slides - Deep Borehole Disposal of Spent Fuel
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
About 20,000 metric tons of spent, or used, nuclear
fuel have accumulated since the beginning of commercial
nuclear power prbduction in the United States. At the end
of the currently licensed period of all existing nuclear power
plants and those under construction, the amount of spent
nuclear fuel is expected to total 87,000 metric tons.
Thus far, practically all of the spent nuclear fuel is
stored in water-filled pools at reactor sites. However, space
does not exist in the pools to store all the spent fuel expected
To achieve energy security and greenhouse gas (GHG) emission reduction objectives, the United States must develop and deploy clean, affordable, domestic energy sources as quickly as possible. Nuclear power will continue to be a key component of a portfolio of technologies that meets our energy goals. This document provides a roadmap for the Department of Energy’s (DOE’s) Office of Nuclear Energy (NE) research, development, and demonstration activities that will ensure nuclear energy remains viable energy option for the United States.
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied·to future depletion calculations using SAS2H in which no measurements are available. ·
This new report from the National Research Council’s Nuclear and Radiation Studies Board (NRSB) and the Transportation Research Board reviews the risks and technical and societal concerns for the transport of spent nuclear fuel and high-level radioactive waste in the United States. Shipments are expected to increase as the U.S. Department of Energy opens a repository for spent fuel and high-level waste at Yucca Mountain, and the commercial nuclear industry considers constructing a facility in Utah for temporary storage of spent fuel from some of its nuclear waste plants.
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOE-SNF) canister containing Massachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five-Pack Defense High-Level Waste (DHLW) waste package to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame.
This report evaluates the radiological impacts during postulated accidents associated with the
transportation of spent nuclear fuel to the proposed Yucca Mountain repository, using the
RADTRAN 5.5 computer code developed by Sandia National Laboratories. RADTRAN 5.5 can
be applied to estimate the risks associated both with incident-free transportation of radioactive
materials as well as with accidents that may be assumed to occur during transportation. Incidentfree
transportation risks for transport of spent nuclear fuel to Yucca Mountain were evaluated in
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT'">This report fulfills the M1 milestone M11UF041401, “Storage R&D Opportunities Report” under Work Package Number FTPN11UF0414. </span></p>
In response to the remand of the U.S. Court of Appeals for the District of Columbia Circuit (Minnesota v. NRC, 602 F.2d 412 (1979)), and as a continuation of previous proceedings conducted in this area by NRC (44 Fed. Reg. 61,372), the Commission initiated a generic rulemaking proceeding on October 25, 1979.