Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - English River First Nation, Saskatchewan
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - English River First Nation, Saskatchewan
On September 13, 2010, the English River First Nation expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of thirteen English River First Nation reserve areas against five screening criteria using readily available information.
Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites
Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites
This report discusses the status of the commercial spent nuclear fuel (SNF) inventory in the United States, at both decommissioned and operating commercial nuclear power reactor sites; summarizes the contractual arrangement the government and utilities have under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) (Standard Contract), related litigation, and the financial liabilities resulting from the Department’s delay in performance under these contracts; provides a history of interim storage policy as it relates to commercial SN
Advanced Fuel Cycle Cost Basis
Advanced Fuel Cycle Cost Basis
This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models.
Spent Nuclear Fuel: Accumulating Quantities at Commercial Reactors Present Storage and Other Challenges
Spent Nuclear Fuel: Accumulating Quantities at Commercial Reactors Present Storage and Other Challenges
The amount of spent fuel stored on-site at commercial nuclear reactors will continue to accumulate—increasing by about 2,000 metric tons per year and likely more than doubling to about 140,000 metric tons—before it can be moved off-site, because storage or disposal facilities may take decades to develop. In examining centralized storage or permanent disposal options, GAO found that new facilities may take from 15 to 40 years before they are ready to begin accepting spent fuel. Once an off-site facility is available, it will take several more decades to ship spent fuel to that facility.
Evaluation of Burnup Credit for Accommodating PWR Spent Nuclear Fuel in High-capacity Cask Designs
Evaluation of Burnup Credit for Accommodating PWR Spent Nuclear Fuel in High-capacity Cask Designs
This paper presents an evaluation of the amount of burnup credit needed for high-density casks to
transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic
32-assembly cask and the current regulatory guidance were used as bases for this evaluation.
By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial
enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based
Monitored Retrievable Storage Project Plan
Monitored Retrievable Storage Project Plan
The purpose of this document is to describe the Monitored Retrievable Storage (MRS) Project and to establish approved cost and schedule baselines against which overall progress and management effectiveness shall be measured. For the sake of brevity, this Project Plan will be referred to as the Plan throughout this document.
Fast Flux Test Facility (FFTF) Reactor Fuel Criticality Calculations
Fast Flux Test Facility (FFTF) Reactor Fuel Criticality Calculations
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
slides - Canister Confinement Integrity, Integrated Plan for Addressing Potential Chloride-Induced Stress Corrosion Cracking of Austenitic Stainless Steel Dry Cask Storage System Canisters
slides - Canister Confinement Integrity, Integrated Plan for Addressing Potential Chloride-Induced Stress Corrosion Cracking of Austenitic Stainless Steel Dry Cask Storage System Canisters
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Waste Acceptance System Requirements Document, Revision 5, ICN 01
Waste Acceptance System Requirements Document, Revision 5, ICN 01
The purpose of this document is to establish waste acceptance technical requirements for the U.S. Department of Energy’s (DOE) Civilian Radioactive Waste Management System (CRWMS). These requirements and functions consist of two types: (a) internal CRWMS requirements derived from the Civilian Radioactive Waste Management System Requirements Document (CRD) (DOE 2007a) as illustrated in Figure 1, and (b) acceptance criteria imposed by the CRWMS on spent nuclear fuel (SNF) and high-level waste (HLW) delivered into the CRWMS.
Report on Radioactive Waste Ownership and Management of Long-Term Liabilities in EDRAM Member Countries
Report on Radioactive Waste Ownership and Management of Long-Term Liabilities in EDRAM Member Countries
This report has been prepared by an ad-hoc Working Group (WG) formed by ANDRA (France), NUMO (Japan), NAGRA (Switzerland) and ENRESA (Spain) in May 2003, after the EDRAM meeting held in Valencia to study the situation in the different EDRAM member countries regarding the treatment of radioactive waste ownership and management of long-term liabilities.
Program of Research and Development for Management and Disposal of Commercially Generated Radioactive Wastes: Record of Decision
Program of Research and Development for Management and Disposal of Commercially Generated Radioactive Wastes: Record of Decision
This Record of Decision has been prepared pursuant to the Regulations of
the council on Environmental Quality, 40 CFR Part 1805, on the selection of a
strategy for the disposal of commercially-generated radioactive wastes and the
supporting program of research and development.
The United States Department of Energy has decided to (1) adopt a strategy to
develop mined geologic repositories for disposal of commercially-generated
high-level and transuranic radioactive wastes (while continuing to examine
Direct Radiation Dose Consequence Calculation for Category 1 and 2 Event Sequences
Direct Radiation Dose Consequence Calculation for Category 1 and 2 Event Sequences
Performance objectives for the geologic repository operations area through permanent closure in 10 CFR 63.111 identify compliance with regulatory dose limits for workers and members of the public as a design objective. The purpose of this design calculation is to determine direct radiation dose consequences for Category 1 and 2 event sequences. It does not include worker dose assessment for recovery operations following Category 1 event sequences.
