Skip to main content

Initial Radionuclide Inventories

The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only.

Community

Geochemistry Model Validation Report: Material Degradation and Release Model

The purpose of the material degradation and release (MDR) model is to predict the fate of the waste package materials, specifically the retention or mobilization of the radionuclides and the neutron-absorbing material as a function of time after the breach of a waste package during the 10,000 years after repository closure. The output of this model is used directly to assess the potential for a criticality event inside the waste package due to the retention of the radionuclides combined with a loss of the neutron-absorbing material.

Community

Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository

The purpose of this document is to present the methodology to be used for development of the Subcritical Limit (SL) for post closure conditions for the Yucca Mountain repository. The SL is a value based on a set of benchmark criticality multiplier, keff> results that are outputs of the MCNP calculation method. This SL accounts for calculational biases and associated uncertainties resulting from the use of MCNP as the method of assessing kerr·

Community

Probability of a PWR Uncanistered Fuel Waste Package Postclosure Criticality

The purpose of this calculation is to estimate the probability of criticality in a pressurized water reactor (PWR) uncanistered fuel waste package during the postclosure phase of the repository as a function of various waste package material, loading, and environmental parameters. Parameterization on the upper subcritical limit that is used to define the threshold for criticality will also be performed. The possibility of waste package misload due to human or equipment error during preclosure is also considered in estimating the postclosure criticality probability.

Community

Isotopic Models for Commercial SNF Burnup Credit

Disposal Criticality Analysis Methodology Topical Report1 describes a methodology for performing postclosure criticality analyses within the repository at Yucca Mountain, Nevada. An important component of the postclosure criticality analysis is the calculation of conservative isotopic concentrations for spent nuclear fuel. This report documents the isotopic calculation methodology. The isotopic calculation methodology is shown to be conservative based upon current data for pressurized water reactor and boiling water reactor spent nuclear fuel.

Community

Disposal Criticality Analysis Methodology Technical report

The United States Department of Energy (DOE) is developing a postclosure methodology for criticality analysis to evaluate disposal of commercial spent nuclear fuel and other high-level waste in a geologic repository. A topical report on the postclosure disposal criticality analysis methodology is scheduled to be submitted to the United States Nuclear Regulatory Commission (NRC) for formal review in 1998 (to be verified). This technical report is being issued to describe the current status of the postclosure methodology development effort.

Community

Screening Analysis of Criticality Features, Events, and Processes for License Application

The purpose of this analysis report is to evaluate the features, events, and processes (FEPs) associated with criticality and document the screening decision for either inclusion or exclusion of criticality in the Total System Performance Assessment for License Application (TSPA-LA). The FEPs associated with criticality address scenarios that include initiators of sequences of events or processes that could lead to configurations that have potential for criticality in the repository.
Community

Final 10 CFR 960: General Guidelines for the Preliminary Screening of Potential Sites for a Nuclear Waste Repository

These guidelines were developed in accordance with the requirements of Section 112(a) of the Nuclear Waste Policy Act of 1982 for use by the Secretary of Energy in evaluating the suitability of sites. The guidelines will be used for suitability evaluations and determinations made pursuant to Section 112(b). The guidelines set forth in this part are intended to complement the requirements set forth in the Act, 10 CFR part 60, and 40 CFR part 191. The DOE recognizes NRC jurisdiction for the resolution of differences between the guidelines and 10 CFR part 60.

Site Selection and Characterization Processes for Deep Geologic Disposal of High Level Nuclear Waste

In this paper, the major elements of the site selection and characterization processes used in the U.S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U.S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U.S. program.