Skip to main content

Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network

The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of uranium minerals (soddyite), plutonium oxide (Pu01), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water or clayey material fraction in the accumulation and the water fraction in the tuff


Drift-Scale THC Seepage Model

The purpose of this report is to document the thermal-hydrologic-chemical (THC) seepage model and model simulations. The simulations predict the composition of fracture water that could potentially seep into repository emplacement drifts and the composition of the associated gas phase. The THC seepage model is not used to feed the total system performance assessment (TSPA) for the license application (LA).


Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

The objective of this analysis is to characterize a codisposal canister containing MIT or ORR fuel in the Five-Pack Defense High-Level Waste (5-DHLW) Waste Package (WP) to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame. The purpose of this analysis is to investigate the disposal criticality and shielding issues for the DHLW WP and establish DHLW WP and codisposal canister compatibility with the MGDS, and to provide criticality and shielding evaluations for the preliminary DHLW WP design.