Skip to main content

Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.

Evaluation of Internal Criticality of the Plutonium Disposition Ceramic Waste Form

The purpose of this calculation is to perform partially and fully degraded mode criticality evaluations of plutonium disposed of in a ceramic waste form and emplaced in a Monitored Geologic Repository. The partially degraded mode is represented by the immobilized plutonium ceramic discs piled in the bottom of the waste package (WP) while neutron absorbers begin to leach out of the discs.

PWR Axial Burnup Profile Analysis

The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.

Data Analysis for Infiltration Modeling: Extracted Weather Station Data Used to Represent Present-Day and Potential Future Climate Conditions in the Vicinity of Yucca Mountain

The purpose of this analysis is to identify, extract, and reformat weather (meteorological) data that is appropriate for use as input to an infiltration model, within the Yucca Mountain region. The analysis uses relevant meteorological data (e.g., precipitation and temperature) from source stations, and reformats or converts the data into a form suitable for the generation of meteorological conditions for a 10,000-year future climate in the Yucca Mountain region.

General Corrosion and Localized Corrosion of the Drip Shield

The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall.
The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared ·according to Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 171583]).

Critical Limit Development For 21 PWR Waste Package

This calculation uses regression (CLReg V1.0 computer code) and non-parametric statistical methods, as specified in References 1 and 12, to develop the critical limit for the 21 Pressurized Water Reactor (PWR) spent nuclear fuel (SNF) waste package (WP) in the proposed geologic repository at Yucca Mountain, Nevada. The critical limit is a limiting value of the effective neutron multiplication factor at which a WP configuration is considered potentially critical.

Waste Package, LCE, CRC, and Radiochemical Assay Comparison Evaluation

The purpose of this calculation is to document the validity of the commercial reactor criticals (CRC) as a source for a spent nuclear fuel benchmark, and to characterize the neutronic similarities between a CRC and a waste package (WP). This report illustrates comparisons of neutron spectrum and the effects on criticality arising from physical differences between a WP and a CRC. This report is an engineering calculation supporting the development of the disposal criticality analysis methodology, performed under Quality Administrative Procedure (QAP)-3-15 Revision 0.

Westinghouse 17x17 MOX PWR Assembly- Waste Package Criticality Analysis (SCPB: N/A)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17x17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi- Purpose Canister (MPC) PWR waste package concepts.

Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form

The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.

Bias and Range of Applicability Determinations for Commercial Nuclear Fuels

The purpose of this calculation is to apply the process described in the Preclosure Criticality Analysis Process Report (Ref. 2.2.12) to establish the bias for keff calculations performed for commercial nuclear fuels using the MCNP code system. This bias will be used in criticality safety analyses as part of the basis for establishing the upper subcritical limit (USL). This calculation also defines the range of applicability (ROA) for which the bias may be used directly without need to consider additional penalties on the USL.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.