
				0.459 0.466 1.526	0.503 0.571 1.514	0.785 0.780 -0.662	0.674 0.67D +0.667	0.785 0.780 -0.713	0.576 0.571 -0.759	0 471 0 465 -1.064	Meneum Calculat % Differ	ed Polary ed Polary ence	ie Power ve Power	

Figure	C-36					
Flux Ma	ap: CY3-FM10	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM11 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 11211.2 MWD/MTU

				0.478 0.475	0.560 0.561 0.207	0.769 0.769 4.779	0.674 0.679 0.679	0.788 0.769 0.140	0.581	0.475				
		0 517 0.514 -0 657	0 773 0.768 -0 647	1.154 1.145 -0.788	1 222 1.217 -0 434	0.844 0.844 0.644 0.071	1,167 1,161 1,278	0.847 0.844 -0.295	1.224 1.217 -0.547	1.146 1.145 -0 305	0.767 0.769 0.169	0.508 0.544 1.161		
	0.5×8 0.5×4 -0.678	1.146 1.140 -0.558	1.296 1.291 -0.363	1.068 1.069 -0.797	1.040 1.032 -0.798	1.320 1.357 -0.223	0.8+1 0.806 -0.296	1.322 1.316 -0.349	1.043 1.032 -1.064	1.065 1.064 -0.450	1.292 1.294 0.17В	1.127 1.140 1.154	0.503 0.514 2.145	
	0.775 0.769 D 877	1.296 1.294 D 323	0.943 0.941 D.233	1.676 1.671 D.455	1.333 1.327 D 458	1.005 1.005 -0.030	1.003 1.005 0.169	1.007 1.005 -0.163	1.327 1.327 40.038	1.069 1.072 0.284	0.985 0.941 0.542	1.279 1.291 0.962	0.757 0.768 1,533	
0.475 0.475 -D 129	1.149 1.145 -0.322	1.066 1.061 -0 450	1.075 1.072 -0.316	1.323 1.316 -0.507	0.981 0.975 -0.602	1.279 1.278 -D 085	0.875 0.877 0 251	1.275 1.278 0.259	0.0467 0,075 0,744	1.300 1 316 1 238	1.065 1.071 0.971	1.054 1,059 0.560	1.141 1.145 0.290	0 475 0.475 -0 105
0 577 0.50 0.509	1 216 1.217 0.115	1 038 1.03 2 -0.578	1.336 1.327 -0 829	0 983 0.975 -0.854	1 312 1.303 -0 701	1 046 1.042 -0.383	1 043 1.043 0.067	1 038 1.042 0.366	1 292 1.303 0 844	0 964 0.975 1.101	1 314 1.327 0.974	1.027 1.032 0.526	1.215 1.217 0.181	0.58 0.581 -0.103
0.703 0.709 0.715	0.04) 0.844 0.404	1.024 1.316 -0.461	1.013 1.005 -0.721	1.20 1.278 -0.200	1.039 1.042 0.221	0.917 0.916 -0.420	1.238 1.240 0.135	0.912 0.916 0.494	1.033 1.042 0.823	1.268 1.278 0.693	0.993 1.005 1.249	1, 307 1,317 0,765	0.841 0.844 0.392	0.792 0.789 -0.328
0.875 0.879 0.552	1.100 1.191 0 390	0.907 0.908 0.121	1.003 1.005 0.186	0.868 0.877 1.032	1.004 1.043 0.899	1.237 1.240 0.226	0.991 0.992 0 1 90	1.235 1.240 D.405	1.039 1.043 0.385	0.873 D.877 D.447	D.994 1.005 1.018	0.839 D 908 1 057	1.187 1.191 0.337	0.674 0.679 0.687
0.787 0.789 0.305	0.844 0.844 0.071	1,315 1,317 0,175	1.002 1.005 0.299	1.276 1.278 0.149	1.040 1.042 0.144	0915 0918 0131	1 238 1 240 0 128	D915 D918 D142	1.039 1.042 0.212	1.278 1 278 0.083	1 004 1 005 0 149	1 315 1 318 0 213	0.836 0.844 0.932	0 777 0 789 1.505
0.605 0.581 -4.064	1 255 1 217 -2.996	1 034 1 032 -0.213	1.337 1.327 -0.741	0.984 0.975 -0.855	1 309 1 303 -0.451	: 038 1 042 0 308	1037 1043 0598	1 035 1.042 0.698	1 303 1,303 -0.015	0.978 0.975 -0.358	1 398 1.327 -0.859	1.042 1.032 -0.812	1.197 1.217 1.687	0.571 0.561 1.699
0.538 0.475 5.650	1.226 1.145 -5.54D	7.105 1.059 - 5.64 4	1,077 1,071 -0.529	1 319 1.316 -0.250	0.977 0.975 -0.235	1.271 1.278 0.590	0.869 0.877 1.095	1.267 1.278 D.8 84	0.976 0.975 -0.128	1.320 1.316 -0.303	1.074 1.072 -0.195	1.062 1.061 -0.085	3 129 3 145 1 408	D 458 D 475 I 411
	D.797 D.768 -3.576	1.297 1.291 -0.401	0942 0941 -0.149	* 072 * 072 D 001	1.327 1.327 D.038	1.000 1.005 0.493	0 998 1 005 0 631	1.001 1.005 0.430	1.327 1.527 -0.015	1.069 1,071 0.178	0 939 0 941 0.534	1,294 1,294 0,618	0 760 0 769 1.110	
	0.516 0.514 -0.39D	1.144 1.140 -0.35D	· 207 I 294 -0 216	1.061 1.061 -0.019	: 032 : 032 : 010	1.316 1.318 0.091	0.907 0.908 0.543	1 317 1.317 0.046	1.033 1.032 -0.097	1.057 1.059 0.169	1.265 1.291 0.467	1, 132 1, 140 0,684	0.510 0.514 0.922	
		0.516 0.514 -0.252	0.765 0.769 0.484	1.128 1 145 1 428	1 200 1 217 1 425	0 645 0.644 -0 118	1 192 1,191 -0 117	0.646 0.644 -0.201	1.221 1.217 -0.344	1.145 1.145 -0.070	0.767 0.768 0.183	0.012 0.514 0.489	-	
				0.461 0.475 2.928	0.564 0.581 2.643	0.792 0.769 -0.341	0.651 0.679 -0.300	0.762 0.789 -0.341	0.583 0.581 -0.343	0.475 0.475 •0.084	Calculat X Differ	od Relativ od Relativ ence	na Powier Via Powier Via Powier	

