Skip to main content

Mortality of Older Construction and Craft Workers Employed at Department of Energy (DOE) Nuclear Sites

Background The U.S. Department of Energy (DOE) established medical screening
programs at the Hanford Nuclear Reservation, Oak Ridge Reservation, the Savannah
River Site, and the Amchitka site starting in 1996.Workers participating in these programs
have been followed to determine their vital status and mortality experience through
December 31, 2004.
Methods A cohort of 8,976 former construction workers from Hanford, Savannah River,
Oak Ridge, and Amchitka was followed using the National Death Index through December

Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister

This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.

Surveillance of Respiratory Diseases Among Construction and Trade Workers at Department of Energy Nuclear Sites

Background Medical screening programs were begun in 1996 and 1997 at three Department
of Energy (DOE) nuclear weapons facilities (Hanford Nuclear Reservation, Oak
Ridge, and the Savannah River Site) to evaluate whether current and former construction
workers are at significant risk for occupational illnesses. The focus of this report is
pneumoconiosis associated with exposures to asbestos and silica among workers enrolled
in the screening programs through September 30, 2001.

Surveillance of Hearing Loss Among Older Construction and Trade Workers at Department of Energy Nuclear Sites

Background Medical screening programs at three Departments of Energy (DOE)
nuclear weapons facilities (Hanford Nuclear Reservation, Oak Ridge, and the Savannah
River Site) have included audiometric testing since approximately 1996. This report
summarizes hearing evaluations through March 31, 2003.
Methods Occupational examinations included a medical history, limited physical
examination, and tests for medical effects from specific hazards, including audiometric
testing. Hearing thresholds by frequency for DOE workers were compared to agestandardized

DOE SRS HLW Glass Chemical Composition

The purpose of this engineering calculation is to provide the chemical composition for the Department of Energy (DOE) Savannah River Site (SRS) High-Level Waste (HLW) glass. Since the glass is to be co-disposed with other DOE spent nuclear fuels (SNFs) in the Monitored Geologic Repository (MGR), its chemical composition is needed for the design of the co-disposal canisters and waste packages in term of criticality and degradation.

Letter from the BRC to the Members of the South Carolina Congressional Delegation

Dear Members of the South Carolina Congressional Delegation:
Thank you all for your letter of October 27th. We appreciate hearing your views on the
Yucca Mountain project, the safety benefits of deep geologic disposal, and the
importance of the retaining the H Canyon facility at the Department of Energy’s
Savannah River Site.
In our draft report, the Commission finds that deep geologic disposal is an essential
component of a comprehensive nuclear waste management system. Your comments

Screening for Beryllium Disease Among Construction Trade Workers at Department of Energy Nuclear Sites

Background To determine whether current and former construction workers are at
significant risk for occupational illnesses from work at the Department of Energy’s (DOE)
nuclear weapons facilities, screening programs were undertaken at the Hanford Nuclear
Reservation, Oak Ridge Reservation, and the Savannah River Site.

Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase II Degraded Codisposal Waste Package Internal Criticality

This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and critically control material.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.