Skip to main content

Preclosure Criticality Safety Analysis

The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste 3

The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel1 and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities.

NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals

This test protocols report presents the NRC staff’s preliminary plans for an experimental phase of the Package Performance Study (PPS), which is examining the response of transportation casks to extreme transportation accident conditions. The staff proposes to conduct tests of full-scale rail and full-scale truck casks including a high-speed impact with an unyielding surface followed by an extreme fire test. The NRC has a contract in place with Sandia National Laboratories (SNL) to conduct the impact and fire tests and to carry out a series of analyses to support the test program.

Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned from Prior Shipping Campaigns

The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of
Energy (DOE) responsibility for developing and managing a Federal system for the disposal of
spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian
Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and
disposing of SNF and HLW at the Yucca Mountain repository (if licensed) in a manner that
protects public health, safety, and the environment; enhances national and energy security; and

Dry Transfer Facility Criticality Safety Calculations

This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the Project Design Criteria (PDC) Document (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], p.

Transportation and Storage Subcommittee Report to the Full Commission DRAFT

The main question before the Transportation and Storage Subcommittee was whether the United States
should change its approach to storing and transporting spent nuclear fuel (SNF) and high-level
radioactive waste (HLW) while one or more permanent disposal facilities are established.
To answer this question and to develop specific recommendations and options for consideration by the
full Commission, the Subcommittee held multiple meetings and deliberative sessions, visited several

Transportation Planning and Execution: Commercial Spent Nuclear Fuel

There have been roughly 2,600 shipments of commercial spent fuel in this country over the past three decades or so. Although this is not an enormous volume by European standards, it is nevertheless significant. These shipments fall into two general categories: individual and "campaign."
There have been a number of individual shipments where lead test assembly fuel was shipped from a reactor to a laboratory for examination. This is an important part of reactor fuel development.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.