Figure	C-37					
Flux Ma	ap: CY3-FM11	Measured and	Calculated	Relative	Assembly	Power

FLUX MAP: CY3-FM12 MEASURED AND CALCULATED RELATIVE ASSEMBLY POWER CYCLE BURNUP: 13200.0 MWD/MTU

				0.494 0.469 -0.912	0.500 0.596 -0.749	9.807 0.804 -0.347	0.690 0.693 0.377	0.804 0.804 -0.099	0.502 0.596 -1.098	0.494 0.489 -1.093				
		0.518 0.528 1.584	0.765 0.778 1.570	1,156 1,147 -0,918	1 234 1.223 -0 859	0 857 0.853 -0 374	1 190 1.196 0.437	0.856 0.853 -0.594	1 240 1.223 -1.387	1 156 1.147 -0.738	0 772 0.777 0.563	0.517 0.526 1.701		
	0.527 0.526 6.171	1.138 1.141 0.318	1.267 1.287 1.552	1.064 1.0 5 4 -0.921	1.038 1.028 -0.915	1.018 1.010 -0.079	0.918 0.911 -0.730	1.321 1.313 -0.658	1.046 1.028 -1.673	1.061 1.055 -0.555	1.282 1.289 0.583	1.122 1.144 1.683	0.512 0.525 2.815	
	0.788 0.777 -1 395	1.308 1.289 -1 392	0.945 0.941 -D 497	1.367 1.362 -D 505	1.318 1.312 -0:501	1.966 1.900 -0.537	1.902 1.901 -0.100	1.005 1.000 -0.497	1.318 1.312 43.465	1.065 1.063 -0.183	0.835 0.841 0.599	1.270 1.287 1.346	0.751 0.775 1.897	
0 494 0 489 -1.013	1 156 1 147 -C 753	1 060 1 055 -0 509	1 066 1 063 -0 244	1 307 1.301 -0.512	0.074 0.969 -0:534	1.27D 1 257 -D 197	0.877 0.878 0.114	1.254 1.257 0.277	0 965 0 969 0 379	1 29E 1 301 0 33R	1.055 1 Q62 0 587	1 046 1 054 0 707	1.142 1 147 Q 429	0.489 0.489 0.000
0 600 0.596 -0.717	1 227 1.223 -6.302	1 031 1 026 -0.213	1 322 1 312 -0.741	0.976 0.969 -0.659	1.206 1.269 -0.548	1 039 1 034 -0.433	1 039 1 037 :-0.163	1.033 1.034 0.058	1 285 1 289 0 249	0 987 0 988 0 228	1 301 1 312 0 815	1 021 1.026 0.705	1 219 1.223 0.320	0 596 0.596 0.300
0.912 0.904 -0.998	0.958 0.953 -3.350	1.010 1.010 -0.398	1.010 1.000 -0.970	1.277 1.267 -0.752	1.034 1.034 0.000	0.916 0.918 0.000	1204 1205 0070	0914 0918 0200	1.001 1.004 0.301	3 261 3 267 0 460	0.998 1.000 1.132	1,302 1,313 0,630	0.850 0.853 0.400	0.805 0.804 -0.236
0.791 0.693 -1.127	1 201 1 196 -0.441	0.911 0.911 -0.022	1.005 1.001 -0.568	0.890 0.878 0.205	1.000 1.037 D 387	1 227 1.235 D 628	0,494 0,497 0,358	1.230 1.235 0.374	1.031 6.037 0.582	0.874 0.878 0.383	D.993 1.001 D.765	0.905 0.911 0.741	1.133 1.130 0.226	D.690 D.693 D 442
