Skip to main content

Assessment of Benefits for Extended Burnup Credit in Transporting PWR Spent Nuclear Fuel in the USA

This paper presents an assessment of the benefits for extended burnup credit in transporting
pressurized-water-reactor (PWR) spent nuclear fuel (SNF) in the United States. A prototypic 32-
assembly cask and the current regulatory guidance were used as bases for this assessment. By
comparing recently released PWR discharge data with actinide-only-based loading curves, this
evaluation shows that additional negative reactivity (through either increased credit for fuel burnup or


A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks

The benefits of burnup credit and the technical issues associated with utilizing burnup credit in spent
nuclear fuel (SNF) casks have been studied in the United States for almost two decades. The issuance of the
U.S. Nuclear Regulatory Commission (NRC) staff guidance for actinide-only burnup credit in 2002 was a
significant step toward providing a regulatory framework for using burnup credit in transport casks. However,
adherence to the current regulatory guidance (e.g., limit credit to actinides) enables only about 30% of the existing


Translation of Technical Development on Burn-Up Credit for Spent LWR Fuels

Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since
1990 under the contract with Science and Technology Agency of Japan entitled ‘Technical Development on
Criticality Safety Management for Spent LWR Fuels.’ Main purposes of this work are to obtain the
experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup
and criticality calculation codes. In this work three major experiments of exponential experiments for