Skip to main content

Calculation of Isotopic Bias and Uncertainty for BWR SNF

The objective of Calculation of Isotopic Bias and Uncertainty for BWR SNF is to quantify the computational bias and uncertainty in the multiplication factor (keff) to be used for Boiling Water Reactor (BWR) spent nuclear fuel (SNF) burn-up credit. The scope of this bias and uncertainty determination covers 38 different radiochemical assay (RCA) spent fuel samples from 14 different fuel assemblies that were irradiated in four different BWRs. The irradiated fuel samples evaluated span an enrichment range of 2.53 weight percent U-235 through 3.95 weight percent U-235.

Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance.

SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2

The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations.

K-Infinite Trends with Burnup, Enrichment, and Cooling Time for BWR Fuel Assemblies

This report documents the work performed by ORNL for the Yucca Mountain Project (YMP)
M&O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k values for inf
infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various
burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting
criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon

Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel - II: Validation

The calculation of isotopic concentrations in spent nuclear fuel (SNF) assemblies and the subcritical multiplication factor of SNF packages are two of the essential requirements of the actinide-only burnup credit methodology. To justify the accuracy of the computed values, the code systems used to perform the calculations must be validated. Here, the techniques used for actinide-only burnup credit isotopic and criticality validation are presented and demonstrated.

Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel - III: Bounding Treatment of Spatial Burnup Distributions

A flat, uniform axial burnup assumption, preferred for its computational simplicity, does not always conservatively estimate the pressurized water reactor spent-fuel-cask multiplication factors. Rather, the reactivity effect of the significantly underburned fuel ends, usually referred to as the "end effect," can be properly treated by explicit modeling of the axial burnup distribution based on limiting axial burnup profiles.

Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel - I: Methodology Overview

A conservative methodology is presented that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel (SNF) packages. The method is based on the assumption that the isotopic concentration in the SNF and cross sections of each isotope for which credit is taken must be supported by validation experiments. The method allows credit for the changes in the 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am concentration with burnup. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps:

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.