0.811 0.504 -11.900	0 858 0 853 -0.490	1 319 1 319 -0.050	1 004 1 009 -0.368	1.278 1.267 -0.822	1 038 1 034 -0.308	0914 0915 0185	1 233 1 235 0 105	D.915 D.918 D.142	1.031 1.034 1.320	1.265 1 267 0 158	0.999 1 000 0 271	1.309 1.313 0.260	0.848 0.853 0.578	0 795 0 804 1 018
0.598 0.598 -0.534	1 230 1 223 -0.545	: 034 : 028 -0.542	1 335 1 312 -1.767	0 998 0 999 -1.774	1.302 1.289 -1.006	1 034 1 034 0.019	1034 1037 0339	1,030 1,034 0,468	1 291 1.269 -0.170	0.971 0.969 -0.155	1 313 1.312 -0.061	1.028 1.028 0.019	1.211 1.220 1.016	0.590 0.596 1.017
0.492 0.489 0.529	1 153 1.147 0.538	1.053 1.054 0.104	1 091 1.062 -1.767	1 312 \.301 -0.83\	0.973 D.969 -0.391	1.261 1.267 D.475	0.671 D.678 D.604	1.258 1.267 0.691	0.971 0.969 -0.208	1.304 1.301 -0.251	1.063 1.063 0.009	1.062 1.065 0.257	1.139 1.147 0.685	0.490 0.439 0.680
	0.776 0.776 0.116	1.285 1.787 D 109	0 940 0 941 0 108	1 059 1.063 0 520	1.305 1.312 0.521	0.995 1.000 0.512	0.997 1.001 0.401	0.997 1.000 0.291	1.513 1.312 -0.084	1.062 1.062 0.000	0.938 0.541 0.320	1.262 1 269 0 609	0.771 0.777 0.728	
	0.527 0.528 -0.209	1.142 1.141 -0.061	1 222 1 289 -0 201	1 049 1 065 0.524	1.023 1.028 0.528	1.311 1.313 0.114	0.912 0.911 -0.099	1,313 1,313 -0.015	1.028 1.028 0.019	1.054 1.054 -0.057	1.268 1.267 -0.023	1.138 1.141 0.299	0.522 0.826 0.766	
		0 529 0.529 -0 454	0771 0.777 0752	1 109 1.147 3.417	1 183 1,223 3,424	0.660 0.653 -0.768	1.205 1.196 -0.772	0.658 0.853 -0.501	1.225 1.223 -0.122	1.151 1.147 -0.330	0.781 0.776 -0.538	0.526 0.526 -0.019		
				0.473 0.469 0.428	0.576 0.596 3.420	0.815 0.804 -1.375	a.709 4.660 -1 368	0.011 0.804 -0.851	0.597 0.595 -0.117	0.489 0.489 -0.326	Calculat % Offer	ed Relativ ed Relativ ence	ve Power ve Power	,

Figure	C-38					
Flux Ma	ap: CY3-FM12	Measured and	Calculated	Relative	Assembly	Power

D ASSEMBLY BURNUP DISTRIBUTION AT THE END OF EACH CYCLE

The figures in this Appendix present the measured and calculated assembly average burnup values for the instrumented and un-instrumented locations. The power distributions from Appendix C were used to determine the assembly average burnup. The assembly average burnup values were used to determine the end-of-cycle burnup uncertainty. The header on each figure indicates the flux map number and burnup corresponding to the tables in Appendix A.

