Skip to main content

NRC SFST ISG-18: The Design and Testing of Lid Welds on Austenitic Stainless Steel Canisters as the Confinement Boundary for Spent Fuel Storage

The purpose of this ISG is to address the design and testing of the various closure welds (“lid
welds”) associated with the redundant closure of all-welded austenitic stainless steel canisters:

As an acceptable confinement boundary under 10 CFR Part 72.236(e) (Ref. 1) for
purposes of demonstrating no credible leakage of radioactive material during storage
and satisfying the dose limits under normal and off-normal conditions in 10 CFR Parts
72.104(a) and 72.106(b).

Community

NRC SFST ISG-17: Interim Storage of Greater Than Class C Waste

Guidance is necessary on the interim storage of greater than Class C (GTCC) waste due to the
revision of Title 10 of the Code of Federal Regulations (10 CFR) Part 72. The revision to 10
CFR Part 72 is documented in final rule, ìInterim Storage for GTCC Waste,î and permits the
storage of GTCC wastes at independent spent fuel storage installations (ISFSI) or monitored
retrievable storage (MRS) facilities. The GTCC wastes, if stored at an ISFSI, must be in solid
form, and stored in a separate container (i.e., GTCC waste may not be stored in a cask that

Community

NRC SFST ISG-11: Cladding Considerations for the Transportation and Storage of Spent Fuel

The staff has broadened the technical basis for the storage of spent fuel including assemblies
with average burnups exceeding 45 GWd/MTU. This revision to Interim Staff Guidance No. 11
(ISG-11) addresses the technical review aspects of and specifies the acceptance criteria for
limiting spent fuel reconfiguration in storage casks. It modifies the previous revision of the ISG
in three ways: (1) by clarifying the meaning of some of the acceptance criteria contained in

Community

NRC SFST ISG-10: Alternatives to the ASME Code

There is no existing American Society of Mechanical Engineers (ASME) Code for the design
and fabrication of spent fuel dry storage casks. Therefore, ASME Code Section III, is
referenced by NUREG-1536, “Standard Review Plan for Dry Cask Storage Systems,” as an
acceptable standard for the design and fabrication of dry storage casks. However, since dry
storage casks are not pressure vessels, ASME Code Section III, cannot be implemented
without allowing some alternatives to its requirements.

Revision 1

Community

NRC SFST ISG-8: Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks

Title 10 of the Code of Federal Regulations (10 CFR) Part 71, Packaging and Transportation of
Radioactive Material, and 10 CFR Part 72, Licensing Requirements for the Independent
Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater
Than Class C Waste, require that spent nuclear fuel (SNF) remain subcritical in transportation
and storage, respectively. Unirradiated reactor fuel has a well-specified nuclide composition
that provides a straightforward and bounding approach to the criticality safety analysis of

Community

Failure Modes and Effects Analysis (FMEA) of Welded Stainless Steel Canisters for Dry Cask Storage Systems

Due to the delayed opening of a final geological repository for spent nuclear fuel, the lifespan of dry cask storage systems may be increased to 120 years or longer. To ensure safety over this extended period of interim storage, degradation mechanisms that have the potential to cause penetration of the canister confinement boundary must be evaluated and understood.

Community

Dry Transfer System for Spent Fuel: Project Report: A System Designed to Achieve the Dry Transfer of Bare Spent Fuel Between Two Casks

Use of an on-site dry transfer system (DTS) allows utilities with limited crane capacities or other plant restrictions to take advantage of large efficient storage systems. By using this system, utilities can also transfer fuel from loaded storage casks to transport casks without returning to their fuel storage pool.

Community