Skip to main content

Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel - III: Bounding Treatment of Spatial Burnup Distributions

A flat, uniform axial burnup assumption, preferred for its computational simplicity, does not always conservatively estimate the pressurized water reactor spent-fuel-cask multiplication factors. Rather, the reactivity effect of the significantly underburned fuel ends, usually referred to as the "end effect," can be properly treated by explicit modeling of the axial burnup distribution based on limiting axial burnup profiles.

Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel - I: Methodology Overview

A conservative methodology is presented that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel (SNF) packages. The method is based on the assumption that the isotopic concentration in the SNF and cross sections of each isotope for which credit is taken must be supported by validation experiments. The method allows credit for the changes in the 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am concentration with burnup. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps:

Issues for Effective Implementation of Burnup Credit

In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at
pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of
burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the
technical issues related to the basic physics phenomena and parameters of importance are similar in each of these
applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the

Investigation of the Effect of Fixed Absorbers on the Reactivity of PWR Spent Nuclear Fuel for Burnup Credit

The effect of fixed absorbers on the reactivity of pressurized water reactor (PWR) spent nuclear fuel (SNF) in support of burnup-credit criticality safety analyses is examined. A fuel assembly burned in conjunction with fixed absorbers may have a higher reactivity for a given burnup than an assembly that has not used fixed absorbers. As a result, guidance on burnup credit, issued by the U.S. Nuclear Regulatory Commission's Spent Fuel Project Office, recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers.

An Empirical Approach to Bounding the Axial Reactivity Effects of PWR Spent Nuclear Fuel

One of the significant issues yet to be resolved for using
burnup credit ~BUC! for spent nuclear fuel ~SNF! is establishing
a set of depletion parameters that produce an adequately conservative
representation of the fuel’s isotopic inventory. Depletion
parameters ~such as local power, fuel temperature, moderator temperature,
burnable poison rod history, and soluble boron concentration!
affect the isotopic inventory of fuel that is depleted in a
pressurized water reactor ~PWR!. However, obtaining the detailed

A Critical Review of the Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing kf estimates based on reactivity "equivalent" fresh fuel enrichment (REFFE) to kl estimates using the actual spent fuel isotopics.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.