Skip to main content

Commercial Reactor Criticality Depletion For Grand Gulf, Unit 1

The objectie of this calculation is to document the Grand Gulf, Unit 1, (GG1) fuel depletion calculations. The GG1 reactor is a boiling water reactor (BWR) owned and operated by Entergy Operations Inc. The Commercial Reactor Criticality (CRC) evaluations support the development and validation of the neutronic models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository. This calculation is performed as part of the evaluation CRC program. This report is an engineering calculation supporting the burnup credit methodology of YMP 2000 (Ref.

Community

Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations

The objective of the Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations is to determine the accuracy of the SAS2H control module of the baselined modular code system SCALE, Version 4.4A (STN: 10129-4.4A-00), in predicting the isotopic concentrations of spent fuel, and to quantify the overall effect that the differences between the calculated and measured isotopic concentrations have on the system reactivity. The scope of this calculation covers eight different spent fuel samples from a fuel assembly that was irradiated in the Limerick Unit 1 boiling water reactor (BWR).

Community

Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses

The validity of the computation of pressurized-water-reactor (PWR) spent fuel isotopic
composition by the SCALE system depletion analysis was assessed using data presented in the report.
Radiochemical measurements and SCALE/SAS2H computations of depleted fuel isotopics were
compared with 19 benchmark-problem samples from Calvert Cliffs Unit 1, H. B. Robinson Unit 2,
and Obrigheim PWRs. Even though not exhaustive in scope, the validation included comparison of
predicted and measured concentrations for 14 actinides and 37 fission and activation products.

Community

SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor

The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.

Community

Code to Code Comparison of One- and Two-Dimensional Methods

This calculation file provides comparisons of one- and two-dimensional methods for calculating the isotopic content of spent nuclear fuel. The one-dimensional methods use the SAS2H sequence of SCALE 4.4a (Reference 7.1) and the SAS2 sequence of SCALE 5.0 (Reference 7.2). The two-dimensional method uses the TRITON control module along with the T-DEPL sequence of SCALE 5.0 (Reference 7.3). The SAS2H results for SCALE 4.4a are taken from Reference 7.4. Data from previous two-dimensional calculations (Reference 7.5) using CASM03 will also be used for comparisons with TRITON.

Community

SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary

The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original $fresh# composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to

Community

An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions of PWR Spent Fuel

Isotopic characterization of spent fuel via depletion and decay calculations is necessary for
determination of source terms for subsequent system analyses involving heat transfer, radiation
shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality
safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and
decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in

Community

SAS2H Analysis of Radiochemical Assay Samples from Cooper BWR Reactor

The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.

Community

SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor

The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.

Community

SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2

The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations.
Community