Skip to main content

Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses

This report presents studies performed to support the development of a technically justifiable approach for
addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality
safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for
addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is
examined in detail to identify profiles that maximize the neutron multiplication factor, keff, assess its

Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs

This report presents studies to assess reactivity margins and loading curves for pressurized water reactor
(PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-
assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to
demonstrate the impact on the predicted effective neutron multiplication factor, keff, and burnup-credit
loading curves. The purpose of this report is to provide a greater understanding of the importance of

Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analyses

The U.S. Nuclear Regulatory Commission's guidance on burnup credit for pressurized-water-reactor (PWR) spent nuclear fuel (SNF) recommends that analyses be based on a cooling time of five years. This recommendation eliminates assemblies with shorter cooling times from cask loading and limits the allowable credit for reactivity reduction associated with cooling time. This report examines reactivity behavior as a function of cooling time to assess the possibility of expanding the current cooling time recommendation for SNF storage and transportation.

Study of the Effect of Integral Burnable Absorbers for PWR Burnup Credit

The Interim Staff Guidance on burnup credit issued by the U.S. Nuclear Regulatory Commission's Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.