slides - The Importance of Crane Maintenance
slides - The Importance of Crane Maintenance
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This analysis documents the screening analysis for postclosure criticality features, events, and
processes (FEPs). It addresses the probability of criticality events resulting from degradation
processes as well as disruptive events (i.e., seismic, igneous, and rockfall). Probability
evaluations are performed utilizing the configuration generator model described in Configuration
Generator Model for In-Package Criticality1, a component of the methodology from Disposal
The purpose of this calculation is to estimate the probability of criticality in a pressurized water reactor (PWR) uncanistered fuel waste package during the postclosure phase of the repository as a function of various waste package material, loading, and environmental parameters. Parameterization on the upper subcritical limit that is used to define the threshold for criticality will also be performed. The possibility of waste package misload due to human or equipment error during preclosure is also considered in estimating the postclosure criticality probability.
Disposal Criticality Analysis Methodology Topical Report1 describes a methodology for performing postclosure criticality analyses within the repository at Yucca Mountain, Nevada. An important component of the postclosure criticality analysis is the calculation of conservative isotopic concentrations for spent nuclear fuel. This report documents the isotopic calculation methodology. The isotopic calculation methodology is shown to be conservative based upon current data for pressurized water reactor and boiling water reactor spent nuclear fuel.
The United States Department of Energy (DOE) is developing a postclosure methodology for criticality analysis to evaluate disposal of commercial spent nuclear fuel and other high-level waste in a geologic repository. A topical report on the postclosure disposal criticality analysis methodology is scheduled to be submitted to the United States Nuclear Regulatory Commission (NRC) for formal review in 1998 (to be verified). This technical report is being issued to describe the current status of the postclosure methodology development effort.
These guidelines were developed in accordance with the requirements of Section 112(a) of the Nuclear Waste Policy Act of 1982 for use by the Secretary of Energy in evaluating the suitability of sites. The guidelines will be used for suitability evaluations and determinations made pursuant to Section 112(b). The guidelines set forth in this part are intended to complement the requirements set forth in the Act, 10 CFR part 60, and 40 CFR part 191. The DOE recognizes NRC jurisdiction for the resolution of differences between the guidelines and 10 CFR part 60.
In this paper, the major elements of the site selection and characterization processes used in the U.S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U.S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U.S. program.