Safety Evaluation of a Geological Repository
Safety Evaluation of a Geological Repository
The Law of 30 December 1991 [1] confers to Andra the mission of assessing the feasibility of a repository of high-level and long-lived (HLLL) waste in a deep geological formation.
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Managing Nuclear Waste - A Better Idea
Managing Nuclear Waste - A Better Idea
All activities which involve the use of radioactive material inevitably result in nuclear waste as a by-product of their operation. Most of the waste produced by such activities as medical diagnosis and therapy, field and laboratory research, and industrial processes is low-level radioactive waste—primarily small amounts of radioactivity in a large volume of matter.
Final 40 CFR 19: Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes
Final 40 CFR 19: Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes
Final 40 CFR 40 Ruling on Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel , High-Level and Transuranic Radioactive Wastes
Socio-Technical Challenges to Implementing Geological Disposal: a Synthesis of Findings from 14 Countries
Socio-Technical Challenges to Implementing Geological Disposal: a Synthesis of Findings from 14 Countries
This report aims to clarify the dynamics of socio-technical challenges in the implementation of geological disposal (GD) for High Level Waste (HLW) and Spent Nuclear Fuel (SNF). Drawing on the 14 country reports produced within InSOTEC’s WP1 the synthesis focuses on socio-technical challenges that appear across national contexts. The synthesis report elucidates issues made visible through bringing together the analyses of different national contexts.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Northern Village of Pinehouse, Saskatchewan
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Northern Village of Pinehouse, Saskatchewan
On August 17, 2010, the Northern Village of Pinehouse, Saskatchewan and the Kineepik Métis Local expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO 2010). This report summarizes the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of the Pinehouse area against five screening criteria using readily available information.
Republic of Hungary National Report, Second Report, prepared in the Framework on the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
Republic of Hungary National Report, Second Report, prepared in the Framework on the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
The Republic of Hungary was among the first to sign the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (hereafter Convention), established under the auspices of the International Atomic Energy Agency, on 29 September 1997, and ratified it on 2 June 1998. The Convention was promulgated in Act LXXVI of 2001. In order to fulfill the obligations of Article 32 of the Convention the present National Report has been prepared and submitted.
Republic of Hungary National Report, Document prepared in the Framework on the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, First Report
Republic of Hungary National Report, Document prepared in the Framework on the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, First Report
The Republic of Hungary was among the first to sign the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (hereafter Convention), established under the auspices of the International Atomic Energy Agency, on 29th September 1997, and ratified it on 2nd June 1998. The Convention was promulgated in Act LXXVI of 2001. In order to fulfil the obligations of Article 32 of the Convention the present National Report has been prepared and submitted.
Experience Gained From Programs to Manage High-Level Radioactive Waste and Spent Nuclear Fuel in the United States and Other Countries, A Report to Congress and the Secretary of Energy
Experience Gained From Programs to Manage High-Level Radioactive Waste and Spent Nuclear Fuel in the United States and Other Countries, A Report to Congress and the Secretary of Energy
This report explores how 13 nations are carrying out efforts to find a permanent solution for isolating and containing high-level radioactive waste (HLW) and spent nuclear fuel (SNF) generated within their borders Many forces shape how those efforts are designed and implemented Some of the forces are technical, including choices made about what reactor technology to adopt and about what nuclear fuel cycle to pursue.
UK Government and Devolved Administration Response to the Committee on Radioactive Waste Management (CoRWM) Report on 'Interim Storage of Higher Activity Wastes and the Management of Spent Fuels, Plutonium and Uranium'
UK Government and Devolved Administration Response to the Committee on Radioactive Waste Management (CoRWM) Report on 'Interim Storage of Higher Activity Wastes and the Management of Spent Fuels, Plutonium and Uranium'
The UK Government and the devolved administrations_ (for Scotland, Wales and Northern Ireland, from here on referred to as "The Government") statement of October 2006 made clear there will be strong independent scrutiny of the proposals, plans and programmes to deliver geological disposal of higher activity radioactive waste.
Civilian Nuclear Spent Fuel Temporary Storage Options
Civilian Nuclear Spent Fuel Temporary Storage Options
The Department of Energy (DOE) is studying a site at Yucca Mountain, Nevada, for a permanent underground repository for highly radioactive spent fuel from nuclear reactors, but delays have pushed back the facility’s opening date to 2010 at the earliest. In the meantime, spent fuel is accumulating at U.S. nuclear plant sites at the rate of about 2,000 metric tons per year. Major options for managing those growing quantities of nuclear spent fuel include continued storage at reactors, construction of a DOE interim storage site near Yucca Mountain, and licensing of private storage facilities.