Skip to main content

Radioactive Waste Management Programmes in OECD/NEA Member Countries: Belgium

A summary of the radioactive waste management programs in Belgium, including the national nuclear energy context; sources, types, and quantities of waste; radioactive waste management policies and programs; research and development; decommissioning and dismantling policies and projects; transport; authorities and implementing organizations; financing; and public information.

Probabilistic External Criticality Evaluation (SCPB: N/A)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide a probabilistic evaluation of the potential for criticality of fissile material which has been transported from a geologic repository containing breached waste packages of commercial spent nuclear fuel (SNF). This analysis is part of a continuing investigation of the probability of criticality resulting from the emplacement of spent nuclear fuel in a geologic repository.


Letter - Request Approval to Establish and Populate the Ad Hoc Subcommittee on Co‐mingling of Defense and Commercial Wastes

Dear Tim:
As we work to complete our final recommendations to the Secretary by January 29, 2012,
we have determined that our efforts would be aided by the formation of an ad hoc
subcommittee to investigate the issue of co‐mingling of defense and commercial wastes.
Specifically, the ad hoc subcommittee would review and make a recommendation to the
Commission on the issue of whether the 1985 Presidential decision to co‐mingle defense
and commercial wastes for disposal should be revisited in light of changes that have


Isotopic Model for Commercial SNF Burnup Credit

Disposal Criticality Analysis Methodology Topical Report describes a methodology for performing postclosure criticality analyses within the repository at Yucca Mountain, Nevada. An important component of the postclosure criticality analysis is the calculation of conservative isotopic concentrations for spent nuclear fuel. This report documents the isotopic calculation methodology. The isotopic calculation methodology is shown to be conservative based upon current data for pressurized water reactor and boiling water reactor spent nuclear fuel.


Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)

This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.


CSNF Loading Curve Sensitivity Analysis

The purpose of this scientific analysis report, CSNF Loading Curve Sensitivity Analysis, is to establish the required minimum burnup as a function of initial enrichment for both pressurized water reactor (PWR) and boiling water reactor (BWR) commercial spent nuclear fuel (CSNF) that would allow permanent disposal of these waste forms in the geologic repository at Yucca Mountain. The relationship between the required minimum burnup and fuel assembly initial enrichment forms a loading curve.


Managing Nuclear Waste - A Better Idea

All activities which involve the use of radioactive material inevitably result in nuclear waste as a by-product of their operation. Most of the waste produced by such activities as medical diagnosis and therapy, field and laboratory research, and industrial processes is low-level radioactive waste—primarily small amounts of radioactivity in a large volume of matter.


Management of Commercially Generated Radioactive Waste

In the course of producing electrical power in light water.reactors (LWRs), the uranium
fuel accumulates fission products until the fission process is no longer efficient for power
production. At that point the fuel is removed from the reactor and stored in water basins
to allow radioactivity to partially decay before further disposition. This fuel is referred
to as "spent fuel." Although spent fuel as At is discharged from a reactor is intensely
radioactive, it has been stored safely in moderate quantities for decades. Spent fuel could


Code to Code Comparison of One- and Two-Dimensional Methods

This calculation file provides comparisons of one- and two-dimensional methods for calculating the isotopic content of spent nuclear fuel. The one-dimensional methods use the SAS2H sequence of SCALE 4.4a (Reference 7.1) and the SAS2 sequence of SCALE 5.0 (Reference 7.2). The two-dimensional method uses the TRITON control module along with the T-DEPL sequence of SCALE 5.0 (Reference 7.3). The SAS2H results for SCALE 4.4a are taken from Reference 7.4. Data from previous two-dimensional calculations (Reference 7.5) using CASM03 will also be used for comparisons with TRITON.