FLUX MAP: CY1-FM15 MEASURED AND CALCULATED AVERAGE ASSEMBLY BURNUP CYCLE BURNUP: 12714.0 MWD/MTU

			I	8.259 8.230	9.914 10.022	10.435 10.608	10.406 10.516	10.534 10.608	9.8/3 10.022	● 138 9 230				
				D.349	1.085	1.648	1.057	0.700	1.523	1.501				
		8.473	11.745	13.524	11.432	13.130	11.563	13,108	11.273	13.348	11.718	ð,464		
	:	a 439	11.E97	13.478	11.451	13.236	11.555	13.228	11.451	13.47B	11.697	8.439		
		-0.411	-040-	-0.342	O.IE6	0.810	0,454	0.936	1.584	0.987	-0.167	-0.304		
	8.443	13 392	12 270	12 443	14.816	12.660	14.264	12.552	14.529	12.31D	12.2BD	13.428 .	8.477	
	8.439	13.366	12.265	12 401	14.767	12.679	14.380	12.679	14.767	12.40*	12.205	13.386	8.489	
	40.055	-0.041	47.030	10,047	10.000	41.840	40.407	41.005	1935		0.123	42,000	1.433	
	11.695	12.236	14,934	14.620 14.450	13 206	14.849 14 866	13.167	14.825 12 866	13 256	14 488 14 480	15.045	12,353	11.795	
	0.017	0.243	-0.12	-0.901	-0.899	0 109	-0.402	0 273	0 739	0.005	0.649	-0.712	-0.632	
8.165	13.421	12.377	14.518	10.353	15.162	13 456	15 167	13 366	15 129	13 394	14 889	12 540	13.571	a 231
8.250	13.478	12.401	14.408	13.221	15.009	13.276	15.014	13 276	15 009	13 221	14 488	12 401	13 476	8 230
0.795	0.427	G.188	-0.202	-0.985	-1 141	-1,340	-1.011	-0.676	-0.792	-1.269	-1 362	-1,114	-0 685	-0.018
9 879	11.358	14.727	13.083	15.116	13.452	15.157	10.364	15.078	13,311	15 042	13 259	14 896	11.496	10 023
10.021	11.451	14.767	13.087	15.009	13.302	15.004	13.209	15.004	13.302	15.009	13.007	14.787	11.451	10.021
1 443	0.827	d.267	0.030	-D 709	1.112	1.010	-1.161	-0.495	-0.067	-6.215	-1.298	-0.857	-0.402	-0.017
10 455	13 103	12 607	14 769	13.260	15.062	13.151	14.548	13.157	14.365	13.335	14.351	12.772	13.307	10.683
10.607	13.239	12 678	14 566	13 275	15 004	13.115	14,482	13.115	15.304	13 275	14.865	12.67B	13.236	10.667
1.459	1.021	0.565	0.519	-0 0 37	-0139	-0.280	-0:415	-6.623	0 256	-6.456	-41.572	-6.732	-0.535	-0.710
10.363	11.407	14.240	13.052	14.052	13.158	14,403	12.863	14 803	13 352	15 123	13 217	14 395	11 633	10 538
10.516	11.500	14.379	13.734	15.014	13.209	14,462	12.877	14 482	13 209	15 (014	13 134	14 379	11 555	10 516
1.471	1.302	0.978	9.02r	0.414	0.907	0.552	40.049	-0.027	-1.000	-0.720	-0.630	40.000	-0.000	40.200
10.454	18.065	12.526	14.772	13.215	10.817	13.022	14,468	13.275	10 1 10	13 385	14 905	12./5/	13.225	10.547
1.467	1.389	1.215	0.632	0.459	0.585	0.708	-0.042	-1.205	-1.129	-0.065	-0.655	-0.620	0.044	0.570
0.000	11.544	12.554	12 64	16 8 70	חזל לו	14 000	12185	13,022	17466	IN 12A	1 2 2 2 2	15.022	11 500	10.054
10.021	11.451	14.767	13.687	15.009	13.202	15.064	13.205	15.064	13,302	15 009	13.087	14 767	11.451	10.021
1 596	1.842	1.461	0.04B	0.25B	0.272	0.765	0.411	0.121	1.029	1.153	1.399	-1.574	-0.425	40.425
8.039	13,166	12 1 13	14 510	13 279	15 059	13214	14 836	13 097	15 051	33 4 12	14 689	12 565	13 727	8 3482
6.230	13,478	12,401	14,468	13.221	15 009	13 276	15 014	13 276	15 009	13 221	4 488	12 4 3 1	13 478	6 2 3 0
2 375	2 368	2 374	-0 147	-0.431	-0 198	0.456	1 199	1 351	-0.276	-1.425	-1.364	-1.911	-1.812	-1.620
	11.544	12.231	14,958	14.566	13,191	14 803	12 954	14 856	13 058	M 874	15 084	12 422	11890	
	11.697	12.265	14.815	14,469	13.087	14.886	13 134	14 866	13 087	14 489	14 915	12 285	11 697	
	1.323	0.263	-0.288	-0.670	-6.789	0.421	1.394	1428	0.213	-1.282	-1.121	-1.265	-1.625	
	8.404	13.338	12.257	12.472	14,762	12.544	14.158	12 592	14 800	12:527	12,363	13,533	B 35 7	
	8.439	13.386	12.265	12.401	14.787	12.879	14.300	12.578	14 /6/	12,401	12 265	13,380	B 439	
	0.410	0.359	0.07	-0.573	0.032	10/8	1.558	0689	-0.243	-1.308	-0.791	-1.088	-1.458	
		8.368	11.635	13,366	11.312	12.971	11.333	3.171	11617	13.613	11.761	8510		
	1	0.507	0.529	13.976	1 231	13.240	11.995	0492 D492	1 451	10.478	0.542	040		
		V.301	4. 3 68	8 0P7	0.030	10.332	10.002	10.632	10.455	8.040	kia second	-3.340 al 3.440	a num	
				8,230	10.022	10 658	10,264	10678	10.092	6 312 8 230	Esteniel	ad Burer	ի (ԽՈՒՐ) մ ԴՈՒՄԻԴ	MILU MILU
				1.77D	1 219	2 199	2 250	0708	-1 417	-0 6483	% Differ	ence	P (****)Di	

