- Previous page
- Page 4
- Next page
Assessment of Benefits for Extended Burnup Credit in Transporting PWR Spent Nuclear Fuel in the USA
This paper presents an assessment of the benefits for extended burnup credit in transporting
pressurized-water-reactor (PWR) spent nuclear fuel (SNF) in the United States. A prototypic 32-
assembly cask and the current regulatory guidance were used as bases for this assessment. By
comparing recently released PWR discharge data with actinide-only-based loading curves, this
evaluation shows that additional negative reactivity (through either increased credit for fuel burnup or
Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations
U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit.
Parametric Study of the Effect of Control Rods for PWR Burnup Credit
The Interim Staff Guidance on burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF), issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office, recommends the use of analyses that provide an "adequate representation of the physics" and notes particular concern with the "need to consider the more reactive actinide compositions of fuels burned with fixed absorbers or with control rods fully or partly inserted." In the absence of readily available information on the extent of control rod (CR) usage in U.S.
Practices and Developments in Spent Fuel Burnup Credit Applications-Proceedings of a Technical Committee Meeting Held in Madrid, April 22-26, 2002
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
End Effect keff Cias Curve for Actinide-Only Burnup Credit Casks
A conservative end effect keff bias curve for actinide-only burnup credit casks is presented
in this paper. Rather than performing axially burnup-dependent analysis, cask designers can, if
they choose to, analyze casks with a uniform axial burnup (at assembly average burnup value) and
add the keff bias values to conservatively bound the actinide-only end effect. Earlier studies
suggested 1-3% increase in keff to account for the end effect, but they included fission products
as well as actinides for their analyses.
Review of Information for Spent Nuclear Fuel Burnup Confirmation
The Interim Staff Guidance on burnup credit (ISG-8, revision 2) for pressurized-water-reactor spent
nuclear fuel in storage and transport casks, issued in 2002 by the U.S. Nuclear Regulatory Commission’s
Spent Fuel Project Office, recommends an out-of-core burnup measurement to confirm the reactor record
and compliance with the assembly burnup value used for cask loading acceptance. This recommendation
is intended to prevent unauthorized loading (i.e., misloading) of assemblies due to inaccuracies in reactor
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
This report presents the results of computer code benchmark simulations against spent fuel radiochemical assay
measurements from the Kansai Electric Ltd. Takahama-3 reactor published by the Japan Atomic Energy
Research Institute. Takahama-3 is a pressurized-water reactor that operates with a 17 × 17 fuel-assembly design.
Spent fuel samples were obtained from assemblies operated for 2 and 3 cycles and achieved a maximum burnup
of 47 GWd/MTU. Radiochemical analyses were performed on two rods having an initial enrichment of
Calculation of Isotopic Bias and Uncertainty for BWR SNF
The objective of Calculation of Isotopic Bias and Uncertainty for BWR SNF is to quantify the computational bias and uncertainty in the multiplication factor (keff) to be used for Boiling Water Reactor (BWR) spent nuclear fuel (SNF) burn-up credit. The scope of this bias and uncertainty determination covers 38 different radiochemical assay (RCA) spent fuel samples from 14 different fuel assemblies that were irradiated in four different BWRs. The irradiated fuel samples evaluated span an enrichment range of 2.53 weight percent U-235 through 3.95 weight percent U-235.
- Previous page
- Page 4
- Next page