Skip to main content

Disposal of Spent Nuclear Fuel and High-level Radioactive Waste

The characteristics of spent nuclear fuel and high-level waste are described, and options for permanent disposal that have been considered are described. These include:
•disposal in a mined geological formation,
•disposal in a multinational repository, perhaps on an unoccupied island,
•by in situ melting, perhaps in underground nuclear test cavities,
•sub-seabed disposal,
•disposal in deep boreholes,
•disposal by melting through ice sheets or permafrost,
•disposal by sending the wastes into space, and


External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository

This technical report provides an updated summary of the waste package (WP) external criticalityrelated
risk of the plutonium disposition ceramic waste form, which is being developed and
evaluated by the Office of Fissile Materials Disposition of the U.S. Department of Energy (DOE).
The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded
in High-Level Waste (HLW) glass in the HLW glass disposal canisters, known as the "can-incanister"


Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II

The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOE-SNF) canister containing Massachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five-Pack Defense High-Level Waste (DHLW) waste package to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame.


Probabilistic External Criticality Evaluation

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide a probabilistic evaluation of the potential for criticality of fissile material which has been transported from a geologic repository containing breached waste packages of commercial spent nuclear fuel (SNF). This analysis is part of a continuing investigation of the probability of criticality resulting from the emplacement of spent nuclear fuel in a geologic repository.


Technical Basis Report For Surface Characteristics, Preclosure Hydrology, And Erosion

This study presents a synthesis of information and interpretations relevant to surficial processes at the Yucca Mountain Site. The report is part of the technical basis which will be used to evaluate the suitability of Yucca Mountain, Nevada, as a site for a mined geologic repository for the permanent disposal of high-level radioactive waste and spent nuclear fuel. It provides a description of the surface characteristics, preclosure hydrology, and erosion at the Yucca Mountain Site. This report will provide the technical basis to evaluate three technical guidelines from the U.S.