Skip to main content

Feasibility of Direct Disposal of Dual-Purpose Canisters-Options for Assuring Criticality Control

The concept of direct disposal of dual-purpose canisters (DPCs) has not been previously considered
for the Yucca Mountain geologic repository because of concerns, among other reasons,
about degradation of the reactivity-control material over the relatively long period of the repository
analyses. Aluminum-based neutron absorber materials, typically used in DPCs, are not
expected to have sufficient corrosion resistance necessary to retain their integrity over a 10,000+

Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty

Analytical methods, described in this report, are used to
systematically determine experimental fuel sub-batch
reactivities as a function of burnup. Fuel sub-batch reactivities
are inferred using more than 600 in-core pressurized water
reactor (PWR) flux maps taken during 44 cycles of operation
at the Catawba and McGuire nuclear power plants. The
analytical methods systematically search for fuel sub-batch
reactivities that minimize differences between measured and
computed reaction rates, using Studsvik Scandpower’s

Fission Product Benchmarking for Burnup Credit Applications

Progress toward developing a technical basis for a cost-effective burnup credit methodology for
spent nuclear fuel with initial U-235 enrichment up to 5% is presented. Present regulatory
practices provide as much burnup credit flexibility as can be currently expected. Further progress
is achievable by incorporating the negative reactivity effects of a subset of neutron-absorbing
fission product isotopes. Progress also depends on optimizing the procedure for establishing the

Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit

This report proposes and documents a computational benchmark for the estimation of the
additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor
actinides in a burnup-credit storage/transport environment, relative to SNF compositions
containing only the major actinides. The benchmark problem/configuration is a generic burnupcredit
cask designed to hold 68 boiling water reactor (BWR) spent nuclear fuel assemblies. The
purpose of this computational benchmark is to provide a reference configuration for the

Feasibility and Incentives for the Consideration of Spent Fuel Operating Histories in the Criticality Analysis of Spent Fuel Shipping Casks

Analyses have been completed that indicate the consideration of spent fuel histories (''burnup credit'') in the design of spent fuel shipping casks is a justifiable concept that would result in cost savings and public risk benefits in the transport of spent nuclear fuel. Since cask capacities could be increased over those of casks without burnup credit, the number of shipments necessary to transport a given amount of fuel could be reduced.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.