Figure D-1			
Flux Map: CY1-F	M15, Measured and Cal	culated Average Assemb	oly Burnup

Assembly Burnup Distribution at the End of Each Cycle

FLUX MAP: CY2+FM11 MEASURED AND CALCULATED AVERAGE ASSEMBLY BURNUP CYCLE BURNUP: 11059.7 MWD/MTU

				6 333	9 780	8414	9.508	B 449	9.774	B.337				
				6 3AR	9 871	8 533	9 642	B 534	9 873	8.401				
				0.075	0 921	1 41 3	1413	1 008	1 017	D.998			_	
		6 595	7 142	12.827	13 874	11 567	11.448	11.568	*3 787	12 572	7 059	5538		
		5.509	7.035	12,636	13 927	11 652	11.54B	11 654	13 938	12 543	7038	5511		
		-1.528	-1.504	0.077	0 383	0 739	Q 867	0.742	1 053	D 561	-0.298	-0.501		_
	5.531	11.662	13.8±0	12,194	10,920	11 962	Q 118	11 960	10.851	12 103	13.79€	11.844	\$ 548	
	5.514	11.766	13.750	12.206	10.930	12.000	9 1 1 9	12 006	10 944	12 221	13 756	11 786	5.509	
	-0.368	-0.641	-1.154	890.0	0.096	0 156	0.038	0.387	0 762	0.231	-0.269	-0 498	-0 705	
	7.009	13.797	10.755	10.000	14.592	10.822	12 286	10.914	14 540	10 791	10 687	13 733	7 034	
	7.638	13,755	10.666	10.750	14.524	10.901	12.265	10.916	14 570	10 796	0.696	13 750	7 035	
	0.406	·0.296	0.543	-0.468	-0.467	-0.564	-0.174	0.017	0 209	0.048	0.094	0 125	0.005	
6.356	12.597	12.202	10.821	12.217	10.828	14.728	11.297	14 725	10.865	12 18 1	10,702	12 066	12.524	6 347
6 4D1	12.643	12.221	10.796	12.165	10.764	14.692	11.267	14.683	10-801	1 2 166	10.750	12.206	12.636	6 398
3.697 -	0.360	0.155	-0.231	-0.418	-0.315	-0.239	-0.261	-0.220	-0.309	-0.122	0440	0 975	0.900	0,784
9.806	13.853	10.915	14.599	10.876	10.45 8	11.558	12,300	11.490	10 494	10.844	14 434	10,830	13.808	9 7 91
9.873	13.933	10.944	14.57D	10.831	10,451	11,467	12.305	11.448	10,451	10 794	14.524	10.930	13.927	9,871
0.682	0.576	0.266	-0.200	0.412	-0.447	-C.782	41.005	0.372	0.405	0.459	0.622	0928	0.858	0.913
B.467	11,651	12 096	10.984	14.750	11.516	14 387	10.710	14.257	11 537	14.716	10,878	11.928	11.582	8,472
8.534	11.654	12 006	10,916	14.693	11.448	14 224	10.517	14 224	11 467	14 692	10 934	12.030	11 652	e 533
3.796	0.031	-0.738	-0.619	-0.254	-0.591	-1 '34	-0.865	-0.235	-0.346	-0.168	D 233	D 536	D 607	0772
9.558	11.580	9.249	12.376	11.276	12 369	10 709	8 879	10 853	12 310	11284	12 273	9 109	11 478	9 547
