Skip to main content

Aging Facility Criticality Safety Calculations

This design calculation is a revision of the previous criticality evaluation of the operations and
processes that are performed in the Aging Facility. It will also demonstrate and assure that the
storage and aging operations to be performed in the Aging Facility meet the criticality safety
design criteria in the Project Design Criteria Document (BSC 2005i, Section 4.9.2.2), and the
nuclear criticality safety requirements described in the SNF Aging System Description Document

Features, Events, and Processes for the Total System Performance Assessment: Methods

The purpose of this methods report is to document: (1) the origin, and the methods used in the development of a comprehensive list of features, events, and/or processes (FEPs) that could potentially affect the postclosure performance of the Yucca Mountain disposal system; (2) the methodology and guidance used to screen FEPs for inclusion or exclusion from Total System Performance Assessment for the License Application (TSPA-LA) analysis; (3) the methodology and guidance used to create scenario classes; and (4) compliance with NUREG-1804 (NRC 2003.

Preclosure Criticality Safety Analysis

The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.

Postclosure Analysis of the Range of Design Thermal Loadings

This report presents a two-phased approach to develop and analyze a “thermal envelope” to represent the postclosure response of the repository to the anticipated range of repository design thermal loadings. In Phase 1 an estimated limiting waste stream (ELWS) is identified and analyzed to determine the extremes of average and local thermal loading conditions. The coldest thermal loading condition is represented by an emplacement drift loaded exclusively with high-level radioactive waste (HLW) and/or defense spent nuclear fuel (DSNF).

In-Package Chemistry Abstraction

This report was developed in accordance with the requirements in Technical Work Plan for Postclosure Waste Form Modeling (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA).

Technical Bases for Yucca Mountain Standards, Executive Summary

The United States currently has no place to dispose of the high-level radioactive waste
resulting from the production of the nuclear weapons and the operation of nuclear
electronic power plants. The only option under formal consideration at this time is to place
the waste in an underground geologic repository at Yucca Mountain in Nevada. However,
there is strong public debate about whether such a repository could protect humans from
the radioactive waste that will be dangerous for many thousands of years. This book

Criticality Model

The Disposal Criticality Analysis Methodology Topical Report (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, Models, in that they are procedural, rather than mathematical.

Data Qualification Report: Mineralogy Data for Use on the Yucca Mountain Project

This DQR uses the technical assessment methods according to Attachment 2 of AP-SIII.2Q, Rev. 0, ICN 3, to qualify DTN LADB831321AN98.002. The data addressed in this DQR have been cited in CRWMS M&O (2000b) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high level nuclear waste. CRWMS M&O (2000b) refers to mineral analyses that are unqualified.

Waste Package Probabilistic Criticality Analysis: Summary Report of Evaluations in 1997

The emplacement of nuclear waste in the proposed geologic repository must satisfy relevant regulatory requirements with respect to criticality, 10CFR60. I31 (h) (Ref. 25). The waste packages for the various waste forms will be designed to preclude criticality (typically by the inclusion of neutron absorbers) even if the waste package becomes filled with water. Criticality may, however, be possible if the contents of the waste package become degraded in such a way that the fissile material can be separated from the neutron absorbers, while sufficient moderator is retained.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.