Skip to main content

Frequency of SNF Misload for Uncanistered Fuel Waste Package

The purpose ofthis engineering calculation is to estimate the frequency of misloading spent nuclear fuel (SNF) assemblies that would result in exceeding the criticality design basis of a waste package (WP). This type of misload - a reactivity misload - results from the incorrect placement of one or more fuel assemblies into a waste package such that the criticality controls do not match the required controls for the fuel assemblies.

Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.

External Criticality Calculation for DOE SNF Codisposal Waste Packages

The purpose of this document is to evaluate the potential for criticality for the fissile material that could accumulate in the near-field (invert) and in the far-field (host rock) beneath the U.S. Department of Energy (DOE) spent nuclear fuel (SNF) codisposal waste packages (WPs) as they degrade in the proposed monitored geologic repository at Yucca Mountain. The scope of this calculation is limited to the following DOE SNF types: Shippingport Pressurized Water Reactor (PWR), Enrico Fermi, Fast Flux Test Facility (FFTF), Fort St.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.