Skip to main content

Occupational Risk Consequences of the Department of Energy's Approach to Repository Design, Performance Assessment, and Operation in the Yucca Mountain License Application

EPRI has discovered several aspects of the U.S Department of Energy (DOE) proposed design and operation of the Yucca Mountain repository that—if implemented as described in the license application (LA)—could result in unnecessary occupational health and safety risk to workers involved with repository-related activities. This report identifies key DOE conservatisms and focuses on the occupational risk consequences of the DOE's approach to the repository design, performance assessment, and operation.

Program on Technology Innovation: Room at the Mountain

Projected expansion of nuclear power beyond the year 2014 will result in the need for commercial spent nuclear fuel (CSNF) management options in addition to the currently legislated CSNF storage capacity at the proposed Yucca Mountain geological repository. At present, 70,000 MTHM of storage capacity has been authorized, with a projection that 63,000 MTHM would be used for CSNF. This report extends preliminary analyses of the maximum physical capacity of the Yucca Mountain repository, presented in EPRI report 1013523.

Program on Technology Innovation: Summary of the National Academy of Sciences Report: "Going the Distance?"

In May 2003, The National Academy of Sciences (NAS) formed a Committee on Transportation of Radioactive Waste (NAS Committee) to examine the transportation of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States. The focus of this study was on the transportation of SNF in the United States.

Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments

In the existing U.S. Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations governing the spent nuclear fuel and high-level radioactive waste site at Yucca Mountain, Nevada, the time period of compliance was set at 10,000 years. Recently, a Court ordered that EPA and NRC either revise the regulation on this topic to be "based upon and consistent with" recommendations made by a panel of the National Academy of Sciences, who recommended a time period of compliance out to as long as one million years, or seek congressional relief.

Spent Nuclear Fuel Transportation: An Overview

Spent nuclear fuel comprises a fraction of the hazardous materials packages shipped annually in the United States. In fact, at the present time, fewer than 100 packages of spent nuclear fuel are shipped annually. At the onset of spent fuel shipments to the proposed Yucca Mountain, Nevada, repository, the U.S. Department of Energy (DOE) expects to ship 400 - 500 spent fuel transport casks per year over the life of the facility.

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II --U.S. Regulations for Geologic Disposal

U.S. efforts to site and construct a deep geologic repository for used fuel and high level
radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late
1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This
legislation codified a national approach for developing a deep geologic repository. Amendment
of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S.
program, most notably the selection of Yucca Mountain as the only site of the three remaining

EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III --Review of National Repository Programs

The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has left the U.S. program for management of used fuel and high level radioactive waste (HLW)
in a state of uncertainty. In concert with this major policy reset and in response to the resulting
policy vacuum, the President directed the Energy Secretary to establish the Blue Ribbon
Commission on America’s Nuclear Future (BRC) “…to conduct a comprehensive review of
policies for managing the back end of the nuclear fuel cycle and to provide recommendations for

Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors

Within the context of long-term waste management and sustainable nuclear fuel supply, there continue to be discussions regarding whether the United States should consider recycling of light-water reactor (LWR) spent nuclear fuel (SNF) for the current fleet of U.S. LWRs. This report presents a parametric study of equilibrium fuel cycle costs for an open fuel cycle without plutonium recycling (once-through) and with plutonium recycling (single-recycling using mixed-oxide, or MOX, fuel), assuming an all-pressurized water reactor (PWR) fleet.

International Review Team Report: A Peer Review of the Yucca Mountain IMARC Total System Performance Assessment EPRI Model

Since 1989, EPRI has been conducting independent assessments of the proposed deep geologic repository for the disposal of spent nuclear fuel and high level radioactive waste at Yucca Mountain, Nevada. EPRI pioneered application of the total system performance assessment (TSPA) approach for evaluating performance of geologic repository systems on a probabilistic basis. Along the way, EPRI developed the Integrated Multiple Assumptions and Release Code (IMARC) as its primary analytical tool for TSPA-based evaluations.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.