9.642	11.540	9.118	12.265	11.267	12.305	10 617	8 793	10.817	12 305	11267	12 265	9 119	11.548	9.642
2.776	0.275	1.405	-0.895	42.095	49.514	-6.859	-0.965	-0.342	-0.037	-0.1•5	-0.063	0 11	0.607	0.992
8.486	11.654	12.103	10.975	14.691	11.488	14.288	10.690	44.323	11482	14.748	10 975	12,039	11.578	6.430
8 533	11.652	17.000	10.904	14.652	11 <i>.</i> 467	14.224	10.617	44.224	11448	14 693	10916	12.096	11.654	B 534
3 556	-0:016	-0647	-0657	0.007	-0.17a	C.457	0.666	0.691	0.300	0.364	0.542	0.270	D 679	1 2 3 7
B.845 j	13,691	10 906	14.597	1Q.826	10.518	11 51D	12 358	11 522	ID 497	10.894	14715	11 OR2	13 892	9.844
9.871	13.927	10.950	14 524	10 794	10 45 1	11 448	12 305	11 487	10 451	10 831	14 570	10.944	13 933	9873
0.264	0.254	0 210	-0.504	-0307	-0.592	-0,541	-0.430	-0 473	-0.442	-0 574	-0,0084	-1 332	0.585	0.596
8.378	12.597	12.169	10.824	12.266	10.894	14 725	11 248	I4 832	10775	12 188	10.834	12 284	:2 740	6 4 5 0
8.365	12.636	12.206	10.750	12.166	10.831	14 883	11 267	4 692	10794	12 168	10,796	12 221	12 843	6 401
3.347	0.313	0.339	-0.689	-0.817	-0.574	-0.219	0 188	0.413	0.177	-0.186	-0.347	-0.510	-0.785	-0.762
	7.008	13.677	10.703	10.829	14.668	10.998	12 222	10.960	14.407	10.733	10.672	13 782	7.097	
	7.935	13.750	10.68B	10.766	14.570	10.916	12 265	60 904	14.52	10.750	10690	13756	7.038	
	0.458	0.52B	42.055	-0.303	-0.256	0.0468	0.344	0.40%	0.252	0.153	D.238	-0.192	-0.837	
	5.485	11./28	13.698	12.172	10.927	12,000	9.093	L1 998	10.920	12,193	13 698	11.932	5.561	
	5.509	11.786	13.758	12.221	10.344	12.006	9,113	12 000	10.930	12.206	13753	11.786	5.511	
	0450	0.AUG	0.424	0,406	0.158	0.055	0.291	0.101	·0.178	6.109	0.452	-0.138	-0.903	
		5,492	6.990	12.514	13,785	11.531	1484	11.644	14.013	12.640	6.993	5.517		
		5 511	7.038	12,643	13 933	11654	1 549	11652	18.927	12.635	7.035	5.503		
		0.344	0 674	10343	10348	0.548	0552	0.072	-0.618	-0.027	0.590	-0.140		
				6.315	9 740	B 45 3	9.562	8513	9 931	5.400	Measure	ad Burrup	nunun) (итцу)
				6 401	9 873	6 5 3 4	9642	6 533	9 671	8,398	Calculat	ed Burnu	p (MNC/	MTU)
				13441	1.3646	0.848	0643	0 237	-0,611	-0036	l 🗶 Dimér	ence		

