Skip to main content

Intact and Degrade Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package

The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy’s (DOE) Three Mile Island – Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).

CRC Reactivity Calculations for Three Mile Island Unit 1

The purpose of this calculation is to document the Three Mile Island Unit 1 pressurized water reactor {PWR) reactivity calculations performed as part o f the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid- cycle when the reactor resumed operation after a shutdown.

CRC Depletion Calculations for Three Mile Island Unit 1

The purpose of this calculation is to document the Three Mile Island Unit 1 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.

SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5

The requirements of ANSI/ANS-8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original "fresh" composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to

Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package

The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).

Criticality Potential of Waste Packages Affected by Igneous Intrusion

The objective of this calculation is to evaluate the criticality potential for co-disposal waste packages affected by an igneous intrusion disruptive event in the emplacement drifts. The scope of this calculation is limited to U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) types in DOE standardized SNF canisters or Multi-Canister Overpack (MCO) Canisters.

Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima
Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three
Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be
drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery
effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics:

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.