Skip to main content
Taxonomy Image
report icon

Summary of 2017 Public Comments on the Draft Consent-Based Siting Process for Consolidated Storage and Disposal Facilities for Spent Nuclear Fuel and High-Level Radioactive Waste

This document summarizes comments received on the U.S. Department of Energy’s (DOE) Draft Consent-Based Siting Process for Consolidated Storage and Disposal Facilities for Spent Nuclear Fuel and High-Level Radioactive Waste (referred to throughout this document as the Draft Consent-Based Siting Process). DOE published a request for public comment on the Draft Consent-Based Siting Process in the Federal Register on January 13, 2017 (82 FR 4333).

Community

Designing a Consent-Based Siting Process: Summary of Public Input, Final Report

The successful siting of nuclear waste management facilities, through a consent-based process, is predicated on a robust and transparent dialogue between the Department and its stakeholders. From December 23, 2015 through July 31, 2016, DOE solicited and received public comments and heard input from a wide range of individuals, communities, states, Tribes, and stakeholders through the multiple avenues described above.

Community

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste 3

The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel1 and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. The Strategy addresses several important needs.

Community

Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package

The purpose of this calculation is to evaluate the transient behavior and consequences of a worstcase criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package (WP). This calculation will provide information necessary for demonstrating that the consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository.
Community

Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package

The purpose of this analysis is to evaluate the transient behavior and consequences of a worst case criticality event involving intact pressurized water reactor (PWR) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR assembly waste package (WP). The objective of this analysis is to demonstrate that the consequences of a worst case criticality event involving intact PWR SNF are insignificant in their effect on the overall radioisotopic inventory in a WP.
Community

Data Qualification Report: Mineralogy Data for Use on the Yucca Mountain Project

This DQR uses the technical assessment methods according to Attachment 2 of AP-SIII.2Q, Rev. 0, ICN 3, to qualify DTN LADB831321AN98.002. The data addressed in this DQR have been cited in CRWMS M&O (2000b) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high level nuclear waste. CRWMS M&O (2000b) refers to mineral analyses that are unqualified.
Community

Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package

The objective of this calculation is to perform intact and degraded mode criticality evaluations of the US Department of Energy's (DOE) Advanced Test Reactor (ATR) Spent Nuclear Fuel (SNF) placed in the DOE standardized SNF canister. This analysis evaluates the codisposal of the DOE SNF canister containing the ATR SNF in a 5-Defense High-Level Waste (%-DHLW) Short Waste Package (WP) (Bechtel SAIC Company, LLC [BSC] 2004a), which is to be placed in a monitored geologic repository (MGR).
Community

EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating (CRWMS M&O) contractor performed calculations to provide input to the design of a waste package (WP). This document analyzes the degradation processes of two types of pressurized water reactor (PWR) spent nuclear fuel (SNF): • Fuel fabricated from low enriched uranium oxide, which has been used, or will ~ used, in commercial nuclear power plants.
Community