Figure	D-2		
Flux Ma	ap: CY2-FM11,	Measured and Calculated Relative Assembly	Burnup

FLUX MAP: CY3-FM12 MEASURED AND CALCULATED AVERAGE ASSEMBLY BURNUP CYCLE BURNUP: 13200.0 MWD/MTU

				8.10 8 6.046	7.504 7.443	10.441 10.379	8.959 8.925	10.447 10.381	7.499 7.447	6.092 6.050]			
				-1 025	-0 810	-0.591	-0.258	-0.348	-0.695	·D.693				
		6.64D	10.121	15.225	15.807 15.659	11.062	15,664	11.068	15.833 15.659	15.235	10.232	6.656		
		0.129	0.089	. 027	-D 943	-D 482	0070	-D 510	-1 035	-0.972	-0.6-2	-0.028		
	8.667	15 066	16 967	14 441	13 862	17.107	11 926	17 145	13917	14 489	17 165	15.023	0 .597	
	8.655	15 019	15 963	14 293	13,721	17.094	11.924	17 103	13 733	14 327	17,62	15.016	0.649 0.745	
	10.000	17 1 20	11419	1020	17.422	10 077	10 040	-0248	17.500	-1, 10	-0.044	10.044	0.780	
	16.445	17.021	12.573	14,454	17,304	13.345	13.435	13.353	17 408	14 460	12.573	10.966	10.130	
	-0.885	-0.651	-0.318	-0.208	-0.215	0.469	0.098	0 0 3 2	-0.523	-6.727	-0.356	0.048	0.514	
8.056	15.125	14.378	14.469	17.276	12.686	16.642	11.602	16.679	12.875	17 270	14,455	14.010	15.155	6.124
6.050 -0.100	15.087	14.327	14,460	17.255	12.876	16.747 0.631	11.804	16.754	12,802	17.255	-0.006	14.263	15.869 -0 N/3	6.048 -1.277
7.366	15.607	13,728	17.435	12,800	17.072	14.029	14.145	14,034	17.020	12.028	17,091	13,774	15,765	7.54D
7.447	15.869	13,733	17.406	12.882	17.105	14.134	14.258	14.128	17.105	12,878	17.394	13.721	15.658	7,448
0.692	0.365	0.007	-0.155	-0.160	0.184	0.744	0.798	0.668	0.498	0.404	D016	0.391	-0.865	-1.261
13.316	10.936	17.041	13.319	16.647	13.982	12.265	16,462	52.27E	13 979	16 558	13258	17 085	11 032	10.479
3.627	0.69B	0.361	0.253	0.641	1045	1 072	1 001	D 987	108	1034	0656	0.048	-0,210	-0.954
8.896	15,552	11 816	13 292	11 466	14 (951	18 490	11 852	16450	14 123	11593	13 337	11822	15 649	8.930
8.936	15.653	11 824	13 435	11 684	14 258	16 627	11 974	16 627	14 258	11 684	13 435	11 924	15 653	8.936
0.447	0.851	0918	1076	1 720	1475	0.830	1.030	1.078	0.961	0.781	C.738	0.664	0.025	0.033
10.351	10.976	16.977	13.206	16.667 16 147	14.018	12,300	16 478	12.264	14.015	16.703	12,301	17.039	1D 963	10.336
0.273	0.298	0 691	1.047	0.845	0.638	D.789	0.916	1.085	0.808	0.805	0.850	0.871	0.449	0 438
7.520	15.784	13.720	17,450	12 925	17 072	13 953	14 040	18.904	17.049	12.907	17 45a	13 7 3 3	15 558	7 395
7.443	15.658	13.721	17.334	12 878	17 105	14 128	14 258	14.134	17 105	12 680	17 403	13,733	15 669	7.447
-1.300	40.801	0.006	-0.319	-0.367	0.186	1 255	1,558	1 653	0.0001	-0 195	-0.581	-0.380	0.713	0.707
6 046	15 069	14 293	14 468	17 255	12 879	16 754	11 684	16.747	12.814	17.315	14.503	14.325	14.997	6.007 6.0%0
1 875	-1.865	-1 756	-0.245	-0.141	0.022	1 138	1,769	1.027	-0.509	-0347	-0.164	0.010	0.804	0.721
	10,294	17 214	12 831	14 489	17 449	13 270	13,328	13.323	17.473	14,451	12.545	17.021	10.153	
	10 130 -1 50£	16 9 98 -1 426	12 573	14 480	17 408	13.353	13.435	13.345	17.364	16.454	12.573	17.621	10.145	
	A 707	15,010	17 151	14 392	11.760	12 124	11 697	17184	12 80.3	14 490	0.225 17 DTT	15.105	-0 U/Q	
	8649	15 018	17 021	14.327	12,730	17,103	11.524	17.694	13.721	14.253	16.968	15.D16	6.655	
	-1 157	-1 276	-0 781	-0.085	-0 198	-0.123	0.520	-0.507	(1.031	0.952	0.636	-D SSR	-D \$28	
		8 717	10.153	14.910	15.483	11.067	15.757	11.108	15.855	15.31D	10.259	6 728		
		0.000	10.145	15.007	15.669 1.200 i	11.0°2 •0.405	15.653 6.405	0.869	15.656	-1.580	-1.644	e 849 -1,\75		
				5.921	7.301	10.473	9,015	10,500	7.555	6 141	Measure	d Burn u) ////WD/1	സം
				5.65D	7.447	10.381	an3Ę	10 379	7 449	6 0 4 6	Galculet	ed Burnu	p (MWO)	MUN
			1	2.005	1.395	-0.879	-6.880	-1.151	-1.492	-1.553	% Differ	алса		

Figure D-	3
Flux Map:	CY3-FM12, Measured and Calculated Relative Assembly Burnup

WARNING: This Document contains information classified under U.S. Export Control regulations as restricted from export outside the United States. You are under an obligation to ensure that you have a legal right to obtain access to this information and to ensure that you obtain an export license prior to any re-export of this information. Special restrictions apply to access by anyone that is not a United States citizen or a Permanent United States resident. For further information regarding your obligations, please see the information contained below in the section titled "Export Control Restrictions."

Export Control Restrictions

Access to and use of EPRI Intellectual Property is granted with the specific understanding and requirement that responsibility for ensuring full compliance with all applicable U.S. and foreign export laws and regulations is being undertaken by you and your company. This includes an obligation to ensure that any individual receiving access hereunder who is not a U.S. citizen or permanent U.S. resident is permitted access under applicable U.S. and foreign export laws and regulations. In the event you are uncertain whether you or your company may lawfully obtain access to this EPRI Intellectual Property, you acknowledge that it is your obligation to consult with your company's legal counsel to determine whether this access is lawful. Although EPRI may make available on a case by case basis an informal assessment of the applicable U.S. export classification for specific EPRI Intellectual Property, you and your company acknowledge that this assessment is solely for informational purposes and not for reliance purposes. You and your company acknowledge that it is still the obligation of you and your company to make your own assessment of the applicable U.S. export classification and ensure compliance accordingly. You and your company understand and acknowledge your obligations to make a prompt report to EPRI and the appropriate authorities regarding any access to or use of EPRI Intellectual Property hereunder that may be in violation of applicable U.S. or foreign export laws or regulations.

About EPRI

EPRI creates science and technology solutions for the global energy and energy services industry. U.S. electric utilities established the Electric Power Research Institute in 1973 as a nonprofit research consortium for the benefit of utility members, their customers, and society. Now known simply as EPRI, the company provides a wide range of innovative products and services to more than 1000 energyrelated organizations in 40 countries. EPRI's multidisciplinary team of scientists and engineers draws on a worldwide network of technical and business expertise to help solve today's toughest energy and environmental problems.

EPRI. Electrify the World

Program:

Nuclear Power

TR-109929

© 1998 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute and EPRI are registered service marks of the Electric Power Research Institute. Inc. EPRI. ELECTRIFY THE WORLD is a service mark of the Electric Power Research Institute, Inc.

Printed on recycled paper in the United States of America